根据图像信息解答问题(一函中考复习)
2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析
2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析◆题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。
【例1】如图,在矩形ABCD中,AB=2cm,BC=4√3cm,E是AD的中点,连接BE,CE.点P 从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4√3cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。
①当Q在线段BE上运动时,如图,作QF⊥BC,BP=t,QF=12BQ=√32t,则y=12⋅BF⋅QF,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。
1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.【答案】B【分析】观察图形,在运动过程中,S随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S随时间的增大而增大,∴选项A、D错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S不变,再运动,S随的增大而减小,∴选项C错误,选项B正确;故选:B.【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF 为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2022·山东潍坊·中考真题)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【分析】分0≤x≤1,1<x<2,2≤x≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x≤1时,过点F作FG⊥AB于点G,∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,∴y=AE×FG=x2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,∴y=(DF+AE)×DH=x-,图象是一条线段;当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.7.(2022·辽宁锦州·统考中考真题)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】D【分析】由题意易得,,则有,进而可分当点P在AB中点的左侧时和在AB中点的右侧时,然后分类求解即可.【详解】解:∵,∴,由题意知:,∴,由折叠的性质可得:,当点P与AB中点重合时,则有,当点P在AB中点的左侧时,即,∴与重叠部分的面积为;当点P在AB中点的右侧时,即,如图所示:由折叠性质可得:,,∴,∴,∴,∴与重叠部分的面积为;综上所述:能反映与重叠部分的面积S与t之间函数关系的图象只有D选项;故选D.【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.8.(2022·湖北武汉·统考中考真题)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【分析】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【详解】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【点睛】本题主要考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.9.(2022·浙江台州·统考中考真题)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2021·辽宁鞍山·统考中考真题)如图,是等边三角形,,点M从点C出发沿CB方向以的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作交AB于点P,连接MN,NP,作关于直线MP对称的,设运动时间为ts,与重叠部分的面积为,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【分析】首先求出当点落在AB上时,t的值,分或两种情形,分别求出S的解析式,可得结论.【详解】解:如图1中,当点落在AB上时,取CN的中点T,连接MT.,,,,是等边三角形,,是等边三角形,,,,,,,,是等边三角形,,,,,四边形CMPN是平行四边形,,,,如图2中,当时,过点M作于K,则,.如图3中,当时,,观察图象可知,选项A符合题意,故选:A.【点睛】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.11.(2022·山东济宁·三模)如图,在正方形中,,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线以每秒3cm的速度运动,到达B点时运动同时停止.设的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】B【分析】根据题意,分三段(,,)分别求解与的解析式,从而求解.【详解】解:当时,分别在线段,此时,,为二次函数,图象为开口向上的抛物线;当时,分别在线段,此时,底边上的高为,,为一次函数,图象为直线;当时,分别在线段,此时,底边上的高为,,为二次函数,图象为开口向下的抛物线;结合选项,只有B选项符合题意,故选:B【点睛】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.12.(2022·甘肃平凉·校考二模)如图,在中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间秒的函数图像如图所示,当点运动秒时,的长是()A.B.C.D.【答案】B【分析】根据图可判断,,则可确定时的值,利用的值,可求出.【详解】解:由图可得,,,当时,如图所示:此时,故B,,.故选:B.【点睛】本题考查了动点问题的函数图象,解答本题的关键是根据图得到、的长度,此题难度一般.13.(2022·广东深圳·深圳市海滨中学校考模拟预测)如图①,已知Rt△ABC的斜边BC和正方形DEFG的边DE都在直线l上(BC<DE),且点C与点D重合,△ABC沿直线l向右匀速平移,当点B与点D重合时,△ABC停止运动,设DG被△ABC截得的线段长y与△ABC平移的距离x之间的函数图像如图②,则当x=3时,△ABC和正方形DEFG重合部分的面积为()A.B.C.D.【答案】C【分析】过点A作AH⊥BC于点H,由图形可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,BC=4,由此可解△ABC;画出当x=3时的图形,利用相似可得出结论.【详解】解:如图①,过点A作AH⊥BC于点H,∴∠AHB=∠AHC=∠BAC=,∴∠ABH+∠BAH=∠BAH+∠HAC=,∴∠ABH=∠HAC,∴△ABH∽△CAH,∴AH:HC=BH:AH,结合图①可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,由函数图像可得:BC=4,∴BH=3,∴AH:1=3:AH,即(负值舍去),当x=3时,,如图②,∴设与DG的交点为M,由,则,∴,∴1:3=MD:,即,∴故选:C.【点睛】本题考查的是动点图象问题,涉及相似三角形的性质与判定,解题关键是得出BC和DM的长.14.(2022·青海·统考一模)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的关系用图象描述大致是()A.B.C.D.【答案】D【分析】该题属于分段函数,根据图象需要得出:点在边上时,随的增大而减小;当点在边上时,随的增大而增大;当点在线段上时,随的增大而减小;当点在线段上时,随的增大而增大.【详解】解:如图,过点作于点.在中,,.①点在边上时,随的增大而减小.故A、B错误,不符合题意;②当点在边上时,随的增大而增大;③当点在线段上时,随的增大而减小,点与点重合时,最小,但是不等于零.故C错误,不符合题意;④当点在线段上时,随的增大而增大.故D正确,符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解题的关键是读懂图象的含义,即会识图.15.(2021·宁夏银川·统考一模)如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是()A.B.C.D.【答案】C【分析】依题意,可以知道路程先逐渐变大,再保持不变,然后逐渐变小直至为0.则可以作出判断.【详解】解:由题意可以看出点P在从O到A过程中,s随t的增大而增大;点P在上时,s等于半圆O的半径,即s随t的增大而保持不变;点P从B到O的过程中,s随t的增大而逐渐减少直至为0.只有选项C符合实际情况.故选:C.【点睛】此题考查了函数图像的识别,应抓住s随t变化的本质特征:从0开始增大,到达边线后不变,然后到达B点后开始减小直到0.16.(2022·湖南郴州·统考中考真题)如图1,在中,,,.点D从A 点出发,沿线段AB向终点B运动.过点D作AB的垂线,与的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)0 0.5 1 1.5 2 2.5 3 3.5 4变量h(cm)0 0.5 1 1.5 2 1.5 1 0.5 0在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2-1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2-2.根据探究的结果,解答下列问题:①当时,________;当时,________.②将图2-1,图2-2中描出的点顺次连接起来.③下列说法正确的是________.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与的一直角边、斜边围成的三角形(即阴影部分)的面积为s.①分别求出当和时,s关于a的函数表达式;②当时,求a的值.【答案】(1)①1.5;1或3;②见解析;③A(2)①当时,;当时,;②或【分析】(1)①根据题意,对照变量h和变量a对应的数值即可填写,②图2-1,图2-2中描出的点顺次连接起来即可;③根据函数的定义即可判断;(2)①如图,当时,,得到阴影部分是三角形ADE的面积:;当时,,得到阴影部分的面积是三角形BDE的面积:.②当时,令,解得a;当时,令,解得a即可求解;(1)解:①根据题意,对照变量h和变量a对应的数值,当时, 1.5;当时,1或3.故答案为:1.5;1或3;②连线如图2-1、图2-2所示:③根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,所以变是h是以a为自变量的函数,故A选项符合,故选:A.(2)①如图3,当时,,∴阴影部分的面积:;当时,,∴阴影部分的面积:.∴当时,;当时,.②当时,令,解得或(不符合题意,舍去).当时,令,解得或(不符合题意,含去).∴当时,或.【点睛】本题考查了函数图像,写函数关系式,理解函数的定义以及表示方法,会根据三角形的面积公式得出函数关系式是解题的关键.◆题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。
中考物理微专题复习 专题39 中考图像类问题
专题39图像类问题解答图象题的总纲领是:先搞清楚图象中横坐标、纵坐标所表示的物理量;弄清坐标上的分度值;明确图象所表达的物理意义,利用图象的交点坐标、斜率和截距及图象与坐标轴所包围的面积等,进行分析、推理、判断和计算;根据图象对题目中的问题进行数据计算或做出判断性结论。
我省各地市在中考试卷中,每年都在最后两道大题其中的一道题里出现一个涉及利用图象提供信息的计算题。
分值可观,加强训练。
知识点1:路程——时间图像、速度——时间图像图象问题解题时先分析图象的特点:物体的路程随时间如何变化,判断物体在各时间段内做什么运动,熟练应用速度公式即可正确解题。
物体的速度随时间如何变化,判断物体在各时间段内速度怎样变化,确定做什么运动,再熟练应用速度公式正确解题。
知识点2:温度——时间图像1.熔化图象(1)晶体熔化特点:固液共存,吸热,温度不变(2)非晶体熔化特点:吸热,先变软变稀,最后变为液态温度不断上升。
2.凝固图象(1)晶体凝固特点:固液共存,放热,温度不变(2)非晶体凝固特点:放热,逐渐变稠、变黏、变硬、最后成固体,温度不断降低。
3.水沸腾图像(1)由图象可知:水在沸腾过程中,吸收热量但温度保持不变。
