2016年名校联考中考模拟数学试题及答案
2016年中考数学模拟试卷(含答案解析) (3)
2016年中考模拟试卷(二)数 学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置......上)7.计算: ( 13 )﹣2+(3+1)0= ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.某商场统计了去年1~5月A ,B 两种品牌冰箱的销售情况.A 品牌(台) 15 17 16 13 14B 品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A ”或“B ”).-3 -2 -1 2 1 0 A BECD 3(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线.③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间.其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解..... 18.(6分)化简:x -3x -2 ÷( x +2-5x -2).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.x … 1- 0 1 3 …y … 3- 1 3 1 …(第11题)12(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图年龄人数12-17岁30-35岁24-29岁18-23岁500400300200100330420450O30-35岁22%12-17岁24-29岁18-23岁全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B ,AB =2 5 , (1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(第23题)ABPE DCQFHGxyO AB(第25题)(3)连接OE 交BC 于点F ,若AB =10 ,求OE 的长度.27.(88分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C B(图2) A C B图ACBa(第26题)OEDCBA2016年中考模拟试卷(二) 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案ACABDD二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③…………………………………………………1分 将③代入②,得1-y +y 2=3. ……………………………………………2分 解这个方程,得y 1=2,y 2=-1. …………………………………………4分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………5分20.(8分)解:(1)1500,(图略);(每个2分)) ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)另外1人恰好选中副班长的概率是13;………………………………………3分(2)恰好选中班长和副班长的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2………………3分解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(每个1分)(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD ,∵D 为弧AB 的中点,∴AD =BD , .…………………1分 ∵AB 为直径, ∴∠ADB =90°.…………………2分 ∴∠DAB =∠DBA =45°,∴∠DCB =∠DAB =45°.…………………3分(2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180° ∴∠A =∠BD …………………4分又∵∠ACB =∠BED =90°, ∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2,又∵CE =BE ,∴DE :CE =1:2,∴D 为CE 的中点. …………………6分(3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC ,∴F 为OE 中点, 又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2,∵AC :BC =1:2,AB =10 ,∴AC = 2 ,BC =2 2 ,OEDC BAF (第26题)∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分说明:(即△ABC 的外接圆和线段BC 的中垂线的交点)(3)作图正确 (只要做出一个即可)…………………8分 说明:(按照(1)(2)的方法找到点E ,再以点E 为圆心,以EC 或EB 长为半径做圆,再以点B 为圆心,a 长为半径作圆,两圆的交点为点H ,再连接BH ,交△ABC 的外接圆于点F,则点F 为所求。
2016中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016深圳市17所名校联考中考数学模拟试卷含答案解析
A. B-O £,D I 13.若反比例函数y=的图象经过点A (3, m ,贝U m的值是(A. - 3B. 3C.-D.4 .在Rt △ ABC 中,Z C=90 a=4, b=3,则cosA 的值是(A. 一4 4 B•- C—D.2016年广东省深圳市17所名校联考中考数学模拟试卷(2月份)一、选择题(本部分共12小题,每小题3分,共36分,每小题给出的四个选项,只有一项是正确的)1 .方程x2=3x的根是()A.3B. - 3 或0C. 3 或0D. 02.如图是一个几何体的俯视图,则该几何体可能是(5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是(6.如图,在同一时刻,身高 1.6米的小丽在阳光下的影长为 2.5米,一棵大树的影长为5米,则这棵树的高度为( )A. 1.5 米B. 2.3 米C. 3.2 米D. 7.8 米7.某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为( )A. 100x (1 - 2x) =90 B . 100 (1+2x) =90 C. 100 (1- x) 2=90 D. 100 (1+x) 2=908.关于二次函数y= \ (x - 3) 2-2的图象与性质,下列结论错误的是( )A.抛物线开口方向向下B.当x=3时,函数有最大值-2C.当x > 3时,y随x的增大而减小2,D.抛物线可由y=^x2经过平移得到9.正方形ABCD勺一条对角线长为8,则这个正方形的面积是( )A. 4也B . 32 C. 64 D. 12810 .如图,Rt△ AOC的直角边OS x轴上,/ ACO=90 ,反比例函数y=:经过另一条直角边AC的中点D, S A AO(=3,贝U k=(11.如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为- 1, 3,则下列结论正确的个x 均有ax2+bx> a+b.数有()①acv 0;②2a+b=0;③4a+2b+c> 0;④对于任意A. 1B. 2C. 3D. 412.如图所示,矩形ABCg, AE平分Z BAD交BC于E, ZCAE=15 ,则下面的结论:①^ODC是等边三角形;② BC=2AB ③ZAOE=135 ;④、AAO=S^ACOE=,其中正确结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本题共4小题,每小题3分,共12分)13.廿电0$4 5° =.14.关于x的一元二次方程(k - 1) x2- 2x+1= 0有两个不相等的实数根,则实数k的取值范围是.15.如图,已知矩形OABE矩形ODE徨位似图形,P是位似中心,若点B的坐标为(2, 4),点E 的坐标为(-1, 2),则点P的坐标为 .16.如图,矩形ABCg, AD=4, ZCAB=30,点P是线段AC上的动点,点Q是线段CD上的动点, 则AQ+QP 勺最小值是.0C三、解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分)… 1 ” 思n17.计算:(― 刁2一| - 1+ |+2sin60 +(兀—4)°.18 .九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛. (1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是 ;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.19. 2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角Z AEF=23 ,量得树干的倾斜角为/ BAC=38 ,大树被折断部分和坡面所成的角Z ADC=60 , AD=3m(1)求/ DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)20.如图,在? ABCD^, AE平分Z BAD交BC于点E, BF平分Z ABC交AD于点F, AE与BF交于点P,连接EF, PD.(1)求证:四边形ABEF是菱形;(2)若AB=4, AD=@ Z ABC=60,求tan / ADP 的值.k21.如图,直线y= - x+b与反比例函数y=;的图象相交于A (1, 4) , B两点,延长AO交反比例函数图象于点C,连接OB(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;P坐标,若不存在请说明理由.30元,每件玩具销售单价x (元)与每天22.东门大虹商场购进一批“童乐”牌玩具,每件成本价的销售量y (件)的关系如下表:K (元)354045501••-/ (件)750700650600..若每天的销售量y (件)是销售单价x (元)的一次函数(1)求y与x的函数关系式;(2)设东门大虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定"童乐"牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围.323.已知:如图,在平面直角坐标系xOy中,直线y=-qK+E与x轴、y 轴的交点分别为A、B,将/ OBA寸折,使点。
最新)2016年中考模拟数学试题(含答案)
最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。
A。
4/3443 B。
3443/3 C。
-4/3443 D。
-3443/42.右图是某几何体的三视图,该几何体是()。
A。
圆锥 B。
圆柱 C。
正三棱柱 D。
正三棱锥3.下列运算中正确的是()。
A。
π=1 B。
x2=x C。
2-2=-4 D。
--2=24.不等式组{x≤-2,x-2>1}的解集是()。
A。
x≤-2 B。
x>3 C。
3<x≤-2 D。
无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。
灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。
截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。
科学计数法表示为()元。
A。
8.01×107 B。
80.1×107 C。
8.01×108 D。
0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。
A。
19,15 B。
15,14.5 C。
19,14.5 D。
15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。
A。
115° B。
120° C。
100° D。
80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。
9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。
10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。
2016年中考数学模拟试卷及答案(精选两套)
1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。
最新2016 年中考模拟数学试题(含答案)
2016年中考模拟数学试题时间120分钟满分120分 2016.2.4一、选择题(共10 小题,每小题3分,满分30分)1.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=153.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.4.已知k、b是一元二次方程(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD 的面积不变D.四边形ABCD的周长不变6.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为 x,则 x 满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=7.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限8.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0 时,y1随x 的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.48题图 9题图 10题图9.如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是()A.2B.C.D.10.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1 个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共24分)11.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是.12.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.13.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.13题图 14题图 15题图14.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).15.如图,矩形EFGH 内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF= EH,那么EH的长为.16.将一副三角板按图叠放,则△AOB 与△DOC的面积之比等于.16题图 17题图 18题图17.如图,港口A 在观测站O 的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即 AB的长)为.18.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x 轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.三、解答题(共66分)19.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.20.已知关于 x 的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中 a、b、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.21.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;若四边形AFCE是菱形,求菱形AFCE的周长.22.如图,在平面直角坐标系中,O为原点,直线AB分别与x 轴、y轴交于B和A,与反比例函数的图象交于 C、D,CE⊥x 轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;求△OCD的面积.23.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)24.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2 米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5 米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;试计算出电线杆的高度,并写出计算的过程.25.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N 处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A 在同一平面内,E、C、N 在同一条直线上,求条幅的长度(结果精确到 1米)(参考数据:≈1.73,≈1.41)26.如图1,在正方形ABCD 中,P是对角线BD 上的一点,点E在AD 的延长线上,且PA=PE,PE交CD 于F.(1)证明:PC=PE;求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一、选择题1.故选D.2.故选C3.故选:C.4.故选B.5.故选C.6.故选B.7.故选:D.8.故选C9.故选:D.10.故选B.二、填空题11.m<.12.1.4.13.2.14 故答案为:③.15.1.516故答案为:1:3.17. 2km .18.三、解答题19.解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米.20.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;∵方程有两个相等的实数根,∴2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.21.解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,解得:x= ,则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.22.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3= ,∴m=﹣6.∴该反比例函数的解析式为y=﹣.联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC 的面积=4×3÷2=6,故△OCD 的面积为2+6=8.23.解:(1)甲同学的方案不公平.理由如下:列表法,5 (5,2)(5,3)(5,4)8种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;不公平.理由如下:所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.24.解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以 AM=10﹣2=8,由平行投影可知,=,即=,解得CD=7,即电线杆的高度为7米.25.解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(10+10 )米,∴AN=AH+EF=米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=10 ≈17米,答:条幅的长度是17米.26.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
合肥十校联考2016届中考数学模拟试卷(二)含答案解析
