仙游县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
仙游县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
仙游县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或22.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的个数为()A.1 B.2 C.3 D.43.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为()A.(1,+∞)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣∞,﹣1)∪(1,+∞)4.已知=(2,﹣3,1),=(4,2,x),且⊥,则实数x的值是()A.﹣2 B.2 C.﹣D.5.己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是()A.B.或C. D.或6.复数Z=(i为虚数单位)在复平面内对应点的坐标是()A.(1,3) B.(﹣1,3)C.(3,﹣1)D.(2,4)7.等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()A.6 B.9 C.36 D.728.O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则△POF的面积为()A.1 B.C.D.29.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣110.设命题p:,则p为()A. B.C. D.11.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.12.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .3二、填空题13.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.14.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .15.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积12S c =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.16.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .17.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .18.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .三、解答题19.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.20..(1)求证:(2),若.21.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.22.已知函数f(x)=lnx的反函数为g(x).(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.23.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.24.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.仙游县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.2.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题3.【答案】A【解析】解:令F(x)=f(x)﹣2x﹣1,则F′(x)=f′(x)﹣2,又∵f(x)的导数f′(x)在R上恒有f′(x)<2,∴F′(x)=f′(x)﹣2<0恒成立,∴F(x)=f(x)﹣2x﹣1是R上的减函数,又∵F(1)=f(1)﹣2﹣1=0,∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,即不等式f(x)<2x+1的解集为(1,+∞);故选A.【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.4.【答案】A【解析】解:∵=(2,﹣3,1),=(4,2,x),且⊥,∴=0,∴8﹣6+x=0;∴x=﹣2;故选A.【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.5.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B6.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.7.【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2. 则a 2a 6=9×q 6=72.故选:D .8. 【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4, 可得y P =3,代入抛物线方程得:|xP |=2,∴S △POF =|0F|•|x P |=.故选:C .9. 【答案】D【解析】解:函数y=e x 的图象关于y 轴对称的图象的函数解析式为y=e ﹣x,而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y 轴对称,所以函数f (x )的解析式为y=e ﹣(x+1)=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.故选D .10.【答案】A【解析】【知识点】全称量词与存在性量词 【试题解析】因为特称命题的否定是全称命题,p 为:。
2018-2019学年高二上学期期末考试数学试题 (答案+解析)
2018-2019学年高二上学期期末考试一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则” B .命题“,”的否定“,”C .若为假命题,则,均为假命题D .“”是“直线:与直线:平行”的充要条件 3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A .B .C .D .4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A .B .C .D .5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A .B .C .D .6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是( )A .B .C .D .7.已知12,F F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于,A B 两点,在1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D . 9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A .B .C .D .10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+点,若,则实数的值为()A.B.C.2 D.312.已知双曲线22221x ya b-=的左、右顶点分别为,A B,P为双曲线左支上一点,ABP∆为等腰三角形且外接圆的半径为5a,则双曲线的离心率为()A.155B.154C.153D.152二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.参考答案一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 【答案】B【解析】试题分析:把原圆的方程写成标准方程为()()222310x y -++=,由于两圆共圆心,可设另一个圆方程为:()()22223x y r -++=,把1,1x y ==-代入所设方程,得:()()22221213,5r r -+-+=∴=,所以所求的圆的方程为()()22235x y -++=,化简为:22-4680x y x y +++=,故选B.【考点】1、圆的一般式方程;2、圆的标准方程的. 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实B.命题“,”的否定“,”C.若为假命题,则,均为假命题D.“”是“直线:与直线:平行”的充要条件【答案】A【解析】根据命题的条件、结论及逆否命题的定义判断;根据特称命题的否定是全称命题判断,根据复合命题的真值表判断;根据平行线的性质判断.【详解】否定“若,则方程有实数根”条件与结论,再将否定后的条件与结论互换可得其逆否命题为“若方程无实数根,则”,正确;命题“,”的否定“,”,不正确;若为假命题,则至少有一个是假命题,不正确;“直线:与直线:平行”的充要条件是“或”,不正确,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逆否命题的定义、特称命题的否定、复合命题的真值表、平行线的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A.B.C.D.【答案】C【解析】根据焦点坐标求得、双曲线的渐近线方程,结合,利用待定系数法进行求解即可.【详解】对应的双曲线方程为,双曲线的一个焦点是,且,则,则,则,则,即双曲线的方程为,故选C.【点睛】本题主要考查双曲线方程的求解,属于基础题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A.B.C.D.【答案】A【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输.【详解】若输入的值分别为,则,不满足条件,循环;,余数为13 ,即,不满足条件,循环;,余数为0 ,即,满足条件,输出,故选A.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A.B.C.D.【答案】A【解析】根据抛物线的定义可求出的横坐标,代入抛物线方程解出的纵坐标,代入斜率公式计算斜率.【详解】抛物线的焦点为,准线方程为,点到焦点的距离等于到准线的距离,所以,代入抛物线方程解得,,故选A.