(2)水沸腾之前,水下层的温度高于上层的水温,气泡上升过程中,气泡中的水蒸气遇冷液化成水,气泡变小,B 图符合水沸腾前的现象;水沸腾时,整个容器中水的温度相同,水内部不停的汽化,产生大量的水蒸气进入气泡,气泡变大,故图A 符合水沸腾时的现象.知识点3:质量——体积图像1.物质的质量与体积的关系:体积相同的不同物质组成的物体的质量一般不同,同种物质组成的物体的质量与它的体积成正比。
2.一种物质的质量与体积的比值是一定的,物质不同,其比值一般不同,这反映了不同物质的不同特性,物理学中用密度表示这种特性。
单位体积的某种物质的质量叫做这种物质的密度。
3.密度与温度:温度能改变物质的密度,一般物体都是在温度升高时体积膨胀(即:热胀冷缩,水在4℃以下是热缩冷胀),密度变小。
中考数学专题分类复习:图像信息类问题
中考数学专题分类复习:图表信息类问题(一)考点解析:图表信息问题主要考查学生收集信息和处理信息的能力.此类试题的题设条件或结论中包含有图象(表),如:在数轴上、直角坐标系中,点的坐标,一次函数、二次函数、反比例函数的图象,实用统计图象及部分几何图形等提供的形状特征、位置特征、变化趋势等.这种题型应用知识多,是近几年各地中考的一种新题型,这类题目的图象(表)信息量大,大多数条件不是直接告诉,而是以图象(表)形式映射出来.解答这类问题时要把图表信息和相应的数学知识、数学模型相联系,要结合问题提供的信息,灵活运用数学知识进行联想、探索、发现和综合处理,准确地使用数学模型来解决问题.考查形式有选择题、填空题、解答题.(二)考点训练考点1:图文信息类问题【典型例题】:(贵州)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m 0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P==.(两学生来自同一所班级)【变式训练】:(湖南邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.【分析】(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.方法归纳总结:通过图片辅助于文字来呈现信息,形式新颖、活泼、直观,但其实质还是通过文字来传递信息.解答时认真理解图画含义是解答试题的关键.考点2:表格信息类问题【典型例题】:为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲63 66 63 61 64 61乙63 65 60 63 64 63(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【考点】X9:模拟实验;W7:方差;X6:列表法与树状图法.【分析】(1)先计算出平均数,再依据方差公式即可得;(2)列表得出所有等可能结果,由表格得出两株配对小麦株高恰好都等于各自平均株高的结果数,依据概率公式求解可得.【解答】解:(1)∵==63,∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:63 66 63 61 64 6163 63、63 66、63 63、63 61、63 64、63 61、6365 63、65 66、65 63、65 61、65 64、65 61、6560 63、60 66、60 63、60 61、60 64、60 61、6063 63、63 66、63 63、63 61、63 64、63 61、6364 63、64 66、64 63、64 61、64 64、64 61、6463 63、63 66、63 63、63 61、63 64、63 61、63 由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.【变式训练】:(甘肃天水)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.方法归纳总结:从表格中读取有用信息,表格呈现的信息量大、文字少,容易归类,解题时应对信息进行分类,分步求.考点3:图像信息问题【典型例题】:(日照)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC 的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t (s)的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O 的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.【变式训练】:(山东滨州)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为12+15π.【考点】U3:由三视图判断几何体.【分析】由几何体的三视图得出该几何体是几何体是长方体与三棱柱的组合体,结合图中数据求出组合体的表面积即可.【解答】解:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.方法归纳总结:图象信息题一般通过横纵轴的意义、图象的位置、特殊点的位置、变化趋势及图形形状等来呈现信息,如将普通的行程问题用折线型图象方式来呈现.因此,根据已知图象得出正确信息是解题关键,注意一些特殊点的信息.要从图象的形状特点、变化趋势、相关位置、相关数据出发,充分发掘图象所蕴含的信息,利用函数、方程(组)、不等式等知识去分析图象以解决问题,也可以利用几何性质如比例来解题.考点4:动态几何与图像相结合类问题【典型例题】:(甘肃天水)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).【变式训练】:(湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c (a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x 2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON 的长,可求得N点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x 轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x 2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt △AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).方法归纳总结:函数图象与动点问题结合起来,直观地呈现动点运动有关时间、路程、速度以及起始关系的一系列信息,这样呈现的问题,往往是几个函数的组合,需要分类求出各段的函数解析式,结合给出的图象判断.(三)考点检测1. (湖北随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株【考点】38:规律型:图形的变化类.【分析】根据题目中的图形,可以发现其中的规律,从而可以求得当n=11时的芍药的数量.【解答】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选B.2. (绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.【考点】KX:三角形中位线定理;KW:等腰直角三角形.【分析】记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,求出s1,s2,s3,探究规律后即可解决问题.【解答】解:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,∵s1=•s=•s,s2=•s=•s,s3=•s,∴s n=•s=••2•2=,故答案为.3. (绥化)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城弧均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).【考点】FH:一次函数的应用.【分析】(1)根据图象可知甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)可得x+(x+60)=180 可得结果;(2)根据(1)中所得速度可得卡车和轿车全程所用的时间,利用卡车所用的总时间减去轿车来回所用时间可得结论;(3)根据s=180﹣120×(t﹣0.5﹣0.5)可得结果.【解答】解:(1)甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)得,x+(x+60)=180解得x=60,∴x+60=120,∴轿车和卡车的速度分别为120千米/时和60千米/时;(2)卡车到达甲城需180÷60=3(小时)轿车从甲城到乙城需180÷120=1.5(小时)3+0.5﹣1.5×2=0.5(小时)∴轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.4. (甘肃天水)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B 出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x 2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.5. (.四川眉山)如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N 作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t 之间的函数关系式.【考点】HF:二次函数综合题.【分析】(1)根据题意列方程组即可得到结论;(2)在y=ax2+bx﹣2中,当x=0时.y=﹣2,得到OC=2,如图,设P(0,m),则PC=m+2,OA=3,根据勾股定理得到AC==,①当PA=CA时,则OP 1=OC=2,②当PC=CA=时,③当PC=PA时,点P在AC的垂直平分线上,根据相似三角形的性质得到P 3(0,),④当PC=CA=时,于是得到结论;(3)过H作HG⊥OA于G,设HN交Y轴于M,根据平行线分线段成比例定理得到OM=,求得抛物线的对称轴为直线x==,得到OG=,求得GN=t﹣,根据相似三角形的性质得到HG=t﹣,于是得到结论.【解答】解:(1)把A(3,0),且M(1,﹣)代入y=ax2+bx﹣2得,解得:;(2)在y=ax2+bx﹣2中,当x=0时.y=﹣2,∴C(0,﹣2),∴OC=2,如图,设P(0,m),则PC=m+2,OA=3,AC==,①当PA=CA时,则OP1=OC=2,∴P1(0,2);②当PC=CA=时,即m+2=,∴m=﹣2,∴P2(0,﹣2);③当PC=PA时,点P在AC的垂直平分线上,则△AOC∽△P3EC,∴=,∴P3C=,∴m=,∴P3(0,),④当PC=CA=时,m=﹣2﹣,∴P4(0,﹣2﹣),综上所述,P点的坐标1(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣);(3)过H作HG⊥OA于G,设HN交Y轴于M,∵NH∥AC,∴,∴,∴OM=,∵抛物线的对称轴为直线x==,∴OG=,∴GN=t﹣,∵GH∥OC,∴△NGH∽△NOM,∴,即=,∴HG=t﹣,∴S=ON•GH=t(t﹣)=t2﹣t(0<t<3).。
一次函数中考试题集锦