2016年安徽省“合肥十校”联考中考数学模拟试卷(二)一、选择题(共10小题,每小题4分,满分40分.每小题只有一个选项符合题意)1.下列计算中,正确的是()A.x3•x2=x6B.x3﹣x2=x C.(﹣x)2•(﹣x)=﹣x3D.x6÷x2=x32.如图是一个几何体的实物图,则其侧视图是()A.B.C. D.3.据统计去年来国内旅游人数达到9.98亿人次,用科学记数法表示9.98亿正确的是()A.9.98×107B.9.98×108C.O.998×109D.99.8×1074.如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A.65°B.50°C.35°D.25°5.如图,AB是⊙0的直径,点C、D在⊙0上,∠BOD=11O°,AD∥OC,则∠AOC=()A.70°B.60°C.50°D.55°6.已知正六边形的边心距为,则它的周长是()A.6 B.12 C. D.7.如图,反比例函数y 1=和一次函数y 2=k 2x+b 的图象交于A 、B 两点.A 、B 两点的横坐标分别为2,﹣3.通过观察图象,若y 1>y 2,则x 的取值范围是( )A .0<x <2B .﹣3<x <0或x >2C .0<x <2或x <﹣3D .﹣3<x <08.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A .= B . =C . =D . =9.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,∠B=50°,∠A=26°,将△ABC 沿DE 折叠,点A 的对应点是点A ′,则∠AEA ′的度数是( )A .145°B .152°C .158°D .160°10.如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积y 与点P 运动的路程x 之间的函数图象大致是( )A .B .C .D .二、填空题(本题共4小题,每小题5分,满分20分)11.把3x3﹣6x2y+3xy2分解因式的结果是.12.有六张正面分别标有数字﹣2,﹣1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,将该卡片上的数字加1记为b,则函数y=ax2+bx+2的图象过点(1,3)的概率为.13.如图,∠AOB=45°,过射线OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是S n=.14.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论正确的有:.①AG平分∠DAB;②CH=DH;③△ADH是等腰三角形;④S△ADH=S.四边形ABCH三、(本题共两小题,每小题8分,满分16分)15.先化简,再求值:,其中a=﹣3.16.小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.四、(本题共两小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)五、(本题共两小题,每小题10分,满分20分)19.某中学七(4)班一位学生针对七年级同学上学“出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共800名同学,请估算全年级步行上学的学生人数;(3)若由3名“乘车”的学生,1名“步行”的学生,2名“骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“乘车”的学生的概率.20.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a=;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.六、(本题满分12分)21.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?七、(本题满分12分)22.在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2).(1)求该抛物线的表达式,并写出其对称轴;(2)点D为该抛物线的顶点,设点E(m,0)(m>2),如果△BDE和△CDE的面积相等,求E 点坐标.八、(本题满分14分)23.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.2016年安徽省“合肥十校”联考中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分.每小题只有一个选项符合题意)1.下列计算中,正确的是()A.x3•x2=x6B.x3﹣x2=x C.(﹣x)2•(﹣x)=﹣x3D.x6÷x2=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为x3•x2=x3+2=x5,故本选项错误;B、x3与x2没有同类项,不能合并,故本选项错误;C、(﹣x)2•(﹣x)=(﹣x)2+1=﹣x3,正确;D、应为x6÷x2=x4,故本选项错误.故选C.【点评】本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.2.如图是一个几何体的实物图,则其侧视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看下边是一个矩形,上边是一个梯形.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.据统计去年来国内旅游人数达到9.98亿人次,用科学记数法表示9.98亿正确的是()A.9.98×107B.9.98×108C.O.998×109D.99.8×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9.98亿用科学记数法表示为:9.98×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A.65°B.50°C.35°D.25°【考点】平行线的性质.【分析】首先由AC丄AB与∠1=65°,求得∠B的度数,然后由a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.【解答】解:∵AC丄AB,∴∠BAC=90°,∴∠1+∠B=90°,∵∠1=65°,∴∠B=25°,∵a∥b,∴∠2=∠B=25°.【点评】此题考查了平行线的性质与垂直的定义.题目比较简单,解题时要注意数形结合思想的应用.5.如图,AB是⊙0的直径,点C、D在⊙0上,∠BOD=11O°,AD∥OC,则∠AOC=()A.70°B.60°C.50°D.55°【考点】圆周角定理;平行线的性质.【分析】先根据圆周角定理求出∠OAD的度数,再由平行线的性质即可得出结论.【解答】解:∵∠BOD=110°,∴∠OAD=∠BOD=55°.∵AD∥OC,∴∠AOC=∠OAD=55°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.已知正六边形的边心距为,则它的周长是()A.6 B.12 C. D.【考点】正多边形和圆.【专题】计算题.【分析】设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得边长AB,从而求出周长.【解答】解:如图,在Rt△AOG中,OG=,∠AOG=30°,∴cos30°=,∴OA=OG÷cos 30°=2.这个正六边形的周长=12.故选B.【点评】此题主要考查正多边形的计算问题,属于常规题.解题的关键是正确的构造直角三角形.7.如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2,则x的取值范围是()A.0<x<2 B.﹣3<x<0或x>2 C.0<x<2或x<﹣3 D.﹣3<x<0【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】根据两函数的交点A、B的横坐标和图象得出答案即可.【解答】解:∵反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点,A、B两点的横坐标分别为2,﹣3,∴通过观察图象,当y1>y2时x的取值范围是0<x<2或x<﹣3,故选:C.【点评】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图形的能力,用了数形结合思想.8.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x个字,根据题意列方程,正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设每分钟打x个字,则小刚每分钟比小明多打50个字,根据速录员小明打2500个字和小刚打3000个字所用的时间相同,列方程即可.【解答】解:设小刚每分钟打x个字,根据题意列方程得:,故选B.【点评】本题考查了有实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE 折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°【考点】翻折变换(折叠问题);三角形中位线定理.【专题】几何图形问题.【分析】根据三角形的内角和定理得到∠C=104°,再由中位线定理可得DE∥BC,∠ADE=∠B=50°,∠AED=∠C=104°,根据折叠的性质得∠DEA′=∠AED=104°,再求∠AEA′的度数即可.【解答】解:∵∠B=50°,∠A=26°,∴∠C=180°﹣∠B﹣∠A=104°,∵点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠ADE=∠B=50°,∠AED=∠C=104°,∵将△ABC沿DE折叠,∴△AED≌△A′ED,∴∠DEA′=∠AED=104°,∴∠AEA′=360°﹣∠DEA′﹣∠AED=360°﹣104°﹣104°=152°.故选:B.【点评】本题考查了三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等.10.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x (0≤x≤1);然后判断出从点C到点D,△ABP的底AB的dx一定,高都等于BC的长度,所以△ABP 的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【解答】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:B.【点评】此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.二、填空题(本题共4小题,每小题5分,满分20分)11.把3x3﹣6x2y+3xy2分解因式的结果是3x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3x,再根据完全平方公式进行二次分解即可求得答案;完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:3x3﹣6x2y+3xy2=3x(x2﹣2xy+y2)=3x(x﹣y)2.故答案为:3x(x﹣y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.有六张正面分别标有数字﹣2,﹣1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,将该卡片上的数字加1记为b,则函数y=ax2+bx+2的图象过点(1,3)的概率为.【考点】概率公式;二次函数图象上点的坐标特征.【分析】首先根据题意列表,求出所有可能结果,得出符合要求的a,b的值,再利用概率公式即可求得答案.【解答】解:∵函数y=ax2+bx+2的图象过点(1,3),∴a×12+b×1+2=3即:a+b=1,根据题意列表得:共6种情况,其中只有(0,1)符合题意,故函数y=ax2+bx+2的图象过点(1,3)的概率为.故答案为:.【点评】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.13.如图,∠AOB=45°,过射线OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是S n=8n﹣4.【考点】直角梯形.【专题】规律型.【分析】由∠AOB=45°及题意可得出图中的三角形都为等腰直角三角形,且黑色梯形的高都是2;根据等腰直角三角形的性质,分别表示出黑色梯形的上下底,找出第n个黑色梯形的上下底,利用梯形的面积公式即可表示出第n个黑色梯形的面积.【解答】解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.【点评】此题考查了直角梯形的性质与等腰直角三角形的性质.此题属于规律性题目,难度适中,注意找到第n个黑色梯形的上底为:1+(n﹣1)×4,下底为1+(n﹣1)×4+2是解此题的关键.14.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论正确的有:①③.①AG平分∠DAB;②CH=DH;③△ADH是等腰三角形;④S△ADH=S.四边形ABCH【考点】平行四边形的性质;等腰三角形的判定与性质;作图—基本作图.【分析】根据作图过程可得得AG平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,从而得到△ADH是等腰三角形.【解答】解:根据作图的方法可得AG平分∠DAB,故①正确;∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;故答案为:①③.【点评】此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.三、(本题共两小题,每小题8分,满分16分)15.先化简,再求值:,其中a=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】先把原式去括号,再化简,化为最简后,再把a的值代入求值.【解答】解:•(1﹣)=•=•=a+2,当a=﹣3时,原式=﹣3+2=﹣1.【点评】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.16.小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.【考点】二元一次方程组的应用.【分析】设每支中性笔的价格为x元,每盒笔芯的价格为y元,根据单价×数量=总价建立方程组,求出其解即可.【解答】解:设每支中性笔的价格为x元,每盒笔芯的价格为y元,由题意,得,解得:.答:每支中性笔的价格为2元,每盒笔芯的价格为8元.【点评】本题考查了列二元一次方程解实际问题的运用,二元一次方程的解法的运用,总价=单价×数量的运用,解答时根据题意的等量关系建立方程组是关键.四、(本题共两小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【考点】解直角三角形的应用.【专题】几何图形问题.【分析】(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.【解答】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本题共两小题,每小题10分,满分20分)19.某中学七(4)班一位学生针对七年级同学上学“出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共800名同学,请估算全年级步行上学的学生人数;(3)若由3名“乘车”的学生,1名“步行”的学生,2名“骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“乘车”的学生的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)从两图中可以看出乘车的有25人,占了50%,所以共有学生50人;总人数减乘车的和骑车的就是步行的,根据数据画直方图就可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)用这50人作为样本去估计该年级的步行人数.(3)6人每2人担任班长,有15种情况,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.【解答】解:(1)25×2=50人;50﹣25﹣15=10人;如图所示条形图,圆心角度数=×360°=108°;(2)估计该年级步行人数:800×20%=160(人);(3)设3名“乘车”的学生表示为A、B、C,1名“步行”的学生表示为D,2名“骑车”的学生表示为E,F,则有:AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF这15种等可能结果,而2人都是“乘车”的结果有AB、AC、AD这3种,故2人都是“乘车”的学生的概率P=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为120km,a=2;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由甲船行驶的函数图象可以看出,甲船从A港出发,0.5h后到达B港,ah后到达C 港,又由于甲船行驶速度不变,则可以求出a的值;(2)分别求出0.5h后甲乙两船行驶的函数表达式,联立即可求解;(3)将该过程划分为0≤x≤0.5、0.5<x≤1、1<x三个范围进行讨论,得到能够相望时x的取值范围.【解答】解:(1)A、C两港口间距离s=30+90=120km,又由于甲船行驶速度不变,故,则a=2(h).故答案为:120;2.(2)由点(3,90)求得,y2=30x.当x>0.5时,由点(0.5,0),(2,90)求得,y1=60x﹣30.当y1=y2时,60x﹣30=30x,解得,x=1.此时y1=y2=30.所以点P的坐标为(1,30).该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30km.(3)①当x≤0.5时,由点(0,30),(0.5,0)求得,y1=﹣60x+30依题意,(﹣60x+30)+30x≤10.解得,x≥.不合题意.②当0.5<x≤1时,依题意,30x﹣(60x﹣30)≤10解得,x≥.所以≤x≤1.③当x>1时,依题意,(60x﹣30)﹣30x≤10解得,x≤.所以1<x≤④当2≤x≤3时,甲船已经到了而乙船正在行驶,∵90﹣30x≤10,解得x≥,所以,当≤x≤3,甲、乙两船可以相互望见;综上所述,当≤x≤时或当≤x≤3时,甲、乙两船可以相互望见.【点评】此题为函数方程、函数图象与实际结合的问题,同学们应加强这方面的训练.六、(本题满分12分)21.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,根据等量关系:总销售额为16000元列出方程求解即可;(2)题目中的不等关系是:6月份该青椒的总销售额不低于18360元列出不等式求解即可.【解答】解:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,则6x+4(3000﹣x)=16000,解得x=2000,3000﹣x=1000.故今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(2)依题意有6(1﹣a%)×2000(1+30%)+4(1﹣a%)×1000(1+20%)≥18360,20400(1﹣a%)≥18360,1﹣a%≥0.9,a≤10.故a的最大值是10.【点评】考查了一元一次方程的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.七、(本题满分12分)22.在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2).(1)求该抛物线的表达式,并写出其对称轴;(2)点D为该抛物线的顶点,设点E(m,0)(m>2),如果△BDE和△CDE的面积相等,求E 点坐标.【考点】抛物线与x轴的交点.【分析】(1)把点B、C的坐标分别代入函数解析式,列出关于系数b、c的方程组,通过解方程组求得它们的值;然后由函数解析式和对称轴公式写出对称轴;(2)由(1)中抛物线解析式求得点B 、D 的坐标,结合三角形的面积公式得到DE ∥BC ,所以结合直线上点的坐标特征进行解答即可.