【点睛】本题主要考查抛物线的定义和几何性质,斜率公式的应用,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决..6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是()A.B.C.D.【答案】D【解析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用对立事件概率计算公式,结合古典概型概率公式能求出向上的点数之和小于10的概率.【详解】将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷2次,基本事件总数为,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:共6个,出现向上的点数之和小于10的概率为,故选D.【点睛】本题考查古典概型概率公式的应用以及对立事件概率计算公式的应用,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 【答案】D【解析】由椭圆的定义得12128{8AF AF BF BF +=+=两式相加得|AB|+|AF 2|+|BF 2|=16,又因为在△AF 1B 中,有两边之和是10, 所以第三边的长度为:16-10=6 故选D . 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C 【解析】【详解】延长到点,使得,连接,则是平行四边形,可得,根据异面直线所成角的概念可知,所成的锐角即为所求的异面直线所成的角, 设三棱柱的棱长为1,则,在中,根据余弦定理可得,所以异面直线与所成角的余弦值为,故选C.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A.B.C.D.【答案】D【解析】以为原点,为轴、为轴、为轴,建立空间直角坐标系,利用向量法能求出点到平面的距离 .【详解】以为原点,为轴、为轴、为轴,建立空间直角坐标系,则,,设平面的法向量,则,取,得,点到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+ 【答案】B【解析】试题分析:圆()()221111C x y -++=:的圆心1(1)E -,,半径为1,圆()()222459C x y -+-=:的圆心5(4)F ,,半径是3.要使PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+;5(4)F ,关于x 轴的对称点)5(4F '-,,2241515()()PF PE PF PE EF -='-≤'=-+-+=,故4PF PE -+ 的最大值为549+= ,故选:B .【考点】圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使|PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+,再利用对称性,求出所求式子的最大值. 11.已知抛物线的焦点为,直线与C 交于A 、B (A 在轴上方)两点,若,则实数的值为( )A .B .C .2D .3【答案】D【解析】试题分析:由得或,即,,又,所以,,显然,即.故选D .【考点】直线与抛物线的位置关系,向量的数乘.【名师点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)直线与抛物线相交问题,如果含有参数,一般采用“设而不求”方法,但象本题则是直接把直线方程与抛物线方程联立方程组解得交点坐标,再进行相减的运算.12.已知双曲线22221x y a b-=的左、右顶点分别为,A B , P 为双曲线左支上一点,ABP ∆为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A .155 B .154 C .153 D .152【答案】C【解析】由题意知等腰ABP ∆中, ||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆外接圆的半径为5a , ∴225sin aa θ=, ∴5sin 5θ=, 25cos 5θ=, ∴25254253sin22,cos22155555θθ⎛⎫=⨯⨯==⨯-= ⎪ ⎪⎝⎭. 设点P 的坐标为(),x y ,则118cos2,sin255a ax a AP y AP θθ=+===, 故点P 的坐标为118,55a a ⎛⎫⎪⎝⎭.由点P在椭圆上得2222118551a aa b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,整理得2223ba=,∴221513c bea a==+=.选C .点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得,a b间的关系,最后根据离心率的定义可得所求.二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.【答案】30【解析】由频率分布直方图得,分数在内的频率为:,分数在内的人数为:,故答案为.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.【答案】【解析】利用点差法,结合是线段的中点,斜率为,可得,结合即可求出椭圆的离心率.【详解】设,则①,②,是线段的中点,,直线的斜率是,所以,①②两式相减可得,即,,,故答案为.【点睛】本题考查椭圆的离心率,以及“点差法”的应用,属于中档题. 对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.【答案】2或【解析】设是的中点,连接,在平面内作,则,可证明平面,连接,则是与平面所成的角,设,利用平面所成的角的正弦值为,列方程求解即可.【详解】设是的中点,连接,平面,,为正三角形,,平面,在平面内作,则,平面,连接,则是与平面所成的角,设,在直角三角形中,,求得,,平面所成的角的正弦值为,,解得或,即的长为2或,故答案为2或.【点睛】本题主要考查线面垂直的判定定理与性质,以及直线与平面所成的角,属于难题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)或【解析】(1)利用的判别式小于零即可得结果;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)命题是真命题,则若,,的取值范.(2)若命题是真命题,设,令,,当时取最大值,,又因为“”为真命题,“”为假命题,所以一真一假.①若真假,,且,则得;②若假真,则得,且,得.综上,实数的取值范围为或.【点睛】本题通过判断或命题、且命题的真假,综合考查函数的定义域、值域以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1)(2)可靠【解析】(1)根据所给的数据,先做出的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【详解】(1)由题意:,,.,故回归直线方程为:.(2)当时,,当时,,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.【答案】(1)(2)【解析】(1)利用古典概型概率公式分别求出甲中奖与乙中奖的概率,利用对立事件的概率公式求出甲不中奖与乙不中奖的概率,然后利用独立事件概率公式、互斥事件的概率公式求解即可;(2)设甲乙到达时间分别为9:00起第小时,则.甲乙到达时间为正方形区域,甲比乙先到则需满足,利用线性规划以及几何概型概率公式可得结果.【详解】(1)记“甲取得三个球同色”为事件A,“乙取得三个球同色”为事件B,“甲乙恰有一人中奖”为事件C.所以A与B相互独立,记两红球为1,2号,四个白球分别为3,4,5,6号,从6个球中抽取3个的所有可能情况有个基本事件.其中事件A包括个基本事件故,所以所以.(2)设甲乙到达时间分别为9:00起第x,y小时,则0≤x≤,≤y≤1.甲乙到达时间(x,y)为图中正方形区域,甲比乙先到则需满足x<y,为图中阴影部分区域.设甲比乙先到为事件B,则P(B)=1-=.【点睛】本题主要考查古典概型、“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.【答案】(1);(2)或.【解析】(1)将圆化为标准方程,求出其圆心和半径,并求出圆心关于直线+1对称点的坐标,从而可得结果;(2)先验证斜率不存在时,直线符合题意;斜率存在时,由可求得的夹角,可得圆心到直线的距离,利用点到直线的距离公式列方程可得到直线的斜率,由点斜式可得结果.【详解】(1)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,设圆的标准方程为,∵圆C1与圆C2关于直线y=x+1对称,所以,解得.故圆的方程为.(2),所以易得点到直线的距离为,当的斜率不存在时,的方程为,符合要求;当的斜率存在时,设的方程为,由得,故的方程为;综上,的方程为或.【点睛】本题主要圆的方程,直线的点斜式方程的应用,属于中档题.在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.【答案】(1)见解析(2)【解析】(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角A-FC-B的余弦值.【详解】(1)证明:∵四边形ABCD与BDEF均为菱形,∴AD∥BC,DE∥BF.∵AD⊄平面FBC,DE⊄平面FBC,∴AD∥平面FBC,DE∥平面FBC,又AD∩DE=D,AD⊂平面EAD,DE⊂平面EAD,∴平面FBC∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(2)连接FO、FD,∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,∵O为BD中点.所以FO⊥BD,O为AC中点,且F A=FC,∴AC⊥FO,又AC∩BD=O,∴FO⊥平面ABCD,∴OA、OB、OF两两垂直,建立如图所示的空间直角坐标系O-xyz,设AB=2,因为四边形ABCD为菱形,∠DAB=60°,则BD=2,OB=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),∴=(,0,),=(,1,0),设平面BFC的一个法向量为n=(x,y,z),则有∴令x=1,则n=(1,-,-1),∵BD⊥平面AFC,∴平面AFC的一个法向量为=(0,1,0).∵二面角A-FC-B为锐二面角,设二面角的平面角为θ,∴cosθ=|cos〈n,〉|===,∴二面角A-FC-B的余弦值为.【点睛】(1)本题主要考查空间位置关系的证明,考查二面角的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理计算能力.(2) 二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程;(2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:(1)由题意可求得b=1,a =,则椭圆方程为;(2)假设直线存在,设出直线的斜截式方程,联立直线与椭圆的方程,结合题意和韦达定理可得满足题意的直线存在,直线方程为.试题解析:(1)由△OMF是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心设P(,),Q(,)因为M(0,1),F(1,0),故,故直线l的斜率于是设直线l的方程为由得由题意知△>0,即<3,且由题意应有,又故解得或经检验,当时,△PQM不存在,故舍去;当时,所求直线满足题意综上,存在直线l,且直线l的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