一次函数中考试题集锦(共9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一次函数习题1、(2003·哈尔滨)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象( 分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围;(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船2、如图,甲l 、乙l 分别是甲、乙两弹簧的长y (cm )与所挂物体质量x (kg )之间的函数关系的图像.设甲弹簧每挂1kg 物体伸长的长度为甲k cm ,乙弹簧每挂1kg 物体伸长的长度为乙k cm ,则甲k 与乙k 的大小关系( ).A .甲k >乙k B.甲k =乙k C.甲k <乙k D.不能确定3、弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,由图可知不挂物体时弹簧 的长度为( ).4、长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李费用y (元)是行李重量x (千克)的一次函数,其图像如图所示,则y 与x 之间的函数关系式是 ,自变量x 的取值范围是 . 5、(05广东佛山)如快艇轮船(h)(km)2040608010012014016087654321o52012.520O· 甲l 乙l O8121(cm)(km)oy 6106080(千克)元图,表示甲骑电动自行车和乙驾驶汽车均行驶90km 的过程中,行使的路程y 与经过的时间x 之间的函数关系.请根据图象填空:____________出发的早,早了___________小时,____________先到达,先到_________小时,电动自行车的速度为_________km / h ,汽车的速度为_________km / h .6、(2005年资阳市)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图7. 根据图象解决下列问题: (1) 谁先出发?先出发多少时间谁先到达终点先到多少时间? (2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)在这一时间段内,请你根据下列情形,分别列出关于行驶时间x 的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.7、某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y (米)与修筑时间x (天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.8、甲、乙两工程队分别同时开挖两段河渠,所挖河渠的长度y(cm)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:⑴乙队开挖30m 时用了 h 。
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。
中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)
中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?2.一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车1h后,继续按原速驶向乙地,两车距甲地4的路程kmy与慢车行驶时间()h x之间的函数图象如图所示,请结合图象解答下列问题:(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;(3)慢车出发多长时间,两车相距120km3.甲、乙两地之间是一条直路,王明跑步从甲地往乙地,陈星骑自行车从乙地往甲地,两人同时出发,陈星先到达目的地,设两人的在行进过程中保持匀速,两人之间的距离()km y 与运动时间()h x 的函数关系大致如图所示,请你根据图形进行探究:(1)王明和陈星的速度分别是多少?(2)请写出线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. 4.某次无人机展演活动中,Ⅰ号无人机从海拔10m 处出发,以12m/min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以()m/min a 的速度匀速上升,经过5min 两架无人机位于同一海拔高度()m b .无人机海拔高度()m y 与时间()min x 的关系如图.两架无人机都上升了15min .(1)求b 的值及Ⅱ号无人机海拔高度()m y 与时间()min x 的关系式; (2)问无人机上升了多少时间,两无人机高度相差32m .5.现有A 、B 两种品牌的共享电动车,收费y (元)与骑行时间(min)x 之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)直接写出A 品牌收费方式对应的函数关系式为 .(2)如果小致每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为30km /h ,小致家到学校的距离为6km ,那么小致选择 (填“A 品牌”或“B 品牌”)的共享电动车更省钱.(3)求出两种收费相差0.5元时x 的值.6.如图,小李和小赵相约去农庄游玩.小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲乙小区、超市和农庄之间的路程如图①所示,图②中线段OD 、BC 分别表示小李、小赵行驶中离甲小区的路程()km s 与出发时间t (分)之间的函数图象(或部分图象).根据图象回答问题:(1)分别求出线段OD 、BC 的函数表达式;(2)请补全小赵离甲小区的路程为()km s 与出发时间t (分)的函数图象,并写出小赵在超市购物,用时______分钟.7.甲、乙两人同时开车从A 地出发,沿同一条道路去B 地,途中都以两种不同的速度1V 与212()V V V >行驶.甲前一半路程以速度1V 匀速行驶,后一半路程以速度2V 匀速行驶;乙前一半时间以速度匀速2V 行驶,后一半时间用以速度1V 匀速行驶.(1)设甲乙两人从A 地到B 地的平均速度分别为V 甲和V 乙,则V =甲___________;___________(V =乙用含1V 、2V 的式子表示).2(1)当04t<≤时,求2v关于t的函数关系式;(2)求图中a的值;(3)小明每次踢球都能使球的速度瞬间增加6m/s,球运动方向不变,当小明带球跑完200m,写出小明踢球次数共有____次,并简要说明理由.10.已知甲、乙、丙三地依次在同一直线上,乙地离甲地260km,丙地离乙地160km.一艘游轮从甲地出发,途经乙地前往丙地.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km/h,离开甲地的时间记为t(单位:h),两艘轮船离甲地的距离y(单位:km)关于t的图象如图所示(游轮在停靠前后的行驶速度不变).货轮比游轮早2.6h到达丙地.根据相关信息,解答下列问题:(1)填表:游轮离开甲地的时间/h 6 13 16 22 24游轮离甲地的距离/km120 260(2)填空:①游轮在乙地停靠的时长为_______h;②货轮从甲地到丙地所用的时长为_______h,行驶的速度为_______km/h;③游轮从乙地出发时,两艘轮船的距离为_______km.13.我国已取得脱贫攻坚的全面胜利,国家已进入乡村振兴实施阶段,现代物流的高速发展,为乡村振兴的实施提供了良好条件.某物流公司的汽车在市区行驶20km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地,汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,回答下列问题:(1)汽车在乡村道路上行驶的平均速度是______ km/h;(2)求汽车在高速路上行驶的路程y与行驶的时间x之间的函数关系式,并写出自变量x的取值范围;(3)当该物流车行驶到距离出发地120km时,请问该车再过1.5小时能不动达目的地,如果能,写出计算过程;如果不能,直接写出1.5小时后该车离目的地还有多远?14.甲、乙两车分别从相距15km的大连北站和大连广播电视中心同时匀速相向而行.甲车出发10min后,由于交通管制,停止了2min,再出发时速度比原来减少15km/h,并安全到达终点.甲、乙两车距大连北站的路程y(单位:km)与两车行驶时间x(单位:h)的图象如图所示.(1)填空: a______;(2)求乙车距大连北站的路程y与两车行驶时间x的函数解析式,并直接写出自变量x的取值范围;(3)求甲、乙两车相遇时,乙车距大连北站的路程.15.随着疫情的消失,三年的管控使人们的消费和旅游在2023年的“五一”假期得以全面释放.小明和小军分别骑车和驾车从本村出发,沿同一条公路去东门外生态公园游玩.小明骑一段时间后,小军驾车出发,结果半路遭遇堵车,当小明迫上小军后,小军坐小明的自行车一起去生态公园(小军泊车时间忽略不计),如图是小明、小军两人在去生态公园过程中经过的路程()my与小明出发时间()s x之间的函数图像.请结合图像回答:(1)村与公园的距离为______ ,小明骑车速度是______ m/s.(2)小军在离开村多少公里处遭遇堵车?从小军遇到堵车到追上小明用了多长时间?(3)直接写出两人何时相距520m?16.甲、乙两地相距320km,A,B两辆货车同时分别从甲、乙两地相向而行,货车A先出发,一个小时后,货车B也出发,若它们都保持匀速行驶,货车A、货车B距乙地的距离()y km与时x h之间的关系如图所示.间()(1)求货车B距乙地的距离y与时间x的关系式;(2)求货车B到甲地后,货车A还需多长时间到达乙地.参考答案:1.(1)工厂离目的地的路程为880千米 (2)s 关于t 的函数表达式:()80880011s t t =-+≤≤ (3)t 的取值范围是254t ≤≤1522.(1)400,100,7(2)快车从乙地返回甲地的过程中,y 与x 的函数解析式为100400y x =-+ (3)慢车出发1小时或103小时或143小时,两车相距120km3.(1)王明跑步的速度为8km/h ,陈星的速度为16km/h . (2)()24241 1.5y x x =-≤≤ 4.(1)70 830y x =+(2)无人机上升了13min ,两无人机高度相差32m . 5.(1)10.2y x =(2)小明选择A 品牌的共享电动车更省钱 (3)两种收费相差0.5元时,x 的值为15或25;6.(1)线段OD 的函数表达式为()0.5020y x x =≤≤;线段BC 函数表达式为()81218y x x =-≤≤; (2)小赵在超市购物,用时10min . 7.(1)12121222VV V V V V ++,(2)乙(3)①1210050300V V S ===,,,②3.5小时 8.(1)20a = 140b =; (2)2020y x =+甲1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米。
26专项图像信息专练(三种题型)
中考专项练习——一次函数图像信息——y轴表示距同一出发地的距离1.在一条直线上的甲、乙两地相距240千米,快、慢两车同时出发,慢车从甲地驶向乙地,中途因故停车1小时后,继续按原速驶向乙地;快车从乙地驶向甲地,在到达甲地后,立即按原路原速返回到乙地.在两车行驶的过程中,两车距乙地的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,请结合图象解答下列问题﹕(1)求快、慢两车在行驶过程中的速度﹔(2)求两车第二次相遇时,据甲地的距离是多少千米﹖(3)求两车出发多长时间后,相距60千米?2.甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,并立即返回(掉头时间忽略不计).已知水流速度是2千米/时,下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间函数关系式,结合图象解答下列问题:(1)轮船在静水中的速度是千米/时;快艇在静水中的速度是千米/时;(2)求快艇返回时的解析式,写出自变量取值范围;(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?x y o D CA B 180 E 1 ( ) ( ) F3 (小时) ( )(千米) 甲车乙车3.B 岛位于自然环境优美的西沙群岛,盛产多种鱼类。
A 港、B 岛、C 港依次在同一条直线上,一渔船从A 港出发经由B 岛向C 港航行,航行2小时时发现鱼群,于是渔船匀速缓慢向B 港方向前行打渔。
在渔船出发一小时后,一艘快艇由C 港出发,经由B 岛前往A 港运送物资。
当快艇到达B 岛时渔船恰好打渔结束,渔船又以原速经由B 岛到达C 港。
下面是两船距B 港的距离y(海里)与渔船航行时间x(小时)的函数图象,结合图象回答下列问题: (1)请直接写出m ,a 的值.(2)求出线段MN 的解析式,并写出自变量的取值范围。
(3)从渔船出发后第几小时两船相距10海里? 4.汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县。
九年级数学中考综合复习 :图象信息题复习讲义
综合复习.图象信息题&.综合评述:图象信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题。
它是近几年全国各地省市中考所展示的一种新题型。
这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔,分析题中提供的信息,有利于提高学生分析、解决实际问题的能力,同时也是培养现代公民素质的一种重要途径。
解图象信息题的关键是“识图”和“用图”,一般解题步骤是:(1)观察图象,获取有效信息;(2)对已获取信息进行加工整理,清理各变量之间的关系;(3)选取适当的数学工具,通过合理建模解决实际问题。