【解答】解:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),点C (0,2),∴,解得.故抛物线的表达式为:y=x 2﹣x ﹣2,对称轴为直线x=;(2)由(1)知,抛物线的表达式为:y=x 2﹣x ﹣2=(x ﹣2)(x+1)=(x ﹣)﹣,则点B (2,0),点D (,﹣),若△BDE 和△CDE 的面积相等,则DE ∥BC ,则直线BC 的解析式为y=x ﹣2,∴直线DP 的解析式为y=x ﹣,当y=0时,m=,∴E (,0). 【点评】本题考查了抛物线与x 轴的交点:学会通过解方程ax 2+bx+c=0得到二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0)与x 轴的交点坐标.(2)中解题的突破口是利用面积相等转化为直线平行.八、(本题满分14分)23.在四边形ABCD 中,对角线AC 、BD 相交于点O ,将△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,旋转角为θ(0°<θ<90°),连接AC 1、BD 1,AC 1与BD 1交于点P .(1)如图1,若四边形ABCD 是正方形.①求证:△AOC 1≌△BOD 1.②请直接写出AC 1 与BD 1的位置关系.(2)如图2,若四边形ABCD 是菱形,AC=5,BD=7,设AC 1=kBD 1.判断AC 1与BD 1的位置关系,说明理由,并求出k 的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.【考点】四边形综合题;全等三角形的判定与性质;旋转的性质;相似三角形的判定与性质.【专题】综合题.【分析】(1)①如图1,根据正方形的性质得OC=OA=OD=OB,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1,则OC1=OD1,利用等角的补角相等得∠AOC1=∠BOD1,然后根据“SAS”可证明△AOC1≌△BOD1;②由∠AOB=90°,则∠OAB+∠ABP+∠OBD1=90°,所以∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°所以AC1⊥BD1;(2)如图2,根据菱形的性质得OC=OA=AC,OD=OB=BD,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1,则OC1=OA,OD1=OB,利用等角的补角相等得∠AOC1=∠BOD1,加上,根据相似三角形的判定方法得到△AOC1∽△BOD1,得到∠OAC1=∠OBD1,由∠AOB=90°得∠OAB+∠ABP+∠OBD1=90°,则∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°,所以AC1⊥BD1;然后根据相似比得到===,所以k=;(3)与(2)一样可证明△AOC1∽△BOD1,则===,所以k=;根据旋转的性质得OD1=OD,根据平行四边形的性质得OD=OB,则OD1=OB=OD,于是可判断△BDD1为直角三角形,根据勾股定理得BD12+DD12=BD2=100,所以(2AC1)2+DD12=100,于是有AC12+(kDD1)2=25.【解答】(1)①证明:如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,在△AOC1和△BOD1中,∴△AOC1≌△BOD1(SAS);②AC1⊥BD1;(2)AC1⊥BD1.理由如下:如图2,∵四边形ABCD是菱形,∴OC=OA=AC,OD=OB=BD,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,∴,∴△AOC1∽△BOD1,∴∠OAC1=∠OBD1,又∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB=90°∴AC1⊥BD1;∵△AOC1∽△BOD1,。
2016中考数学模拟试卷(带答案)
2016年中考数学模拟试卷(带答案)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列运算正确的是()A.B.C.D.2.某种商品标价为1200元,售出价800元,则最接近打()折售出A.6折B.7折C.8折D.9折3.从五个点(-2,6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线上的概率是()A.B.C.D.4.平行四边形ABCD中,AC平分DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.125.若,则的值为()A.B.C.D.6.若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定7.如图,⊙O的直径AB=8,P是圆上任一点(A、B除外),APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.B.C.6D.8.给出四个命题:①正八边形的每个内角都是135②半径为1cm和3cm的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30④Rt△ABC中,C=90,两直角边a,b分别是方程x2-7x+12=0的两个根,则它外接圆的半径长为2.5以上命题正确的有()A.1个B.2个C.3个D.4个9.若直角三角形的两条直角边长为、,斜边长为,斜边上的高为,则有()A.B.C.D.10.直角坐标系xoy中,一次函数y=kx+b(kb0)的图象过点(1,kb),且b2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是()A.B.1C.D.不存在二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.点(-1,2)变换为(2,1),请描述一种变换过程.12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路与曙光路交叉口),沿街道走的最近距离是m.13.数据11,9,7,10,14,7,6,5的中位数是,众数是.14.在△ABC中,B=45,cosC=,AC=5a,则用含a的代数式表示AB是(第14题)(第15题)(第16题)15.如图,⊙O为△ABC的内切圆,C=90,BO的延长线交AC 于点D,若BC=3,CD=1,则⊙O的半径等于.16.如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:,若m是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留)19.在平面直角坐标系中,已知点A(6,),B(0,)(1)画一个圆M,使它经过点A、B且与y轴相切(尺规作图,保留作图痕迹);(2)若圆M绕原点O顺时针旋转,旋转角为(0),当圆M与x轴相切时,求圆心M走过的路程.(结果保留)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,(1)根据这规律可知第④个图中有多少个三角形?第n个图中有多少个三角形?(用含正整数n的式子表示);(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的抛物线三角形,[a,b,c]称为抛物线三角形系数.(1)若抛物线三角形系数为[-1,b,0]的抛物线三角形是等腰直角三角形,求的值;(2)若△OAB是抛物线三角形,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.22.如图,直角梯形ABCD,DAB=90,AB∥CD,AB=AD,ABC=60.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且EAD=EDA=15,连接EB、EF.(1)求证:EB=EF;(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)(2)若EF=6,求直角梯形ABCD的面积;23.如图1,抛物线与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且OB=,(O为坐标原点).(1)求实数k的值;(2)求实数a,b的值;(3)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,请直接写出所有满足△EOC∽△AOB的点E的坐标.参考答案一、选择:1-5CBCCD6-10BABCB二、填空:11、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下112、34013、8,714、15、16、三、解答题:17(6分)、化简得.--------------------------4分是一个非负数18(8分)L=13--------------------2分S侧面积=65---------------6分19(8分)(1)画法正确4分(其中无痕迹扣1分)(2)..2分或3..2分20、(1)10个------------------2分-----------------4分(2)不存在..4分(其中过程3分)21、(1)b=2或2..5分(其中点坐标求出适当给分)(2)..5分(其中点坐标求出适当给分)22、(1)证明完整..4分(2)菱形-------4分(写平行四边形3分)(3)S梯形=----------------4分23、(1)k=4..3分(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)(3)提示:发现OCOB,且OC=2OB所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分希望为大家提供的2016年中考数学模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
山西省百校联考2016年中考数学模拟试卷(一)(含解析)
2016年山西省百校联考中考数学模拟试卷(一)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣16的相反数是()A.﹣B.﹣16 C.D.162.义务教育阶段,我们学习了很多平面几何图形,有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.如图是太原市某日八个整点的空气质量趋势图(空气指数越大越严重),根据图中的空气指数可知这组数据的中位数是()A.64 B.60 C.56 D.485.不等式组的解集是()A.x<1 B.x≥3 C.1≤x<3 D.1<x≤36.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50° B.65° C.80° D.90°7.如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(1,﹣3),则当x>1时,y1与y2的大小关系为()A.y1>y2B.y1=y2 C.y1<y2D.无法确定8.按照山西省“改薄工程”规划,我省5年投入85亿元用于改造农村县(市、区)薄弱学校,促进义务教育均衡发展,其中某项“改薄工程”建设,甲队单独完成需要20天,若由甲队先做13天,则剩下的工程由甲、乙两队合作3天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天,根据题意可列方程为()A.13+3+x=20 B. +3(+)=1C. +=1 D.(1﹣)+x=39.如图,在六边形ABCDEF中,∠A+∠B+∠C+∠D=460°,FP、EP分别平分∠AFE,∠FED,则∠P的度数是()A.50° B.55° C.60° D.65°10.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.关于x的一元二次方程ax2+bx+c=﹣4的两根分别为﹣5和﹣1D.若点(﹣2,m),(﹣5,n)在抛物线上,则m>n二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:3a2•a4+(﹣2a2)3=______.12.据教育部网站报道,为贯彻落实《国务院关于进一步完善城乡义务教育经费保障机制的通知》(国发[2016]67号),确保2016年春季开学城乡义务教育学校正常运转,中央财政提前下达2016年第二批城乡义务教育补助经费预算110.21亿元.数据110.21亿元用科学记数法表示为______元.13.某中学计划开设A、B、C、D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为1200人,由此可以估计选修B课程的学生约有______人.14.如图,小明在窗台C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B 的俯角为30°,已知窗台C处离地面的距离CD为5m,则大树的高度为______m.(结果保留根号)15.某社区将一块正方形空地划出如图所示区域(阴影部分)进行硬化后,原空地一边减少了5m,另一边减少了4m,剩余矩形空地的面积为240m2,则原正方形空地的边长是______m.16.如图,已知四边形ABCD与四边形CFGE都是矩形,点E在CD上,点H为AG的中点,AB=3,BC=2,CE=1.5,CF=1,则DH的长为______.三、解答题(本大题共8个小题,共72分。
安徽省2016年名校中考数学试题五(含解析)
安徽省2016年名校中考数学试题五一、选择题(共10小题,每小题4分,满分40分,在每小题给出的四个选项总,只有一个符合题意,请将正确的一项代号填入下面括号内)1.﹣0.5的倒数为( )A.2 B.0.5 C.﹣2 D.2.2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是( )A.23.2×108B.2.32×109C.232×107D.2.32×1083.如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=( )A.35° B.40° C.45° D.50°4.不等式﹣2x<4的解集是( )A.x>﹣2 B.x<﹣2 C.x>2 D.x<2比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①② C.①③ D.②③6.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是( )A.B. C.D.7.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于D,连接AD、OD(AC≠AB),则能够判断图中∠B的余角(不再添加任何辅助线)的有( )A.1个B.2个C.3个D.4个8.Rt△ABC中,∠C=90°,tanA=,BC=5,则AB=( )A.3 B.4 C.D.9.喜羊羊每个月有100元零用钱,一块巧克力3元,一张魔力卡2元.喜羊羊的幸福值可以用下面这个公式来表示:幸福值=巧克力块数×魔力卡片数,则喜羊羊一个月可达到的幸福值最高为( )A.300 B.405 C.416 D.45010.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A止,同时点R 从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( )A.2 B.4﹣πC.πD.π﹣1二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:2x3﹣8x=__________.12.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的本地花费为__________元.13.如图,是一个包装盒的三视图,则这个包装盒的表面积是__________(结果保留π)14.对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是__________(填序号即可)三、本大题共2小题,每小题8分,满分16分15.计算:(﹣1)2015+()﹣1﹣2π0+6cos60°.16.△AOB在平面直角坐标系中的位置如图所示,其中,A(0,﹣3),B(﹣2,0),O是坐标原点.(1)将△AOB先作其关于x轴的对称图形,再把新图形向右平移3个单位,在图中画出两次变换后所得的图形△AO1B1;(2)若点M(x,y)在△AOB上,则它随上述两次变换后得到点M1,则点M1的坐标是__________.四、本大题共2小题,每小题8分,满分16分17.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连结BF,CE.(1)求证:四边形BFCE是平行四边形;(2)当边AB、AC满足什么条件时,四边形BECF是菱形?并说明理由.18.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有__________颗棋子,第5个图中有__________颗棋子;(2)写出你猜想的第n个图中棋子的颗数(用含n的式子表示)是__________.五、本大题共2小题,每小题10分,满分20分19.双曲线y=,直线y=kx+b都经过点A(1,m),B(n,﹣2).(1)求m、n的值;(2)作出两个函数的图象,并观察图象,当x>0时,比较kx+b与的大小.20.袋中装有四个大小相同的小球,分别标有1、2、3、4.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①球第一次摸到奇数号球,第二次摸到偶数号球的概率;②求两次摸到的球中有1个奇数号球和1个偶数号球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两侧摸到的球的数码之和为奇数的概率是多少?请直接写出结果.六、本题满分12分21.大学生小张摆摊销售一批小家电,进价40元,经市场考察知,销售进价为52元时,可售出180个,且定价x(元)与销售减少量y(个)满足关系式:y=10(x﹣52),问:(1)若他打算获利2000元,且投资尽量少,则应进货多少个?定价是多少;(2)若他想获得最大利润,则定价及进货各是多少?七、本题满分12分22.如图1,△ABC的两条中线AD、BE相交于点O(1)求证:DO:AO=1:2;(2)连接CO并延长交AB于F,求证:CF也是△ABC的中线;(3)在(2)中,若∠A=90°,其它条件不变,连接DF交BE于K(如图2),连接ED,且△EDK∽△CAB,求AC:AB的值.八、本题满分14分23.(14分)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.2016年安徽省名校中考精准原创数学试卷(五)一、选择题(共10小题,每小题4分,满分40分,在每小题给出的四个选项总,只有一个符合题意,请将正确的一项代号填入下面括号内)1.﹣0.5的倒数为( )A.2 B.0.5 C.﹣2 D.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣0.5×(﹣2)=1即可解答.【解答】解:根据倒数的定义得:﹣0.5×(﹣2)=1,因此﹣0.5的倒数是﹣2.故选C.【点评】本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是( )A.23.2×108B.2.32×109C.232×107D.2.32×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将23.2亿用科学记数法表示为:2.32×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=( )A.35° B.40° C.45° D.50°【考点】平行线的判定与性质.【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠BGP=∠GPC=80°,求出∠BGM=100°,根据角平分线定义求出即可.【解答】解:∵∠2=∠3=70°,∴AB∥CD,∴∠BGP=∠GPC,∵∠GPC=80°,∴∠BGP=80°,∴∠BGM=180°﹣∠BGP=100°,∵GH平分∠MGB,∴∠1=∠BGM=50°,故选D.【点评】本题考查了平行线的性质和判定的应用,能根据定理求出∠BGP=80°是解此题的关键.4.