福建省仙游第一中学2018-2019学年高二上学期期末考试数学(文)试题(精品解析)-精选
福建省仙游第一中学2018-2019学年高二上学期期末考试数学(文)试题一、选择题:本题共12个小题,每小题5分,共60分,每题只有一个正确答案,把答案填在答题卷相应的题号上.1.在数列中,等于()A. B. C. D.【答案】C【解析】设数列为,∵数列1,1,2,3,5,8,x,21,34,55,∴(≥3),∴5+8=13,故选C.考点:数列的概念.2.若,则下列结论不正确的是A. a2<b2B. ab<b2C. a+b<0D. |a|+|b|>|a+b|【答案】D【解析】依题意得b<a<0,A,B,C正确,而|a|+|b|=-a-b=|a+b|,故D错误,选D.3.椭圆的焦点在轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为()A. B. C. D.【答案】C【解析】由条件可知,,所以椭圆方程为,故选C.4.在△ABC中,角A,B,C的对边分别为a,b,c.已知a=4,b=2,sin2A=sinB,则边c的长为( )A. 2B. 3C. 4D. 2或4【答案】D【解析】【分析】由a=4,b=2,sin2A=sinB求得,再利用余弦定理列方程求解。
【详解】由sin2A=sinB可得:,由正弦定理得:所以,由余弦定理得:,即:,整理得:,解得:或故选:D【点睛】本题主要考查了正弦定理及余弦定理、二倍角公式,考查计算能力,属于基础题。
5.在数列{a n}中,“a n=2a n﹣1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】若“{a n}是公比为2的等比数列,则当n≥2时,a n=2a n﹣1,成立.当a n=0,n=1,2,3,4,…时满足a n=2a n﹣1,n=2,3,4,但此时{a n}不是等比数列,∴“a n=2a n﹣1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的必要不充分条件.故选:B.6.若函数f(x)=x3-ax2+4在区间[0,2]上单调递减,则( )A. a≥3B. a=3C. a≤3D. 0<a<3【答案】A【解析】【分析】把问题转化成在区间[0,2]恒成立。
仙游县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
仙游县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.2. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能3. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.4. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)5. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .646. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.7. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .138. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( )A.B.3C.D.9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。
仙游县高中2018-2019学年高二上学期数学期末模拟试卷含解析(1)
20.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线 l 过点 P(1,0) , 斜率为 ,曲线 C:ρ=ρcos2θ+8cosθ. (Ⅰ)写出直线 l 的一个参数方程及曲线 C 的直角坐标方程; (Ⅱ)若直线 l 与曲线 C 交于 A,B 两点,求|PA|•|PB|的值.
▲.
16.已知 f x 1 2x2 8x 11,则函数 f x 的解析式为_________.
17.设函数 f(x)=
则函数 y=f(x)与 y= 的交点个数是 .
18.若正方形 P1P2P3P4 的边长为 1,集合 M={x|x=
且 i,j∈{1,2,3,4}},则对于下列命题:
22 4
y k x 2 3 与圆相切时,即
k(0 2) 3 0 1 k2
2 ,解得 k
5 12
,所以实数的取值范围是
5 12
,
3 4
.111]Fra bibliotek考点:直线与圆的位置关系的应用. 【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的 斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答 问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.
【解析】
试题分析:由 M
x 2x2 5x 0, x Z
[小初高学习]福建省仙游第一中学2018-2019学年高二数学上学期第一次阶段考试试题 理
仙游一中2018-2019学年度第一学期第一次阶段考试高二数学(理科)试卷(必修4+必修5)2018年10月考试时间:120分钟 满分:150分★ 祝考试顺利 ★注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡上交。
第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合要求)1. 设,,a b c R ∈,且a b >,则( ▲ ) A . 33a b > B .11a b< C . 22a b > D . ac bc >2.设a =12cos 2°-32sin 2°,b =22tan141tan 14-,c =1-cos 50°2,则有( ▲ ) A.c <a <bB.a <b <cC.b <c <aD.a <c <b3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,b =45A =︒,则B =( ▲ )A .6π或56π B .3π或23π C .3π D .6π4.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ▲ ) A .S n =2a n -1 B .S n =3a n -2 C .S n =3-2a n D .S n =4-3a n5、已知M 是面积为1的△ABC 内的一点(不含边界),若△MBC,△MCA 和△MAB 的面积分别为x ,y ,z ,则1x +y +x +yz 的最小值是( ▲ ) A .2 B .3 C .3.5 D .46.在数列{}n a 中,1112,ln 1n n a a a n +⎛⎫==++⎪⎝⎭,则n a =( ▲ ) A .1ln n n ++ B .()21ln n n +- C .2ln n n + D .2ln n +7.在各项均为正数的等比数列{}n a 中,7652a a a =+,且存在两项m a ,n a 14a =,则14m n +的最小值为 ( ▲ ) A .53B .43C .32D .94 8.设△ABC 的三个内角为A ,B ,C ,且tan A ,tan B ,tan C ,2tan B 依次成等差数列,则sin 2B =( ▲ )A .1B .-45C . ±45D .459.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos b C a =,点M 在线段AB 上,且ACM BCM ∠=∠.若66b CM ==,则cos BCM ∠=( ▲ )A B C .34D 10.给出下列命题:①若0b a <<,则||||a b >;②若0b a <<,则a b ab +<;③若0b a <<, 则2b a a b +>;④若0b a <<,则22a a b b<-;⑤若0b a <<,则22a b aa b b +>+;⑥若1a b +=, 则2212a b +≥.其中正确的命题有( ▲ ) A .2个 B .3个 C .4个D .5个11.已知a , b ∈R ,且a 是2b -与3b -的等差中项,则2||||aba b +的最大值为( ▲ )A .19B .29C .23D .4312.(非A 班作答)数列满足,则数列的前200项和为( ▲ )A. 51000B. 20200C. 98000D. 98500 12.(A班作答)在平面内,定点A.B.C.O满足O A O B O C ==,OA OB OB OC ==2OC OA =-,动点,P Q满足1AP =,PQ QC =,则2437BQ -的最小值是( ▲ ) A.-6 B.-12 C.-D.-第II 卷(非选择题 共90分)二、填空题(本大题4小题,每题5分,共20分) 13.已知x ,y 满足⎩⎪⎨⎪⎧x≥2,x +y≤4,2x -y -m≤0,若目标函数z =3x +y 的最大值为10,则z 的最小值为___▲_____.14.如图,在△ABC 中,AD →=13DC →,P 是线段BD 上一点,若AP →=mAB →+16AC →,则实数m的值为___▲_____.15.(非A 班作答)已知0090< < < 0βα,且βαsin ,sin 是方程02140cos )40cos 2(0202=-+-x x 的两个根,则)2cos(βα-的值为_▲_ 15.(A 班作答) 某沿海四个城市A 、B 、C 、D 的位置如图所示,其中60ABC ∠=︒,135BCD ∠=︒,80AB =n mile,40BC =+n mile,CD =n mile ,D 位于A 的北偏东75︒方向.现在有一艘轮船从A 出发以50n mile/h 的速度向D 直线航行,60min 后,轮船由于天气原因收到指令改向城市C 直线航行,收到指令时城市C 对于轮船的方位角是南偏西θ度,则sin θ=___▲16.对于给定的正整数n ,设集合X n ={1,2,3,…,n },nX A ⊆,且∅≠A .记I (A )为集合A 中的最大元素,当A 取遍X n 的所有非空子集时,对应的所有I (A )的和记为S (n ),则S (2 018)=___▲_____.三、 解答题:(本大题6小题,共70分。