&.典型例题剖析:§.例1、(2019年安徽)新安大厦对销量较大的A 、B 、C 三种品牌的洗衣粉进行了问卷调查,发放问卷270份(问卷由单选和多选题组成)。
对收回的238份问卷进行了整理,部分数据如下: ①最近一次购买各品牌洗衣粉用户的比例(如图1);②用户对各品牌洗衣粉满意情况汇总表:根据上述信息回答下列问题:(1)A 品牌洗衣粉的主要竞争优势是什么?你是怎样看出来的? (2)广告对用户选择品牌有影响吗?请简要说明理由; (3)你对厂家有何建议?思路点拨:本题属于图表信息题,利用图表的形式给出信息,注意图表表头反映着专题研究的对象,图表中反映着考题所涉及的数量关系,我们可通过分析数据作出判断,作出解答,具体解答如下:解:(1)A 品牌洗衣粉的主要竞争优势是质量,可从以下看出: ①对A 品牌洗衣粉的质量满意的用户最多;②对A 品牌洗衣粉的广告、价格满意的用户不是最多. (2)广告对用户选择品牌有影响,可从以下看出:①对B 、C 品牌洗衣粉的质量、价格满意的用户数相差不大; ②对B 品牌洗衣粉的广告满意的用户数多于C 品牌洗衣粉,且相差较大;③购买B 品牌洗衣粉的用户高于C 品牌洗衣粉45.8%.(3)建议如下:①要重视质量;②在保证质量的前提下,要关注广告和价格.规律总结:图表信息题是将已知条件呈现在图或表格中,其中表头反映专题研究的对象,图内、表行、表列反映数量关系,主要考查学生管理数据、分析数据、处理数据的能力。
中考数学三轮专题冲刺7:利用函数图像解决实际问题综合(含答案)
中考数学第三轮压轴题专题冲刺复习:利用函数图像解决实际问题综合1、甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.2、由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m 3)与时间x (天)的关系如图中线段l 2所示(不考虑其它因素).(1)求原有蓄水量y 1(万m 3)与时间x (天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x ≤60时,水库的总蓄水量y (万m 3)与时间x (天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.3、某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A、B两种机器人各连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?4、有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.5、快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.6、某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)7、某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(3m)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水340m(二月份用水量不超过325m),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m?8、某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?9、某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD 表示y与x之间的函数关系.(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.10、甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.11、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据20000kg 1030.42030.8a b a b t m kg y kg以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)12、如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A —C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1, C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.13、在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y 2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.m t()()200000501001500050100tmt t≤≤⎧⎪=⎨+<≤⎪⎩y t 050t≤≤50100t<≤y tt W tW(1)甲、乙两地相距 千米.(2)求出发3小时后,货车离服务区的路程y 2(千米)与行驶时间x (小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y 3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?14、雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量1y (百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示;网上商店的日销售量2y (百件)与时间t (t 为整数,单位:天)的关系如下图所示.y与t (1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映1y与t的函数关系式及自变量t的取值范围;的变化规律,并求出1y与t的函数关系式,并写出自变量t的取值范围;(2)求2(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.15、荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.参考答案2021年中考数学第三轮压轴题专题冲刺复习:利用函数图像解决实际问题综合1、甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A 地到达B 地的行驶时间是2.5小时;(2)设甲车返回时y 与x 之间的函数关系式为y=kx+b ,∴, 解得:,∴甲车返回时y 与x 之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A 地时甲车距A 地的路程是175千米.2、由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m 3)与时间x (天)的关系如图中线段l 2所示(不考虑其它因素).(1)求原有蓄水量y 1(万m 3)与时间x (天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x ≤60时,水库的总蓄水量y (万m 3)与时间x (天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.【解答】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:解得,∴y1=﹣20x+1200当x=20时,y1=﹣20×20+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,y≤900,则5x+700≤900,x≤40,当y1=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤40.3、某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量Ay(千克)与时间x(时)的函数图像,线段EF表示B种机器人的搬运量By(千克)与时间x(时)的函数图像,根据图像提供的信息,解答下列问题:(1)求By关于x的函数解析式;(2)如果A、B两种机器人各连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤);(2)设A y 关于x 的函数解析式为2A y k x =(20k ≠),由题意,得21803k =,即260k = ∴60A y x =;当5x =时,560300A y =⨯=(千克),当6x =时,90690450B y =⨯-=(千克),450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克4、有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 70 米,甲机器人前2分钟的速度为 95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 60 米/分;(4)求A 、C 两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发xs相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8,4分钟﹣7分钟,两机器人相距28米时,(95﹣60)x=28,解得,x=0.8,0.8+4=4.8,答:两机器人出发1.2s或2.8s或4.8s相距28米.5、快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【解答】解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x ≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.6、某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)【解答】解:(1)设李红第x天生产的粽子数量为260只,根据题意得20x+60=260,解得x=10,答:李红第10天生产的粽子数量为260只;(2)根据图象得当0≤x≤9时,p=2;当9<x≤19时,设解析式为y=kx+b,把(9,2),(19,3)代入得,解得,所以p=x+,①当0≤x ≤5时,w=(4﹣2)•32x=64x ,x=5时,此时w 的最大值为320(元); ②当5<x ≤9时,w=(4﹣2)•(20x+60)=40x+120,x=9时,此时w 的最大值为480(元);③当9<x ≤19时,w=[4﹣(x+)]•(20x+60)=﹣2x2+52x+174=﹣2(x ﹣13)2+786,x=13时,此时w 的最大值为786(元);综上所述,第13天的利润最大,最大利润是786元.7、某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (3m )之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水340m (二月份用水量不超过325m ),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m ?【答案】:(1)当015x <<时,设y mx =,则1527m =,所以 1.8m =, 1.8y x =当15x ≥时,设y kx b =+,则15272039k b k b +=⎧⎨+=⎩,解得 2.49k b =⎧⎨=-⎩,所以y 与x 的关系式是 1.8,0152.49,15x x y x x <<⎧=⎨-≥⎩.8、某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?【答案】(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有10240 25150k bk b+=⎧⎨+=⎩,解得6300kb=-⎧⎨=⎩,∴y=﹣6x+300,由题意(﹣6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.9、某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD 表示y与x之间的函数关系.(1)活动中心与小宇家相距22 千米,小宇在活动中心活动时间为 2 小时,他从活动中心返家时,步行用了0.4 小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.