不等式﹣2x<4的解集是( )A.x>﹣2 B.x<﹣2 C.x>2 D.x<2【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边同除以﹣2,得x>﹣2.【解答】解:系数化为1得,x>﹣2.故选A.【点评】本题考查了不等式的性质3:不等式两边同除以同一个负数,不等号的方向改变.在这一点上学生容易想不到改变不等号的方向误选B,而导致错误的发生.比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①② C.①③ D.②③【考点】方差;算术平均数;中位数.【分析】根据平均数可分析两个班的平均水平,根据方差可判断出哪个班两极分化比较严重,根据中位数可判断优秀人数.【解答】解:由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多故③错误.故选:B.【点评】此题主要考查了方差、平均数、中位数,关键是掌握方差、平均数、中位数的定义.6.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是( )A.B. C.D.【考点】一次函数的图象.【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.【解答】解:由y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故B正确.故选:B.【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.7.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于D,连接AD、OD(AC≠AB),则能够判断图中∠B的余角(不再添加任何辅助线)的有( )A.1个B.2个C.3个D.4个【考点】切线的性质.【分析】根据切线的性质得到AC⊥AB,∠B+∠BAD=90°,于是得到∠B+∠C=90°,根据等腰三角形的性质得到∠B=∠BDO,∠ODA=∠OAD,得到∠B+∠ODA=90°,即可得到结论.【解答】证明:∵AB是⊙O的直径,AC是⊙O的切线,∴AC⊥AB,∠B+∠BAD=90°,∴∠B+∠C=90°,∵OA=OB=OD,∴∠B=∠BDO,∠ODA=∠OAD,∴∠B+∠ODA=90°,∴图中∠B的余角有∠C,∠DA B,∠ODA,故选C.【点评】本题考查了切线的性质,等腰三角形的性质,熟练掌握切线的性质定理是解题的关键8.Rt△ABC中,∠C=90°,tanA=,BC=5,则AB=( )A.3 B.4 C.D.【考点】解直角三角形.【专题】计算题.【分析】先利用∠A的正切计算出AC,然后利用勾股定理计算AB.【解答】解:∵∠C=90°,∴tanA==,∴AC=BC=,∴AB===.故选D.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.9.喜羊羊每个月有100元零用钱,一块巧克力3元,一张魔力卡2元.喜羊羊的幸福值可以用下面这个公式来表示:幸福值=巧克力块数×魔力卡片数,则喜羊羊一个月可达到的幸福值最高为( )A.300 B.405 C.416 D.450【考点】二次函数的应用.【分析】设巧克力和魔力卡的个数为x,y,幸福值为W,根据题意得到3x+2y≤100,W=xy,整理得到W≤50x﹣x2=﹣(x﹣)2+,由x,y为整数,得到x=16,y=26时,W最大=xy=416.【解答】解:设巧克力和魔力卡的个数为x,y,幸福值为W,根据题意得:3x+2y≤100,W=xy,∴y=,∴3x+2≤100,∴W≤50x﹣x2=﹣(x﹣)2+,∵x,y为整数,∴x=16,y=26时,W最大=xy=416.故选C.【点评】本题考查了二次函数的应用,解题关键是弄清题意,找好等量关系,列出方程组.本题应注意两个未知量的关系,用x表示y代入到一个方程中.10.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A止,同时点R 从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( )A.2 B.4﹣πC.πD.π﹣1【考点】正方形的性质;圆的认识.【专题】压轴题.【分析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M到正方形各顶点的距离都为1,故点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.【解答】解:根据题意得在QR运动到四边时,点M到正方形各顶点的距离都为1,点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.而正方形ABCD的面积为2×2=4,4个扇形的面积为4×=π∴点M所经过的路线围成的图形的面积为4﹣π.故选B.【点评】本题主要是确定点M的运动轨迹.二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:2x3﹣8x=2x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提公因式2x,分解成2x(x2﹣4),而x2﹣4可利用平方差公式分解.【解答】解:2x3﹣8x=2x(x2﹣4)=2x(x+2)(x﹣2).故答案为:2x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.12.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的本地花费为90元.【考点】扇形统计图.【分析】由图可知:月基本费用为18元正好占各项费用总和的4%,由此求得总费用,进一步根据本地花费占总费用的(1﹣4%﹣45%﹣31%)列式计算即可.【解答】解:18÷4%×(1﹣4%﹣45%﹣31%)=450×20%=90(元)答:他该月的本地花费为90元.故答案为:90.【点评】此题主要考查了扇形统计图,看清图意,得出每部分在扇形图中所占比例是解题问题的关键.13.如图,是一个包装盒的三视图,则这个包装盒的表面积是600πcm2(结果保留π)【考点】由三视图判断几何体.【分析】根据三视图、正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱体.根据表面积=侧面积+底面积×2,列出算式计算即可求解.【解答】解:∵圆柱的直径为20cm,高为20cm,∴表面积=π×20×20+π×(×20)2×2=400π+200π=600π(cm2).故答案为:600πcm2.【点评】考查了由三视图判断几何体和几何体的表面积,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.14.对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是①②④(填序号即可)【考点】解一元二次方程-公式法;有理数的混合运算;整式的混合运算.【专题】新定义.【分析】先读懂题意,根据题意求出每个式子的左边和右边,再判断是否正确即可.【解答】解:∵[2+(﹣5)]#(﹣2)=(﹣3)#(﹣2)=6,∴①正确;∵(a*b)#c=(a+b)#c=(a+b)c=ac+bc,c(a*b)=c(a+b)=ac+bc,∴②正确;∵a*(b#a)=a*ab=a+ab,(a*b)#a=(a+b)#a=(a+b)a=a2+ab,∴③错误;∵(1*x)#(1#x)=1,∴(1+x)#(x)=1,(1+x)x=1,x2+x﹣1=0,解得:x2=,x2=,∵x>0,∴x=,∴④正确.故答案为:①②④.【点评】本题考查了整式的混合运算,解一元二次方程,有理数的混合运算的应用,能正确根据运算法则和新运算进行化简和计算是解此题的关键.三、本大题共2小题,每小题8分,满分16分15.计算:(﹣1)2015+()﹣1﹣2π0+6cos60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行乘方、负整数指数幂、零指数幂、特殊角的三角函数值等运算,然后合并.【解答】解:原式=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,涉及了乘方、负整数指数幂、零指数幂、特殊角的三角函数值等知识,属于基础题.16.△AOB在平面直角坐标系中的位置如图所示,其中,A(0,﹣3),B(﹣2,0),O是坐标原点.(1)将△AOB先作其关于x轴的对称图形,再把新图形向右平移3个单位,在图中画出两次变换后所得的图形△AO1B1;(2)若点M(x,y)在△AOB上,则它随上述两次变换后得到点M1,则点M1的坐标是(x+3,﹣y).【考点】作图-轴对称变换;作图-平移变换.【分析】(1)首先确定A、B、C三点关于x轴的对称点位置,再向右平移3个单位找到对应点位置,然后再连接即可;(2)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标相反可得点M(x,y)关于x 轴的对称图形上的点的坐标为(x,﹣y),再向右平移3个单位,点的横坐标+3,纵坐标不变.【解答】解:(1)如图所示:(2)点M(x,y)关于x轴的对称图形上的点的坐标为(x,﹣y),再向右平移3个单位得到点M1的坐标是(x+3,﹣y).故答案为:(x+3,﹣y).【点评】此题主要考查了作图﹣﹣平移变换和轴对称变换,关键是掌握点的坐标的变化规律.四、本大题共2小题,每小题8分,满分16分17.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连结BF,CE.(1)求证:四边形BFCE是平行四边形;(2)当边AB、AC满足什么条件时,四边形BECF是菱形?并说明理由.【考点】菱形的判定;平行四边形的判定.【分析】(1)由已知各件,据AAS很容易证得:△BDE≌△CDF;(2)连接BF、CE,由AB=AC,D是BC边的中点,可知AD⊥BC,易证得△BFD≌△CFD,可得BF=CF;又因为(1)中△BDE≌△CDF得ED=FD,所以EF、BC互相垂直平分,根据菱形的性质,可得四边形BECF是菱形.【解答】(1)证明:∵在△ABC中,D是BC边的中点,∴BD=CD,∵CF∥BE,∴∠CFD=∠BED,在△CFD和△BED中,,∴△CFD≌△BED(AAS),∴CF=BE,∴四边形BFCE是平行四边形;(2)解:当AB=AC时,四边形BECF是菱形;理由如下:∵AB=AC,D是BC边的中点,∴AD⊥BC,∴EF⊥BC,∴四边形BECF是菱形.【点评】本题主要考查了菱形的判定、平行四边形的判定、全等三角形的判定与性质、平行线的性质、等腰三角形的性质;熟练掌握菱形的判定方法或等腰三角形的性质,证明三角形全等是解决问题的关键.18.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22颗棋子,第5个图中有32颗棋子;(2)写出你猜想的第n个图中棋子的颗数(用含n的式子表示)是n+2+n2.【考点】规律型:图形的变化类.【分析】(1)观察图形发现图形的规律,然后例用规律写出第4和第5个图中的棋子数即可;(2)根据发现的规律用通项公式写出来即可.【解答】解:(1)观察发现第1个图形有1+2+12=4颗棋子;第2个图形有2+2+22=8颗棋子;第3个图形有3+2+32=14颗棋子;∴第4个图形有4+2+42=22颗棋子;第5个图形有5+2+52=32颗棋子;故答案为:22,32;(2)由(1)得:第n个图形中棋子的颗数为n+2+n2,故答案为:n+2+n2【点评】本题考查了图形的变化类问题,解题的关键是根据各个图形中棋子的颗数发现规律,难度不大.五、本大题共2小题,每小题10分,满分20分19.双曲线y=,直线y=kx+b都经过点A(1,m),B(n,﹣2).(1)求m、n的值;(2)作出两个函数的图象,并观察图象,当x>0时,比较kx+b与的大小.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A(1,m),B(n,﹣2)分别代入y=中,解方程组即可求得m、n的值;(2)根据画出的函数图象和解得A的坐标即可求得.【解答】解:(1)把点A(1,m),B(n,﹣2)分别代入y=中,得,解得m=,n=﹣;(2)作出函数图象如图,由图象可知,当0<x<1时,比较kx+b<,当x>1时,比较kx+b>.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数图象上点的坐标特征以及函数与不等式的关系,熟练掌握待定系数法是解本题的关键.20.袋中装有四个大小相同的小球,分别标有1、2、3、4.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①球第一次摸到奇数号球,第二次摸到偶数号球的概率;②求两次摸到的球中有1个奇数号球和1个偶数号球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两侧摸到的球的数码之和为奇数的概率是多少?请直接写出结果.【考点】列表法与树状图法.【专题】计算题.【分析】(1)①画树状图展示所有16种等可能的结果数,再找出第一次摸到奇数号球,第二次摸到偶数号球的结果数,然后根据概率公式求解;②找出两次摸到的球中有1个奇数号球和1个偶数号球的结果数,然后根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出两次摸到的球的数码之和为奇数的结果数,然后根据概率公式求解.【解答】解:(1)①画树状图为:共有16种等可能的结果数,其中第一次摸到奇数号球,第二次摸到偶数号球的结果数为4,所以球第一次摸到奇数号球,第二次摸到偶数号球的概率==;②两次摸到的球中有1个奇数号球和1个偶数号球的结果数为8,所以两次摸到的球中有1个奇数号球和1个偶数号球的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次摸到的球的数码之和为奇数的结果数为8,所以两次摸到的球的数码之和为奇数的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.六、本题满分12分21.大学生小张摆摊销售一批小家电,进价40元,经市场考察知,销售进价为52元时,可售出180个,且定价x(元)与销售减少量y(个)满足关系式:y=10(x﹣52),问:(1)若他打算获利2000元,且投资尽量少,则应进货多少个?定价是多少;(2)若他想获得最大利润,则定价及进货各是多少?【考点】二次函数的应用.【分析】(1)利用每个小家电利润×销售的个数=总利润,列方程解答即可;(2)设利润为w,利用(1)的数量关系列出函数,运用配方法解决问题.【解答】解:(1)设定价为x元,则进货为180﹣10(x﹣52)=180﹣10x+520=(700﹣10x)个,所以(x﹣40)(700﹣10x)=2000,解得x1=50,x2=60;因为投资尽量少,则应进货100个,定价60元.答:商店若准备获利2000元,定价为60元,应进货100个;(2)设利润为w元,则w=(x﹣40)(700﹣10x)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250,因此当x=55时,w最大=2250元;答:当定价为55元时,获得的利润最大,最大利润是2250元.【点评】本题考查了二次函数的应用,解题的关键是运用基本数量关系:每个小家电利润×销售的个数=总利润列方程或函数解决问题.七、本题满分12分22.如图1,△ABC的两条中线AD、BE相交于点O(1)求证:DO:AO=1:2;(2)连接CO并延长交AB于F,求证:CF也是△ABC的中线;(3)在(2)中,若∠A=90°,其它条件不变,连接DF交BE于K(如图2),连接ED,且△EDK∽△CAB,求AC:AB的值.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)连接ED,可得ED为三角形ABC的中位线,利用中位线定理得到ED与AB平行,且等于AB的一半,进而得到三角形EOD与三角形AOB相似,且相似比为1:2,即可得证;(2)设ED与CF交于点G,由三角形GOD与三角形AFO相似,由相似得比例,再由DG与AB 平行,得比例,确定出AF=BF,即可得证;(3)由∠A为直角,得到四边形AFDE为矩形,可得出三角形EDK与三角形BAE相似,再由三角形EDK与三角形CAB相似,得到三角形BAE与三角形CAB相似,由相似得比例,求出所求之比即可.【解答】(1)证明:连接ED,∵E、D分别为AC、BC的中点,∴ED∥AB,且ED=AB,∴△EDO∽△BAO,∴DO:AO=ED:AB=1:2;(2)证明:设CF交ED于点G,由△DGO∽△AFO,得到DG:AF=DO:AO=1:2,由DG∥AB得DG:BF=CD:CB=1:2,∴DG:AF=DG:BF,∴AF=BF,∴AF也是△ABC的中线;(3)解:由∠A=90°,得到四边形AFDE是矩形,∴△EDK∽△BAE,∵△EDK∽△CAB,∴△BAE∽△CAB,∴AE:AB=AB:AC,∵AE=AC,∴AC:AB=.【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,三角形中位线定理,矩形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.八、本题满分14分23.(14分)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.【考点】勾股定理.【专题】新定义.【分析】(1)直接根据“勾股三角形”的定义,判断得出即可;(2)利用已知得出等量量关系组成方程组,进而求出x+y的值;(3)过B作BH⊥AC于H,设AH=x,利用勾股定理首先得出AH=BH=,HC=1,进而得出∠A=45°,∠C=60°,∠B=75°,即可得出结论.【解答】(1)解:“直角三角形是勾股三角形”是假命题;理由如下:∵对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形,∴无法得到,所有直角三角形是勾股三角形,故是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.【点评】此题主要考查了新定义、多元方程组解法、勾股定理和锐角三角函数关系,利用勾股定理得出AH,HC的长是解题关键.。
2016年名校中考模拟数学试题及答案