仙游县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
仙游县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的()A.B.C.D.2.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为()A.﹣2B.﹣1C.0D.13.不等式﹣x2﹣2x+3≤0的解集为()A.{x|x≥3或x≤﹣1}B.{x|﹣1≤x≤3}C.{x|﹣3≤x≤1}D.{x|x≤﹣3或x≥1}4.二项式(x2﹣)6的展开式中不含x3项的系数之和为()A.20B.24C.30D.365.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有()A.27种B.35种C.29种D.125种6.已知α是△ABC的一个内角,tanα=,则cos(α+)等于()A.B.C.D.7.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定8. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为()A .M >N >PB .P <M <NC .N >P >M9. 已知函数,的图象与直线的两个相邻交点的距离等于()cos (0)f x x x ωωω=+>()y f x =2y =,则的一条对称轴是( )π()f x A . B .C .D .12x π=-12x π=6x π=-6x π=10.已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心11.函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A .2B .3C .7D .912.函数f (x )=21﹣|x|的值域是( )A .(0,+∞)B .(﹣∞,2]C .(0,2]D .[,2]二、填空题13.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .14.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= . 15.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .16.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.17.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h=18.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 . 三、解答题19.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注元,然后掷1颗骰子,连续掷3次,若你所押的点数m 在3次掷骰子过程中出现1次, 2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.(1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.20.(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点C 22221(0)x y a b a b+=>>1F 2F :1l x my =-1F C ,点在轴的上方.当时,M M x 0m =1||MF =(Ⅰ)求椭圆的方程;C (Ⅱ)若点是椭圆上位于轴上方的一点, ,且,求直线的方程.N C x 12//MF NF 12123MF F NF F S S ∆∆=l21.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.22.(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.111C B A ABC -AC F E 、11AC B A 、(1)求证:平面; //EF ABC (2)求证:平面平面.⊥AEF B B AA 1123.如图,边长为2的正方形ABCD 绕AB 边所在直线旋转一定的角度(小于180°)到ABEF 的位置.(Ⅰ)求证:CE ∥平面ADF ;(Ⅱ)若K 为线段BE 上异于B ,E 的点,CE=2.设直线AK 与平面BDF 所成角为φ,当30°≤φ≤45°时,求BK 的取值范围.24.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.仙游县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A、C错.故选:B.2.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键. 3.【答案】D【解析】解:不等式﹣x2﹣2x+3≤0,变形为:x2+2x﹣3≥0,因式分解得:(x﹣1)(x+3)≥0,可化为:或,解得:x≤﹣3或x≥1,则原不等式的解集为{x|x≤﹣3或x≥1}.故选D.4.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.5.【答案】B【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B.【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.6.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题. 7. 【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C .【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础. 8. 【答案】A【解析】解:∵0<a <b <c <1,∴1<2a <2,<5﹣b <1,<()c <1,5﹣b =()b >()c >()c ,即M >N >P ,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键. 9. 【答案】D 【解析】试题分析:由已知,,所以,则,令 ()2sin()6f x x πω=+T π=22πωπ==()2sin(26f x x π=+,得,可知D 正确.故选D .2,62x k k Z πππ+=+∈,26k x k Z ππ=+∈考点:三角函数的对称性.()sin()f x A x ωϕ=+10.【答案】C【解析】【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C11.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.12.【答案】C【解析】解:由题意:函数f(x)=21﹣|x|,∵令u=1﹣|x|的值域为[1,﹣∞),则:f(x)=2u是单调增函数,∴当u=1时,函数f(x)取得最大值为2,故得函数f(x)=21﹣|x|的值域(0,2].故选C.【点评】本题考查了复合函数的值域求法.需分解成基本函数,再求解.属于基础题.二、填空题13.【答案】V【解析】【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:故答案为:14.【答案】 ﹣1054 .【解析】解:∵2a n ,a n+1是方程x 2﹣3x+b n =0的两根,∴2a n +a n+1=3,2a n a n+1=b n ,∵a 1=2,∴a 2=﹣1,同理可得a 3=5,a 4=﹣7,a 5=17,a 6=﹣31.则b 5=2×17×(﹣31)=1054.故答案为:﹣1054.【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题. 15.【答案】 .【解析】解:在△ABC 中,∵6a=4b=3c ∴b=,c=2a ,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a 表示b ,c 是解决问题的关键,属于基础题. 16.【答案】D 【解析】17.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.18.【答案】 .【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题. 三、解答题19.【答案】【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.20.【答案】【解析】解:(Ⅰ)由直线经过点得,:1l x my =-1F 1c =当时,直线与轴垂直,0m =l x 21||b MF a ==由解得的方程为. (4分)21c b a=⎧⎪⎨=⎪⎩1a b ⎧=⎪⎨=⎪⎩C 2212x y +=(Ⅱ)设,,由知.1122(,),(,)M x y N x y 120,0y y >>12//MF NF 12121122||3||MF F NF F S MF y S NF y ∆∆===联立方程,消去得,解得22112x my x y =-⎧⎪⎨+=⎪⎩x 22(2)210m y my +--=y =∴,同样可求得, (11分)1y =2y =由得,解得,123y y =123y y =3=1m =直线的方程为. (13分)l 10x y -+=21.【答案】【解析】解:(1)f (x )=(log 2x ﹣2)(log 4x ﹣)=(log 2x )2﹣log 2x+1,2≤x ≤4令t=log 2x ,则y=t 2﹣t+1=(t ﹣)2﹣,∵2≤x ≤4,∴1≤t ≤2.当t=时,y min =﹣,当t=1,或t=2时,y max =0.∴函数的值域是[﹣,0].(2)令t=log 2x ,得t 2﹣t+1>mt 对于2≤t ≤4恒成立.∴m <t+﹣对于t ∈[2,4]恒成立,设g (t )=t+﹣,t ∈[2,4],∴g (t )=t+﹣=(t+)﹣,∵g (t )=t+﹣在[2,4]上为增函数,∴当t=2时,g (t )min =g (2)=0,∴m <0.22.【答案】(1)详见解析;(2)详见解析.【解析】试题解析:证明:(1)连接,∵直三棱柱中,四边形是矩形,C A 1111C B A ABC -C C AA 11故点在上,且为的中点,F C A 1F C A 1在中,∵分别是的中点,∴.BC A 1∆F E 、11AC B A 、BC EF //又平面,平面,∴平面.⊄EF ABC ⊂BC ABC //EF ABC考点:1.线面平行的判定定理;2.面面垂直的判定定理.23.【答案】【解析】解:(Ⅰ)证明:正方形ABCD 中,CDBA ,正方形ABEF 中,EF BA .…∴EF CD ,∴四边形EFDC 为平行四边形,∴CE ∥DF .…又DF ⊂平面ADF ,CE ⊄平面ADF ,∴CE ∥平面ADF . …(Ⅱ)解:∵BE=BC=2,CE=,∴CE 2=BC 2+BE 2.∴△BCE 为直角三角形,BE ⊥BC ,…又BE ⊥BA ,BC ∩BA=B ,BC 、BA ⊂平面ABCD ,∴BE ⊥平面ABCD . …以B 为原点,、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则B (0,0,0),F (0,2,2),A (0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.24.【答案】【解析】解:由p:⇒﹣1≤x<2,方程x2﹣(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|>1,则q:1<x<a2,此时应满足a2≤2,解得1<|a|≤,当|a|=1,q:x∈∅,满足条件,当|a|<1,则q:a2<x<1,此时应满足|a|<1,综上﹣.【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.。