【解答】解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴所用小宇12:00前能到家.10、甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【解答】解:(1)设y=kx+b ,则有,解得, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.11、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;20000kg 1030.42030.8a b a b t m kg y kg m t ()()200000501001500050100t m t t ≤≤⎧⎪=⎨+<≤⎪⎩y t 050t ≤≤50100t <≤y t②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)试题解析:(1)由题意得 解得 答:a 的值为0.04,b 的值为30.当50<t ≤100时,设y 与t 的函数关系式为y=k 2t+n 2把点(50,25)和(100,20)的坐标分别代入y=k 2t+n 2,得 解得 t W tW 1030.42030.8a b a b +=⎧⎨+=⎩0.0430a b =⎧⎨=⎩2222255020100k n k n =+⎧⎨=+⎩2211030k n ⎧=-⎪⎨⎪=⎩∴y 与t 的函数关系式为y=t+30 ②由题意得,当0≤t ≤50时,W=20000×(t+15)-(400t+300000)=3600t ∵3600>0,∴当t=50时,W 最大值=180000(元)当50<t ≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t 2+1100t+150000=-10(t-55)2+180250∵-10<0,∴当t=55时,W 最大值=180250综上所述,当t 为55天时,W 最大,最大值为180250元.12、如图1,在△ABC 中,∠A=30°,点P 从点A 出发以2cm/s 的速度沿折线A —C —B 运动,点Q 从点A 出发以a(cm/s)的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s),△APQ 的面积为y(cm 2),y 关于x 的函数图象由C 1 , C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.【答案】(1)解:在图1中,过P 作PD ⊥AB 于D ,∵∠A=30°,PA=2x , ∴PD=PA ·sin30°=2x · =x ,∴y= = .由图象得,当x=1时,y= ,则 = . 110-15110-∴a=1.(2)解:当点P在BC上时(如图2),PB=5×2-2x=10-2x. ∴PD=PB·sinB=(10-2x)·sinB,∴y= AQ·PD= x·(10-2x)·sinB.由图象得,当x=4时,y= ,∴×4×(10-8)·sinB= ,∴sinB= .∴y= x·(10-2x)·= .(3)解:由C1, C2的函数表达式,得= ,解得x1=0(舍去),x2=2,由图易得,当x=2时,函数y= 的最大值为y= . 将y=2代入函数y= ,得2= .解得x1=2,x2=3,13、在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距480 千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x (小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【解答】解:(1)360+120=480(千米)故答案为:480;(2)设3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=kx+b,由图象可得,货车的速度为:120÷3=40千米/时,则点B的横坐标为:3+360÷40=12,∴点P的坐标为(12,360),,得,即3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=40x﹣120;(3)v客=360÷6=60千米/时,v邮=360×2÷8=90千米/时,设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,120+(90﹣40)t=360﹣(60+90)tt=1.2(小时);设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,40t+60t=480解得t=4.8,综上所述,经过1.2或4.8小时邮政车与客车和货车的距离相等.14、雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天y(百件)与时间t(t为整数,单位:的跟踪调查,其中实体商店的日销售量1y(百件)与时间t(t为天)的部分对应值如下表所示;网上商店的日销售量2整数,单位:天)的关系如下图所示.y与t (1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映1y与t的函数关系式及自变量t的取值范围;的变化规律,并求出1y与t的函数关系式,并写出自变量t的取值范围;(2)求2(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.【答案】(3)依题意得y=y 1+y 2,当0≤t ≤10时,得到y 最大=80;当10<t ≤30时,得到y 最大=91.2,于是得到结论.试题解析:(1)根据观察可设y 1=at 2+bt+c ,将(0,0),(5,25),(10,40)代入得:0,25525,1001040c a b a b =⎧⎪+=⎨⎪+=⎩,解得1,56,0a b c ⎧=-⎪⎪=⎨⎪=⎪⎩, ∴y 1与t 的函数关系式为:y 1=﹣15-t 2+6t (0≤t ≤30,且为整数); (2)当0≤t ≤10时,设y 2=kt ,∵(10,40)在其图象上,∴10k=40,∴k=4, ∴y 2与t 的函数关系式为:y 2=4t , 当10≤t ≤30时,设y 2=mt+n , 将(10,40),(30,60)代入得1040,3060m n m n +=⎧⎨+=⎩,解得1,30m n =⎧⎨=⎩,∴y 2与t 的函数关系式为:y 2=t+30,综上所述,()()24010301030,t t t y t t t ⎧≤≤⎪=⎨+<≤⎪⎩,且为整数且为整数; (3)依题意得y=y 1+y 2,当0≤t ≤10时,y=15-t 2+6t+4t=15-t 2+10t=15-(t ﹣25)2+125,∴t=10时,y 最大=80;当10<t ≤30时,y=15-t 2+6t+t+30=15-t 2+7t+30=15-(t ﹣352)2+3654, ∵t 为整数,∴t=17或18时,y 最大=91.2,∵91.2>80,∴当t=17或18时,y 最大=91.2(百件).15、荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤x≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,=2450;∴当t=30时,w最大②当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,=2301,∴当t=41时,w最大∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,由函数w=﹣(t﹣30)2+2450图象可知,当20≤t≤40时,日销售利润不低于2400元,而当41≤t≤80时,w最大=2301<2400,∴t的取值范围是20≤t≤40,∴共有21天符合条件.(4)设日销售利润为w,根据题意,得:w=(t+16﹣6﹣m)(﹣2t+200)=﹣t2+(30+2m)t+2000﹣200m,其函数图象的对称轴为t=2m+30,∵w随t的增大而增大,且1≤t≤40,∴由二次函数的图象及其性质可知2m+30≥40,解得:m≥5,又m<7,∴5≤m<7.。
夯实基础-2023年九年级中考数学考点专题集训系列 一次函数图像信息问题
夯实基础-2023年中考数学考点专题集训系列(一次函数图像信息问题)1.在一条笔直的公路上有A,B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是________米,乙的步行速度是________米/分钟;(2)图中a=________,b=________,c=________;(3)求线段MN的函数表达式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)2.A、B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD-DE-EF所示,其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是多少.3.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为多少米.4.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?5.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚多少分钟到达B地.6.某农科所为定点帮扶村免费提供一种优质瓜苗及大鹏栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后,继续生长大约多少天,开始开花结果?7.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?8.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地,两辆货车离开各自出发....地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.x kg之间10.某商店代理销售一种水果,六月份的销售利润y(元)与销售量()函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式.11.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?12.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x 从原点0出发沿x轴正方向平移.在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示,那么▱ABCD的面积为多少。
初中数学中考复习 2020中考数学专题:运动与变化之函数思想(含答案)
2020中考数学专题:运动与变化之函数思想(含答案)【例1】 同学们都知道,一次函数()0≠+=k b kx y 的图象是一条直线,它可以表示许多实际意义,比如在图1中,x 表示时间(小时),y 表示路程(千米).那么从图象上可以看出,某人出发时(x =0),离某地(原点)2千米,出发1小时,由x =1,得y =5,即某人离某地5千米,他走了3千米. 在图2中,OA ,BA 分别表示甲、乙两人的运动图象,请根据图象回答下列问题:(1)如果用t 表示时间,y 表示路程,那么甲、乙两人各自的路程与时间的函数关系式:甲_________,乙________________;(2)甲的运动速度是______千米/时;(3)甲、乙同时出发,相遇时,甲比乙多走______千米.图1 图2【例2】对于方程222x x m -+=,如果方程实根的个数恰为3个,则m 值等于( )A .1BC .2D .2.5【例3】已知b ,c 为整数,方程052=++c bx x 的两根都大于-1且小于0,求b 和c 的值.【例4】在直角坐标系中.有以A (-1,-1),B (1,一1), C (1,1),D (-1,1)为顶点的正方形,设它在折线y x a a =-+上侧部分的面积为S .试求S 关于a 的函数关系式,并画出它们的图象.【例5】如图,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流沿形状相同的各条抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1米处时距水面最大高度为2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5米,要使水流不落到池外,此时水流的最大高度应达多少米?(精确到0.1米)【例6】某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.注:“300~400”表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%) +30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?能力训练1.如图,是兰州市市内电话费y(元)与通话时间t(分钟)之间的函数关系的图象,则通话7分钟需付电话费_________(元).