2016年名校中考数学模拟试题时间120分钟满分100分2015.8.16一、选择题(每小题3分,共30分)1.计算2a2÷a结果是()A.2 B.2a C.2a3 D.2a22 下列各组图形中,两个图形形状不一定相同的是()A、两个等边三角形B、有一个角是35°的两个等腰三角形C、两个正方形D、两个圆3.资料显示,2005年“十•一”黄金周全国实现旅游收入约463亿元,用科学记数法表示463亿这个数是()A.463×108 B.4.63×108 C.4.63×1010 D.0.463×10114.如图,是由相同小正方体组成的立体图形,它的主视图为()6题图A.B.C.D.5.函数y=中,自变量x的取值范围为()A.x>B.x≠C.x≠且x≠0 D.x<6.如图,已知OA,OB均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°7题图7.如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A.B.C.D.8.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.9.如图,在△ABC中,∠C=90°,AC>BC,若以AC为底面圆半径、BC为高的圆锥的侧面积为S1,以BC 为底面圆半径、AC为高的圆锥的侧面积为S2,则()A.S1=S2 B.S1>S2C.S1<S2 D.S1、S2的大小关系不确定8题图9题图10.在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(﹣,1),半径为1,那么⊙O与⊙A的位置关系是()A.内含B.内切C.相交D.外切二、填空题(本大题共5题,每小题4分,共20分)11.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.12.不等式组的整数解为.13.如图同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则圆环的面积为.14.2005年某省荔枝总产量为50000吨,销售收入为61000万元.已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨.如果设“妃子笑”荔枝产量为x吨,其它品种荔枝产量为y吨,那么可列出方程组为.15.如图,正比例函数y=kx与反比例函数的图象相交于点A、B,过B作x轴的垂线交x轴于点C,连接AC,则△ABC的面积是.13题图15题图16.(1)计算:()﹣1﹣0﹣sin60°(2)化简求值:(+)÷,其中x=﹣1(3)解方程:=.17.西部建设中,某工程队承包了一段72千米的铁轨的铺设仸务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成仸务.问原计划每天铺多少千米,计划多少天完成?18.某校九年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个).1号2号3号4号5号总分甲班100 98 110 89 103 500乙班89 100 95 119 97 500统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;求两班比赛数据的中位数;(3)估计两班比赛数据的方差哪一个小?(4)根椐以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.19.如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD幵延长,与BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;取BE的中点F,连接DF,求证:DF是⊙O的切线.20.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,幵求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案一、选择题1.故选B.2.B3故选C.4.故选D.5.故选B.6.故选D.7.故选C.8.故选A.9.故选B.10故选B.二、填空题11.故答案为:800.12.其整数解为0,1.13.故答案为:9π.14列方程组为.15.故答案为:1.三、解答题16.解答:解:(1)原式=3﹣1﹣×=2﹣=;(2)原式=(x+2)×=x+1,当x=﹣1时,原式=﹣1+1=;(3)方程两边同时乘以x(x+1)(x﹣1)得,3(x﹣1)=x+1,解得x=2,经检验,x=2是原分式方程的解.17.解答:解:设原计划每天铺x米,则可列方程:﹣(+)=2,整理得:x2+3x﹣54=0,解得:x1=6,x2=﹣9,经检验,x1=6,x2=﹣9,都是所列方程的解,由于负数不合题意,所以取x=6,原计划天数为==12,答:原计划每天铺6米,12天完成仸务.18.解答:解:(1)甲班的优秀率是×100%=60%;乙班的优秀率是×100%=40%;甲班5名学生比赛成绩的中位数为100(个);乙班5名学生成绩的中位数为97(个);(3)甲=×500=100(个),乙=×500=100(个);S2甲=[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8,S2乙=[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2;(4)因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,应该把冠军奖状发给甲班.19.解答:解:(1)设⊙O的半径为r,∵AB是⊙O的直径,BC是⊙O的切线,∴AB⊥BC,在Rt△OBC中,∵OC2=OB2+CB2,∴(r+1)2=r2+()2,解得r=1,∴⊙O的半径为1;连接OF,∵OA=OB,BF=EF,∴OF是△BAE的中位线,∴OF∥AE,∴∠A=∠2,又∵∠BOD=2∠A,∴∠1=∠2,在△OBF和△ODF中,∴△OBF≌△ODF,∴∠ODF=∠OBF=90°,即OD⊥DF,∴FD是⊙O的切线.20.解答:解:(1)分别令y=0和x=0,得一次函数y=x+1的图象与x轴.y轴的交点坐标分别是A(,0),B(0,1),即OA=,OB=1,∴AB==2∵△ABC为等边三角形,∴S△ABC=;如图1,S△AOB=,S△AOP=,S△BOP=|a|•OB=﹣.∴S四边形ABPO=S△AOB+S△BOP=,而S△ABP=S四边形ABPO﹣S△APO,∴当S△ABP=S△ABC时,=,解得a=﹣;(3)如图2,满足条件的点M有4个:M1(﹣,0),M2(﹣2,0),M3(,0),M4(+2,0).。
山西省2016年名校联考中考模拟数学试题(含答案)
启用前*绝密万安中学中考数学总复习绝密资料山西省2016年名校联考中考模拟数学试题时间120分钟满分120分2016.4.10一、选择题(每小题3分,共36分)1.﹣的倒数是()A.﹣3 B.3 C.﹣D.2.某市2014年末,全州普查登记常住人口约为403.25万人.将403.25万用科学记数法表示正确的是()A.4.0325×104B.4.0325×106C.4.0325×108D.4.0325×1073.要使式子﹣有意义,字母x的取值必须满足()A.x≤B.x≥﹣C.x≥且x≠3 D.x≥4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°5.数据1,2,4,2,3,3,2,5的中位数是()A.1 B.2 C.3 D.2.56.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B. C. D.7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.248.如图,矩形ABCD的外接圆O与水平地面相切于点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时与地面相切的弧为()A.B.C.D.9.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.10.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A. cm B. cm C. cm D.2cm11.α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A.30°B.45°C.30°或150°D.60°12.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A.1 B.C.D.二、填空题(每小题3分,共12分)13.因式分解:xy2﹣4xy+4x= .14.已知,A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点(横,纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示).15.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,动点P从点B开始沿边BC向点C 以每秒2个单位长度的速度运动,动点Q从点C开始沿C﹣A﹣B向点B以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当P点到达C点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t= 秒时,PQ∥AB.(2)在整个运动过程中,线段PQ的中点所经过的路程长为.三、解答题(本大题共8小题,共66分)17(6分).计算: +.18(6分).如图方格中,有两个图形.(1)画出图形(1)向右平移7个单位的图形a;(2)画出图形a关于直线AB轴对称的图形b;(3)将图形b与图形(2)看成一个整体图形,请写出这个整体图形的对称轴的条数.19(6分).商场销售A,B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?20(8分).卫生部修订的《公共场所卫生管理条例实施细则》从今年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整;(3)求以上五种戒烟方式人数的众数.21(10分).已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+AE2=DE2.22(10分).如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=6cm.求:(1)线段BE的长;(2)图中阴影部分的面积.23(8分).将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于4的概率(用树状图或列表法求解).24(14分).如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N (2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P 为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题1.故选:A.2.故选B.3.故选:C.4.故选:A.5.故选D.6.故选:C.7.故选B.8.故选B.9.故选C.10.故选:B.11.故选B.12.故选C.二、填空题13.故答案为:x(y﹣2)2.14故答案为:13π﹣26.15.故答案为:20.16.故答案为:(1);(2)+.三、解答题17.【解答】解:原式=+==.18.【解答】解:(1)(2)所作图形如下:(3)从图知,共2条.19.【解答】解:设A种品牌的衬衣有x件,B种品牌的衬衣有y件.依题意可得解得答:A种品牌的衬衣有100件,B种品牌的衬衣有200件.20.【解答】解:(1)这次调查中同学们调查的总人数为20÷10%=200(人);(2)由(1)可知,总人数是200人.药物戒烟:200×15%=30(人);警示戒烟:200×30%=60,强制戒烟:70÷200=35%.完整的统计图如图所示:(3)∵五种戒烟方式中有两种是20人,其余均为1种,∴以上五种戒烟方式人数的众数是20.21.【解答】证明:(1)∵△ACB和△DCE都是等腰直角三角形,∴CE=CD,AC=CB,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠ACE=∠DCB,在△ACE和△BCD中∴△ACE≌△BCD(SAS).(2)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴在Rt△AED中,由勾股定理得:AD2+AE2=DE2.22.【解答】解:(1)连接AE.∵AB 是⊙O 的直径,∴∠AEB=90°,又∵BC ⊥DM ,∴∠ECB=90°,∴∠AEB=∠ECB ,∵直线DM 与⊙O 相切于点E ,∴∠CEB=∠EAB ,∴△AEB ∽△ECB ,∴,∴BE 2=AB •BC ,∴BE=(cm );(2)连接OE ,过点O 作OG ⊥BE 于点G . ∴BG=EG ,在Rt △ABE 中,cos ∠ABE=, ∴∠ABE=30°,在Rt △OBG 中,∠ABE=30°,BO=4, ∴OG=2,∴, ∵OE=OB ,∴∠OEB=∠OBE=30°,∴∠BOE=120°,∴S 扇形OBE =,∴S 阴影=S 扇形OBE ﹣S △EOB =()cm 2.23.【解答】解:(1)从口袋中随机摸出一个,其标号为奇数的概率为;(2)列举所有等可能的结果,画树状图(列表法略):∴一共有9种情况,摸出的两个球上数字之和小于4的有3种;∴摸出的两个球上数字之和小于4的概率为=24.【解答】解:(1)因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)所以,可建立方程组:,解得:所以,所求二次函数的解析式为y=﹣x2+2x+3,所以,顶点M(1,4),点C(0,3).(2)直线y=kx+d经过C、M两点,所以,即k=1,d=3,直线解析式为y=x+3.令y=0,得x=﹣3,故D (﹣3,0)∴CD=,AN=,AD=2,CN=2∴CD=AN ,AD=CN∴四边形CDAN 是平行四边形.(3)假设存在这样的点P ,使以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 因为这个二次函数的对称轴是直线x=1,故可设P (1,y 0),则PA 是圆的半径且PA 2=y 02+22,过P 做直线CD 的垂线,垂足为Q ,则PQ=PA 时以P 为圆心的圆与直线CD 相切. 由第(2)小题易得:△MDE 为等腰直角三角形,故△PQM 也是等腰直角三角形,由P (1,y 0)得PE=y 0,PM=|4﹣y 0|,,由PQ 2=PA 2得方程:,解得,符合题意,所以,满足题意的点P 存在,其坐标为(1,)或(1,).。
浙江省金华市六校联考2016届中考数学模拟试卷含答案解析(word版)
2016年浙江省金华市六校联考中考数学模拟试卷一、选择题1.﹣2的倒数是()A.2 B.C.﹣D.﹣22.下面几何体的俯视图是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=2a5B.(﹣2ab)3=﹣2ab3C.2a3÷a2=2a D.4.若y=有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<45.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80° B.50° C.40° D.20°6.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.1.5 B.2 C.3 D.67.如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2 B.3 C.4 D.58.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣π B.(4﹣π)a2C.π D.4﹣π9.如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()A.B.C.D.10.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tanE=.A.1 B.2 C.3 D.4二、填空题11.分解因式:a2﹣4=.12.一组数据1,2,a的平均数为2,另一组数据﹣1,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为.13.函数y=ax+b的图象如图,则方程ax+b=0的解为;不等式0<ax+b≤2的解集为.14.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.15.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C ﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.16.如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m从点C开始沿y轴向下平移.(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为;(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m的取值范围.三、解答题(共8小题,满分66分)17.计算:﹣+4cos45°﹣.18.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.19.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2).(1)①若点C与点A关于原点O对称,则点C的坐标为;②将点A向右平移5个单位得到点D,则点D的坐标为;(2)在由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点恰好落在双曲线的概率.20.“校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:(1)这次的调查对象中,家长有人;(2)图②中表示家长“赞成”的圆心角的度数为度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?21.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)①点P(﹣1,﹣2)的“2属派生点”P′的坐标为;②若点P的“k属派生点”P′的坐标为(3,3),请写出一个符合条件的点P的坐标;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,求k的值.22.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.23.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延=S△ABF.(S表示面积)长线于点F,求证:S四边形ABCD问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA 、OB 之间有一村庄Q 发生疫情,防疫部门计划以公路OA 、OB 和经过防疫站P 的一条直线MN 为隔离线,建立一个面积最小的三角形隔离区△MON .若测得∠AOB=66°,∠POB=30°,OP=4km ,试求△MON 的面积.(结果精确到0.1km 2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)拓展延伸:如图4,在平面直角坐标系中,O 为坐标原点,点A 、B 、C 、P 的坐标分别为(6,0)(6,3)(,)、(4、2),过点p 的直线l 与四边形OABC 一组对边相交,将四边形OABC 分成两个四边形,求其中以点O 为顶点的四边形面积的最大值.24.如图,在Rt △AOB 中,∠AOB=90°,AO=,BO=1,AB 的垂直平分线交AB 于点E ,交射线BO 于点F ,点P 从点A 出发沿射线AO 以每秒2个单位的速度运动,同时点Q 从点O 出发沿OB 方向以每秒1个单位的速度运动,当点Q 到达点B 时,点P 、Q 同时停止运动,设运动的时间为t 秒.(1)①当t 为何值时,PQ ∥AB ;②当t 为何值时,PQ ∥EF ;(2)当点P 在O 的左侧时,记四边形PFEQ 的面积为S ,求S 关于t 的函数关系式;(3)以O 为原点,OA 所在直线为x 轴,建立直角坐标系,若P 、Q 关于点O 的对称点分别为P ′、Q ′,当线段P ′Q ′,与线段EF 有公共点时,抛物线y=ax 2+1经过P ′Q ′的中点,此时的抛物线与x 正半轴交于点M ;①求a 的取值范围;②求点M 移动的运动速度.2016年浙江省金华市六校联考中考数学模拟试卷参考答案与试题解析一、选择题1.﹣2的倒数是()A.2 B.C.﹣D.﹣2【考点】倒数.【分析】根据倒数定义可知,﹣2的倒数是﹣.【解答】解:﹣2的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下面几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有看得到的棱都应表现在俯视图中.【解答】解:从上面看,这个几何体只有一层,且有3个小正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列计算正确的是()A.2a3+a2=2a5B.(﹣2ab)3=﹣2ab3C.2a3÷a2=2a D.【考点】分式的混合运算;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【专题】计算题.【分析】根据合并同类项、幂的乘方与积的乘方、同底数幂的除法以及分式的混合运算法则依次计算即可.【解答】解:A、2a3+a2≠2a5,不是同类项不能合并,故本选项错误;B、(﹣2ab)3=﹣8a3b3,故本选项错误;C、2a3÷a2=2a,故本选项正确;D、a÷b•=,故本选项错误.故选C.【点评】本题考查了合并同类项、幂的乘方与积的乘方、同底数幂的除法以及分式的混合运算法则,牢记法则是关键.4.若y=有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<4【考点】函数自变量的取值范围.【专题】计算题.【分析】根据负数没有平方根及0不能做分母,求出x的范围即可.【解答】解:要使y=有意义,则有4﹣x>0,即x<4,故选D.【点评】此题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80° B.50° C.40° D.20°【考点】垂径定理;圆周角定理.