专题:相交线与平行线中的思想方法(含答案)
2022年中考数学专题复习第16讲相交线与平行线(含详细参考答案
2022年中考数学专题复习第16讲相交线与平行线(含详细参考答案【基础知识回顾】一、直线、射线、线段线段有个端点,不的度量线比较大小,把线段向两个方向无限延伸,就得到直线,直线端点,将线段向一个方向无限延伸就形成了射线,射线有个端点,线段、直线、射线都有两种表示方法:不以用表示可以用表示线段工理:直线工理【名师提醒:一条直线上有几个点,则这条直线上存在条线段】二、角1、定义:有公共端点的两条组成的图形叫做角,角也可以一条绕它的从一个位置旋转到另一个位置所形成的图形【名师提醒:角的表示方法:不的用三个大写字母如∠AOB,也可用一个大写字母∠A或用一个数字或希腊字母表示,如∠1、∠2等,注意等于选择合适,简法的方法表示角】2、角的分类:角按照大小可分为:周角、、锐角等。
其中1周角=度=平角直角度=分1分=秒【名师提醒:钟表转动过程中常见时针,分针的夹角问题,要牢记一个前提:即时针分针转动度,分针每分转动度】3、角的平分线一条射线把一个角分成的角,这条叫做这个角的平分线【名师提醒:1、一个角内有几条射线,则一共可形成角】1、互为余角互为斜角1、互为余角:若∠1+∠2则称∠1与∠2互为余角2、互为补角:若∠1+∠2则称∠1与∠2互为补角3性质:同角或等角的余角同角或等角的余角【名师提醒:1、互补和互余是挡两个角的关系2、一个锐角的补角比它的余角大度】三、相交线1、对顶角及其性质:对顶角:和邻补角两条直线相交所成德四个角中的角是对顶角,的角是邻补角,如图:对顶角有邻补角有对顶角性质2、垂线及其性质互相垂直:两条直线相交所构成的四个角中有一个角是则这两条直线互相垂直,其中一条直线叫另一条直线的性质:1、过一点与已知直线垂直2、直线外点与直线上各点连接的所有线段中,最短,(简称:)【名师提醒:注意三个距离的区别1、两点间的距离是指:2、点到直线的距离是指3、两平行线间的距离是指】四、平行线:1、三线八角:如图:两条直线a与b被第三条直线c所截,构成八个角其中同位角有对,分别是,内错角有对,分别是内错角有对,分别是2、平行线的意义:在同意平面呢的两条直线叫平行线3、平行公理:经过已知直线到一点条直线与已知直线平行4、平行线的性质和判定相等性质两直线平行————→相等【名师提判定醒:平行线的应用判定方同旁内角条:1、平行于同一直线的法还有两两条直线互相2、同一直线的两条直线互相平行】一、命题公理定理和证明1、命题:的语句叫命题,一个命题由和两部分构成,可分为和两类2、公理:从实践中总结出来的,并把它们作为判断其它命题真伪的原始根据的真命题3、定理:经过证明的命题叫做定理4、互逆命题与互逆定理:⑴在两个命题中,如果一个命题的和事另一个命题的和那么这两个命题称为互逆命题⑵如果一个定理的逆命题经过证明是真命题,那么它也是一个这两个定理称为5、证明:⑴根据题设,定义公理及定理,经过逻辑推理来判断一个命题这一推理过程称为证明⑵命题完整证明的一般步骤:①审题:找出命题的和②根据题意画出③写出和④分析证明的整理⑤写出每一步应有根据,要推理严密【名师提醒:1、判断一个命题是其命题的判断一个命题是假命题可以举出2、任何一个命题一定有它的逆命题:对于任意一个定理有它的逆定理】【重点考点例析】考点一:线与角的概念和性质例1(2022丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()思路分析:首先根据题意可得:∠1=30°,∠2=60°,再根据平行线的性质可得∠4的度数,再根据∠2和∠3互余可算出∠3的度数,进而求出∠ABC的度数解:如图,由题意得:∠1=30°,∠2=60°,∵AE∥BF,∴∠1=∠4=30°,∵∠2=60°,∴∠3=90°-60°=30°,∴∠ABC=∠4+∠FBD+∠3=30°+90°+30°=150°,故选:C.点评:此题主要考查了方位角,关键是掌握方位角的概念:方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.对应训练1.(2022江西)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°1.思路分析:根据方向角的定义进行解答即可.解答:解:由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故选A.点评:本题考查的是方向角的概念,熟知方向角的概念是解答此题的关键.考点二:余角和补角例2(2022孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于()A.45°B.60°C.90°D.180°思路分析:根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β-∠γ=90°.故选C.点评:此题考查了余角和补角的知识,属于基础题,掌握互余两角之和为90°,互补两角之和为180°,是解答本题的关键.对应训练2.(2022南通)已知∠a=32°,则∠a的补角为()A.58°B.68°C.148°D.168°2.分析:根据互为补角的和等于180°列式计算即可得解.解:∵∠a=32°,∴∠a的补角为180°-32°=148°.故选C.点评:本题考查了余角与补角的定义,熟记互为补角的和等于180°是解题的关键.3.(2022扬州)一个锐角是38度,则它的余角是度.3.52分析:根据互为余角的两角之和为90°,可得出它的余角的度数.解:这个角的余角为:90°-38°=52°.故答案为:52.点评:此题考查了余角的知识,掌握互为余角的两角之和为90°是解答本题的关键.考点三:相交线与垂线例3(2022北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°思路分析:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12某76°=38°,∴∠BOM=180°-∠AOC=180°-38°=142°.故选C.点评:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.对应训练4.(2022泉州)(1)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=°.4.分析:根据邻补角互补直接求出∠AOC的值.解:∵∠BOC=50°,∴∠A0C=180°-50°=130°.点评:本题考查了对顶角、邻补角,知道邻补角的和为180°是解题的关键.考点四:平行线的判定与性质例4(2022衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=()A.70°B.90°C.110°D.80°思路分析:首先根据垂直于同一条直线的两直线平行可得a∥b,再根据两直线平行同位角相等可得∠1=∠3.根据对顶角相等可得∠2=∠3,利用等量代换可得到∠2=∠1=70°.解:∵直线a⊥直线c,直线b⊥直线c,∴a∥b,∴∠1=∠3,∵∠3=∠2,∴∠2=∠1=70°.故选:A.点评:此题主要考查了平行线的判定与性质,关键是掌握平行线的判定方法与性质定理.对应训练5.(2022宜宾)如图,已知∠1=∠2=∠3=59°,则∠4=.5.121°分析:由∠1=∠3,利用同位角相等两直线平行,得到AB与CD平行,再利用两直线平行同旁内角互补得到∠5与∠4互补,利用对顶角相等得到∠5=∠2,由∠2的度数求出∠5的度数,即可求出∠4的度数.解:∵∠1=∠3,∴AB∥CD,∴∠5+∠4=180°,又∠5=∠2=59°,∴∠4=180°-59°=121°.故答案为:121°点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.考点五:真假命题的识别例6(2022呼和浩特)下列命题中,真命题的个数有()①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行②函数y=某2+1某图象上的点P(某,y)一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|某|-y=3和y+某2=0同时成立的某的取值为A.3个B.1个C.4个D.2个思路分析:①根据平移的性质以及旋转的性质得出答案即可;②根据二次根式的性质以及点的坐标性质,得出答案;③根据正投影的定义得出答案;④根据使得|某|-y=3和y+某2=0同时成立,即y=|某|-3,y=-某2,故|某|-3=-某2,进而利用绝对值得性质,解方程即可得出答案.解:①平移后对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.旋转后对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化,故此选项错误;②根据二次根式的意义得出某<0,y>0,故函数y=某2+1某1213.图象上的点P(某,y)一定在第二象限,故此选项正确;③根据正投影的定义得出,正投影的投影线彼此平行且垂直于投影面,故此选项正确;222④使得|某|-y=3和y+某=0同时成立,即y=|某|-3,y=-某,故|某|-3=-某,某-|某|-3=0,当某>0,则某-某-3=0,解得:某1=121322,某2=1132(不合题意舍去),当某<0,则某2+某-3=0,解得:某1=1213(不合题意舍去),某2=11321,故使得|某|-y=3和y+某2=0同时成立的某的取值为:故正确的有2个,132,-1132,故此选项错误,故选:D.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.同时也考查了平移的性质以及旋转的性质和二次根式的性质、正投影、解一元二次方程等知识,熟练根据绝对值性质整理出一元二次方程是解题关键.对应训练6.(2022龙岩)下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a=b,则a=bD.若a>b,则-2a >-2b6.分析:分别判断四个选项的正确与否即可确定真命题.解:A、对顶角相等为真命题;B、两直线平行,同位角相等,故为假命题;C、a2=b2,则a=±b,故为假命题;22D、若a>b,则-2a<-2b,故为假命题;故选A.【聚焦山东中考】1.(2022滨州)借助一副三角尺,你能画出下面哪个度数的角()A.65°B.75°C.85°D.95°1.思路分析:先分清一副三角尺,各个角的度数分别为多少,然后将各个角相加或相减即可得出答案.解:利用一副三角板可以画出75°角,用45°和30°的组合即可,故选:B.点评:此题主要考查了用三角板直接画特殊角,关键掌握用三角板画出的角的规律:都是15°的倍数.2.(2022济宁)如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A.40°B.75°C.85°D.140°2.分析:根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.解:如图:∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.故选C.点评:本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.3.(2022日照)如图,DE∥AB,若∠ACD=55°,则∠A等于()A.35°B.55°C.65°D.125°3.分析:由DE∥AB,∠ACD=55°,根据两直线平行,内错角相等,即可求得∠A的度数.解:∵DE∥AB,∠ACD=55°,∴∠A=∠ACD=55°.故选B.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.4.(2022临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°4.分析:先根据平行线的性质求出∠3的度数,再根据直角三角形的性质即可得出∠2的度数.解:∵AB∥CD,DB⊥BC,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°-∠3=90°-40°=50°.故选B.点评:本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同位角相等.5.(2022济南)如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=()A.115°B.65°C.35°D.25°5.分析:由直线a∥b,∠1=65°,根据两直线平行,同位角相等,即可求得∠3的度数,又由对顶角相等,即可求得答案.解:∵直线a∥b,∠1=65°,∴∠3=∠1=65°,∴∠2=∠3=65°.故选B.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.6.(2022济南)下列命题是真命题的是()A.对角线相等的四边形是矩形B.一组邻边相等的四边形是菱形C.四个角是直角的四边形是正方形D.对角线相等的梯形是等腰梯形6.分析:根据矩形、菱形的判定方法以及定义即可作出判断.解答:解:A、对角线相等的平形四边形是矩形,故选项错误;B、一组邻边相等的平行四边形是菱形,故选项错误;C、四个角是直角的四边形是矩形,故选项错误;D、正确.故选D.点评:本题考查了真命题的判断,正确掌握定义、定理是关键.7.(2022菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=cm.7.5或11分析:点C可能在线段BC上,也可能在BC的延长线上.因此分类讨论计算.解:根据题意,点C可能在线段BC上,也可能在BC的延长线上.若点C在线段BC上,则AC=AB-BC=8-3=5(cm);若点C在BC的延长线上,则AC=AB+BC=8+3=11(cm).故答案为5或11.点评:此题考查求两点间的距离,运用了分类讨论的思想,容易掉解.【备考真题过关】一、选择题1.(2022永州)永州境内的潇水河畔有朝阳岩、柳子庙和迥龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迥龙塔D.朝阳岩和迥龙塔这段路程的中间位置1.分析:设朝阳岩距离柳子庙的路程为5,朝阳岩距离迥龙塔的路程为8,则迥龙塔距离柳子庙的路程为13,然后对四个答案进行比较即可.解:设朝阳岩距离柳子庙的路程为5,朝阳岩距离迥龙塔的路程为8,则迥龙塔距离柳子庙的路程为13,A、当旅游车停在朝阳岩时,总路程为5+13=18;B、当旅游车停在柳子庙时,总路程为5+8=13;C、当旅游车停在迥龙塔时,总路程为13+8=21;D、当旅游车停在朝阳岩和迥龙塔这段路程的中间时,总路程大于13.故路程最短的是旅游车停在柳子庙时,故选B.点评:本题考查了直线、射线及线段的有关知识,用特殊值的方法比较容易说出来.2.(2022长沙)下列四个角中,最有可能与70°角互补的是()A.B.C.D.2.分析:根据互补的两个角的和等于180°求出70°角的补角,然后结合各选项即可选择.解:70°角的补角=180°-70°=110°,是钝角,结合各选项,只有D选项是钝角,所以,最有可能与70°角互补的是D选项的角.故选D.点评:本题考查了互为补角的定义,根据补角的定义求出70°角的补角是钝角是解题的关键.3.(2022桂林)如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠53.分析:根据内错角的定义找出即可.解:根据内错角的定义,∠1的内错角是∠3.故选B.点评:本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.(2022张家界)如图,直线a、b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b4.分析:根据平行线的判定定理与性质对各选项进行逐一判断即可.解:A、若∠1=∠2不符合a∥b的条件,故本选项错误;B、若a∥b,则∠1+∠2=180°,∠1不一定等于∠2,故本选项错误;C、若a∥b,则∠1+∠2=180°,故本选项错误;D、如图,由于∠1=∠3,当∠3+∠2=180°时,a∥b,,所以当∠1+∠2=180°时,一定有a∥b,故本选项正确.故选D.点评:本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.6.(2022肇庆)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°6.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°-∠C-∠B=180°-40°-60°=80°.故选C.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.7.(2022玉林)如图,a∥b,c与a,b都相交,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°7.分析:根据两直线平行,同位角相等,即可得出∠2的度数.解:∵a∥b,∴∠1=∠2=50°.故选B.点评:此题考查了平行线的性质,关键是掌握平行线的性质:两直线平行,同位角相等,难度一般.1.(2022长春)如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为()A.42°B.45°C.48°D.58°考点:平行线的性质;直角三角形的性质。