第1题图第2题图第4题图2.如图,某航空公司托运行李的费用与托运行李重量的关系的函数图象,由图中可知行李的重量只要不超过_________公斤,就可免费托运.3.已知a,b为抛物线y=(x-c)(x-c-d) -2与x轴交点的横坐标,a<b,则|a-c|+ |c-b|的值为_________.4.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26元和18元,则四月份比三月份节约用水__________吨.5.某校组织学生到距离学校6千米的光明科技馆去参观.学生王红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下:(1)写出出租车行驶的里程数x≥3(千米)与费用y(元)之间的函数关系式:___________ .(2)王红同学身上仅有14元钱,乘出租车到科技馆的车费够不够?请说明理由._______________ 6.已知边长为1的正方形ABCD,E为边CD的中点,动点P在正方形ABCD边上沿A→B→C→E运动.设点P经过的路程为x,△APE的面积为y,则y关于x的函数图象大致为( )A B C D7.向高为h的水瓶中注水,注满为止,如果注水量v与水深h的函数关系如图所示,那么水瓶的形态是( )A B C D8.方程()0141442=-++-kxkx的两根满足0<1x<1<2x<2,则k的取值范围是( )A.0<k<2 B.0<k<74C.14<k<74D.14<k<29.某旅社有100张床位,每床每晚收费10元时,客床可全部租出,若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( )A.4元或6元B.4元C.6元D.8元10.如图所示,矩形ABCD中,AB=a,BC=b,3b≤a≤3b.在AB,BC,CD和DA上分别取E,F,G,H,使得AE=AH=CF=CG,则四边形EFGH面积的最大值为( )A.2()2a b+B.2()4a b+C.2()8a b+D.2()16a b+11.某公司生产一种产品,每件成本为2元,售价为3元.年销售量为100万件.为获取更好的效益,公司准备拿出一定资金做广告.通过市场调查发现:每年投入的广告费用为x(10万元)时,产品的年销量将是原售量的y倍;同时y又是x的二次函数,相互关系如下表:(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果一年投入的广告费为10~30万元,问广告费在什么范围内时,公司获得的年利润随广告费的增大而增大?GFHEDCBA12. 如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴.桥拱的D DG '部分为一段抛物线,顶点G 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱.OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和D C ''为两段对称的上桥斜坡,其坡度比为1:4.(1) 求桥拱DGD '所在抛物线的解析式及CC '的长;(2) BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3) 按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米;它能否从OA (或OA ')区域安全通过?请说明理由.13.有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ = PR =5cm ,QR =8cm .点B ,C ,Q ,R 在同一条直线l 上. 当C ,Q 两点重合时,等腰△PQR 以1cm /秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为scm 2. 解答下列问题: (1) 当t =3秒时,求s 的值; (2) 当t =5秒时,求s 的值;(3) 当5秒≤t ≤8秒时,求s 与t 的函数关系式,并求出s 的最大值.14. 是否存在这样的实数k ,使得二次方程()()023122=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由.15.实数a ,b ,c 满足()()0<+++c b a c a .证明:()()c b a a c b ++>-42.16.如图,已知点A (-1,0),B (3,0),C (0,t ),且0>t ,tan ∠BAC =3,抛物线经过A ,B ,C 三点.点P (2,m )是抛物线与直线l : ()1+=x k y 的一个交点. (1)求抛物线的解析式;(2)对于动点Q (1,n ),求PQ +QB 的最小值;(3)若动点M 在直线l 上方的抛物线上运动,求△AMP 的边AP 上的高h 的最大值.17. 点A (4,0),B (0,3)与点C 构成边长分别是3,4,5的直角三角形,如果点C 在反比例函数 ky x=的图象上,求k 可能取的一切值.18.已知函数2121++--+=x x x y . (1)在直角坐标系中作出函数图象;(2)已知关于x 的方程21213++--+=+x x x kx (0≠k )有三个解,求k 的取值范围.19.当-1≤x ≤2时,函数224222+++-=a a ax x y 有最小值2,求a 所有可能取的值.参考答案例l (l )y=4t(t ≥0) y=3t+5(t ≥0) (2) 4 (3) 5例2 C 提示:如图所示,当m=2时,222y x x =-+与y=m 有三个不同的交点。
物理人教版九年级全册物理中考函数图像解题专题复习
2017年物理中考函数图像解题专题复习利用函数图像来进行定量计算 和定性分析,是物理学中运用数学知识研究物理规律非常有效的方法。
如电学中研究电流与电压、电阻之间的关系,力学中研究重力与物体质量之间的关系等。
这些问题中都有各种物理量之间的函数关系,函数图像是分析解决此类问题的利器。
函数图像题在近年来中考试卷中频频出现。
一、利用图像坐标进行计算、比较物理量的大小1、(2012年中考)如图U-I 图像中所示电阻的阻值为 欧解题..方法..:(1)看清纵横坐标表示的物理量、单位 (2)找准图像对应的公式2、(2010年中考)小洋同学利用天平和量杯测量某种液体的密度,得到的数据如下表,根 据数据绘出的图像如图所示,则量杯的质量与液体的密度是A .30g 1.0×103 kg /m 3B .50g 1.0×103 kg /m 3C .30g 0.8×103 kg /m 3D .50g 0.8×103 kg /m 3 3、(2011年中考)在“测定液体密度”的实验中,液体的体积(V )及液体和容器的总质 量(m )可分别由量筒和天平测得.某同学通过改变液体的体积得到几组数据,画出有 关图线,在下图中能正确反映液体和容器的质量跟液体的体积关系的是( )4、如图是用伏安法测定两个不同阻值的定值电阻R 1、R 2时所得到的电流与电压的关系图像,则它们阻值的大小关系是( )A .R 1<R 2B .R 1>R 2C .R 1=RD .无法去判断5、(2013年中考)甲乙两种机械所做的功W 随时间t 变化的图像如图所示,则从图像可以判断( )A .甲比乙做功多B .甲比乙做功少C .甲比乙做功快D .甲比乙做功慢A .B .C .D .甲 乙 乙 6、(2011年中考)用两个相同的加热器,分别对质量相等的甲、 乙两种液体加热,忽略热量的散失,其温度随时间变化的规律如图所示,由图可以看出( )A .甲的比热容比乙大B .甲的比热容比乙小C .甲和乙的比热容相同D .刚开始加热时甲和乙的比热容为零二、利用图像坐标描述物理变化过程7、如图,能正确反映“匀速直线运动”的是( )8、(2005年中考)物体运动的规律可用图像表示,图甲中的BC 段表示物体处于 状态,图乙中表示物体处于匀速直线动动状态是 段.9、水平地面上的一物体受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系、物体的速度v 与时间t 的关系如图所示,以下说法正确的是( )A 、0~2s ,物体没有推动,是因为推力小于摩擦力B 、2~4s ,物体做匀速直线运动C 、2~4s ,物体受到的摩擦力是3ND 、4~6s ,物体受到的摩擦力与水平推力是一对平衡力三、利用图像坐标进行综合应用10、用电器R 1和R 2上都标有“6V ”字样,已知它们的电流随电压变化的图像如图所示。
题型03 坐标图像信息题-2020年中考物理倒计时冲刺32种题型全攻略
第 9 题图 10. (2019 枣庄)在如图甲所示的电路中,电源电压保持不变,R 为滑动变阻器,其规格为“20 Ω 1 A”,闭合开关 S,当滑片 P 从一端滑到另一端的过程中,测到 R 的电功率与通过它的电 流关系图像如图乙所示,则电源电压为________V,定值电阻 R0 的 2 s 内木箱所受摩擦力为 2 N B. 在第二个 2 s 内木箱所受摩擦力为 3 N C. 在第一个 2 s 内推力 F 对木箱所做的功为 2 J D. 在第三个 2 s 内推力 F 对木箱做功的功率为 8 W 5. (2019 河池)如图甲所示,弹簧测力计下挂有一个圆柱体,把它从盛水的烧杯中缓慢提升, 直到全部露出水面,该过程中弹簧测力计读数 F 随圆柱体上升高度 h 的关系如图乙所示,下列 说法正确的是( )
第 10 题图 四、综合图像判断 1. (2019 江西)处理物理实验数据时,经常选用坐标纸建立坐标系.如图所示,所建立的坐 标系符合物理要求的是( )
2. 如图所示,图中阴影部分的面积描述相应物理量不.正.确.的是( )
3. (2019 呼和浩特)下列说法正确的是( )
第 3 题图 A. 对于液体产生的压强,密度一定时,其压强与深度的关系可以用 A 图表示 B. 水平面上静止的质量均匀,形状为正方体的物体,其对水平面的压强与其接触面积的关系 可以用 B 图表示 C. 对于不同物质,质量相同时,其密度与体积的关系可以用 C 图表示 D. 流体产生的压强,其压强与流速变化的关系可以用 D 图表示 4. (2018 嘉兴)图像法是利用图像这种特殊且形象的工具,表达各科学量之间存在的内在关 系或规律的方法.下列从图像中获得的结论错.误.的是( )
图像信息问题专题
x(h)图像信息问题专题1.为了增强居民的节水意识,从某城区水价执行“阶梯式”计费,每月应交水费y (元)与用水量x (吨)之间的函数关系如图所示.若某用户5月份交水费18.05元,则该用户该月用水________吨2.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。
销售金额与买瓜的千克数之间的关系如图3.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x (h)之间关 系 如图:当x=_____h 时, 、甲、乙两个工程队所挖河渠的长度长度相等。
4.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.当它们行驶7了小时时,两车相遇,乙车速度为_________千米/小时.705.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x (时),两车之间的.....距离为...y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,则甲乙两地之间的距离为 千米;已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,则t = 。
6.小明从家骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家需要的时间是 分钟。
7.某工程队修筑的公路长度y (米)与时间x (天)之间的关系图象,若第八天刚好完成任务,则该公路的长度是 米。
8.深圳航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为.)练习:1.已知A 、B 两地相距4千米.上午8:00,甲从A 地出发步行到B 地,8:20乙从B 地出发骑自行车到A 地,甲、乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A 地的时间为 .2.在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积 .3.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.则这辆汽车从甲地出发4h 时与甲地的距离为 .4.在一条直线上依次有A 、B 、C 三个港口,甲船从A 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲船行驶x (h )后,与.B .港的距离....为y (km ),y 与x 的函数关系如图所示.则a = .分图1 D图25.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止。