【专题】几何图形问题.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵⊙O的直径CD过弦EF的中点G,∴(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.故选:D.【点评】本题考查垂弦定理、圆心角、圆周角的应用能力.6.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.1.5 B.2 C.3 D.6【考点】弧长的计算.【分析】本题考查圆锥的侧面展开图.根据图形可知,圆锥的侧面展开图为扇形,且其弧长等于圆锥底面圆的周长.【解答】解:设这个圆锥的底面半径是R,则有2πR=120π×,解得:R=3.故选C.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.7.如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2 B.3 C.4 D.5【考点】反比例函数综合题.【专题】计算题.【分析】过A、B分别作x轴的垂线,垂足分别为C、D,把点A(2,2)代入双曲线y=确定k﹣S△BOD 的值,再把点B(4,m)代入双曲线y=,确定点B的坐标,根据S△AOB=S△AOC+S梯形ABDC和三角形的面积公式与梯形的面积公式进行计算即可.【解答】解:过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线y=经过点A(2,2),∴k=2×2=4,而点B(4,m)在y=上,∴4•m=4,解得m=1,即B点坐标为(4,1),∴S△AOB=S△AOC+S﹣S△BOD梯形ABDC=OC•AC+×(AC+BD)×CD﹣×OD×BD=×2×2+×(2+1)×(4﹣2)﹣×4×1=3.故选B.【点评】本题考查了点在图象上,点的横纵坐标满足图象的解析式;也考查了利用坐标表示线段的长以及利用规则的几何图形的面积的和差计算不规则的图形面积.8.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣π B.(4﹣π)a2C.π D.4﹣π【考点】扇形面积的计算;直线与圆的位置关系.【专题】几何图形问题;压轴题.【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.故选D.【点评】本题主要考查了正方形和圆的面积的计算公式,正确记忆公式是关键.9.如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()A.B.C.D.【考点】函数的图象;圆锥的计算.【分析】根据题意先分析出猫沿着母线PA下去抓老鼠,猫到达点A时,s是随着t的增大而增大,再根据老鼠沿着底面圆周逃跑,猫在后面沿着相同的路线追时,得出s随着t的增大不发生变化,最后根据在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处时,s是随着t的增大而减小的,从而得出s与t之间的函数关系的图象.【解答】解:∵猫沿着母线PA下去抓老鼠,猫到达点A时,∴s随着t的增大而增大,∵老鼠沿着底面圆周逃跑,猫在后面沿着相同的路线追时,∴s随着t的增大不发生变化,∵在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处时,∴s随着t的增大而减小.故选:A.【点评】此题考查了函数的图象;正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.10.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tanE=.A.1 B.2 C.3 D.4【考点】圆的综合题.【分析】①正确,运用圆周角定理以及等角的余角相等即可解决问题.②正确,运用△EBC∽△BDC即可证明.③错误,运用反正法来判定.④正确,设BC=3x,AB=2x,得出OB、OD及OC、CD的值,运用即可解决问题.【解答】证明:(1)∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确.(2)∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正确,(3)∵∠EBD=∠BDF=90°,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.(4)∵,设BC=3x,AB=2x,∴OB=OD=x,∴在RT△CBO中,OC=x,∴CD=(﹣1)x∵由(2)知,∴==,∵tanE=∴tanE=,故④正确.故选:C.【点评】本题主要考查了圆的综合题,涉及相似三角形的判定与性质、圆周角定理、锐角三角函数定义等知识点,解题的关键在于灵活应用这些知识解决问题,通过求证三角形相似根据对应边成比例的性质求出tan∠E的值,属于中考压轴题.二、填空题11.分解因式:a2﹣4=(a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).【点评】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.一组数据1,2,a的平均数为2,另一组数据﹣1,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为1.【考点】中位数;算术平均数;众数.【专题】计算题.【分析】根据平均数求得a的值,然后根据众数求得b的值后再确定新数据的中位数.【解答】解:∵一组数据1,2,a的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l,a,1,2,b的唯一众数为﹣l,∴b=﹣1,∴数据﹣1,3,1,2,b的中位数为1.故答案为:1.【点评】本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值.13.函数y=ax+b的图象如图,则方程ax+b=0的解为x=3;不等式0<ax+b≤2的解集为0≤x<3.【考点】一次函数与一元一次不等式;一次函数与一元一次方程.【专题】数形结合.【分析】观察函数图象当x=3时,y=0,即程ax+b=0;函数值满足0<y≤2所对应的自变量的取值范围为0≤x<3.【解答】解:方程ax+b=0的解为x=3;不等式0<ax+b≤2的解集为0≤x<3.故答案为x=3;0≤x<3.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.【考点】平移的性质;同位角、内错角、同旁内角.【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.【点评】本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C ﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(0,﹣2).【考点】规律型:点的坐标.【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2016÷10=201…6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD中间的位置,点的坐标为(0,﹣2),故答案为:(0,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2016个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.16.如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m从点C开始沿y轴向下平移.(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为2﹣3;(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m的取值范围﹣<m<.【考点】二次函数综合题.【分析】(1)过点D作DE⊥y轴,垂足为E,过点A作AF⊥DE,垂足为F.先证明Rt△AFD≌Rt△DEC,由全等三角形的性质可知AF=DE,DF=CE.设点D的坐标为(x,x+m),接下来,依据AF=DE,DF=CE可列出关于x、m的方程组,从而可解得m的值;(2)先求得点C的坐标,当直线l经过点C时可求得m=,当点A的对称点A′在抛物线上时,先求得抛物线的解析式,然后求得AA′的解析式,将直线AA′的解析式与抛物线的解析式联立可求得点A′的坐标,由点A和点A′的坐标可求得点D的坐标,将点D的坐标代入l的解式可求得m=﹣,从而可求得m的取值范围.【解答】解:如图1所示:过点D作DE⊥y轴,垂足为E,过点A作AF⊥DE,垂足为F.∵∠ADC=90°,∴∠ADF+∠CDE=90°.∵∠ADF+∠DAF=90°,∴∠DAF=∠CDE.∵在Rt△AFD和Rt△DEC中,∴Rt△AFD≌Rt△DEC.∴AF=DE,DF=CE.设点D的坐标为(x,x+m),则x=x+m=①,x+3=﹣﹣m②.①+②得:2x+3=,解得:x=.∴=+m.解得:m=2﹣3.(2)∵OA=3,∠CAB=30°,∴OC=.∴C(0,).①当直线l经过点C时.∵将C(0,)代入y=x+m得:∴m=.②如图2所示:设抛物线的解析式为y=a(x+3)(x﹣1).∵将C(0,)代入得:﹣3a=,解得:a=﹣,∴抛物线的解析式为y=﹣x2﹣x+.∵点A与点A′关于l对称,∴AA′⊥l.∴直线AA′的一次项系数为﹣.设直线AA′的解析式为y=﹣x+b.∵将A(﹣3,0)代入得:+b=0,解得:b=﹣∴直线AA′的解析式为y=﹣x﹣.将y=﹣x﹣代入y=﹣x2﹣x+得:﹣x﹣=﹣x2﹣x+.整理得:x2+x﹣6=0.解得:x1=2,x2=﹣3.∵将x=2代入y=﹣x﹣得:y=﹣,∴点A′的坐标为(2,﹣).∴D(﹣,﹣).将D(﹣,﹣)代入y=+m得:+m=﹣,解得:m=.∴m的取值范围是﹣<m<.故答案为:(1)2﹣3;(2)﹣<m<.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式、全等三角形的性质和判定、一次函数与二次函数的交点坐标,求得出点A和点C 的对应点A′、C′恰好在抛物线上时m的值取值是解题的关键.三、解答题(共8小题,满分66分)17.计算:﹣+4cos45°﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及负整数指数幂的性质和特殊角的三角函数值化简求出答案.【解答】解:﹣+4cos45°﹣=3﹣1+4×﹣2=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【考点】平行四边形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【点评】此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.19.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2).(1)①若点C与点A关于原点O对称,则点C的坐标为(2,﹣2);②将点A向右平移5个单位得到点D,则点D的坐标为(3,2);(2)在由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点恰好落在双曲线的概率.【考点】关于原点对称的点的坐标;反比例函数图象上点的坐标特征;坐标与图形变化-平移;概率公式.【分析】(1)①根据两个点关于原点对称时,它们的坐标符号相反确定C点坐标;②根据点的平移方法可得A点横坐标加5,纵坐标不变可得D点位置;(2)顺次连接A、B、C、D,可得四边形ABCD,找出范围内的横、纵坐标均为整数的点的个数,再根据反比例函数图象上点的坐标特点可得横纵坐标之积为2且在由点A,B,C,D组成的四边形ABCD内的有(2,1)(﹣2,﹣1),再利用概率公式可得答案.【解答】解:(1)①∵A(﹣2,2),∴与点A关于原点O对称的C点坐标(2,﹣2);故答案为:(2,﹣2);②将点A向右平移5个单位得到点D,则点D的坐标为(﹣2+5,2),即(3,2),故答案为:(3,2);(2)恰好落在双曲线的点横纵坐标之积为2,横、纵坐标均为整数的点共有15个,横纵坐标之积为2且在由点A,B,C,D组成的四边形ABCD内的有(2,1)(﹣2,﹣1),共2个,概率为.【点评】此题主要考查了反比例函数图象上点的坐标特点,以及关于原点对称的点的坐标特点,点的平移,概率公式,关键是熟练掌握课本基础知识.20.“校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:(1)这次的调查对象中,家长有400人;(2)图②中表示家长“赞成”的圆心角的度数为36度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?【考点】条形统计图;扇形统计图.【分析】(1)认为无所谓的有80人,占总人数的20%,据此即可求得总人数;(2)赞成的人数所占的比例是:,所占的比例乘以360°即可求解;(3)甲、乙两校中带手机的学生数分别有x、y人,根据两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,即可列方程组,从而求解.【解答】解:(1)家长人数为80÷20%=400.(2)表示家长“赞成”的圆心角的度数为×360°=36﹒(3)设甲、乙两校中带手机的学生数分别有x、y人,则由题意有,解得即甲、乙两校中带手机的学生数分别有1490人,894人﹒【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)①点P(﹣1,﹣2)的“2属派生点”P′的坐标为(﹣2,﹣4);②若点P的“k属派生点”P′的坐标为(3,3),请写出一个符合条件的点P的坐标(1,2);(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,求k的值.【考点】反比例函数综合题.【分析】(1)①只需把a=﹣1,b=﹣2,k=2代入(a+,ka+b)即可求出P′的坐标.②由P′(3,3)可求出k=1,从而有a+b=3.任取一个a就可求出对应的b,从而得到符合条件的点P的一个坐标.(2)设点P坐标为(a,0),从而有P′(a,ka),显然PP′⊥OP,由条件可得OP=PP′,从而求出k.【解答】解:(1)①当a=﹣1,b=﹣2,k=2时,∴a+=﹣1+=﹣2,ka+b=2×(﹣1)﹣2=﹣4.∴点P(﹣1,﹣2)的“2属派生点”P′的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).②由题可得:,∴ka+b=3k=3.∴k=1.∴a+b=3.∴b=3﹣a.当a=1时,b=2,此时点P的坐标为(1,2).故答案为:(1,2).说明:只要点P的横坐标与纵坐标的和等于3即可.(2)∵点P在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka).∴PP′⊥OP.∵△OPP′为等腰直角三角形,∴OP=PP′.∴a=±ka.∵a>0,∴k=±1.故答案为:±1.【点评】本题考查了反比例图象上点的坐标特征以及等腰直角三角形的性质,此题属于新定义下的阅读理解题,有一定的综合性.第(2)题中由OP=PP′得到a与ka之间的关系是本题的易错点,需要注意.22.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.23.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延=S△ABF.(S表示面积)长线于点F,求证:S四边形ABCD问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(,)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC 分成两个四边形,求其中以点O为顶点的四边形面积的最大值.【考点】四边形综合题.【专题】压轴题.【分析】问题情境:根据可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出结论;问题迁移:根据问题情境的结论可以得出当直线旋转到点P是MN的中点时S△MON最小,过点M 作MG∥OB交EF于G.由全等三角形的性质可以得出结论;实际运用:如图3,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1,再根据条件由三角函数值就可以求出结论;。
2016年中考模拟数学试题(附答案)
2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
黑龙江省名校联考2016年中考数学四模试卷含答案
黑龙江省名校联考2016年中考数学四模试卷含答案 一、选择题:每小题3分,共30分2016年1.﹣3的倒数是( )A. B.﹣3 C.3 D.【分析】根据乘积是1的两个数互为倒数解答.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选A.【点评】本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.2.下列图形中,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:第一个图形和第四个图形既是轴对称图形又是中心对称图形,第二个图形是中心对称图形,不是轴对称图形;第三个图形是轴对称图形,不是中心对称图形.故选B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是( )A.极差是6 B.众数是7 C.中位数是8 D.平均数是10【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【解答】解:A.极差=14﹣7=7,结论错误,故A不符合题意;B.众数为7,结论正确,故B符合题意;C.中位数为8.5,结论错误,故C不符合题意;D.平均数是9,结论错误,故D不符合题意;故选:B.【点评】本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.4.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是( )A.1<x<B. C. D.【分析】根据勾股定理可知x的平方取值范围在2与3的平方和与平方差之间.【解答】解:因为32﹣22=5,32+22=13,所以5<x2<13,即.故选B.【点评】本题考查了锐角三角形的三边关系定理,有一定的难度.5.如图,AB为圆O的直径,C、D两点均在圆上,其中OD与AC交于E点,且OD⊥AC.若OE=4,ED=2,则BC长度为( )A.6 B.7 C.8 D.9【分析】由垂径定理易知E是AC的中点,而O是AB的中点,则OE是△ABC的中位线,得BC=2OE,由此得解.【解答】解:∵半径OD⊥AC,∴E是AC的中点;又∵O是AB的中点,∴OE是△ABC的中位线;∴BC=2OE=8;故选C.【点评】此题主要考查了垂径定理及三角形中位线定理的应用.6.向一容器内均匀注水,最后把容器注满.在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是( )A. B. C. D.【分析】观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案.【解答】解:根据图象,水面高度增加的先逐渐变快,再匀速增加;故容器从下到上,应逐渐变小,最后均匀.故选C.【点评】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②当x>2时,y>0;③a>c;④3a+c>0.其中正确的结论有( )A.①② B.①④ C.①③④ D.②③④【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=2对应y 值的正负判断即可.【解答】解:①由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,对称轴在y轴右侧,a、b异号,则b<0,故abc>0,②根据对称轴为x=1,以及抛物线与x轴负半轴交点可得A点横坐标>2,因此当x>2时,y>0不正确;③由①分析可得a>0,c<0,因此a>c;④∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0;故选:C.