湘教版2018-2019年七年级数学下册 思想方法专题:相交线与平行线中的思想方法(含答案)
思想方法专题:相交线与平行线中的思想方法◆类型一 相交线与平行线中利用方程思想求角度 1.如图,直线AB ,CD 相交于点O ,∠AOC =60°,OE 把∠BOD 分成两部分,若∠BOE ∶∠EOD =1∶2,则∠AOE 的度数为( )A .180°B .160°C .140°D .120°2.如图,直线AB ,CD 相交于点O ,过点O 作两条射线OM ,ON ,且∠AOM =∠CON =90°.(1)若OC 平分∠AOM ,求∠AOD 的度数;(2)若∠1=14∠BOC ,求∠AOC 和∠MOD 的度数.【方法14②】◆类型二 相交线与平行线中的分类讨论思想3.在同一平面内,三条直线的交点个数是__________. 4.已知∠α和∠β两边分别平行,且∠α=x ,∠β=4x -30°,则∠α=________.5.★如图,点D 为射线CB 上一点,且不与点B ,C 重合,DE ∥AB 交直线AC 于点E ,DF∥AC交直线AB于点F.画出符合题意的图形,猜想∠EDF与∠BAC的数量关系,并说明理由.◆类型三平移中利用转化思想求周长或面积6.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是【方法16】BA.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长7.如图,在长为50m,宽为30m的长方形土地上,有纵横交错的几条小路,宽均为1m,其他部分均种植花草.则种植花草的面积是________.8.如图,在直角三角形ABC中,∠C=90°,AC=4cm,BC=3cm,将三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8cm,DB=2cm.(1)求三角形ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.9.(湘潭县期末)如图,已知三角形ABC的面积为16,BC的长为8,现将三角形ABC 沿BC向右平移m个单位到三角形A′B′C′的位置.若四边形ABB′A′的面积为32,求m的值.◆类型四建立平行线的模型解决实际问题10.如图是一架婴儿车的示意图,其中AB∥CD,∠1=110°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.70°第10题图第11题图11.如图,一条公路修到湖边时,需拐弯绕湖而过.如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是________度.12.小芳给自己家的小狗乐乐做了一个小木屋,其侧面如图所示.若她已测出∠A=135°,∠C=125°,由于受条件影响,屋顶的∠B的度数无法测出.哥哥看到后说,不用测量,他也能算出∠B的度数,你知道小芳的哥哥是怎样做的吗?试着说出他的方法,并计算出∠B 的度数.◆类型五平行线中利用从特殊到一般的思想进行探究13.★如图①:MA1∥NA2,如图②:MA1∥NA3,如图③:MA1∥NA4,如图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1=________°(用含n的代数式表示).14.★如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图①中∠AED,∠EAB,∠EDC的关系,并说明你的理由;(2)拓展应用:如图②,射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界)其中区域③,④位于直线AB上方,P 是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求写出过程).解:AB∥EF.理由:在∠BCD和∠CDE内分别作∠BCM=∠B=25°,∠EDN=∠E=10°,则CM∥AB,DN∥EF,又∠BCD=45°,∠CDE=30°,∴∠MCD=20°,∠CDN=20°,∴∠MCD=∠CDN,∴CM∥DN,∴AB∥EF.参考答案与解析1.B2.解:(1)∵∠AOM=∠CON=90°,OC平分∠AOM,∴∠1=∠AOC=45°,∴∠AOD=180°-∠AOC =180°-45°=135°.(2)设∠1=x ,则∠BOC =4x ,∴∠BOM =3x .∵∠AOM =90°,∴∠BOM =180°-90°=90°,∴x =30°,∴∠1=30°,∴∠AOC =90°-∠1=60°,∠MOD =180°-∠1=150°.3.0或1或2或3 解析:有四种情况:①三条直线互相平行;②只有两条直线平行;③三条直线互不平行(交于一点);④三条直线互不平行(两两相交,不交于一点),如图所示.4.10°或42° 解析:∵∠α和∠β两边分别平行,∴∠α=∠β或∠α+∠β=180°.∵∠α=x ,∠β=4x -30°,∴x =4x -30°或x +4x -30°=180°,解得x =10°或x =42°,∴∠α=10°或42°.5.解:有两种情况:(1)如图①,当点D 在BC 上时,∠EDF =∠BAC .理由如下:连接AD ,∵DF ∥AC ,∴∠FDA =∠EAD .∵DE ∥AB ,∴∠ADE =∠F AD .∴∠EDF =∠EDA +∠FDA =∠F AD +∠EAD =∠BAC ;(2)如图②,当点D 在CB 的延长线上时,∠EDF +∠BAC =180°.理由如下:连接AD ,同(1)可得∠EDF =∠EAF ,∵∠EAF +∠BAC =180°,∴∠EDF +∠BAC =180°.6.D7.1421m 28.解:(1)∵三角形ABC 沿AB 方向向右平移得到三角形DEF ,∴AD =BE =CF ,BC =EF =3cm.∵AE =8cm ,DB =2cm ,∴AD =BE =CF =8-22=3(cm).(2)四边形AEFC 的周长为AE +EF +CF +AC =8+3+3+4=18(cm).9.解:过点A 向BC 作垂线,垂足为H ,如图所示.∵S 三角形ABC =16,BC =8,∴12·BC ·AH=16,∴12×8·AH =16,解得AH =4.又∵S四边形ABB ′A ′=32,∴BB ′×4=32,∴BB ′=8,∴m=BB ′=8,即m 的值是8.10.D11.150 解析:如图,过点B 作BD ∥AE ,∵AE ∥CF ,∴AE ∥BD ∥CF ,∴∠ABD =∠A =120°.∵∠ABC =150°,∴∠CBD =∠CBA -∠ABD =150°-120°=30°.∵CF ∥BD ,∴∠CBD +∠C =180°,∴∠C =180°-∠CBD =180°-30°=150°.12.解:过点B作BD∥AE交EF于点D,则AE∥BD∥CF.∵∠A=135°,∠C=125°,∴∠ABD=180°-∠A=45°,∠CBD=180°-∠C=55°,∴∠ABC=∠ABD+∠CBD=45°+55°=100°.即∠B的度数为100°.13.n·180解析:∵MA1与NA n平行,∴在图①可得∠A1+∠A2=180°;在②中可过A2作A2B∥MA1,如图所示,∵MA1∥NA3,∴A2B∥NA3,∴∠MA1A2+∠BA2A1=∠BA2A3+∠NA3A2=180°,∴∠A1+∠A1A2A3+∠A3=360°.同理可得∠A1+∠A2+∠A3+∠A4=540°,∠A1+∠A2+∠A3+∠A4+∠A5=720°,∴∠A1+∠A2+∠A3+…+∠A n+1=n·180°.14.解:(1)①∠AED=70°;②∠AED=80°;③∠AED=∠EAB+∠EDC.理由如下:过点E向左作射线EF∥AB,∴∠EAB=∠AEF.∵AB∥CD,∴EF∥CD,∴∠EDC=∠DEF.∴∠AED=∠AEF+∠DEF=∠EAB+∠EDC.(2)当点P在区域①时,∠PEB+∠PFC+∠EPF=360°;当点P在区域②时,∠EPF=∠PEB+∠PFC;当点P在区域③时,∠PEB=∠PFC+∠EPF;当点P在区域④时,∠PFC =∠EPF+∠PEB.。
人教版数学七年级下册:第五章 相交线与平行线——专题练习(附答案)
小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=度.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( )A.20° B.25° C.30° D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB= (垂直的定义).②所以 (同位角相等,两直线平行).③所以∠1+∠2= (两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°. ∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( D )A.20° B.25° C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。
北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)
北师大版初一(下)数学第二章相交线与平行线教案:相交线与平行线讲义(含解析)把握对顶角和邻补角的概念;把握垂线段的定义及其画法;3.把握三线八角的定义和找法;4.把握平行线的性质与判定.相交线在同一平面内,两条直线的位置关系有_________和________。
(2)相交:在同一平面内,有__________的两条直线称为相交线。
(3)邻补角:①定义:有公共顶点,且有一条公共边,另一条边互为反向延长线,具有这种位置关系的两个角,互为邻补角。
②性质:位置——互为邻角数量——互为补角(两角之和为180°)(4)对顶角:①定义:有一个公共顶点,同时有一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角②性质:对顶角相等几何语言:∵∠1+∠2=180°∠2+∠3=180°∴∠1=∠3(同角的补角相等)两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对显现的,对顶角是具有专门位置关系的两个角;⑵假如∠α与∠β是对顶角,那么一定有∠α=∠β;反之假如∠α=∠β,那么∠α与∠β不一定是对顶角⑶假如∠α与∠β互为邻补角,则一定有_____________;反之假如∠α+∠β=180°,则∠α与∠β不一定是邻补角。
(4)两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做_______。
符号语言记作:如图所示:AB⊥CD,垂足为O垂线性质1:过一点_______________一条直线与已知直线垂直。
垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:_______________。
3.垂线的画法:(1)过直线上一点画已知直线的垂线;(2)过直线外一点画已知直线的垂线。
湘教版 七年级数学下册专题训练(附答案)
湘教版七年级数学下册专题训练(附答案) 湘教版七年级数学下册专题训练(附答案解析)本套专题训练包含6个训练专题。
类比归纳专题:二元一次方程组的解法选择类比归纳专题:因式分解的方法思想方法专题:相交线与平行线中的思想方法解题技巧专题:方程组中较复杂的实际问题解题技巧专题:平行线中作辅助线的方法解题技巧专题:整式乘法及乘法公式中公式的巧用类比归纳专题:二元一次方程组的解法选择——学会选择最优的解法类型一解未知数系数含1或-1的方程组1.(湘潭期末)方程组{x-1=,x+1=y}的解是()。
A。
{x=1,y=2}。
B。
{x=1,y=-2}C。
{x=2,y=1}。
D。
{x=,y=-1}改写:解如下方程组{x-1=0,x+1=y}。
A。
{x=1,y=2}。
B。
{x=1,y=-2}C。
{x=2,y=1}。
D。
{x=,y=-1}2.(冷水江期末)方程组{ x+y=4,2x-y=2 }的解是________。
改写:解如下方程组{ x+y=4,2x-y=2 }。
3.解方程组:1) { x-y=2,x+2y=5 };2) { 2x+y=3,3x-5y=11 }。
改写:解如下方程组:1) { x-y=2,x+2y=5 };2) { 2x+y=3,3x-5y=11 }。
4.下面是老师在XXX的数学作业本上截取的部分内容:解方程组{ 2x-y=3,x+y=-12 }。
解:将方程2x-y=3变形,得y=2x-3③,……第一步把方程③代入方程2x-y=3,得2x-(2x-3)=3,……第二步整理,得3=3,……第三步因为x可以取任意实数,所以原方程组有无数个解……第四步问题:1)这种解方程组的方法叫“代入法”.XXX的解法正确吗?若不正确,错在哪一步?请你指出错误的原因,求出正确的解;2)请用不同于(1)中的方法解这个方程组。
改写:解方程组{ 2x-y=3,x+y=-12 }。
解:1)这种解方程组的方法叫“代入法”.XXX的解法正确。
第03讲 相交线与平行线中蕴含的数学思想(含答案)-2021-2022学年七年级数学下册常考点