中考数学二轮复习题-图像信息问题
了酪跳牧例 3、如图①,A 、B 、C 三个容积相同的容器之间有 O8 x (小时)家阿么来你比衣 图像信息问题【例题精讲】例 1.甲、乙两人骑自行车前往 A 地,他们距 A 地的路程 s (km )与 行驶时间 t (h )之间的关系如图所示,请根据图象所提供的信息 解答下列问题:(1)甲、乙两人的速度各是多少?(2)求出甲距地的路程与行驶时间之间的函数关系式. (3)在什么时间段内乙比甲离地更近?例 2、某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每 小时的运输量最多,乙车每小时的运输量最少,乙车每小时运 6 吨,下图是 甲、乙、丙三辆运输车开始工作后,仓库的库存量 y (吨)与工作时间 x (小 时)之间的函数图像,其中 OA 段只有甲、丙两车参与运输,AB 段只有乙、 丙两车参与运输,BC 段只有甲、乙两车参与运输。
(1)甲、乙、丙三辆车中,谁是进货车? (2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在 8 小时后同时开始工作,但丙车在 运送 10 吨货物后出现故障而退出,问:8 小时后,甲、乙两车又工作了几小时,使仓库的库存量为 6 吨? y (吨)B10C4A2 3 阀门连接.从某一时刻开始,打开 A 容器阀门,以 4 升/分的速度向 B 容器 内注水 5 分钟,然后关闭,接着打开 B 阀门,以 10 升/分的速度向 C 容器内注水5分钟,然后关闭.设A、B、C三个容器的水量分别为y A、y B、y C(单位:升),时间为t(单位:分).开始时,B容器内有水50升.y A、y C与t的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y B的值.(2)求y B与t的函数关系式,并在图②中画出其图象.(3)求y A∶y B∶y C=2∶3∶4时t的值.作业1.已知函数的图象如图,则的图象可能是()y 1y1y1y1y1-1O x-1O x-1O x-1O x O1x 第1题.如图所示是二次函数图象的一部分,图象过点(3,0),二次函数图象对D2A B C图称轴为,给出四个结论:①;②;③;④,其中正确结论是()A.②④B.①③C.②③D.①④3.如图是抛物线的一部分,其对称轴为直线=1,若其与轴一交点为B(3,0),则由图象可知,不等式>0的解集是4.如图①,一条笔直的公路上有A、B、C三地,B、C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离、(千米)与行驶时间x(时)的关系如图②所示.根据图象进行以下探究:⑴请在图①中标出A地的位置,并作简要的文字说明;⑵求图②中M点的坐标,并解释该点的实际意义.⑶在图②中补全甲车的函数图象,求甲车到A地的距离与行驶时间x的函数关系式.⑷A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.5.通过市场调查,一段时间内某地区某一种农副产品的需求数量(千克)与市场价格(元/千克)()存在下列关系:(元/千克)5101520(千克)4500400035003000又假设该地区这种农副产品在这段时间内的生产数量(千克)与市场价格(元/千克)成正比例关系:().现不计其它因素影响,如果需求数量等于生产数量,那么此时市场处于平衡状态.(1)请通过描点画图探究与之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量与市场价格的函数关系发生改变,而需求数量与市场价格的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?y(千克)50004500400035003000O510152025x(元/千克)。
中考数学专题复习6:图象信息问题
2000 年200]21X)2年£003年细4年_________________年生产总值比上年增长的百步率&佃1?.26国.捋16.dR2L41年火向生产总旭比上年帽长的百除S. 13H.7413.2716.392LO3年又□总敷比上年增芸的百分率0.51Q. 460. 32』250.31中考数学专题复习6:图象信息问题I、综合问题精讲:图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查. 是近几年中考的热点. 解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.U、典型例题剖析【例1】(2005,衢州)改革开放以来,衢州的经济得到长足发展近来,衢州市委市政府又提出“争创全国百强城市 "的奋斗目析己下面是衢州市1999--2004年的生产总值与人均生产总值的统计资料:请你根据上述统计资料回答下列问题:(1)1999 — 2004年间,衢州市人均生产总值增长速度最快的年份是 .这一年的增长率为.(2)从1999年至2004年衢州市的总人口增加了约万人(精确到O. 01) . (3)除以上两个统计图中直接给出的数据以外,你还能从中获取哪些信息?请写出两条.解:(1)2004 , 21 . 03% (2)4 . 51(3)参考信息例举:2000 声2001 年2002 年2003 年2004 年年生产总值比上年的市长故〔亿元)12.5419. 2524.0333,4250.03年人均生产总值比上年的地长元】48876213462016年人口总数比上年的增长敷£万人)\,22L J2队790,0, 771400012000J00W80006000400020001999年2000年2001 年2002^ 2003^ 2004年衢州市I的知叫04年的生产总值〔亿元)1999年2000年200】年2002年仙年年簿州市1999^2004年的人均生产总值【元)阳)25020015010050233.23年出1999 年2000 年2001 年2002 年2003 年2004 年站口240. 7424J.96243.0S243.86244. 49245, 25(万人)④跨年度比较的增长度和增长率的数据;⑤从增长趋势分析的数据.点拨:此题属于图表信息题,读懂两图的区别与联系,是解决此题的关键.【例2】(2005,河北课改区)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图2-1-2所示。
中考带图象的信息题解析[整理].docx
中考带图象的信息题解析图象作为实验数据或物理规律的一种表达方式,因其包含丰富的物理信息,而且有直观、易懂的优点,在每年的中考中,各地都注重以图象为手段,考查学生的物理知识。
如:一. 图象在力学上的应用例1.一个物体始终只受到两个力F]和F2的作用,一开始物体处于静止状态,旦Fi=Fo。
在h时间内保持F]不变,只改变F2的大小,此过程中物体所受合力方向始终与F]方向相同。
图1中可以表小F2大小随时间变化的图象是()分析:由合力特点知,不论Fl、F2的方向如何,合力的方向总是与力大的方向一致。
由一开始物体处于静止状态可知,开始时F2=F I=F°,且F2与F I方向相反。
由题意知,在白时间内,合力方向始终与F]方向相同,说明F2<F1;即F2的值都在Fo以下。
符合题意的只有C。
例2. (2003年新疆)某学生做以下实验:先在一只玻璃水槽中注入一定量的水,后将盛有小石子的塑料小船放入水里(如图2),测得船底到液面的距离为h;再每隔一定时间向水里加食盐并搅动,直至水中食盐剩余。
在他所绘制的吃水线至船底距离h随加盐量而变化的图象中(如图3)正确的是()图3分析:塑料小船一直漂浮在水面上,它受到水的浮力不变,由阿基米德原理得,在浮力不变时,小船排开水的体积随液体的密度增大而减小,也就是h随着液体密度增大而减小。
考虑到液体的溶解度,盐的溶解达到饱和时,盐水的密度不再发生变化,此时小船排开水的体积也不变化,即h也不再变化。
故选D。
例3.如图4所不,是某同学研究液体压强时,绘制的甲、乙两种液体的压强与深度关系图象。
由图象可知,甲、乙两种液体的密度关系为Q甲 Q乙(填">”、或“=”),其中种液体是水。
分析:液体内部压强与密度和深度有关,公式为「=使力。
物理学中,对探究一个量与多个量的关系时,往往都要用到控制变量法,在这里采用添加辅助线的办法来控制变量。
如图中竖直的虚线(左边的一条),控制了深度相同,它与甲、乙相交于A、C两点,显然P A > Pc ,而此时,液体的压强与密度成正比,所以P A > Pc,即P^> P乙。
九年级数学 专题复习-图像信息问题 试题
专题复习----图像信息问题◆知识讲解1.图像信息题的定义及特征图像信息类试题是题设条件或者结论中包含图像的试题.主要是根据文字、图像、图表等给出数据信息,进而根据这些给出的信息通过整理、分析、加工、处理等手段解决的一类实际问题.2.图像信息问题的分类〔1〕图形探究数量关系;〔2〕数量关系画出图形探究问题的解法;〔3〕数量关系借助图形属形探究解题方案.此类命题背景广泛、蕴含知识丰富,突出对学生搜集、整理和加工信息才能的考察.一般来说有文字信息型题、图像信息型题、图表信息型题.◆例题解析例:1.如图是某工程队在“村村通〞工程中,修筑的公路长度y〔m〕与时间是x〔天〕之间的关系图像.根据图像提供的信息,可知该公司的长度是_______m.(第1题) (第2题)2.〔2021,〕放假了,小明和小丽去蔬菜加工厂社会理论,•两人同时工作了一段时间是后,休息时小明对小丽说:“我已加工了28kg,你呢?•〞小丽考虑了一会儿说:“我来考考你,图a,图b•分别表示你和我的工作量与工作时间是的关系,你能算出我加工了多少千克吗?〞小明考虑后答复:“你难不倒我,你如今加工了______千克〞.3、〔2021〕如图,在平面直角坐标系xOy中,ABC三个机战的坐标分别为()6,0A-,()6,0B,()0,43C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.〔1〕求D点的坐标;〔2〕作C点关于直线DE的对称点F,分别连结DF、EF,假设过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;〔3〕设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,假设P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间是最短。
〔要求:简述确定G点位置的方法,但不要求证明〕◆强化训练4.一蔬菜基地种植的某种绿色蔬菜,根据今年的场行情,预计从5月1•日起的50天内,它的场售价y1与上时间是x的关系可用图a的一条线段表示;它的种植本钱y2与上时间是x的关系可用图b抛物线的一局部来表示,•假定场售价减去种植本钱为纯利润,问哪天上的这种绿色蔬菜既不赔本也不HY?【分析】由图像提供的信息,求出直线,抛物线的解析式,•利用场售价与本钱价相等建立关于时间是x的方程.5.〔2021,〕在平面直角坐标系中,一动点P〔x,y〕,从M〔1,0〕出发,沿由A〔-1,1〕,B〔-1,-1〕,C〔1,-1〕,D〔1,1〕四点组成的正方形边线〔图甲〕•按一定方向运动.图乙是P点运动的路程s〔个单位〕与时间是时间是t〔s〕之间的函数图像,图丙是P点的纵坐标y与P点运动的路程s之间的函数图像的一局部.〔1〕s与t之间的函数关系式是:________.〔2〕与图丙相对应的P点的运动途径是:_______;P点出发____秒首次到达点B;〔3〕写出当3<s≤8时,y与s之间的函数关系式,并在图丙中补充全函数图像.6.〔2021,〕一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,甲车同时出发,设慢车行驶的时间是为x〔h〕,两车之间的间隔为y〔km〕,图专题3-25中的折线表示y与x之间的函数关系,根据图像进展以下探究:信息读取〔1〕甲,乙两地之间的间隔为______km;〔2〕请解释图中点B的实际意义;图像理解〔3〕求慢车和快车的速度;〔4〕求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决〔5〕假设第二列快车也从甲地出发驶往乙地,速度与第一列快车一样.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇.•求第二列快车比第一列快车晚出发多少小时?励志赠言经典语录精选句;挥动**,放飞梦想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考情分析
分析近5年的河南中考可以看出,一次函数的实 际应用已经作为重点考查内容,其中2012年及 2015年考查的是图象型,2012年设置在第19 题,9分;2015年设置在21题,10分.2016年 考查的是一次函数实际应用的文字型,第21题, 10分.
预计2017年的河南中考,这部分知识仍 会作为重点考查内容.