仙游县第一中学校2018-2019学年高二上学期第二次月考试卷数学
仙游县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}2. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +3. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .24. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:25. 过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( )A .1B .2C .3D .46. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .7. 设D 为△ABC 所在平面内一点,,则( )A .B .C .D .8. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .29.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.10.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或211.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.25012.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42 B.0.28 C.0.3 D.0.7二、填空题13.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.14.在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB 的距离是.15.函数f(x)=log(x2﹣2x﹣3)的单调递增区间为.16.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 17.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .18.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]三、解答题19.已知数列{a n }满足a 1=3,a n+1=a n +p •3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列. (1)求p 的值及数列{a n }的通项公式; (2)设数列{b n }满足b n=,证明b n≤.20.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .21.(本小题满分10分)选修4-1:几何证明选讲.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .(1)求证:CD =DA ;(2)若CE =1,AB =2,求DE 的长.22.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.23.如图,在平面直角坐标系xOy 中,以x 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两点.已知A ,B 的横坐标分别为,.(1)求tan (α+β)的值; (2)求2α+β的值.24.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.仙游县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V ≤}. 故选:D .【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.2. 【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,21zi i=-+,(1)(2)3z i i i =+-=+,选D . 3. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3, ∴点A 到准线l :x=﹣1的距离为3∴1+x A =3 ∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.4. 【答案】D 【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,则球的体积V 球=圆柱的体积V 圆柱=2πR 3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.5.【答案】A【解析】解:∵x2=2y,∴y′=x,∴抛物线C在点B处的切线斜率为1,∴B(1,),∵x2=2y的焦点F(0,),准线方程为y=﹣,∴直线l的方程为y=,∴|AF|=1.故选:A.【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键.6.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.7.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.9.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.10.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.11.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.12.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.二、填空题13.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.14.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.15.【答案】(﹣∞,﹣1).【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)16.【答案】2【解析】17.【答案】V【解析】【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:故答案为:18.【答案】8cm【解析】考点:平面图形的直观图.三、解答题19.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f ′(x )=0,得x=∈(1,2)当x ∈(0,)时,f ′(x )>0;当x ∈(,+∞)时,f ′(x )<0,且f (1)=,f (2)=,∴f (x )max =f (2)=,x ∈N *.∴b n ≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.20.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】试题解析:(1)由题意,圆C 方程为2)()(22=-+-b y a x ,且0,0><b a , ∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,25|43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(22=-++y x , 化为一般方程为08242222=+-++y x y x , ∴22=D ,24-=E ,8=F .(2)圆心)22,2(-C 到直线022=+-y x 的距离为12|22222|=+--=d ,∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1 21.【答案】【解析】解:(1)证明:如图,连接AE ,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE=12CA=2 2,所以DE的长为22.22.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.23.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴.24.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分。
仙游县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