2021-2022学年七年级数学下册常考点专题相交线与平行线中蕴含的数学思想(原卷版)第一部分专题典例剖析+针对训练类型一数形结合思想典例1如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF .(1)AE 与FC 平行面?请说明理由.(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么?C BDFEA12针对训练11.如图,已知EF 为直线,∠1=63°,∠2=27°,且∠B +∠BMD +∠D =360°.EF ⊥CD 吗?为什么?A B C DM E F 21类型二整体思想典例2如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,EM ⊥EN ,∠EMA 和∠END 的平分线交于点F ,则∠F 的度数为()A.120°B.135°C.150°D.不能确定针对训练22.如图,AB∥CD,∠DBC=2∠ABC,∠BCD的平分线CE交BD于点E,连续AE,∠BDC=6∠BAE,求∠AEC的度数.类型三方程思想典例3如图,AB∥CD,∠DBC=2∠ABC,∠BCD的平分线CE交BD于E,连接AE,若∠BDC=6∠BAE,则∠AEC的度数为.针对训练33.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.4.(2020春•章丘区期末)如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.类型四分类思想典例4(2020春•营山县期末)如图1,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠BAN=°;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP绕点B开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前.若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.针对练习45.如果∠1的两边与∠2的两边互相平行,且∠1=60°,则∠2=.6.从汽车灯的点O处发出的-束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75°.在图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22°.求∠AOD的度数.第二部分专题提优训练1.(2021春•青羊区校级期中)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数2.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.3.(2019春•成都期中)如图,已知直线l1∥l2,点A、B在直线l1上,点C、D在直线l2上,点C在点D 的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE、DE交于点E.(1)写出∠EDC的度数;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,使点B在点A的右侧,其他条件不变,请画出图形并直接写出∠BED 的度数(用含n的代数式表示).4.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.如图4,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.5.如图,已知AB∥CD,EF∥MN,∠1=115°.(1)求∠2和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别平行于另一个角的两边,那么这两个角的关系如何?(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍少60°,求这两个角的度数.6.如图所示,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.备用图备用图(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.专题相交线与平行线中蕴含的数学思想(解析版)第一部分专题典例剖析+针对训练类型一数形结合思想典例1如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF .(1)AE 与FC 平行面?请说明理由.(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么?C BDFEA12思路引领:已知条件是角之间的数量关系,问题(1)(2)是判断两直线的位置关系,可想到用平行线的判定,其中第(2)问要用到(1)的结论;(3)中要说明BC 是否平分∠DBE ,只要看能否得到∠EBC =∠CBD 即可.解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB =180°(邻补角定义),∴∠1=∠CDB ,∴AE ∥FC (同位角相等,两直线平行).(2)平行.理由如下:∵DA 平分∠BDF ,∴∠FDA =∠ADB .∵AE ∥CF ,AD ∥BC .∴∠FDA =∠A =∠CBE ,∠ADB =∠CBD .∴∠EBC =∠CBD .∴BC 平分∠DBE .点睛:平行线的判定是由角与角的数量关系到“形”的判定,而性质则是“形”到“数”的说理,研究两条直线的垂直或平行的共同点是把研究它们的位置关系转化为研究角和角之间的关系.针对训练11.如图,已知EF 为直线,∠1=63°,∠2=27°,且∠B +∠BMD +∠D =360°.EF ⊥CD 吗?为什么?A B C D M E F21思路引领:由“∠B +∠BMD +∠D =360°”设法证明AB ∥CD ,可过点M 作AB 的平行线,∠1的同位角和∠2恰好组合成∠EFC ,因此可证得∠EFC =90°,从而证得EF ⊥CD .解:过点M 作MN ∥AB ,A B C DM E F 21N 3∴∠B +∠BMN =180°,∵∠B +∠BMD +∠D =360°.∴∠D +∠DMN =180°,∴MN ∥CD .∴AB ∥CD ,∴∠3=∠1=63°.∵∠2=27°,∴∠CFE =90°,∴EF ⊥CD .类型二整体思想典例2如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,EM ⊥EN ,∠EMA 和∠END 的平分线交于点F ,则∠F 的度数为()A .120°B .135°C .150°D .不能确定思路引领:过F 作FQ ∥AB ,过E 作EH ∥AB ,求出AB ∥CD ∥EH ∥FQ ,根据平行线的性质求出∠MFN =∠1+∠8,∠MEN =∠3+∠6=90°,即可求出答案.解:∵AB ⊥BC ,DC ⊥BC ,∴∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,∵EM⊥EN,∴∠MEN=90°,∵MF平分∠AME,NF平分∠DNE,∴∠1=∠2,∠7=∠8,过F作FQ∥AB,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,AB∥CD∥FQ,∴∠3=∠4,∠5=∠6,∠1=∠MFQ,∠8=∠NFQ,∴∠MEN=∠4+∠5=∠3+∠6=90°,∠MFN=∠1+∠8,∵∠1+∠2=180°﹣∠3,∠7+∠8=180°﹣∠6,∴2∠1+2∠8=180°+180°﹣(∠3+∠6)=360°﹣90°=270°,∴∠1+∠8=135°,∴∠MFN=135°,故选:B.点睛:本题考查了平行线的性质和判定、角平分线定义、垂直定义等知识点,能够求出∠MEN=∠3+∠6=90°、∠MFN=∠1+∠8是解此题的关键.针对训练22.如图,AB∥CD,∠DBC=2∠ABC,∠BCD的平分线CE交BD于点E,连续AE,∠BDC=6∠BAE,求∠AEC的度数.解:过点E作EF∥AB,如图.∵AB∥CD,∴AB∥CD∥EF.∴∠A=∠AEF,∠DCE=∠CEF.∴∠AEC=∠AEF+∠CEF=∠A+∠DCE.∵∠BCD的平分线CE交BD于点E,故可设∠DCE=∠BCE=x,则∠ABC=2x.∴∠DBC=2∠ABC=4x.设∠BAE=y,则∠BDC=6∠BAE=6y,易得∠ABD+∠BDC=180°,∴2x+6y+4x=180°,解得x+y=30°,∴∠BAE+∠DCE=x+y=30°,则∠AEC=30°.类型三方程思想典例3如图,AB∥CD,∠DBC=2∠ABC,∠BCD的平分线CE交BD于E,连接AE,若∠BDC=6∠BAE,则∠AEC的度数为.思路引领:过E作EF∥AB,可得∠AEC=∠AEF+∠CEF=∠A+∠DCE,设∠DCE=∠BCE=α,则∠ABC =2α,设∠BAE=β,则∠BDC=6∠BAE=6β,依据三角形内角和定理,即可得到α+β=30°,进而得出∠BAE+∠DCE=30°,即∠AEC=30°.解:如图,过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠DCE=∠CEF,∴∠AEC=∠AEF+∠CEF=∠A+∠DCE,∵∠BCD的平分线CE交BD于E,∴可设∠DCE=∠BCE=α,则∠ABC=2α,∴∠DBC=2∠ABC=4α,设∠BAE=β,则∠BDC=6∠BAE=6β,∵△BCD中,∠BCD+∠CDB+∠DBC=180°,∴2α+6β+4α=180°,∴α+β=30°,∴∠BAE+∠DCE=30°,∴∠AEC=30°,故答案为:30°.点睛:本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.针对训练33.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.第3题图解:(1)因为∠AOE:∠EOC=2:3.所以设∠AOE=2x,则∠EOC=3x,所以∠AOC=5x,因为∠AOC=∠BOD=75°,所以5x=75°,解得:x=15°,则2x=30°,所以∠AOE=30°;(2)OB是∠DOF的平分线;理由如下:因为∠AOE=30°,所以∠BOE=180°-∠AOE=150°,因为OF平分∠BOE,所以∠BOF=75°,因为∠BOD=75°,所以∠BOD=∠BOF,所以OB是∠DOF的角平分线.4.(2020春•章丘区期末)如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD﹣∠BEF=30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.类型四分类思想典例4(2020春•营山县期末)如图1,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠BAN=°;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP绕点B开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前.若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.思路引领:(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设射线AM转动t秒,两射线互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°;(2)设射线AM转动t秒,两射线互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,射线AM转动30或110秒,两射线互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.故答案为:60.点睛:本题主要考查了平行线的判定与性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.针对练习45.如果∠1的两边与∠2的两边互相平行,且∠1=60°,则∠2=.解:如图1,∵BC∥EF,∴∠2=∠DGC.∵AB∥DE,∴∠1=∠DGC,∴∠1=∠2=60°;如图2,∵BC∥DE,∴∠1+∠BGD=180°.∵AB∥EF,∴∠2=∠BGD,∴∠1+∠2=180°,∴∠2=180°﹣∠1=180°﹣60°=120°.故答案为:60°或120°.点睛:本题考查的是平行线的性质,在解答此题时要注意进行分类讨论,不要漏解.6.从汽车灯的点O处发出的-束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75°.在图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22°.求∠AOD的度数.解:因为AB∥CF,所以∠COA=∠OAB=75°.因为DE∥CF,所以∠COD=∠ODE=22°.①②在答图①的情况下,∠AOD=∠COA-∠COD=75°-22°=53°;在答图②的情况下,∠AOD=∠COA+∠COD=75°+22°=97°,所以∠AOD的度数为53°或97°.第二部分专题提优训练1.(2021春•青羊区校级期中)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=32°,∴∠MGK=∠BMG=32°,∵MG平分∠BMP,∴∠GMP=∠BMG=32°,∴∠BMP=64°,∵PQ∥AB,∴∠MPQ=∠BMP=2∠BMG=64°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD∥GK,∴∠QPN=∠DNP=∠KGN=α,∴∠MGN=∠MGK+∠KGN=32°+α,∠MPN=∠MPQ﹣∠QPN=64°﹣α,∴∠MGN+∠MPN=32°+α+64°﹣α=96°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠AME=2x,∵CD∥AB,AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB,AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠MGN=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.2.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.解:(1)∵AB∥CD,∴∠BAC+∠ACD=180°,又∵AP平分∠CAB,CP平分∠ACD,∴∠CAP=∠CAB,∠ACP=∠ACD,∴∠CAP+∠ACP=(∠BAC+∠ACD)=×180°=90°,∴△ACP中,∠P=180°﹣90°=90°,即AP⊥CP;(2)∠E+∠F=108°.