30 40 50 60
x (分)
(1)“龟兔再次赛跑”的路程为1000米; ✔ ✘ (2)兔子和乌龟同时从起点出发; ④终点 (3)乌龟在途中休息了10分钟; ✔ (4)兔子在途中750米处追上乌龟. 水平线 函数值随自变量的变化而保持不变; 其中正确的说法是 .
③交点
“龟兔首次赛跑 ”之后,输了比赛的兔子不服气,总结反思后, 和乌龟约定再赛一场。如图的函数图象刻画了“龟兔再次赛跑” 的故事.有下列说法:
兔子的解析式为: y 100x 4000
“龟兔首次赛跑 ”之后,输了比赛的兔子不服气,总结反思后, 和乌龟约定再赛一场。如图的函数图象刻画了“龟兔再次赛跑” 的故事.有下列说法:
y (米)
兔子
y2
1000
600 A
B y1 乌龟
∵AB的解析式为:
y 20x 200
兔子的解析式为: y 100x 4000
(20 5) 30 0.(元) 5
一农民带上若干千克自产的土豆进 城出售,为了方便,他带了一些零钱 备用,按市场价售出一些后,又降价 出售,售出的土豆千克数与他手中 持有的钱数(含备用零钱)的关系, 如图所示,结合图象回答下列问题.
(4)降价后他按每千克0.4元 将剩余土豆售完,这时他手中 的钱(含备用零钱)是26元,试 问他一共带了多少千克土豆?
y(千米)
90
E
乙
O
1 1.5
F 3
x(时)
2012河南第19题(9分)
y(千米)
90
M N
E
甲、乙两人同时从相距90千米的A地前 往B地,甲乘汽车,乙骑摩托车,甲到 60 达B地停留半小时后返回A地,如图是他 们离A地的距离y(千米)与时间x(时) O 之间的函数关系.
(1)求甲从B地返回A地的过程中, y与x之间的函数关系式,并写出自 变量x的取值范围; (2)若乙出发后2小时和甲相遇, 求乙从A地到B地用了多长时间?
普
⑵在同一坐标系中,若三 种消费方式对应的函数图 象如图所示,请求出点A 、B、C的坐标;
银
⑶根据函数图象,直接写出 选择哪种消费方式更合算 某游泳馆普通票价20元/张,暑假 为了促销,新推出两种优惠卡: ①当0<x<15时,选普 ②当x=15时, ①金卡售价600元/张, y(元) 普通 银卡 每次凭卡不再收费; D C ②银卡售价150元/张, 金卡 600 每次凭卡另收10元. ③当15<x<45时 暑假普通票正常出售,两种 选银卡 B 优惠卡仅限暑期使用,不限 ④当x=45时, A 购金、银费用相同
⑴分别写出选择银卡、普 通票消费时,y与x之间的 函数关系式;
2015河南第21题(10分)
某游泳馆普通票价20元/张,暑假 为了促销,新推出两种优惠卡: ①金卡售价600元/张, y 20x y 10x 150 y(元) 普通 银卡 每次凭卡不再收费; D C ②银卡售价150元/张, 金卡 600 每次凭卡另收10元. C (45, 600) 暑假普通票正常出售,两种 B B(15, 300) 优惠卡仅限暑期使用,不限 A A(0, 150) 次数.设游泳x次时,所需总 费用为y元. x(次) O
这节课你有那些收获?
一农民带上若干千克自产的土豆进城出售,为 了方便,他带了一些零钱备用,按市场价售 出一些后,又降价出售,售出的土豆千克数 与他手中持有的钱数(含备用零钱)的关系, 如图所示,结合图象回答下列问题. (1)农民自带的零钱是多少? (2)试求降价前y与x之间的关系式
一农民带上若干千克自产的土豆进城出售,为 了方便,他带了一些零钱备用,按市场价售 出一些后,又降价出售,售出的土豆千克数 与他手中持有的钱数(含备用零钱)的关系, 如图所示,结合图象回答下列问题. (1)农民自带的零钱是多少? 5元 (2)试求降价前 y与x之间的关系式
“龟兔首次赛跑 ”之后,输了比赛的兔子不服气,总结反思后, 和乌龟约定再赛一场。如图的函数图象刻画了“龟兔再次赛跑” 的故事.有下列说法:
y (米) y2
兔子
1000
600 O
y1 乌龟
首先要弄清横轴与纵轴所表示的意义 其次要抓住“四点一线‘’,
①始点 ②拐点
即是前一段函数变化的终点,又是后 一段函数的起点,反映函数图象在这 一时刻开始发生变化 两个函数的自变量与函数值分别对 应相等,这个点是函数值大小关系 的分界点
x/件
2016(龙岩) 甲商场:y=0.8x
y/元
y甲
B 某厂家在甲、乙两家商场销售同 480 y乙 y=2x(0≤x≤200) 一种商品所获利润分别为 y甲、y乙 400 A 乙商场: 1 (单位:元), 、( y 与销售数 y xy 甲 360 x乙 200 ) 5 量x(单位:件)的函数关系如图 所示,试根据图象解决下列问题: x/件 O 200 600 ⑵现厂家分配该商品800 (元) 总利润W=y甲+y乙 1080 件给甲商场,400件给乙 y甲 0.8 800 640 商场,当甲、乙商场售完 1 这批商品后,厂家可获得 y乙 400 360 答 5 总利润是多少元? 440
3
x /天
①当0≤x≤20时,y1=-20x+1200
②当20<x≤60时, y2=25x-500,
y=y1+y2=-20x+1200+25x-500=5x+700
即
-20x+1200≤900
5x+700≤900 解得:15≤x≤40.
由于持续高温和连日无雨,某水库的蓄水量随 y / 万m 时间的增加而减少.已知原有蓄水量y1(万m3) 与干旱持续时间x(天)的关系如图中线段l1所 1200 示.针对这种干旱情况,从第20天开始向水库 1000 800 注水,注水量y2(万m3)与时间x(天)的关 600 系如图中线段l2所示(不考虑其它因素). 400
一次函数(复习课)
(根据图象信息答题)
2012河南第19题(9分)
甲、乙两人同时从相距90千米的A地前 往B地,甲乘汽车,乙骑摩托车,甲到 达B地停留半小时后返回A地,如图是他 们离A地的距离y(千米)与时间x(时) 之间的函数关系.
(1)求甲从B地返回A地的过程中, y与x之间的函数关系式,并写出自 变量x的取值范围; (2)若乙出发后2小时和甲相遇, 求乙从A地到B地用了多长时间?
y 0.5 x 5
一农民带上若干千克自产的土豆进城出售,为 了方便,他带了一些零钱备用,按市场价售 出一些后,又降价出售,售出的土豆千克数 与他手中持有的钱数(含备用零钱)的关系, 如图所示,结合图象回答下列问题. (1)农民自带的零钱是多少? (2)试求降价前 y与x之间的关系式
(3)降价前每千克的 土豆价格是多少?
乙
2 F 3 1 1.5
x(时)
N (1.5, 90)
F (3, 0)
yNF kx b
yNF 60x 180
(1.5 x 3)
2015河南第21题(10分)
某游泳馆普通票价20元/张,暑假 为了促销,新推出两种优惠卡: ①金卡售价600元/张, y(元) 普通 银卡 每次凭卡不再收费; D C ②银卡售价150元/张, 金卡 600 每次凭卡另收10元. y银 10x 150 暑假普通票正常出售,两种 y普 20x B 优惠卡仅限暑期使用,不限 A 次数.设游泳x次时,所需总 费用为y元. x(次) O
一农民带上若干千克自产的土豆进 城出售,为了方便,他带了一些零钱 备用,按市场价售出一些后,又降价 出售,售出的土豆千克数与他手中 持有的钱数(含备用零钱)的关系, 如图所示,结合图象回答下列问题.
2015河南第21题(10分)
次数.设游泳x次时,所需总 费用为y元.
A(0, 150)
B(15, 300)
C (45, 600)
O
15
45
x
(次)
选择购买金卡更合算 ⑤当x>45时,
2016(龙岩)
y/元
y甲 y乙
B 某厂家在甲、乙两家商场销售同 480 一种商品所获利润分别为y甲、y乙 400 A (单位:元),y甲、y乙与销售数 量x(单位:件)的函数关系如图 所示,试根据图象解决下列问题: O 200 600 ⑴分别求出y甲、y乙关于x 的函数关系式 y=2x(0≤x≤200) 乙商场: 1 B(600,480) y x 360 ( x 200 ) 5 甲商场:y=0.8x
y (米)
兔子
y2
解: (4) 据图可知 :
A (40,600) B(60,1000
设AB的解析式为: y kx b
x (分)
1000
600 A
B y1 乌龟
O
30 40 50 60
把A、B两点坐标代入,解 得
y 20x 200
y2过(40,600) (50,1000)
(1)“龟兔再次赛跑”的路程为1000米; (2)兔子和乌龟同时从起点出发; (3)乌龟在途中休息了10分钟; (4)兔子在途中750米处追上乌龟. 其中正确的说法是 .
O
30 40 50 60
x (分)
(1)“龟兔再次赛跑”的路程为1000米; (2)兔子和乌龟同时从起点出发; (3)乌龟在途中休息了10分钟; (4)兔子在途中750米处追上乌龟. 其中正确的说法是 .