仙游县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 2. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.3. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A 4. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >05. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)6. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )A .0°B .45°C .60°D .90°7. 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( ) A.61B.31C. 1D.34意在考查学生空间想象能力和计算能 )(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π10.已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ11.已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D . 12.下列各组函数中,表示同一函数的是( )A .y=1,y=x 0B .y=•,y=C .y=x ,y=D .y=|x|,t=()2二、填空题13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 14.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A.B.C.D.15.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .16.在△ABC中,已知=2,b=2a ,那么cosB 的值是 .17.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .18.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .三、解答题19.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且满足=,=2+2cos (A+C ),求f (B )的值.20.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). 1818 0792 4544 1716 5809 7983 8619 6206 7650 0310 5523 6405 0526 6238(1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.21.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?22.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.23.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水xx i1234 5y i5753403010(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)24.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.仙游县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 2. 【答案】B3. 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A . 故选D .4. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题 的否定,比较基础.5. 【答案】A【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0;∴(x﹣2)•f(x)<0的解集是(﹣3,0)∪(2,3)故选:A.6.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.7.【答案】D【解析】8.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.9.【答案】A【解析】考点:三角函数的图象性质.10.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.11.【答案】A考点:复数运算.12.【答案】C【解析】解:A中的两个函数y=1,y=x0,定义域不同,故不是同一个函数.B中的两个函数定义域不同,故不是同一个函数.C中的两个函数定义域相同,y=x,y==x,对应关系一样,故是同一个函数.D中的两个函数定义域不同,故不是同一个函数.综上,只有C中的两个函数是同一个函数.故选:C.二、填空题13.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.14.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.15.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.16.【答案】.【解析】解:∵=2,由正弦定理可得:,即c=2a.b=2a,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.17.【答案】 50π .【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.18.【答案】21≥a 【解析】试题分析:'21()a f x x x =-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221,(0,3]x ∈恒成立,由2111,222x x a -+≤∴≥.1考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.三、解答题19.【答案】【解析】解:(Ⅰ)f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3=2sin2x ﹣+3=2sin2x+2cos2x=4sin (2x+).∵x ∈[0,],∴2x+∈[,],∴f (x )∈[﹣2,4].(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ),∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA , 由正弦定理得:c=2a , 又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=,故解得:A=,B=,C=,∴f (B )=f ()=4sin =2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.20.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2)5,5.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.21.【答案】(1)cos ,0,33CD πθθθ⎛⎫=+∈ ⎪⎝⎭;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO==∠∠∠2cos 3CD πθθθ⎛⎫∴=-= ⎪⎝⎭,OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,3CD πθθθ⎛⎫∴=∈ ⎪⎝⎭(2)设观光道路长度为()L θ, 则()L BD CD AC θ=++弧的长= 1cos θθθθ+++= cos 1θθθ++,0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=-+' 由()0L θ'=得:sin 6πθ⎛⎫+= ⎪⎝⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴=∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
福建省仙游第一中学2018-2019学年高二上学期期末考试数学(文)试题(解析版)
福建省仙游第一中学2018-2019学年高二上学期期末考试数学(文)试题一、选择题:本题共12个小题,每小题5分,共60分,每题只有一个正确答案,把答案填在答题卷相应的题号上.1.在数列中,等于()A. B. C. D.【答案】C【解析】设数列为,∵数列1,1,2,3,5,8,x,21,34,55,∴(≥3),∴5+8=13,故选C.考点:数列的概念.2.若,则下列结论不正确的是A. a2<b2B. ab<b2C. a+b<0D. |a|+|b|>|a+b|【答案】D【解析】依题意得b<a<0,A,B,C正确,而|a|+|b|=-a-b=|a+b|,故D错误,选D.3.椭圆的焦点在轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为()A. B. C. D.【答案】C【解析】由条件可知,,所以椭圆方程为,故选C.4.在△ABC中,角A,B,C的对边分别为a,b,c.已知a=4,b=2,sin2A=sinB,则边c的长为( )A. 2B. 3C. 4D. 2或4【答案】D【解析】【分析】由a=4,b=2,sin2A=sinB求得,再利用余弦定理列方程求解。
【详解】由sin2A=sinB可得:,由正弦定理得:所以,由余弦定理得:,即:,整理得:,解得:或故选:D【点睛】本题主要考查了正弦定理及余弦定理、二倍角公式,考查计算能力,属于基础题。
5.在数列{a n}中,“a n=2a n﹣1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】若“{a n}是公比为2的等比数列,则当n≥2时,a n=2a n﹣1,成立.当a n=0,n=1,2,3,4,…时满足a n=2a n﹣1,n=2,3,4,但此时{a n}不是等比数列,∴“a n=2a n﹣1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的必要不充分条件.故选:B.6.若函数f(x)=x3-ax2+4在区间[0,2]上单调递减,则( )A. a≥3B. a=3C. a≤3D. 0<a<3【答案】A【解析】【分析】把问题转化成在区间[0,2]恒成立。
仙游县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