证明:如图2,过E作EG∥AB,过F作FH∥CD,∵AB∥CD,∴EG∥AB∥FH∥CD,∠BAC+∠DCA=180°,∴∠BAE=∠AEG,∠DCE=∠CEG,∠BAF=∠AFH,∠DCF=∠CFH,∴∠AEC=∠BAE+∠DCE,∠AFC=∠BAF+∠DCF,∵∠BAP=∠BAC,∠DCP=∠ACD,AE平分∠BAP,CF平分∠DCP,∴∠BAE=∠BAC,∠DCF=∠DCA,∴∠AEC=∠BAC+∠ACD,∠AFC=∠BAC+∠DCA,∴∠AEC+∠AFC=∠BAC+∠ACD+∠BAC+∠DCA=∠ACD+∠BAC=(∠BAC+∠DCA)=×180°=108°;(3)如图,过Q作QE∥AB,∵AB∥CD,QE∥CD,∴∠BAQ=∠AQE,∠DCQ=∠CQE,∴∠AQC=∠AQE+∠CQE=∠BAQ+∠DCQ,由(1)可得∠BAP+∠DCP=180°﹣90°=90°,又∵∠BAQ=∠BAP,∠DCQ=∠DCP,∴∠AQC=∠BAQ+∠DCQ=∠BAP+∠DCP=(∠BAP+∠DCP)=30°,∵∠AQH是△AQK的外角,QA=QK,∴∠K=∠AQH,∵QM是∠CQH的平分线,∴∠MQH=∠CQH,∵∠MQH是△MQK的外角,∴∠M=∠MQH﹣∠K=∠CQH﹣∠AQH=(∠CQH﹣∠AQH)=∠AQC=30°=15°,即∠QMK的大小不变,是定值15°.3.(2019春•成都期中)如图,已知直线l1∥l2,点A、B在直线l1上,点C、D在直线l2上,点C在点D 的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE、DE交于点E.(1)写出∠EDC的度数40°;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,使点B在点A的右侧,其他条件不变,请画出图形并直接写出∠BED 的度数(用含n的代数式表示).解:(1)∵DE平分∠ADC,∠ADC=80°,∴∠EDC=∠ADC=×80°=40°;故答案为:40°;(2)如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)过点E作EF∥AB,如图,点A在点B的左边时,若点E在直线l1和l2之间,则∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°﹣n°+40°=220°﹣n°.综上所述,∠BED的度数变化,度数为220°﹣n°.4.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.如图4,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.解:如图,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y.∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x.∵GK∥AB,∴∠MGK=∠BMG=x.∵ET∥AB,∴∠TEM=∠EMA=2x.∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y.∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE ∠CNG=90° y.∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90° y,∴∠MEN=∠TEN﹣∠TEM=90° y﹣2x,∠MGN=x+y.∵2∠MEN+∠G=105°,∴2(90° y﹣2x)+x+y=105°,解得x=25°.∴∠AME=2x=50°.5.如图,已知AB∥CD,EF∥MN,∠1=115°.(1)求∠2和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别平行于另一个角的两边,那么这两个角的关系如何?(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍少60°,求这两个角的度数.第6题图解:(1)因为AB∥CD,所以∠2=∠1=115°.又因为EF∥MN,所以∠4+∠2=180°,所以∠4=180°-∠2=65°;(2)由(1)可知如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,(3)由(2)可知这两个角互补或相等,设一个角为x°,则另一个角为2x°-60°,根据两个角互补可得,x+2x-60=180,解得:x=80.所以这两个角分别为80°和100°.根据两个角相等可得,x=2x-60,解得:x=60.所以这两个角分别为60°和60°.6.如图所示,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.备用图备用图(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.解:(1)因为∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°,所以∠BOD=∠AOC=70°.又因为OE平分∠BOD,所以∠DOE=12∠BOD=35°,所以∠COE=180°-∠DOE=145°;(2)分两种情况:①②如图①,因为OF⊥OE,所以∠EOF=90°,所以∠COF=∠COE-∠EOF=145°-90°=55°.如图②,∠COF=∠360°-∠COE-∠EOF=125°.。
七年级数学下册第五章相交线与平行线题型总结及解题方法(带答案)
七年级数学下册第五章相交线与平行线题型总结及解题方法单选题1、如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则∠BAD+∠DOC∠ADO的值为()A.1B.12C.2D.无法确定答案:A分析:过点D作DE//AB交AO于点E,由平行的性质可知∠BAD=∠ADE,∠DOC=∠ODE,等量代换可得∠BAD+∠DOC∠ADO的值.解:如图,过点D作DE//AB交AO于点E,∵四边形ABCO是矩形∴AB//OC∵DE//AB∴AB//DE,DE//OC∴∠BAD=∠ADE,∠DOC=∠ODE∴∠BAD+∠DOC∠ADO=∠BAD+∠DOC∠ADE+∠ODE=∠BAD+∠DOC∠BAD+∠DOC=1故选:A.小提示:本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.2、如图,直线a、b被直线c所截,a∥b,∠2=35°,则∠1的度数是()A.135°B.140°C.145°D.150°答案:C分析:根据邻补角的含义先求解∠3=145°,再利用平行线可得∠1=∠3=145°即可.解:如图,∵∠2=35°,∴∠3=180°−35°=145°,∵a∥b,∴∠1=∠3=145°,故选:C.小提示:本题考查的是邻补角的含义,平行线的性质,利用平行线的性质证明∠1=∠3是解本题的关键.3、如图,直线AB、CD相交于点O.若∠1+∠2=100°,则∠BOC的大小为()A.50°B.100°C.130°D.150°答案:C分析:根据对顶角相等,以及∠1+∠2=100°,求得∠1=50°,根据邻补角即可求解.解:∵∠1+∠2=100°,∠1=∠2,∴∠1=50°,∴∠BOC=180°-∠1=180°-50°=130°,故选C.小提示:本题考查了对顶角相等,邻补角,掌握以上知识是解题的关键.4、如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是( ).A.PA B.PB C.PC D.PD答案:B根据垂线段最短得,能最快到达公路MN的小道是PB,故选:B.5、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.6、下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个B.2个C.3个D.4个答案:A分析:根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.小提示:本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.7、如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cmB.3cmC.4cmD.5cm答案:C分析:据平移的性质可得BB′=CC′=1,列式计算即可得解.解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′=BB′+B′C+CC′=1+2+1=4(cm).故选:C.小提示:本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.8、下列命题是假命题的( )A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c答案:C分析:根据平行的判定方法对A、C、D进行判断;根据平行的性质和垂直的定义对B进行判断.A.在同一平面内,若a∥b,b∥c,则a∥c,所以A选项为真命题;B.在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题;C.在同一平面内,若a⊥b,b⊥c,则a∥c,所以C选项为假命题;D.在同一平面内,若a⊥b,b⊥c,则a∥c,所以D选项为真命题.故选:C.小提示:本题考查了平行公理及平行线的判定定理,熟练掌握平行线的判定定理是解决本题的关键.9、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.10、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3答案:B试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D 选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.填空题11、如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2=_______度.答案:42.∵AB⊥BC,∴∠ABC=90°,即∠1+∠3=90°,∵∠1=48°,∴∠3=42°,∵a∥b,∴∠2=∠3=42°.故答案为42.点睛:本题关键利用平行线的性质解题.12、如图,若AB⊥BC,BC⊥CD,则直线AB与CD的位置关系是______.答案:AB∥CD∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案为AB∥CD.13、如图,AB∠CD,若GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,若∠CGH=70°,则∠EHB的度数是______,图中与∠DGE互余的角共有______个.答案: 35°##35度 5分析:由平行线的性质可得,∠CGH=∠GHB=70°,∠GFH=∠CGF,利用邻角的补角可得∠DGH=∠GHA= 110°,利用角平分线的性质可得∠EHB=∠GHE=35°,∠CGF=∠GFH=∠HGF=35°,∠DGE=∠HGE= 55°,进而可求得答案.解:∵AB//CD,∴∠CGH=∠GHB=70°,∠DGH=∠GHA,∠GFH=∠CGF∴∠DGH=∠GHA=180°−70°=110°,又∵HE平分∠GHB,∵GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,∴∠EHB=∠GHE=12∠GHB=35°,∠CGF=∠GFH=∠HGF=12∠CGH=35°,∠DGE=∠HGE=12∠DGH=55°,∴∠DGE+∠BHE=90°,∠DGE+∠GHE=90°,∠DGE+∠CGF=90°,∠DGE+∠HGF=90°,∠DGE+∠GFH=90°,∴与∠DGE互余的角共有5个,所以答案是:35°,5.小提示:本题考查了平行线的性质、角平分线的性质以及互余的定义,熟练掌握角平分线的性质及互余的定义是解题的关键.14、如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.答案:1分析:利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.小提示:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.15、命题“如果a+b=0,那么a,b互为相反数”的逆命题为____________________________.答案:如果a,b互为相反数,那么a+b=0分析:交换原命题的题设与结论即可得到其逆命题.解:逆命题为:如果a,b互为相反数,那么a+b=0.所以答案是:如果a,b互为相反数,那么a+b=0.小提示:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.解答题16、如图,已知AB∥DE,那么∠A+∠C+∠D的和是多少度?为什么?答案:∠A+∠C+∠D的和是360度,理由见解析.分析:如图(见解析),过点C作CF//AB,则CF//DE,先根据平行四边形的性质(两直线平行,同旁内角互补)得出∠A+∠FCA=180°,∠D+∠DCF=180°,再根据角的和差即可得.如图,过点C作CF//AB,则所求的问题变为∠A+∠ACD+∠D的和是多少度∴∠A+∠FCA=180°∵AB//DE∴CF//DE∴∠D+∠DCF=180°∴∠A+∠FCA+∠D+∠DCF=180°+180°=360°即∠A+∠ACD+∠D=360°.小提示:本题考查了平行线的性质、角的和差,熟记平行线的性质是解题关键.17、如图,钱塘江入海口某处河道两岸所在直线(PQ,MN)夹角为20°,在河道两岸安装探照灯B和A,若灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BQ逆时针旋转至BP便立即回转,两灯不停交叉照射巡视.设灯A转动的速度是a度/秒,灯B转动的速度是b度/秒.已知∠BAN=50°.(1)当b=2时,问灯B转动几秒后,射出的光束第一次经过灯A?(2)当a=3,b=6时,若两灯同时转动,在1分钟内(包括1分钟),问A灯转动几秒,两灯的光束互相平行?(3)若A、B两灯同时转动(a>b),在45秒与90秒时,两灯的光束各平行一次,求a,b的值.答案:(1)15秒;(2)1609秒;(3)269,23. 分析:(1)根据B 灯转动30度时第一次经过灯A ,列出方程即可得解;(2)根据内错角相等,两灯的光线平行,构建方程求解可得结果;(3)分两种情形,根据平行线的判定,构建方程解决问题即可.解:(1)设灯B 转动t 秒后,射出的光束第一次经过灯A .由题意得:2t =30,解得:t =15,答:灯B 转动15秒后,射出的光束第一次经过灯A .(2)设A 灯转动x 秒,两灯的光束互相平行.根据题意得:180﹣50﹣3x =6x ﹣30时,两灯的光束互相平行,解得:x =1609,答:A 灯转动1609秒,两灯的光束互相平行.(3)在45秒与90秒时,两灯的光束各平行一次45秒时第一次平行,由题意得:45a ﹣130=30﹣45b ,90秒时第二次平行,由题意得:90a ﹣180﹣50=90b ﹣30,解得:a =269,b =23 答:a ,b 的值分别为269,23.小提示:本题主要考查了平行线的判定以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:内错角相等,两直线平行.18、完成下面的证明:如图,BE 平分∠ABD ,DE 平分∠BDC ,且∠α+∠β=90°,求证:AB ∠CD .证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α()∵DE平分∠BDC(已知),∴∠BDC=().∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC=().∴AB∠CD()答案:角平分线的定义;2∠β;角平分线的定义;等量代换;180°;等量代换,同旁内角互补两直线平行分析:首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),进而得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义)∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC=180°(等量代换),∴AB∠CD(同旁内角互补两直线平行).所以答案是:角平分线的定义;2∠β;角平分线的定义;等量代换;180°;等量代换,同旁内角互补两直线平行.小提示:此题主要考查了角平分线的定义,平行线的判定,解题的关键是掌握角平分线定义和平行线的判定方法.。