【点评】此题考查了二次函数图象与系数的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8.由若干个形状大小相同的小正方体木块组成的几何体的主视图和俯视图如下,则这样的小正方形木块至少有( )块.A.4 B.5 C.6 D.7【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最多个数,相加即可.【解答】解:由俯视图易得最底层有4个正方体,由主视图第二层最多有2个正方体,最少有1个正方体,那么最少有4+1=5个立方体.故选B.【点评】本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最多个数.9.若分式方程=有增根,则增根为( )A.x=﹣1 B.x=1 C.x=±1 D.x=0【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0即可.【解答】解:∵原方程有增根,∴最简公分母x﹣1=0,解得x=1.故选:B.【点评】考查了分式方程的增根,确定增根的可能值,只需让最简公分母为0即可.10.周末,某团体组织公益活动,16名成员分甲、乙、丙三组到48个单位做宣传,若甲组a人每人负责4个单位,乙组b人每人负责3个单位,丙组每人负责1个单位,则分组方案有( )A.5种B.6种C.7种D.8种【分析】根据选派16名成员分三组到48个单位可列方程,再根据每组人数为正整数求解即可.【解答】解:依题意有4a+3b+(16﹣a﹣b)=48,3a+2b=32,∵a,b是正整数,∴当a=2时,b=13,16﹣a﹣b=1,符合题意;当a=4时,b=10,16﹣a﹣b=2,符合题意;当x=6时,b=7,16﹣a﹣b=3,符合题意;当a=8时,b=4,16﹣a﹣b=4,符合题意;当a=10时,b=1,16﹣a﹣b=5,符合题意.故分组方案有5种.故选:A.【点评】考查了二元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求量的等量关系.二、填空题:每小题3分,共27分11.雾霾天气是由于空气中含有颗粒物过多造成的.现测得有一种颗粒物的直径为0.0000025m,这个数据用科学记数法表示为 2.5×10﹣6 m.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2×10﹣6;故答案为2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.函数中,自变量x的取值范围是 x≠1 .【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件 AC=BD或BC=AD 或∠DAB=∠CBA或∠CAB=∠DBA .(只需写出符合条件一种情况)【分析】本题要判定△ABC≌△BAD,已知AC⊥BC,AD⊥DB,即∠C=∠D=90°,AB为公共边,故添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.【解答】解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,OABC为菱形,点C在x轴上,点A在直线y=x上,点B在y=(k>0)的图象上,若S菱形OABC=,则k的值为 +1 .【分析】首先根据直线y=x经过点A,设A点坐标为(a,a),再利用勾股定理算出AO=a,进而得到AO=CO=CB=AB=a,再利用菱形的面积公式计算出a的值,进而得到A点坐标,进而得到B点坐标,再利用待定系数法求出反比例函数表达式.【解答】解:∵直线y=x经过点A,∴设A(a,a),∴OA2=2a2,∴AO=a,∵四边形ABCD是菱形,∴AO=CO=CB=AB=a,∵菱形OABC的面积是,∴aa=,∴a=1,∴AB=,A(1,1)∴B(1+,1),设反比例函数解析式为y=(k≠0),∵B(1+,1)在反比例函数图象上,∴k=(1+)×1=+1,故答案为: +1.【点评】此题主要考查了待定系数法求反比例函数,菱形的面积公式,菱形的性质,关键是根据菱形的面积求出A点坐标,进而得到B点坐标,即可算出反比例函数解析式.15.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为 6 m.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故答案为:6.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点. 16.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为 24 个.【分析】首先设黄球的个数为x个,根据题意得: =,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: =,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故答案为:24;【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2015南充)已知关于x,y的二元一次方程组的解互为相反数,则k的值是 ﹣1 .【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.18.如图,▱ABCD的两条对角线AC与BD相交于点O,且AC⊥AB,已知AC=10,BD=26,那么▱ABCD的面积为 120 .【分析】由平行四边形的性质求出OA、OB,由勾股定理求出AB,▱ABCD的面积=ABAC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=5,OB=BD=13,∵AC⊥AB,∴∠BAC=90°,∴AB==12,∴▱ABCD的面积=ABAC=12×10=120;故答案为:120.【点评】本题考查了平行四边形的性质、勾股定理、平行四边形面积的计算方法;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.19.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为 (﹣2013,﹣2) .【分析】首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2015次这样的变换得到正方形ABCD的对角线交点M 的坐标.【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2013,﹣2),故答案为:(﹣2013,﹣2).【点评】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.三、解答题:满分63分20.(7分)(2016黑龙江四模)先化简,再求代数式÷(a﹣)的值,再选取一个合适的a值代入计算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=÷==,当a=2时,原式=3.【点评】此题考查了分式的化简运算,熟练掌握运算法则是解本题的关键.21.(8分)(2016黑龙江四模)在如图所示的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,﹣1).(1)画出△ABC向左平移2个单位,然后再向上平移4个单位后的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点M(﹣1,1)旋转180°后得到的△A2B2C2,并求出以A1、C2、A2、C1为顶点的四边形的面积;(3)如何平移△ABC,使得平移后的△ABC与△A2B2C2拼成一个平行四边形?请说出一种平移方法.【分析】(1)利用点平移的坐标规律写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质分别画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2,然后利用菱形的面积公式计算四边形的面积;(3)方法很多,如可以将△ABC先向左平移4个单位,再向上平移4个单位,平移后的△ABC与△A2B2C2拼成一个平行四边形或将△ABC先向左平移1个单位,再向上平移2个单位,平移后的△ABC与△A2B2C2拼成一个平行四边形或将△ABC先向左平移5个单位,再向上平移2个单位,平移后的△ABC与△A2B2C2拼成一个平行四边形.【解答】解:(1)如图,△A1B1C1为所作,A1(﹣1,3);(2)如图,△A2B2C2为所作;四边形A1C2A2C1为菱形,它的面积=×6×4=12;(3)可以将△ABC先向左平移4个单位,再向上平移4个单位,平移后的△ABC与△A2B2C2拼成一个平行四边形.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.(8分)(2016黑龙江四模)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.【分析】(1)利用交点式求抛物线解析式;(2)把(1)中解析式配成顶点式即可得到抛物线顶点坐标及对称轴;(3)设B(t,t2﹣2t),根据三角形面积公式得到×2×|t2﹣2t|=1,则t2﹣2t=1或t2﹣2t=﹣1,然后分别解两个方程求出t,从而可得到B点坐标.【解答】解:(1)抛物线解析式为y=x(x﹣2),即y=x2﹣2x;(2)因为y=x2﹣2x=(x﹣1)2﹣1,所以抛物线的顶点坐标为(1,﹣1),对称轴为直线x=﹣1;(3)设B(t,t2﹣2t),因为S△OAB=1,所以×2×|t2﹣2t|=1,所以t2﹣2t=1或t2﹣2t=﹣1,解方程t2﹣2t=1得t1=1+,t2=1﹣,则B点坐标为(1+,1)或(1﹣,1);解方程t2﹣2t=﹣1得t1=t2=1,则B点坐标为(1,﹣1),所以B点坐标为(1+,1)或(1﹣,1)或(1,﹣1).【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.23.(8分)(2016黑龙江四模)如图,在▱ABCD中,直线EF∥BD,与CD、CB的延长线分别交于点E、F,交AB、AD于G、H.(1)求证:四边形FBDH为平行四边形;(2)求证:FG=EH.【分析】(1)由四边形ABCD是平行四边形,得到AD∥BC根据已知条件即可得到结论;(2)由四边形FBDH为平行四边形,得到FH=BD,推出四边形BDEG是平行四边形,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∵EF∥BD,∴四边形FBDH为平行四边形;(2)∵四边形FBDH为平行四边形,∴FH=BD,∵EF∥BD,AB∥DC,∴四边形BDEG是平行四边形,∴BD=EG,∴FH=EG,∴FH﹣GH=EG﹣GH,∴FG=EH.【点评】本题考查了平行四边形的判定和性质,解题的关键是熟记平行四边形的各种判定方法并且熟练运用.24.(10分)(2016黑龙江四模)今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,为了解九年级学生参加活动情况,从九年级学生中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:(1)本次成抽样调查共抽取了多少名九年级学生?(2)补全条形统计图;(3)若该中学九年级共有400名学生,请你估计该中学九年级去敬老院的学生有多少名?【分析】(1)先根据条形图知到社区文艺演出的人数为15人,再由扇形统计图知占抽取总人数的,两者相除即可求解;(2)求出去敬老院服务的学生有多少人,即可补全条形统计图;(3)用总人数乘以该年级去敬老院的人数所占的百分比即可.【解答】解:(Ⅰ)由题意,可得抽取的部分同学的人数为:15÷=50(人);(2)去敬老院服务的学生有:50﹣25﹣15=10(人).条形统计图补充如下:(3)根据题意得:400×=80(人)答:估计该中学九年级去敬老院的学生有80人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.25.(10分)(2016盐都区模拟)甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次 60 米的背夹球比赛,获胜的是 甲 组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.【分析】(1)根据函数图象可得这是一次60米的背夹球比赛,获胜的是甲组同学;(2)因为从A到B的路程不变,所以甲组两位同学在比赛中掉了球,因为从A到B的时间为2秒,所以线段AB的实际意义是甲组两位同学在比赛中掉了球,耽误了2秒;(3)根据点F,G的坐标,求出直线FG的函数解析式,根据点D,E的坐标,求出直线DE的函数解析式,然后组成方程组,求方程组的解,即为C的坐标,即可解答.【解答】解:(1)根据函数图象可得这是一次60米的背夹球比赛,获胜的是甲组同学;故答案为:60,甲;(2)因为从A到B的路程不变,所以甲组两位同学在比赛中掉了球,因为从A到B的时间为2秒,所以线段AB的实际意义是甲组两位同学在比赛中掉了球,耽误了2秒.(3)设直线FG的函数解析式为:y=k1x+b1,把F(12,30),G(26,0)代入y=k1x+b1得:,解得:,∴直线FG的函数解析式为:y=﹣;设直线DE的函数解析式为:y=k2x+b2,把D(14,30),E(24,0)代入y=k1x+b1得:,解得:,∴直线DE的函数解析式为:y=﹣3x+72,∴得到方程组,解得:∴C的坐标(19,15)∴说明点C的实际意义是当比赛进行到19秒时,甲、乙两组同学离终点均为15米.【点评】本题考查了一次函数的应用,解决本题根据是读懂函数图象,然后用待定系数法求一次函数的解析式,组成方程组求交点坐标.26.(12分)(2016黑龙江四模)如图,在平面直角坐标系中,△BOC是等腰三角形,点B在x轴正半轴上,△OAD是△OBC绕点O逆时针旋转60°得到的,点A在y轴正半轴上,连接DC,线段OA的长是关于x的方程x2﹣4x+4=0的根(1)求过点O、点D的直线的解析式;(2)求四边形OACD的面积;(3)平面内是否存在点P,使以点D、O、B、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)先解方程,求得OA的长,再过点D作DH⊥y轴,根据Rt△ADH中的边角关系,求得点D的坐标,最后运用待定系数法求得过点O、点D的直线的解析式;(2)先运用SAS判定△DOC≌△BOC,得出CD=BC,进而判定四边形AOCD是菱形,并计算菱形的面积;(3)根据平行四边形的不同位置,分三种情况,得出点P的坐标.【解答】解:(1)解方程x2﹣4x+4=0,得x=2∴OA=2由旋转可得,AD=BC=OC=OA=2,∠AOC=60°∵∠AOB=90°∴∠BOC=30°∴∠CBO=∠BOC=∠AOD=∠ADO=30°过点D作DH⊥y轴于点H,则∠HAD=60°在Rt△ADH中,AD=2∴HD=,AH=1∴OH=3∴点D的坐标为(,3)设直线OD解析式为y=kx将D的坐标代入,得3=k∴k=∴过点O、点D的直线的解析式为y=x(2)∵∠BOC=∠AOD=30°∴∠COD=30°在△DOC和△BOC中∴△DOC≌△BOC(SAS)∴CD=BC∴CD=OC=OA=AD∴四边形AOCD是菱形∴菱形OACD的面积=AO×DH=2(3)存在.连接BD,过O作BD的平行线,过B作OD的平行线,过D作OB的平行线,交于P1、P2、P3三点,则四边形P1DOB、四边形P2OBD、四边形P3BDO均为平行四边形由OB=OD,∠BOD=60°可知,△OBD是等边三角形∴四边形P1DOB、四边形P2OBD、四边形P3BDO均为菱形∴P1、P2、P3三点离x轴的距离=OH=3如图,在Rt△ADH中,HD=,OH=3∴OD=2又∵P1H=P1D+DH=2+=3,P2H=P2D﹣DH=2﹣=∴P1(3,3),P2(﹣,3)又∵P3与D关于x轴对称,D(,3)∴P3(,﹣3)故点P的坐标为(3,3)或(﹣,3)或(,﹣3)【点评】本题主要考查了几何变换中的旋转,解决问题的关键是掌握旋转的性质以及待定系数法求函数解析式的方法,解题时需要运用四边相等的四边形是菱形这一判定方法,并且注意菱形的面积等于底乘高,有时需要根据菱形对角线的长度求菱形的面积.此外,在判断平行四边形第四个顶点的位置时,需要进行分类讨论,不能遗漏.。
2016年名校中考模拟数学试题及答案(一)
2016年名校中考数学模拟试卷(一)时间120分钟满分120分2015.8.12 一、选择题(每小题3分,共36分.)1.计算的结果是()A.2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A.64×105 B.6.4×105 C.6.4×106 D.6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A.B.C.D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+2013的值为()A.2011 B.2012 C.2013 D.20145.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A.1 B.C.D.5题图6题图7题图6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A.20°B.30°C.40°D.35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是()A.B.2C.1+D.38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:48题图9题图10题图9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A.a>0,bc<0 B.a<0,bc>0 C.a>0,bc>0 D.a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A.x1=1,x2=2 B.x1=﹣2,x2=﹣1 C.x1=1,x2=﹣2 D.x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是()A.13 B.11 C.7 D.512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm212题图二、填空题(每小题3分,共15分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC 与DE交于点M.如果∠ADF=100°,那么∠BMD为度.16题图18题图17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,幵将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校2015年九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x的函数关系,幵求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B(0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题1.故选A.2.故选:C.3.故选D.4.故选:B.5.故选C.6.故选A.7.故选:B.8.故选C.9.故选C.10.故选C.11.故选A.12.故选C.二、填空题13.a(a﹣b)2.14.故填6,5.5,.15.18 米.(精确到1米)16.85 度.17..18.().三、19.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30% 补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.20.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.21.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.22.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.23.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.24.解答:解:(1)设直线AB的解析式为y=kx+b,则,解得,所以直线AB的解析式y=﹣x﹣8;设抛物线的方程y=ax2+bx+c,∵A(﹣6,0)、B(0,﹣8),∴AB=10,∴⊙M的半径为5,∴M(﹣3,﹣4),∵由函数图象可知抛物线的顶点在圆上,函数图象的对称轴与y轴平行,∴抛物线的顶点C(﹣3,1),且因抛物线的点对称性有一点与B点关于抛物线的轴对称为F(﹣6,﹣8),由三点代入抛物线方程的a=﹣1,b=﹣6,c=﹣8.所以y=﹣x2﹣6x﹣8;(3)连接AC,BC,根据得:B(0,﹣8),直线BC的解析式为:y=﹣3x﹣8,∴点K(﹣,0),∴AK=6﹣=,∴S△ABC=S△AKC+S△ABK=××1+××8=15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE的距离为1.当y=1时,﹣x2﹣6x﹣8=1,解得x1=x2=﹣3,∴P1(﹣3,1);当y=﹣1时,﹣x2﹣6x﹣8=﹣1,解得x1=﹣3+,x2=﹣3﹣,∴P2(﹣3+,﹣1),P3(﹣3﹣,﹣1).综上所述,这样的P点存在,且有三个,P1(﹣3,1),P2(﹣3+,﹣1),P3(﹣3﹣,﹣1).。