仙游县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1B.﹣1C.﹣2D.02.已知函数,,若,则()A1B2C3D-13.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也非必要条件4.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是()A.2+B.1+C.D.5.若命题“p或q”为真,“非p”为真,则()A.p真q真B.p假q真C.p真q假D.p假q假6.已知f(x)=4+a x﹣1的图象恒过定点P,则点P的坐标是()A.(1,5)B.(1,4)C.(0,4)D.(4,0)7.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.8.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.9.已知直线a A平面α,直线b⊆平面α,则()a b AA.B.与异面C.与相交D.与无公共点10.已知,,那么夹角的余弦值()A.B.C.﹣2D.﹣11.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是()A.{,}B.{,,}C.{V|≤V≤}D.{V|0<V≤}12.若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为()A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣二、填空题13.若函数,则 .2(1)1f x x +=-(2)f =14.设α为锐角,若sin (α﹣)=,则cos2α= .15.曲线y=x+e x 在点A (0,1)处的切线方程是 .16.已知平面向量,的夹角为,,向量,的夹角为,与a b 3π6=-b ac a - c b - 23πc a -= a 的夹角为__________,的最大值为.ca c ⋅ 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.17.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 . 18.方程(x+y ﹣1)=0所表示的曲线是 .三、解答题19.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1. 20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值.序号(i)分组(分数)组中值(Gi)频数(人数)频率(Fi)1[60,70)65①0.102[70,80)7520②3[80,90)85③0.204[90,100)95④⑤合计50121.已知等差数列满足:=2,且,成等比数列。
仙游县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
仙游县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .2. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.3. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .4. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对5. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i6. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.7. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 8. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题9. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( ) A .B.C.D. 10.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA1C 1C所成角的正切值为()A .B .C .D .11.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .3B .2C .3D .412.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种13.已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5414.如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A .B .C .D .15.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a二、填空题16.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.19.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.三、解答题20.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.21.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.22.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .23.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.24.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.25.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)仙游县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
福建省仙游第一中学2018_2019学年高二数学上学期期末考试试卷理扫描版无答案
福建省仙游第一中学2018-2019学年高二数学上学期期末考试试卷理(扫描版,无答案)仙游-中2017级烏二上学期数学(理〉期末考试卷出糅人」审核人r1,侖救"了“乩.£」2”2"的否定數)A. g芒乩十+2"2“ 乩Vxs/f1x I+2i+2>0C, 3x e K t JT: + 2^ + 2 > 0 D. 3x e R t x l+ 2i + 2 02.己蚓向<^ = (1.1.0), Z=(-IA2)T且ka^b ^la-b^.相垂葭,则k 的值是(K, 1 B. i 2 D. 2S 5 5J2r+ 23*若"满足釣束条件,则K = X + F的最大值为匚)h盂2A. 4 艮呂 C. 2 D. 64.若料側艺+疋“的离吉率为£u迥•则册的值为{')S m5A, 3 B. V5C+兰或33C.'乖或届35.衽四面陣丹肮r中,PA,PB.尸匸两两垂珀,且均相尊「迟是卫E的中点,•嘲界而直线冲C与尸E所成的常均f )k上一氐巴 C - U -6 4 3 2「在琴比数列g)中,&是它的肋用项和,若碍•眄二2州’且勺与2阿的答差中项为灯,则斗」)A- - B-16 CIS D.手7 :^BC中 t 角A t B,C的对边分别是a^c ,已^la = b^c1 =:2b2(1 -sinC)(则(7= (jE. “卫£时是”函数几r}Np_4*+t在区间(4幵00〉上垢增團数"的(j占.充分不必要条件乩必聚不充廿条件C.充要条件 D.既不充分也不必要条件] 4 _ - j如己却R-+'=^着工+$、牛+新*恒成女”则实数m的取僮范阖越()A*(迪0) B. (kVS) C? (-9, 1)D+ ©& I)1 / 42/410. 设F P F 2 M 双曲线c :匚•匚:>O*b A O). <)的左、右焦点,0是坐标原点.过巧作Ca 2 F的一条渐近线的垂线,垂足为P*若|两|=來|厉I ,则C 的离心率为()A. B.弟 C. 2 )血 -11. 定义域为R 的函数f (X ),满足f (0)二h 厂(X )<f (x) +U 则不等式f 匕)+】V2W 的解集为()A. (xeR|x >i) B . {xGR|O<x<l) C ・hwR|xVO} D. (xGR|x>0}匚如图.已知亶线y = 6 +用与曲线y=f(x)相切于两点,则函数F(x)=f(x)-kx W ()A. 2个零点B. 3卜极值点C- 2个极大值点正3令极大值点 二.填空题6曲线f(x) = lTix-x 2+5在工=1处的切线倾斜角为 •14.如国所示.在边长为1的正方形OABC 申任取一点尸,则点尸恰好取自阴影部分的概电为严环电爲< 10也毎*(-】}"理对任意* M 恒成立,则实数耐的取值范围是 ________ ]6,如图,已知正方体ABCD-AgD 、的棱长为1,点E 为BBi 上一动点’现有以下四个结 论”其中正确的结论是 ------- --(])平面 AC^El 平面'2) AEH 平面CDD\C 、G )当E 为的中点时,"EG 的周长取得最小值(4)三棱链A.-AEC,的休积不是定值三.解答题 17.在綁差数列{。
仙游县高中2018-2019学年高二上学期数学期末模拟试卷含解析
福建省仙游第一中学2018_2019学年高二数学上学期期末考试试卷文
(命题人: 班级: 座号: 满分 150 分 答卷时间2小时) 姓名:
一、选择题 : 本题共 12 个小题,每小题 5 分,共 60 分,每题只有一个正确答案,把答案填 在答题卷相应的题号上. 1.在数列 1,1,2,3,5,8,x,21,34,55,…中,x 的值为( ) A.11 B.12 C.13 D.14
{
1 1 1 1 1 1 1 的前 n项和为 + + …+ = 1- + - + …+ fn f1 f2 fn 2 2 3
4
}
( ) ( )
(n-n+1)=1-n+1=n+1.故选 A.
1 1 1 12.解析:选 A 设点 P(x0,y0),由题可设渐近线 l1:x-2y=0,渐近线 l2:x+2y= 0,由点 P 到直线 l1 的距离 d1= |x0-2y0| 5 · |x0+2y0| 5 = |x0-2y0| 5 ,点 P 到直线 l2 的距离 d2= |x0+2y0| 5 ,有 d1d2=
1 所以 a2 +4a1-5=0,解得 a1=1 或 a1=-5(舍去),
p
p
2pb2
a2
,所以
2pb2 b2 = p ,即 = 2 2
a
a
所以 an=2n-1. (2)a1+a3+a9+…+a3n =(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1) =2×(1+3+32+…+3n)-(n+1) =2× 1-3n+1 -(n+1) 1-3
(2)若 λ=4,AB 边上的高为
20. (本小题 12 分)设 f(x)=a(x-5)2+6lnx,其中 a∈R,曲线 y=f(x)在点(1,f(1))处的 切线与 y 轴相交于点(0,6). (1)确定 a 的值; (2)求函数 f(x)的单调区间与极值.