相交线与平行线技巧及练习题含答案
相交线与平行线技巧及练习题含答案一、选择题1.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.2.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.3.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.7.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A.30B.60C.90D.120【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.8.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p,q)为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A .37.5°B .75°C .50°D .65°【答案】D【解析】【分析】 先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC =2312即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE 在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a ×33=36a∴S △ODE 22 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=2122=142 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小∵OE∴OE 最小时,DE 最小而OE 的最小值为∴DE =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】 此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.16.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.17.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .18.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°【答案】B【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°,∵DE ⊥CE ,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B .考点:平行线的性质.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;。
【初中数学】人教版七年级下册专题训练(二)“相交线与平行线”中的思想方法(练习题)
人教版七年级下册专题训练(二)“相交线与平行线”中的思想方法(147)1.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF,且∠A=30∘.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.2.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30∘时,求∠BOD的度数.3.已知平面内四条直线共有三个交点,则这四条直线中最多有几条直线互相平行?4.如图,给出下列三个论断:①∠B+∠D=180∘;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以剩余的一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知: ;结论:.理由:5.如图∠AOB的两边OA,OB均为平面反光镜,∠AOB=40∘,在射线OB上有一点P,从点P射出的一束光线经OA上的点Q反射后,反射光线QR恰好与OB平行,则∠QPB 的度数是()A.60∘B.80∘C.100∘D.120∘6.如图,∠BCD=90∘,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180∘B.∠β−∠α=90∘C.∠β=3∠αD.∠α+∠β=90∘7.如图,已知直线l1∥l2,l3,l4和l1,l2分别交于点A,B,C,D,点P在直线l3或l4上且不与点A,B,C,D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)当点P在图①位置时,求证:∠3=∠1+∠2;(2)当点P在图②位置时,请写出∠1,∠2,∠3之间的关系并给予证明;(3)当点P在图③位置时,请写出∠1,∠2,∠3之间的关系并给予证明.8.如图,AB交CD于点O,OE⊥AB,∠BOC=2∠AOC,求∠EOD的度数.9.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.10.如图A,B,C三点在同一直线上,∠1=∠2,∠3=∠D.求证:BD∥CE.11.如图,BD⊥AC于点D,FG⊥AC于点G,ED∥BC.试判断∠1与∠2的数量关系,并说明理由.12.如图,在△ABC中,D,E分别为AB,AC上的点,DF,EF分别交BC于点M,N,∠FMN=∠C,∠FNM=∠B.求证:∠A=∠F.参考答案1(1)【答案】∵AE∥OF,∠A=30∘, ∴∠BOF=∠A=30∘. ∵OF平分∠BOC,∴∠COF=∠BOF=30∘. ∴∠DOF=180∘−∠COF=180∘−30∘=150∘(2)【答案】∵OF⊥OG,∴∠FOG=90∘,∴∠DOG=∠DOF−∠FOG=150∘−90∘=60∘. ∵∠AOD=∠COB=∠COF+∠FOB=60∘,∴∠AOD=∠DOG,∴OD平分∠AOG2.【答案】:如图①所示,∵OC⊥OD,∴∠COD=90∘.∵∠AOC=30∘,∴∠AOD=∠AOC+∠COD=90∘+30∘=120∘,∴∠BOD=180∘−∠AOD=180∘−120∘=60∘.如图②,∵OC⊥OD,∴∠COD=90∘.∵∠AOC=30∘,∴∠AOD=90∘−∠AOC=60∘,∴∠BOD=180∘−∠AOD=180∘−60∘=120∘. 综上所述,∠BOD的度数为60∘或120∘3.【答案】:若四条直线两两不相交,则此时四条直线相互平行,即没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条直线不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条直线也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点有一个或四个或六个.综上所述,这四条直线中最多有三条直线互相平行【解析】:若四条直线两两不相交,则此时四条直线相互平行,即没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条直线不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条直线也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点有一个或四个或六个.综上所述,这四条直线中最多有三条直线互相平行4.【答案】:认真观察图形并分析三个论断,由平行线的判定和性质,可得符合题意的有3种情况,即①②→③;①③→②;②③→①.选择其中一种即可,如①②→③.理由:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等).又∵∠B+∠D=180∘(已知),∴∠C+∠D=180∘,∴BC∥DE(同旁内角互补,两直线平行)【解析】:认真观察图形并分析三个论断,由平行线的判定和性质,可得符合题意的有3种情况,即①②→③;①③→②;②③→①.选择其中一种即可,如①②→③.理由:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等).又∵∠B+∠D=180∘(已知),∴∠C+∠D=180∘,∴BC∥DE(同旁内角互补,两直线平行)5.【答案】:B【解析】:∵OB∥QR,∠AOB=40∘,∴∠AQR=40∘.又∵OA为平面反光镜,∴∠OQP=∠AQR=40∘,∴∠PQR=100∘.又∵OB∥QR,∴∠QPB=80∘.故选 B6.【答案】:B【解析】:如图,过点C作CF∥AB,则∠BCF=∠α.∵∠BCD=90∘,∴∠FCD=90∘−∠α.∵AB∥DE,∴CF∥DE.∴∠FCD+∠β=180∘.∴90∘−∠α+∠β=180∘,∴∠β−∠α=90∘.故选 B7(1)【答案】证明:如图①,过点P作PQ∥l1,∵l1∥l2,∴PQ∥l1∥l2,∴∠1=∠QPE,∠2=∠QPF.∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)【答案】关系:∠3=∠2−∠1.证明:如图②,过点P作PQ∥l1,∵l1∥l2,∴PQ∥l1∥l2,∴∠1=∠QPE,∠2=∠QPF.∵∠3=∠QPF−∠QPE,∴∠3=∠2−∠1(3)【答案】关系:∠3=360∘−∠1−∠2.证明:如图③,过点P作PQ∥l1,∵l1∥l2,∴PQ∥l1∥l2,∴∠4+∠1=180∘,∠2+∠5=180∘.∴∠1+∠2+∠3=360∘.∴∠3=360∘−∠1−∠28.【答案】:设∠AOC的度数为x,∠BOC的度数为2x,根据题意,得x+2x=180∘,解得x=60∘,∴∠AOC=60∘,∴∠BOD=∠AOC=60∘.∵OE⊥AB,∴∠BOE=90∘,∴∠EOD=∠BOE−∠BOD=90∘−60∘=30∘【解析】:设∠AOC的度数为x,∠BOC的度数为2x,根据题意,得x+2x=180∘,解得x=60∘,∴∠AOC=60∘,∴∠BOD=∠AOC=60∘.∵OE⊥AB,∴∠BOE=90∘,∴∠EOD=∠BOE−∠BOD=90∘−60∘=30∘9.【答案】:设∠1的度数为x.∵∠1=∠2,∴∠2=x,∴∠DBC=∠1+∠2=2x.∵∠D∶∠DBC=2∶1,∴∠D=2×2x=4x.∵DE∥BC,∴∠D+∠DBC=180∘,即2x+4x=180∘,解得x=30∘,∴∠1=30∘.∵DE∥BC,∴∠E=∠1=30∘【解析】:设∠1的度数为x.∵∠1=∠2,∴∠2=x,∴∠DBC=∠1+∠2=2x.∵∠D∶∠DBC=2∶1,∴∠D=2×2x=4x.∵DE∥BC,∴∠D+∠DBC=180∘,即2x+4x=180∘,解得x=30∘,∴∠1=30∘.∵DE∥BC,∴∠E=∠1=30∘10.【答案】:∵∠1=∠2,∴AD∥BE(内错角相等,两直线平行),∴∠D=∠DBE(两直线平行,内错角相等).∵∠3=∠D,∴∠3=∠DBE(等量代换),∴BD∥CE(内错角相等,两直线平行)【解析】:∵∠1=∠2,∴AD∥BE(内错角相等,两直线平行),∴∠D=∠DBE(两直线平行,内错角相等).∵∠3=∠D,∴∠3=∠DBE(等量代换),∴BD∥CE(内错角相等,两直线平行)11.【答案】:∠1=∠2.理由如下:∵BD⊥AC,FG⊥AC,∴∠BDC=∠FGC=90∘,∴BD∥FG,∴∠2=∠DBC.∵ED∥BC,∴∠1=∠DBC,∴∠1=∠2【解析】:∠1=∠2.理由如下:∵BD⊥AC,FG⊥AC,∴∠BDC=∠FGC=90∘,∴BD∥FG,∴∠2=∠DBC.∵ED∥BC,∴∠1=∠DBC,∴∠1=∠212.【答案】:∵∠FMN=∠C, ∴DF∥AC,∴∠BDF=∠A.又∵∠FNM=∠B,∴AB∥EF,∴∠BDF=∠F,∴∠A=∠F【解析】:∵∠FMN=∠C, ∴DF∥AC,∴∠BDF=∠A.又∵∠FNM=∠B,∴AB∥EF,∴∠BDF=∠F,∴∠A=∠F。
冀教版2018-2019年七年级数学下册4.微专题:相交线与平行线中的思想方法(含答案)