2016年中考数学模拟试题(一)及答案
2016年中考数学模拟试题数学试卷(一)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比-1大1的数是( )A.2 B.1 C.0 D.-22.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5 B.1.05 C.1.05 D.0.1053.右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.4.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<C.(b-1)(a+1)>0 D.(b-1)(a-1)>05.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°16.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是( ) A.B.m≥0C.m≥1D.m≥27.方山镇2012年的蔬菜产量是1200吨,今年的产量达到1452吨,如果平均每年的增长率为x ,那么x 满足的方程是( ) A .1200(1+x )2=1452 B .1200(1+x %)2=1452 C .1200(1+2x )=1452D .1200(1+x %)=14528.同一直角坐标系中,函数xay -=与1+=ax y (a ≠0)的图象可能是( )9.小红制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被3整除的概率是( )A .B .C .D .10.如图,函数y=的图象经过点A (1,﹣3),AB 垂直x 轴于点B ,则下列说法正确的是( )A.k=3B. 函数图象关于y 轴对称C. S △AOB =3D. x <0时, y 随x 增大而增大11如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∠BCD =30°,下列结论:①AE =BE ;②OE =DE ;③AB =BC ;④.其中正确的是( )A .①B .①②③C .①③D .①②③④12. 如图,正方形OABC 边长为2,顶点A 、C 在坐标轴上,点P 在AB 上,CP 交OB 于点Q ,OQ=OC ,则﹣213.如图,在等腰D 是AC 上一点,若那么AD 的长为( )14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0; ②9a+c >3b ; ③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( ) A .1个 B . 2个 C . 3个 D . 4个15.已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具).以下是嘉淇、小刚两同学的作业:【嘉淇】①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1).【小刚】①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2).对于两人的作业,下列说法正确的是( )A .嘉淇对,小刚不对B .嘉淇不对,小刚对C .两人都对D .两人都不对 16.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )图2图1BA .A→O→B B .B→A→C C .B→O→CD .C→B→O二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.已知m 、n 是一元二次方程x 2-3x +1=0的两个根,那么代数式2m 2+4n 2-6n +2003的值是__________. 18.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是________. 19.右图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=___.20.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点P 1、A 1、A 2为顶点的△P 1A 1A 2的面积记为S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+S n =________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)(1(2)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.如图,在菱形ABCD 中,AB =2,∠ABC =60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角()090αα<< 后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F . (1)求证:△AOE ≌△COF ;(2)当=30α 时,求线段EF 的长度.DB第23题图甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.如图,边长为1的正方形ABCD一边AD在x负半轴上,直线lB(x,1)与x轴、y轴分别交于点H、F,抛物线y=-x2+bx+c顶点E在直线l上.⑴求A、D两点的坐标及抛物线经过A、D两点时的解析式.⑵当该抛物线的顶点E(m,n)在直线l上运动时,连接EA、ED,试求△EAD的面积S与m之间的函数解析式.并写出m的取值范围.⑶设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A、C、E、G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.26.如图14-1,矩形ABCD中,AB=8,BC=38,半径为3的⊙P与线段BD相切于点M,圆心P与点C在直线BD的同侧,⊙P沿线段BD从点B向点D滚动.发现:BD=______;∠CBD的度数为_______;拓展:①当切点M与点B重合时,求⊙P与矩形ABCD重叠部分的面积②在滚动过程中如图14-2,求AP的最小值;B(图14-1B图14-2探究:①若⊙P与矩形ABCD的两条对角线都相切,求此时线段BM的长,并直接写出tan∠PBC的值.Array②在滚动过程中如图14-3,点N是AC上任意一点,直接写出BP+PN的最小值.图14-3答案一、选择题1——16 CBBC B BA B DDDB ABCC 二、填空题17 2015 18 a≤-1且a≠-2 19 360°20 (2,1);1 nn-.三、解答题21.(1)2013(2) x=-222.(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;则P==.23.【答案】(1)∵四边形ABCD是菱形,∴OA=OC,AD∥BC.∴∠OAE=∠OCF,∠OEA=∠OFC.∴△AOE≌△COF(AAS).(2)∵AB=AC=2,∠ABC=60°,∴△ABC是等边三角形.∴∠AOAE=∠ACB=60°.又∵=30α =∠AOE,∴EF⊥BC.∵四边形ABCD 是菱形, ∴OA =OC =1.在Rt △OCF 中,由sin ∠OCF =OF OC ,得OF =OC sin60°=1 ∵△AOE ≌△COF , ∴OE =OF .∴EF24.【答案】(1)4.5,60(km/h);(2)y=28x+264.(7x 5.4≤≤)(3)1855小时和32209小时 【解析】解:(1)在途中的货站装货耗时半小时,说明a=4+0.5=4.5. 甲的速度:460÷(7+32)=60(km/h) (2)设直线OD 为y=mx,直线EF 为y=nx+b.由图像可知:⎩⎨⎧+=50m 460=4.5)n -(7+4m n 解得:⎩⎨⎧=28n 78=m 把n=28,(7,460)代入y=nx+b.中得:b=264. ∴y=28x+264.(7x 5.4≤≤) (3)相距15千米,两种:①78x-60(x+32)=15 解得:x=1855②28x+264-60(x+32)=15解得:x=32209答:乙出发1855小时和32209小时时与甲相聚15千米。
2016中考数学模拟试题(有答案)
2016年中考数学模拟试题(有答案)科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了2016年中考数学模拟试题。
A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).希望为大家提供的2016年中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年名校联考中考模拟数学试题时间120分钟满分120分 2016.4.19一、选择题:(每小题3分,共18分)1.下列运算正确的是()A.a•a2=a2B.a6÷a2=a4C.(a3)4=a7D.(a2b)3=a2b32.下列各数中是有理数的是()A.B.4πC.sin45°D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>04.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A.B. C.D.5.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数6.在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点C(4,﹣3)关于原点对称D.点A与点F(﹣4,3)关于第二象限的平分线对称二、填空题(每小题3分,共24分)7.在平面直角坐标系中,点P(﹣2,1)在第象限.8.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.9.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是.10.如图,在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,把△AOB绕点O逆时针旋转90°,得到△A1OB1,写出点A1的坐标:.11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是.12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC 于B,站在河岸C的C处测得∠BCA=60°,BC=10m,则桥长AB=m13.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,则下列结论正确的序号为(多填或错填得0分,少填酌情给分)①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4.14.如图在直角坐标系中,△ABC的面积为2,三个顶点的坐标分别为A (﹣3,﹣2),B(﹣1,﹣1),C(a,b),且a、b均为负整数,则点C 的坐标为.三、(15-18题,每小题6分,19-21题,每题10分,22题11分,23题13分,15.关于x的不等式组.(1)当a=3时,解这个不等式组;(2)若不等式组的解集是x<1,求a的值.16.已知点A、点B.在网格中用无刻度直尺画两个不全等的菱形,使菱形的顶点A、B、C、D恰好为格点,并计算所画菱形面积.17.如图,已知正五边形ABCDE,过点A作直线AF∥CD,交DB的延长线于点F(1)求∠AFD的度数;(2)求证:AF=BD.18.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2的卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.19(10分).如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC 于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交⊙O于点F,连接OE、EF.(1)试判断△ACD的形状,并说明理由;(2)求证:∠ADE=∠OEF.20(10分).如图,直线y=x与反比例函数y=(k>0,x>0)的图象交于点A.将直线y=x向上平移4个单位长度后,与y轴交于点C,与反比例函数y=(k>0,x>0)的图象交于点B,分别过点A,B作AD⊥x轴于点D,BE⊥x轴于点E,且OD=3OE.(1)直线BC对应的函数解析式是;(2)求k的值.21(10分).2014年某校有若干名学生参加了中考,学校随机抽取了考生总数的8%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B (84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:(1)在所抽取的考生中,若D级只有4人:①请估算该校所有考生中,约有多少人数学成绩是D级?②考生数学成绩的中位数落在等级中;(2)天天同学在计算所抽取的考生数学成绩的平均数时,其方法是:=(105+90+80+30)÷4=76.25,问天天同学的计算正确吗?若不正确,请你帮他计算正确的平均数.22.(12分).甲、乙两玩具厂从已有订单来看,两厂都预计自2011年起本厂的月利润y(十万元)与月份x之间满足一定的函数关系.甲厂预测的关系:y=x2﹣x+2;乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同.又知乙厂预测的该厂前几个月份的月利润如图所示,试根据上述信息解决下列问题:(1)求乙厂预测的月利润y(十万元)与月份x之间的函数关系式;(2)x为何值时,两厂的月利润差距为5万元?(3)当两厂的月利润差距超过50万元时,月利润低的玩具厂被月利润高的玩具厂收购.如果不考虑其他因素,按上述趋势,是否会出现收购的情况?如果会,谁被谁收购?何时被收购?如果不会,请说明理由.23.(14分).已知如图1、2,D是△ABC的BC边上的中点,DE⊥AB于E、DF⊥AC于F,且BE=CF,点M、N分别是AE、DE上的点,AN⊥FM于G (1)如图1,当∠BAC=90°时;①求证:四边形AEDF是正方形;②试问AN与FM之间的数量关系与四边形AEDF的两对角线的数量关系相同吗?请证明你的结论;(2)如图2,当∠BAC≠90°,且AF:DF=2:1时,求AN:FM的值;(3)根据(1)中②和(2)的结论或求解过程,在一般情况下(即除去条件:“∠BAC﹣90°,AF:DF=2:1”,其他条件不变),问AN与FM之间的数量关系有何规律?直接用文字说明或用等式表示(不证明).参考答案一、选择题:1故选B.2.故选D.3.故选C.4.故选:D.5.故选A.6.故选:D.二、填空题7.二象限.8.170 m.9.﹣1 .10.﹙﹣2,1﹚.11.10 .12.13.故答案为①③④.14.C的坐标为(﹣5,﹣1)、(﹣1,﹣3)、(﹣3,﹣4).三、(本大题共4小题,每小题6分,共24分)15.【解答】解:(1)当a=3时,由①得:2x+8>3x+6,解得:x<2,由②得x<3,∴原不等式组的解集是x<2.(2)由①得:x<2,由②得x<a,而不等式组的解集是x<1,∴a=1.16【解答】解:如图,第一个菱形的面积为8,第二个菱形的面积为6.17.【解答】(1)解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°;(2)证明:∵∠CBA=108°,∠CBD=36°,∴∠DBA=72°,∴∠FBA=108°,在△ABF和△DBC中,,∴△ABF≌△DBC,∴AF=BD.18.【解答】解:(1)根据题意得:50×=10,答:箱中装有标1的卡片10张;(2)设装有标3的卡片x张,则标2的卡片有3x﹣8张,根据题意得:x+3x﹣8=40,解得:x=12,所以摸出一张有标3的卡片的概率P==.、四、(本大题4小题,每小题8分,共32分)19.【解答】解:(1)△ACD是等腰三角形.连接AE,∵AB是⊙O的直径,∴∠AED=90°,∴AE⊥CD,∵CE=ED,∴AC=AD,∴△ACD是等腰三角形;(2)∵∠ADE=∠DEF+∠F,∠OEF=∠OED+∠DEF,而∠OED=∠B,∠B=∠F,∴∠ADE=∠OEF.20.【解答】解:(1)∵直线BC是直线y=x向上平移4个单位得到,∴直线BC解析式为y=x+4,故答案为:y=x+4;(2)设OE=x,则OD=3x,∴B点坐标为(x, x+4),A点坐标为(3x, x),又∵A、B两点都在反比例函数图象上,∴x(x+4)=3x×x,解得x=0(舍去)或x=1,∴A点坐标为(3,),∴k=3×=.21.【解答】解:(1)①D级的人数比:100%﹣30%﹣40%﹣20%=10%,所抽取的考生数;4÷10%=40人,该校考生总数:40÷0.08=500人,∴该校所有考生中约有500×10%=50人数学成绩是D 级;②∵所抽取的考生数为4÷10%=40人,∴A 级人数40×30%=12人,B 级人数40×40%=16人,C 级人数40×20%=8人,D 级4人,∴考生数学成绩的中位数落在B 等级中;故答案为:B ;(2)不正确,设抽取的考生数为n ,则==86.5,答;正确的平均数为:86.5,22.【解答】解:(1)设乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=x2+bx+cc由上图可知,取,则,解得.所以,乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=;(2)①若y 甲﹣y 乙=0.5,则(x 2﹣x+2)﹣()=0.5,解得x=1②若y 乙﹣y 甲=0.5,则()﹣(x 2﹣x+2)=0.5,解得x=3 所以,x=1或3时,两厂的月利润差距为5万元;(3)①若y乙﹣y甲>5,即()﹣(x2﹣x+2)>5,解得x>12②y甲﹣y乙>5,即(x2﹣x+2)﹣()>5,解得x<﹣8(不合题意)所以,会出现收购的情况,12个月后(或一年后或第13个月),甲厂会被乙厂收购.23.【解答】(1)①证明:∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,以上BD=DC,∠DEB=∠DFC=90°,BE=CF,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴矩形AEDF是正方形.②答:AN与FM之间的数量关系与四边形AEDF的两条对角线的数量关系相同;理由:在正方形AEDF中,AF=AE,又∵AN⊥FM于G,∠AMF=∠ANE,∠AEN=∠MAF=90°,∴Rt△AEN≌Rt△FAM(AAS),∴AN=FM,又∵正方形AEDF的对角线相等,∴AN与FM之间的数量关系与四边形AEDF的两对角线的数量关系相同.(2)连接AD、EF,设AF=2k,DF=k,在Rt△ADF中,AD==k,∵Rt△BED≌Rt△CFD(HL),∴∠B=∠C,DE=DF,∴AB=AC,AE=AF,∴AD的垂直平分EF,则OF=EF,DF⊥AC与F,=2k×k×,∴PF=,∴EF=,又∵∠NEM=∠MGN=90°,∠GME+∠ENG=∠DNG+∠ENG=180°,∠EMF=∠DNA,∠AEO=∠NDA,∴△FME∽△AND,∴==;(3)根据(1)中②和(2)的结论或求解过程可知,∵∠NEM=∠MGN=90°,∠GME+∠ENG=∠DNG+∠ENG=180°,∠EMF=∠DNA,∠AEO=∠NDA,∴△FME∽△AND,∴=,AN、FM与四边形AEDF的两条对角线对应成比例.。