仙游第一中学2018-2019学年高二9月月考数学试题解析
仙游第一中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π2. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.3. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015224. 若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( ) A .-1 B .12C .1 D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.5. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x 6. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l7. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( )A .9B .8 C.7 D .5 8. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}29. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐,则双曲线C 的离心率是( )A B .2 C D 10.已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、0 11.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1212.已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( ) A .{x|﹣1≤x <2} B .{﹣1,0,1} C .{0,1,2}D .{﹣1,1}二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .15.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.16.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点;②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
仙游县一中2018-2019学年上学期高二数学12月月考试题含解析
仙游县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0 2. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)D .(﹣5,3,4)3. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)4. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .45. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .46. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .17. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .68. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .10.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .3511.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(12.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.二、填空题13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 15. 17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.16.在(x 2﹣)9的二项展开式中,常数项的值为 . 17.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .18.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .三、解答题19.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?20.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .21.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.A 1B 1C 1DD 1 C B AE F23.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.24.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.仙游县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.2.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.3.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.4. 【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y 2=2px 的焦点为(2,0), ∴=2, ∴p=4. 故选D .【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.5. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 6. 【答案】【解析】选C.由题意得log 2(a +6)+2log 26=9. 即log 2(a +6)=3,∴a +6=23=8,∴a =2,故选C. 7. 【答案】C .【解析】解:∵2a =3b=m ,∴a=log 2m ,b=log 3m , ∵a ,ab ,b 成等差数列, ∴2ab=a+b ,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.8.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B9.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D10.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C 11.【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a a ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.12.【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .二、填空题13.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n 个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 14.【答案】 充分不必要【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i , ∴在复平面内对应的点M 的坐标是(a+2,a ﹣2), 若点在第四象限则a+2>0,a ﹣2<0, ∴﹣2<a <2,∴“a=1”是“点M 在第四象限”的充分不必要条件, 故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.15.【答案】【解析】解:∵f (x )=a xg (x )(a >0且a ≠1),∴=a x , 又∵f ′(x )g (x )>f (x )g ′(x ),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n }.∵数列{}的前n 项和大于62,∴2+22+23+ (2)==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.16.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.17.【答案】2n﹣1.【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,18.【答案】35.【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),∴数列{a n}为等差数列,又a2+a8=6,∴2a5=6,解得:a5=3,又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,∴d2=1,解得:d=1或d=﹣1(舍去)∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.∴a1=﹣1,∴S10=10a1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.20.【答案】【解析】解:(1)设等比数列{a n }的公比为q ,由a 2是a 1和a 3﹣1的等差中项得:2a 2=a 1+a 3﹣1,∴,∴2q=q 2,∵q ≠0,∴q=2,∴;(2)n=1时,由b 1+2b 2+3b 3+…+nb n =a n ,得b 1=a 1=1.n ≥2时,由b 1+2b 2+3b 3+…+nb n =a n ① b 1+2b 2+3b 3+…+(n ﹣1)b n ﹣1=a n ﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.21.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,a BG 25=,a GE BG BE 2322=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=θsin 32=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =21C 1D ,B 1H ∥C 1D ,而EF =21C 1D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+,∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y12﹣y22=4(x1﹣x2)∴k MN=,∴直线MN的方程为y﹣t=(x﹣3),∴B的横坐标为x=3﹣,直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0△>0可得0<t2<12,∴x=3﹣∈(﹣3,3),∴点B横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.24.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.。
仙游县高中2018-2019学年上学期高二数学12月月考试题含解析
仙游县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为()A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣2. 下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是P Q R S ()3. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )4. 已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A .B .C .D .14125. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个6. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( )A .10个B .15个C .16个D .18个7. 在极坐标系中,圆的圆心的极坐标系是( )。
AB C D8. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前10项和为()A .89B .76C .77D .359. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )10.定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .1211.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( )A .1或﹣3B .﹣1或3C .1或3D .﹣1或﹣312.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()二、填空题13.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .14.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:年份20302035204020452050年份代号t 12345所占比例y6865626261根据上表,y 关于t 的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.16.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.17.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .18.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝.其中真命题是 (写出所有真命题的序号)三、解答题19.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.求证:PC ⊥BC ;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.20.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:分数段理科人数文科人数[40,50)[50,60)[60,70)[70,80)正正[80,90)正[90,100](1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.21.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.22.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.23.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.24.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.仙游县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),则由图象知A,B两点在直线两侧和在直线上即可,即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,即(3t+4)(2t+4)≤0,解得﹣2≤t≤﹣,即实数t的取值范围为是[﹣2,﹣],故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题. 2.【答案】D【解析】考点:平面的基本公理与推论.3. 【答案】C【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ;若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n )A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n );故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.4. 【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.5. 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.6.【答案】B【解析】解:a※b=12,a、b∈N*,若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B7.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仙游县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1 B.﹣1 C.﹣2 D.02.已知函数,,若,则()A1B2C3D-13.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也非必要条件4.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是()A.2+B.1+C.D.5.若命题“p或q”为真,“非p”为真,则()A.p真q真B.p假q真C.p真q假D.p假q假6.已知f(x)=4+a x﹣1的图象恒过定点P,则点P的坐标是()A.(1,5) B.(1,4) C.(0,4) D.(4,0)7.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.8.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.9.已知直线a平面α,直线b⊆平面α,则()A.a b B.与异面C.与相交D.与无公共点10.已知,,那么夹角的余弦值()A.B.C.﹣2 D.﹣11.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是()A.{,} B.{,,} C.{V|≤V≤} D.{V|0<V≤}12.若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为()A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣二、填空题13.若函数2(1)1f x x +=-,则(2)f = .14.设α为锐角,若sin (α﹣)=,则cos2α= .15.曲线y=x+e x 在点A (0,1)处的切线方程是 .16.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 17.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .18.方程(x+y ﹣1)=0所表示的曲线是 .三、解答题19.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1.20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 合计21.已知等差数列满足:=2,且,成等比数列。
(1)求数列的通项公式。
(2)记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.22.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.23.已知cos (+θ)=﹣,<θ<,求的值.24.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.仙游县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.2.【答案】A【解析】g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=13.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A4.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.5.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.6.【答案】A【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,则函数f(x)过定点(1,5).故选A.7.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.8.【答案】C【解析】考点:几何体的结构特征.9.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.10.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.11.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.12.【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),则由图象知A,B两点在直线两侧和在直线上即可,即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,即(3t+4)(2t+4)≤0,解得﹣2≤t≤﹣,即实数t的取值范围为是[﹣2,﹣],故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.二、填空题13.【答案】0 【解析】111]考点:函数的解析式.14.【答案】 ﹣ .【解析】解:∵α为锐角,若sin (α﹣)=,∴cos (α﹣)=,∴sin=[sin (α﹣)+cos (α﹣)]=,∴cos2α=1﹣2sin 2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.15.【答案】 2x ﹣y+1=0 .【解析】解:由题意得,y ′=(x+e x )′=1+e x,∴点A (0,1)处的切线斜率k=1+e 0=2,则点A (0,1)处的切线方程是y ﹣1=2x ,即2x ﹣y+1=0,故答案为:2x ﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.16.【答案】6π,18+ 【解析】17.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.18.【答案】两条射线和一个圆.【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.三、解答题19.【答案】【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,∴,∴对一切n∈N*,<.(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.20.【答案】【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,②中的值为=0.40,③中的值为50×0.2=10,④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;(2)不低于85的概率P=×0.20+0.30=0.40,∴获奖的人数大约为800×0.40=320;(3)该程序的功能是求平均数,S=65×0.10+75×0.40+85×0.20+95×0.30=82,∴800名学生的平均分为82分21.【答案】见解析。