4.微专题:相交线与平行线中的思想方法◆类型一方程思想【方法点拨】方程思想主要应用在有关角的度数的计算中,当已知角之间的关系比较复杂或不容易表达时,利用方程思想可以使解题过程变得比较简洁、清楚.1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为________.2.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC,且∠COE∶∠AOC=2∶5,求∠DOF的度数.3.如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.◆类型二分类讨论思想【方法点拨】在本章中,过一点作已知直线的垂线与过一点作已知直线的平行线等问题中,当点的位置不确定时,需要对点的位置进行分类讨论.在有关角的计算问题中,还常对某条射线在角的内部或外部进行分类讨论.4.在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,当∠MP A=40°,则∠NPB的度数是__________.5.(2017·定州市期中)已知OA⊥OC,∠AOB∶∠AOC=2∶3,画出图形,并求∠BOC的度数.6.在∠ABC与∠DEF中,AB∥EF,BC∥DE.(1)请你探究∠ABC与∠DEF的关系;(2)请你用上面的结论解决下面问题:若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角的度数分别是________________.◆类型三转化思想一、利用转化思想求角度【方法点拨】当一个角的度数不能直接求出时,常常转化为求它的补角、余角或与它相等的角,进而求出这个角的度数.7.(2017·常州中考)如图,直线AB,CD被直线EF所截,AB∥CD.若∠1=60°,则∠2的度数是()A.100°B.110°C.120°D.130°8.如图,已知AB∥CD,∠C=100°,且∠B∶∠D=2∶3,求∠A的度数.9.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α,β,求α+β的值.二、利用转化思想求图形周长或面积【方法点拨】当图形的周长或面积不能直接求出时,常常利用平移的性质把不规则图形的周长、面积转化为规则图形的周长、面积,或者是规则图形的周长、面积的和差形式.10.如图①,在一个长方形的草坪上有两条等宽且互相垂直的长方形小路,为求草坪面积,我们进行了如图②所示的平移变换,则草坪的面积为________m2.11.如图,直径为2cm的圆O1平移3cm到圆O2的位置,则图中阴影部分的面积为______cm2.第11题图第12题图12.如图,直角三角形AOB的周长为100,在其内部有n个小直角三角形,则这n个小直角三角形的周长之和为________.13.如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC沿AB方向向右平移得到三角形DEF.若AE=8cm,DB=2cm.(1)求三角形ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.参考答案与解析1.160° 2.解:∵OE ⊥AB ,∴∠AOE =∠BOE =90°.∵∠COE ∶∠AOC =2∶5,设∠COE =2x ,则∠AOC =5x ,∠AOE =∠AOC -∠COE =3x ,∴3x =90°,解得x =30°,∴∠COE =60°,∠AOC =150°.∵OF 平分∠AOC ,∴∠COF =75°,∴∠DOF =180°-∠COF =105°.3.解:(1)∵BD 平分∠EBC ,∠DBC =30°,∴∠EBC =2∠DBC =60°.∵BE 平分∠ABC ,∴∠ABC =2∠EBC =120°.∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A =60°.(2)存在∠DFB =∠DBF .设∠DBC =x °,则∠EBC =2x °,∠ABC =2∠EBC =4x °.∵7∠DBC -2∠ABF =180°,∴7x °-2∠ABF =180°,∴∠ABF =⎝⎛⎭⎫72x -90°,∴∠CBF =∠ABC -∠ABF =⎝⎛⎭⎫12x +90°,∠DBF =∠CBF -∠DBC =⎝⎛⎭⎫90-12x °.∵AD ∥BC ,∴∠DFB +∠CBF =180°,∴∠DFB =⎝⎛⎭⎫90-12x °,∴∠DFB =∠DBF . 4.50°或130°5.解:∵OA ⊥OC ,∴∠AOC =90°.∵∠AOB ∶∠AOC =2∶3,∴∠AOB =60°.如图,∠AOB 的位置有两种:①当∠AOB 在∠AOC 内时,∠BOC =90°-60°=30°;②当∠AOB 在∠AOC 外时,∠BOC =90°+60°=150°.综上所述,∠BOC 的度数为30°或150°.6.解:(1)如图①,∠ABC =∠DEF .理由如下:∵AB ∥EF ,∴∠1=∠DEF .∵BC ∥DE ,∴∠1=∠ABC .∴∠ABC =∠DEF .如图②,∠ABC +∠DEF =180°.理由如下:∵AB ∥EF ,∴∠1+∠DEF =180°.∵BC ∥DE ,∴∠1=∠ABC .∴∠ABC +∠DEF =180°.∴∠ABC 与∠DEF 相等或互补.(2)30°,30°或70°,110° 解析:设另一个角为x °,根据以上结论,得2x -30=x 或2x -30+x =180,解得x =30或x =70,故答案为30°,30°或70°,110°.7.C8.解:∵AB ∥CD ,∴∠C +∠B =180°,∠A +∠D =180°,∴∠B =180°-∠C =80°.∵∠B ∶∠D =2∶3,∴∠D =120°,∴∠A =180°-∠D =60°.9.解:如图,过点C 作CE ∥m .∵m ∥n ,∴CE ∥n ,∴∠1=α,∠2=β.∵∠1+∠2=90°,∴α+β=90°.10.1344 11.612.100 解析:如图,过小直角三角形的直角顶点作AO ,BO 的平行线,则小直角三角形与AO 平行的边的长度和等于AO ,与BO 平行的边的长度和等于BO .因此小直角三角形的周长等于直角△AOB 的周长.故这n 个小直角三角形的周长为100.13.解:(1)∵三角形ABC 沿AB 方向向右平移得到三角形DEF ,∴AD =BE =CF ,EF =BC =3cm.∵AE =8cm ,DB =2cm ,∴AD =BE =CF =8-22=3(cm).(2)四边形AEFC 的周长为AE +EF +CF +AC =8+3+3+4=18(cm).。
思想方法专题:相交线与平行线中的思想方法(含答案解析)
思想方法专题:相交线与平行线中的思想方法——明确解题思想,体会便捷渠道◆类型一方程思想1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为()A.180°B.160°C.140°D.120°第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________.3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B的度数.4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.◆类型二分类讨论思想5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126°C.18°或126°D.以上都不对6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,当∠MP A =40°,则∠NPB的度数是________________.7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其他所有可能符合条件的度数为________________________________________________________________________.8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系.◆类型三(转化思想)利用平移进行转化求图形的周长或面积9.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为________.第9题图10.(2017·惠山区期中)如图,直径为2cm的圆O1平移3cm到圆O2的位置,则图中阴影部分的面积为________cm2.第10题图11.(2017·嘉祥县期末)如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为________.12.如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC 沿AB方向向右平移得到三角形DEF.若AE=8cm,DB=2cm.(1)求三角形ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.◆类型四从特殊到一般的思想13.(2017·蔡甸区月考)如图①,三条直线两两相交,且不共点,则图中同旁内角有________对;如图②,四条直线两两相交,任三条直线不经过同一点,则图中的同旁内角有________对.14.(2017·楚雄州期末)如图,已知AB ∥CD ,试解决下列问题:(1)∠1+∠2=________;(2)∠1+∠2+∠3=________;(3)∠1+∠2+∠3+∠4=________;(4)试探究∠1+∠2+∠3+∠4+…+∠n =____________. 15.(2017·丛台区期末)如图,AB ∥CD ,∠ABE 与∠CDE 两个角的平分线相交于点F .(1)如图①,若∠E =80°,求∠BFD 的度数;(2)如图②,∠ABM =13∠ABF ,∠CDM =13∠CDF ,写出∠M 与∠E 之间的数量关系,并证明你的结论;(3)若∠ABM =1n ∠ABF ,∠CDM =1n ∠CDF ,设∠E =m °,直接用含有n ,m °的代数式表示∠M =________.参考答案与解析1.B 2.120°3.解:设∠α=2x °,则∠D =3x °,∠B =4x °.∵FC ∥AB ∥DE ,∴∠2+∠B =180°,∠1+∠D =180°,∴∠2=180°-∠B =180°-4x °,∠1=180°-∠D =180°-3x °.又∵∠1+∠2+∠α=180°,∴(180-3x )+(180-4x )+2x =180,解得x =36,∴∠α=2x °=72°,∠D =3x °=108°,∠B =4x °=144°.4.解:(1)∵BD 平分∠EBC ,∠DBC =30°,∴∠EBC =2∠DBC =60°.∵BE 平分∠ABC ,∴∠ABC =2∠EBC =120°.∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A =60°.(2)存在∠DFB=∠DBF.设∠DBC=x°,则∠EBC=2x°,∠ABC=2∠EBC=4x°.∵7∠DBC-2∠ABF=180°,∴7x°-2∠ABF=180°,∴∠ABF=⎝⎛⎭⎫72x-90°,∴∠CBF=∠ABC-∠ABF=⎝⎛⎭⎫12x+90°,∠DBF=∠CBF-∠DBC=⎝⎛⎭⎫90-12x°.∵AD∥BC,∴∠DFB+∠CBF=180°,∴∠DFB=⎝⎛⎭⎫90-12x°,∴∠DFB=∠DBF.5.C解析:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补.设∠α=x°,∵∠α比∠β的3倍少36°,∴若∠α与∠β相等,则x=3x-36,解得x=18.若∠α与∠β互补,则x=3(180-x)-36,解得x=126,∴∠α的度数是18°或126°.故选C.6.50°或130°解析:分两种情况:(1)如图①,∵P A⊥PB,∠MP A=40°,∴∠NPB=180°-90°-40°=50°;(2)如图②,∵P A⊥PB,∠MP A=40°,∴∠MPB=50°,∴∠NPB=180°-50°=130°.综上所述,∠NPB的度数是50°或130°.7.45°,60°,105°或135°解析:分以下四种情况:(1)AC∥DE,如图①,此时点B 在AE上,∴∠BAD=45°;(2)AB∥DE,如图②,∴∠EAB=∠E=90°,∴∠BAD=∠BAE +∠EAD=135°;(3)BC∥AD,如图③,∴∠BAD=∠B=60°;(4)BC∥AE,如图④,∴∠BAE =∠B=60°,∴∠BAD=∠BAE+∠EAD=105°.综上所述,∠BAD其他所有可能符合条件的度数为45°,60°,105°,135°.8.解:分以下三种情况:(1)当点P在线段CD上运动时,如图①.过点P向左作PE∥l.∵l1∥l2,∴PE∥l2.∴∠APE=∠1,∠BPE=∠3,∴∠2=∠APE+∠BPE=∠1+∠3.(2)当点P在l1上方运动时,如图②,过点P向左作PF∥l2.∵l2∥l1,∴PF∥l1.∴∠FPB =∠3,∠FP A=∠1,∴∠2=∠FPB-∠FP A=∠3-∠1.(3)当点P在l2下方运动时,如图③,过点P向左作PM∥l2.∵l1∥l2,∴PM∥l1,∴∠APM =∠1,∠BPM=∠3,∴∠2=∠APM-∠BPM=∠1-∠3.9.10010.611.24cm212.解:(1)∵三角形ABC沿AB方向向右平移得到三角形DEF,∴AD=BE=CF,EF =BC=3cm.∵AE=8cm,DB=2cm,∴AD=BE=CF=8-22=3(cm).(2)四边形AEFC的周长为AE+EF+CF+AC=8+3+3+4=18(cm).13.62414.(1)180°(2)360°(3)540°解析:过点E,F向右作EG,FH平行于AB.∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°,∴∠1+∠2+∠3+∠4=540°.(4)180°(n-1)解析:易知有n个角,需作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).15.解:(1)如图,过点E向左作EG∥AB,过点F向右作FH∥AB.∵AB∥CD,∴EG∥AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED +∠CDE=180°,∴∠ABE+∠BEG+∠GED+∠CDE=360°.∵∠BEG+∠DEG=∠BED=80°,∴∠ABE+∠CDE=280°.∵∠ABE和∠CDE的平分线相交于F,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=140°,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=140°.(2)∵∠ABM=13∠ABF,∠CDM=13∠CDF,∴∠ABF=3∠ABM,∠CDF=3∠CDM.∵∠ABE与∠CDE两个角的平分线相交于点F,∴∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)知∠ABE+∠E+∠CDE=360°,∴6∠ABM+6∠CDM+∠E=360°.过点M 向右作MN∥AB,易证∠M=∠ABM+∠CDM,∴6∠M+∠E=360°.(3)360°-m°2n解析:由(2)可得,2n∠ABM+2n∠CDM+∠E=360°,∠M=∠ABM+∠CDM,∴∠M=360°-m°2n.故答案为360°-m°2n.。
冀教版七年级数学下册第七章“相交线与平行线”中的思想方法专题训练含答案
冀教版七年级数学下册第七章“相交线与平行线”中的思想方法专题训练类型之一方程思想1.如图2-ZT-1,直线a,b相交,∠2=3∠1,则∠3=________°.图2-ZT-12.如图2-ZT-2,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE, ∠AOD∶∠BOE=4∶1.求∠EOF的度数.图2-ZT-2类型之二转化思想3.如图2-ZT-3所示,已知∠BED=∠B+∠D.试说明AB与CD的位置关系.图2-ZT-34.如图2-ZT-4,AB∥EF,BC⊥CD于点C,∠ABC=30°,∠DEF=45°,求∠CDE的度数.图2-ZT-45.如图2-ZT-5,在△ABC中,D,E分别是AB,AC上的点,DF与EF分别交BC于点M,N,∠FMN =∠C,∠FNM=∠B.试说明:∠A=∠F.图2-ZT-5类型之三分类思想6.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,求∠BOD的度数.7.已知直线a,b,c,a∥b,b∥c,且a与b之间的距离为5,b与c之间的距离为3,求a与c 之间的距离.类型之四建模思想8.[2018·广安]一大门栏杆的平面示意图如图2-ZT-6所示,BA垂直地面AE于点A,CD平行于地面AE.若∠BCD=150°,则∠ABC=______°.图2-ZT-6 图2-ZT-79.[2018·通辽]如图2-ZT-7,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是________(提示:∠ODE=∠ADC).10.如图2-ZT-8,桌面上的木条AB,OC固定,木条DE在桌面上绕点O旋转n°(0<n<90)后与AB平行,则n的大小是多少?图2-ZT-8类型之五从特殊到一般的思想11.如图2-ZT-9①,AB∥CD,EO和FO交于点O.(1)试猜想∠1,∠2,∠3的数量关系,并说明理由;(2)如图②,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E.若∠1=30°,则∠B=________;(3)如图③,AB∥CD,图中∠1,∠2,∠3,…,∠(2n-1),∠(2n)(n为正整数)之间有什么关系?图2-ZT-912.我们知道相交的两条直线的交点个数是1;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是1;依此类推……(1)请你画图说明平面内五条直线最多有几个交点.(2)平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3)在平面内画出10条直线,使交点个数恰好是31.教师详解详析1.45 [解析] 设∠1=x°,则∠2=3x°.由图知∠1+∠2=180°,所以x°+3x°=180°,即x=45.又∠1=∠3,所以∠3=45°.2.解:设∠AOD=4x°,∠BOE=x°.∵OE平分∠BOD,∴∠BOD=2∠BOE=2x°.∵∠BOD+∠AOD=180°,∴2x+4x=180,解得x=30,∴∠BOE=∠DOE=30°.∵∠DOE+∠COE=180°,∴∠COE=150°.∵OF平分∠COE,∴∠EOF=12∠COE=75°.3.解:AB∥CD.理由如下:如图,过点E作∠BEF=∠B,则AB∥EF(内错角相等,两直线平行).∵∠BED=∠BEF+∠FED=∠B+∠D,∴∠FED=∠D,∴CD∥EF(内错角相等,两直线平行),∴AB∥CD(平行于同一条直线的两条直线平行).4.解:如图,过点C作CM∥AB,过点D作DN∥AB.∵AB∥EF,∴AB∥CM∥DN∥EF.∵AB∥CM,∴∠BCM=∠ABC=30°.∵BC⊥CD,∴∠BCD=90°,∴∠MCD=∠BCD-∠BCM=90°-30°=60°.∵CM∥DN,∴∠1=∠MCD=60°.∵DN∥EF,∴∠2=∠DEF=45°,∴∠CDE=∠1+∠2=60°+45°=105°.5.解:∵∠FMN=∠C,∴DF∥AC,∴∠BDF=∠A.又∵∠FNM=∠B,∴AB∥EF,∴∠BDF=∠F,∴∠A=∠F.6.解:当OC,OD在直线AB的同侧时,如图①.∵OC⊥OD,∴∠COD=90°.∵∠AOC=30°,∴∠AOD=∠AOC+∠COD=30°+90°=120°,∴∠BOD=180°-∠AOD=180°-120°=60°.当OC,OD在直线AB的异侧时,如图②.∵OC⊥OD,∴∠COD=90°.∵∠AOC=30°,∴∠AOD=90°-∠AOC=60°,∴∠BOD=180°-∠AOD=180°-60°=120°.综上所述,∠BOD的度数为60°或120°.7.解:①当b在a,c之间时,a与c之间的距离为5+3=8;②当c在b,a之间时,a与c之间的距离为5-3=2.所以a与c之间的距离是8或2.8.120 [解析] 如图,过点B作BF∥CD.∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°.∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.9.75.5°[解析] ∵CD∥OB,∴∠ADC=∠AOB.∵∠ODE=∠ADC,∴∠ODE=∠AOB=37°45′,∴∠CDE=180°-∠ODE-∠ADC=104°30′.∵CD∥OB,∴∠DEB=180°-∠CDE=75°30′=75.5°.10.解:要使DE∥AB,则∠DOC=∠BCO=70°.∵未转动时∠DOC=100°,∴n°=100°-70°=30°,即n=30.11.解:(1)猜想:∠2=∠1+∠3.理由:如图①,过点O作MN∥AB.∵AB∥CD,∴MN∥AB∥CD,∴∠1=∠EON,∠3=∠NOF,∴∠1+∠3=∠EON+∠NOF=∠EOF,即∠2=∠1+∠3.(2)120°(3)∠1+∠3+…+∠(2n-1)=∠2+∠4+…+∠(2n).理由:如图②,过点E作EF∥AB,则∠1=∠α,过点G作GH∥EF,则∠θ=∠β.∵AB∥CD,∴CD∥GH,∴∠γ=∠4,∴∠1+∠θ+∠γ=∠α+∠β+∠4,即∠1+∠3=∠2+∠4,∴∠1+∠3+…+∠(2n-1)=∠2+∠4+…+∠(2n).12.解:(1)平面内五条直线的交点最多有10个,如图①.(2)五条直线可以有4个交点,如图②(a∥b∥c∥d),图③(AD∥BC,AB∥DC),图④(a∥b).(3)答案不唯一,如图,a∥b∥c∥d∥e,f∥g∥h,l∥m.。
七年级数学思维探究23相交线与平行线含答案
阿基米德,公元前287年出生在意大利西西里岛的叙拉古,11岁时在被称为“智慧之都”的希腊中心亚历山大城学习,他博阅群书,钻研《几何原本》.阿基米德通过大量实验发现了杠杆原理,又用几何演绎方法推出许多杠杆命题,并给出严格的证明,其中就有著名的“阿基米德原理”,阿基米德是兼数学家与力学家的伟大学者,享有“力学之父”的美称。
23.相交线与平行线 解读课标在我们生活中存在大量的图形,它们为人类带来无穷无尽的直觉源泉,相交线与平行线随处可见,它们构成同一平面内两条直线的基本位置关系,它们的性质和位置关系是认识和学习其他图形性质的基础.相交线与平行线都与角相关:两直线相交,对顶角相等;两直线平行,同位角相等、内错角相等、同旁内角互补.我们还可以用角之间的关系来判断两直线是否平行.与平行线相关的问题一般都是平行线判定与性质的综合运用,有以下两方面应用: 1.角的计算与证明;2.两直线位置关系的确定. 问题解决例1 如图,已知AB DE ∥,90ABC ∠=︒,140CDE ∠=︒,则BCD ∠=__________.试一试 ABC ∠、CDE ∠、BCD ∠表面上看很难联系起来,过C 点作CF DE ∥,问题就迎刃而解了. 例2 如图,AB CD EF GH ∥∥∥,AE DG ∥,点C 在AE 上,点F 在DG 上,设与α∠相等的角的个数为m (不包括α∠本身),与β∠互补的角的个数为n ,若αβ≠,则m n +的值是( ). A .8 B .9 C .10 D .11试一试 略例3 如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.试一试 从角出发,导出两直线的位置关系,再推出新的角的关系,新的两直线的位置关系是解这类问题的基本思路.例4 如图,AB 、CD 是两根钉在木板上的平行木条,将一根橡皮筋固定在A 、C 两点,点E 是橡皮筋上一点,拽动E 点将橡皮筋拉紧后,请你探索A ∠、C ∠、AEC ∠之间具有怎样的关系?并说明理由.DABCEαβF EC BA H GD 21FE CBAD试一试 这是一道结论开放的探究性问题,由于E 点位置的不确定性,可引起对E 点不同位置的分类讨论(如夹在AB 、CD 之间或之外、内折或外折等),这是解本例的关键. 例5 平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)你能画出各直线之间的交点个数为n 的图形吗?其中n 分别为6,12,15.(2)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律? 分析与解 设7条直线交点的个数为n ,则021n ≤≤.(为什么?)(1)如图①,得到的交点个数为6个;如图②,得到的交点个数为21个;如图③、④,得到的交点个数分别为12、15.(2)n 的大小直接取决于7条直线中互相平行的直线的数量,因为7条直线中可能有: 一组平行线(2条;3条;4条;5条;6条;7条);二组平行线(2条,2条;2条,3条;2条,4条;2条,5条;3条,3条;3条,4条); 三组平行线(2条,2条,2条;2条,2条,3条); 没有平行线,所以当我们探求本题的完整的答案时,可以分为上述四种情况,分别加以研究. 实际上本题的答案共有15个,即0n =,6,8,10,12,14,15,15,16,17,18,18,19,20,21,其中重复数字表示交点 个数相等但图形不同的答案.平移变换例6 平面上有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31︒. 分析 把平面上的直线平行移动,则移动后的直线所成的角与移动前的直线所成的角是相等的,这样,我们就可将所有的直线移动后,使它们相交于同一点,此时,情况就相对简单得多.证明 在平面上任取一点O ,过O 点分别作这6条直线的平行线1'l ,2'l ,3'l ,4'l ,5'l ,6'l ,则由平行线的特性,知1'l ,2'l ,3'l ,4'l ,5'l ,6'l 之间互成的角与原来的6条直线1l ,2l ,3l ,4l ,5l ,6l 之间互成的角相等.现在我们考虑1'l ,2'l ,…,6'l 的情况,我们只考察1'l 与2'l ,2'l 与3'l ,…,5'l 与6'l ,6'l 与1'l 所成的角,由图不难发现这6个角成一个平角,即这6个角的和为180︒. 假设这6个角没有一个小于31︒,则这6个角都大于或等于31︒,从而这6个角的和至少为316186︒⨯=︒,这是不可能的,所以,这6个角中至少有一个小于31︒,不妨设1'l 与2'l 所成的角小于31︒,则原来的直D ABCE图①图②图③图④l 2l 1l 3l 4l 5l 6Ol 6'l 5'l 4'l 3'l 1'l 2'线1l 与2l 所成的角也必小于31︒. 数学冲浪 知识技能广场1.如图,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角174∠=︒,那么吸管与易拉罐下部夹角2∠=________度.2.如图,已知AE BD ∥,1130∠=︒,230∠=︒,则C ∠=________.3.将直尺与三角尺按如图所示的方式叠放在一起,在图中标记的角中,与1∠互余的角是_______.4.如图,AD EG BC ∥∥,AC EF ∥,则图中与1∠相等的角(不含1∠)有______个;若150∠=︒,则AHG ∠=________.5.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52︒,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( ). A .北偏西52︒ B .南偏东52︒ C .西偏北52︒ D .北偏西38︒6.如图,直线l m ∥,将含有45︒角的三角板ABC 的直角顶点C 放在直线m 上,若125∠=︒,则2∠的度数为( ).A .20︒B .25︒C .30︒D .35︒7.如图,已知AB CD ∥,那么A C AEC ∠+∠+∠=( ).2121DABCE1234561F E CBA HGD 21m lCBAA .360︒B .270︒C .200︒D .180︒8.如图,D 、G 是ABC △中AB 边上的任意两点,DE BC ∥,GH DC ∥,则图中相等的角共有( ). A .4对 B .5对 C .6对 D .7对9.如图,已知FC AB DE ∥∥,::2:3:4D B α∠∠=,求α、D ∠、B ∠的度数.10.如图,已知12BFM ∠=∠+∠,求证:AB CD ∥.思维方法天地11.如图,l m ∥,长方形ABCD 的顶点B 在直线m 上,则α∠=_________.12.如图,已知AB CD ∥,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=__________.D A BCED G HABCEαDABC EF21DGMN ABCEF65°mlαCAD13.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是________.①第一次向左拐40︒,第二次向右拐40︒;②第一次向右拐50︒,第二次向左拐130︒;③第一次向右拐70︒,第二次向左拐110︒;④第一次向左拐70︒,第二次向左拐110︒. 14.已知两个角的两边分别平行,其中一个角为40︒,则另一个角的度数为_________. 15.如图,CD BE ∥,则231∠+∠-∠的度数等于( ). A .90︒ B .120︒ C .150︒ D .180︒16.如图,已知AB CD ∥,BF 平分ABE ∠,且BF DE ∥,则ABE ∠与D ∠的关系是( ). A .3ABE D ∠=∠ B .180ABE D ∠+∠=︒ C .90ABE D ∠-∠=︒ D .2ABE D ∠=∠17.探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB 、OC 经灯碗反射后平行射出,如果图中ABO α∠=,DCO β∠=,则BOC ∠的度数为( ).A .180αβ︒--B .αβ+C .()12αβ+ D .()90βα︒-18.如图,两直线AB 、CD 平行,则123456∠+∠+∠+∠+∠+∠=( ). A .630︒ B .720︒ C .800︒ D .900︒19.已知AB CD ∥,90AEC ∠=︒.(1)如图①,当CE 平分ACD ∠时,求证:AE 平分BAC ∠;DABCE321E C BA DD ABCEFG HE F D ABC123456(2)如图②,移动直角顶点E ,使MCE ECD ∠=∠,求证:2BAE MCG ∠=∠.20.如图,已知CD EF ∥,12ABC ∠+∠=∠,求证:AB GF ∥.应用探究乐园 21.(1)如图①,12MA NA ∥,则12A A ∠+∠=_________. 如图②,13MA NA ∥,则123A A A ∠+∠+∠=___________.如图③,14MA NA ∥,则1234A A A A ∠+∠+∠+∠=___________.如图④,15MA NA ∥,则12345A A A A A ∠+∠+∠+∠+∠=___________.从上述结论中你发现了什么规律?请在图②,图③,图④中选一个证明你的结论.(2)如图⑤,1n MA NA ∥,则123n A A A A ∠+∠+∠++∠=______________.(3)利用上述结论解决问题:如图已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数.22.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.E C BAD图①DGM ABC E 图②21DGABC E FA 2A 1NM图①A 3A 2A 1MN图②A 4A 3A 2A 1NM图③A 5A 4A 3A 2A 1NM图④NMA 1A 2A 3A 4A 5A 6A n图⑤DABCEF(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,若被b 反射出的光线n 与光线m 平行,且150∠=︒,则2∠=_________,3∠=________.(2)在(1)中,若155∠=︒,则3∠=_______;若140∠=︒,则3∠=________; (3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角3∠=________时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.请说明理由.321ba nm相交线与平行线 问题解决例1 80BCF ABC ∠=∠=︒,18040DCF CDE ∠=︒-∠=︒,40BCD BCF DCF ∠=∠-∠=︒, 例2 D例3 先证BD CE ∥,再证DF BC ∥.例4 如图,可分别得到下列关系(证法同①) ①AEC A C ∠=∠+∠;②360AEC A C ∠+∠+∠=︒; ③AEC C A ∠=∠-∠;④AEC A C ∠=∠-∠ ⑤AEC A C ∠=∠-∠;⑥AEC C A ∠=∠-∠.数学冲浪1. 106︒2.20︒3.2∠、3∠、4∠4.5;130︒5.A6.A7.A8.D9.72α=︒,108D ∠=︒,144B ∠=︒10.略 11.25︒ 12.95︒ 13.④ 14.40︒或140︒ 15.D 16.D 17.B 18.D 19.(1)略;(2)证法较多,如过E 点作EF AB ∥或作MCG ∠平分线CH 等.20.作CK FG ∥,延长GF 、CD 交于H 点,则12180BCK ∠+∠+∠=︒,因12ABC ∠+∠=∠,故180ABC BCK ∠+∠=︒,即CK AB ∥,AB GF ∥. 21.(1)180︒,360︒,540︒,720︒ (2)()1180n -︒(3)过F 点作FG AB ∥,则AB FG CD ∥∥.则()12BFD ABE CDE ∠=∠+∠,又360ABE CDE E ∠+∠+∠=︒,得220ABE CDE ∠+∠=︒,故110BFD ∠=︒.22.(1)100︒;90︒ (2)90︒;90︒ (3)90︒证明略.D ABCE①DAB CE②DA B CE③D A B CE④DAB CE⑤⑥DA B CE。
【精品】七年级数学下册第五章相交线与平行线学科素养思想方法含解析新版新人教版
中小学教学设计、习题、试卷第五章订交线与平行线学科修养 ?思想方法一、转变与化归思想【思想解读】转变思想是把一种待解决的问题经过某种转变,归类到已经解决的问题中去. 转变思想在解数学题时,所给条件常常不可以直策应用,此时需要将所给条件进行转变,在解题中常常用到,它包含未知向已知的转变,陌生向熟习的转变,复杂向简单的转变,抽象向详细的转变;数与形的转变等.【应用链接】在证明线的地点关系或相关角度计算时,常利用平行线的性质把没相关系的角转变为对顶角或邻补角之间的关系进行办理,反之把拥有对顶角或邻补角关系转变为在同一个“三线八角” 图形构造中进行办理 .【典例 1】(2016 ·金华中考 ) 如图,已知 AB∥ CD, BC∥ DE.若∠ A=20°,∠ C=120°,则∠ AED的度数是 ________.【自主解答】如图,延伸AE交 BC于点 F,由于 AB∥ CD,∠ C=120°,因此∠ B=60°,又由于BC∥ DE,因此∠ AED=∠ AFC=∠ B+∠A=60° +20° =80°.答案: 80°【变式训练】(2017 ·同安区期中) 如图,已知∠1+∠ 2=180°,∠ B=∠ 3,你能判断∠C与∠ AED的大小关系吗?并说明原因.【分析】∠ C 与∠ AED相等,原由于:∵∠ 1+∠ 2=180° ( 已知 ) ,∠1+∠ DFE=180° ( 邻补角定义 ) ,∴∠ 2=∠ DFE(同角的补角相等 ) ,∴ AB∥ EF(内错角相等,两直线平行 ) ,∴∠3=∠ ADE(两直线平行,内错角相等 ) ,又∠ B=∠3(已知 ) ,∴∠ B=∠ ADE(等量代换 ) ,∴DE∥ BC(同位角相等,两直线平行 ) ,∴∠ C=∠ AED(两直线平行,同位角相等 ).二、分类议论思想【思想解读】分类议论思想是一种常有的数学思想方法. 详细来说,就是把包含多种可能状况的问题,按照某一标准分红若干类,而后对每一类分别进行解决.【应用链接】在几何问题中,波及到图形之间的地点关系不准时,需要应用分状况议论问题的方法.【典例 2】如图, AD∥ BC,当点 P 在射线 OM上运动时 ( 点 P 与点 A, B, O三点不重合 ) ,∠ ADP=∠ α,∠BCP=∠ β,求∠ CPD与∠α,∠β之间有何数目关系?请说明原因 .【自主解答】分三种状况进行议论:①当点 P 在 A, B 两点之间运动时,∠CPD=∠ α+∠ β .原因以下:如图(1) ,过点 P 作 PE∥ AD交 CD于点 E.∵AD∥ BC,∴ AD∥ PE∥ BC,∴∠ α =∠ DPE,∠β=∠ CPE,∴∠ CPD=∠DPE+∠ CPE=∠ α +∠β .②当点 P 在 BA延伸线上时,∠CPD=∠ β - ∠ α .原因以下:如图(2) ,过点 P 作 PE∥ AD交 CD于点 E.同①可知∠α =∠ DPE,∠β =∠CPE,∴∠ CPD=∠β - ∠ α .③当点 P 在 AB延伸线上时,∠CPD=∠ α - ∠ β .原因以下:如图(3) ,过点 P 作 PE∥ AD交 CD于点 E.同②可知∠α =∠ DPE,∠β =∠CPE,∴∠ CPD=∠α - ∠ β .上,将图中的△COD绕点 O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰巧与边AB平行 .【分析】①两三角形在点O的同侧时,如图1,设 CD与 OB订交于点E,∵AB∥ CD,∴∠ CEO=∠B=40°,∵∠ C=60°,∠ COD=90°,∴∠ D=90°-60 ° =30°,∴∠ DOE=∠CEO-∠ D=40° -30 ° =10°,∴旋转角∠ AOD=∠ AOB+∠ DOE=90° +10° =100°.∵每秒旋转10°,∴时间为100°÷ 10° =10( 秒).②两三角形在点O的异侧时,如图2,延伸 BO与 CD订交于点E,∵AB∥ CD,∴∠ CEO=∠B=40°,∵∠ C=60°,∠ COD=90°,∴∠ D=90°-60 ° =30°,∴∠ DOE=∠CEO-∠ D=40° -30 ° =10°,∴旋转角为270° +10° =280°,∵每秒旋转10°,∴时间为280°÷ 10° =28( 秒) ,综上所述,在第10 或 28 秒时,边CD恰巧与边 AB平行 .答案: 10 或 28三、方程思想【思想解读】方程思想,是从问题的数目关系下手,运用数学语言将问题中的条件转变为数学模型( 方程、不等式、或方程与不等式的混淆组) ,将问题中的已知量和未知量之间的数目关系经过适合设元成立起方程 ( 组 ) ,而后经过解方程( 组) 或不等式 ( 组 ) 来使问题获解的思想方式.【应用链接】在应用垂直、角均分线或角度之间的比值进行角度的计算时,常用方程的思想,建立方程解决问题 .【典例 3】(2017 ·浦东新区期中 ) 如图,直线 AB,CD订交于点O,OE均分∠ BOC,FO⊥ CD于点 O,若∠ BOD∶∠EOB=2∶ 3,求∠ AOF的度数 .【自主解答】设∠BOD=2x,∠ EOB=3x,∵OE均分∠ BOC,∴∠ COE=∠EOB=3x,则 3x+3x+2x=180 °,解得: x=22.5 °,∴∠BOD=45°,∴∠AOC=∠BOD=45°.∵FO⊥ CD,∴∠ AOF=90° - ∠ AOC=90° -45 ° =45° .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思想方法专题:相交线与平行线中的思想方法——明确解题思想,体会便捷渠道◆类型一方程思想1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为()A.180°B.160°C.140°D.120°第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________.3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B的度数.4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.◆类型二分类讨论思想5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126°C.18°或126°D.以上都不对6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,当∠MP A =40°,则∠NPB的度数是________________.7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其他所有可能符合条件的度数为________________________________________________________________________.8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系.◆类型三(转化思想)利用平移进行转化求图形的周长或面积9.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为________.第9题图10.(2017·惠山区期中)如图,直径为2cm的圆O1平移3cm到圆O2的位置,则图中阴影部分的面积为________cm2.第10题图11.(2017·嘉祥县期末)如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为________.12.如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC 沿AB方向向右平移得到三角形DEF.若AE=8cm,DB=2cm.(1)求三角形ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.◆类型四从特殊到一般的思想13.(2017·蔡甸区月考)如图①,三条直线两两相交,且不共点,则图中同旁内角有________对;如图②,四条直线两两相交,任三条直线不经过同一点,则图中的同旁内角有________对.14.(2017·楚雄州期末)如图,已知AB ∥CD ,试解决下列问题:(1)∠1+∠2=________;(2)∠1+∠2+∠3=________;(3)∠1+∠2+∠3+∠4=________;(4)试探究∠1+∠2+∠3+∠4+…+∠n =____________. 15.(2017·丛台区期末)如图,AB ∥CD ,∠ABE 与∠CDE 两个角的平分线相交于点F .(1)如图①,若∠E =80°,求∠BFD 的度数;(2)如图②,∠ABM =13∠ABF ,∠CDM =13∠CDF ,写出∠M 与∠E 之间的数量关系,并证明你的结论;(3)若∠ABM =1n ∠ABF ,∠CDM =1n ∠CDF ,设∠E =m °,直接用含有n ,m °的代数式表示∠M =________.参考答案与解析1.B 2.120°3.解:设∠α=2x°,则∠D=3x°,∠B=4x°.∵FC∥AB∥DE,∴∠2+∠B=180°,∠1+∠D=180°,∴∠2=180°-∠B=180°-4x°,∠1=180°-∠D=180°-3x°.又∵∠1+∠2+∠α=180°,∴(180-3x)+(180-4x)+2x=180,解得x=36,∴∠α=2x°=72°,∠D=3x°=108°,∠B=4x°=144°.4.解:(1)∵BD平分∠EBC,∠DBC=30°,∴∠EBC=2∠DBC=60°.∵BE平分∠ABC,∴∠ABC=2∠EBC=120°.∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=60°.(2)存在∠DFB=∠DBF.设∠DBC=x°,则∠EBC=2x°,∠ABC=2∠EBC=4x°.∵7∠DBC-2∠ABF=180°,∴7x°-2∠ABF=180°,∴∠ABF=⎝⎛⎭⎫72x-90°,∴∠CBF=∠ABC-∠ABF=⎝⎛⎭⎫12x+90°,∠DBF=∠CBF-∠DBC=⎝⎛⎭⎫90-12x°.∵AD∥BC,∴∠DFB+∠CBF=180°,∴∠DFB=⎝⎛⎭⎫90-12x°,∴∠DFB=∠DBF.5.C解析:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补.设∠α=x°,∵∠α比∠β的3倍少36°,∴若∠α与∠β相等,则x=3x-36,解得x=18.若∠α与∠β互补,则x=3(180-x)-36,解得x=126,∴∠α的度数是18°或126°.故选C.6.50°或130°解析:分两种情况:(1)如图①,∵P A⊥PB,∠MP A=40°,∴∠NPB=180°-90°-40°=50°;(2)如图②,∵P A⊥PB,∠MP A=40°,∴∠MPB=50°,∴∠NPB=180°-50°=130°.综上所述,∠NPB的度数是50°或130°.7.45°,60°,105°或135°解析:分以下四种情况:(1)AC∥DE,如图①,此时点B 在AE上,∴∠BAD=45°;(2)AB∥DE,如图②,∴∠EAB=∠E=90°,∴∠BAD=∠BAE +∠EAD=135°;(3)BC∥AD,如图③,∴∠BAD=∠B=60°;(4)BC∥AE,如图④,∴∠BAE =∠B=60°,∴∠BAD=∠BAE+∠EAD=105°.综上所述,∠BAD其他所有可能符合条件的度数为45°,60°,105°,135°.8.解:分以下三种情况:(1)当点P在线段CD上运动时,如图①.过点P向左作PE∥l.∵l1∥l2,∴PE∥l2.∴∠APE=∠1,∠BPE=∠3,∴∠2=∠APE+∠BPE=∠1+∠3.(2)当点P在l1上方运动时,如图②,过点P向左作PF∥l2.∵l2∥l1,∴PF∥l1.∴∠FPB =∠3,∠FP A=∠1,∴∠2=∠FPB-∠FP A=∠3-∠1.(3)当点P在l2下方运动时,如图③,过点P向左作PM∥l2.∵l1∥l2,∴PM∥l1,∴∠APM =∠1,∠BPM=∠3,∴∠2=∠APM-∠BPM=∠1-∠3.9.10010.611.24cm212.解:(1)∵三角形ABC沿AB方向向右平移得到三角形DEF,∴AD=BE=CF,EF =BC=3cm.∵AE=8cm,DB=2cm,∴AD=BE=CF=8-22=3(cm).(2)四边形AEFC的周长为AE+EF+CF+AC=8+3+3+4=18(cm).13.62414.(1)180°(2)360°(3)540°解析:过点E,F向右作EG,FH平行于AB.∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°,∴∠1+∠2+∠3+∠4=540°.(4)180°(n-1)解析:易知有n个角,需作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).15.解:(1)如图,过点E向左作EG∥AB,过点F向右作FH∥AB.∵AB∥CD,∴EG∥AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED +∠CDE=180°,∴∠ABE+∠BEG+∠GED+∠CDE=360°.∵∠BEG+∠DEG=∠BED=80°,∴∠ABE+∠CDE=280°.∵∠ABE和∠CDE的平分线相交于F,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=140°,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=140°.(2)∵∠ABM=13∠ABF,∠CDM=13∠CDF,∴∠ABF=3∠ABM,∠CDF=3∠CDM.∵∠ABE与∠CDE两个角的平分线相交于点F,∴∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)知∠ABE+∠E+∠CDE=360°,∴6∠ABM+6∠CDM+∠E=360°.过点M 向右作MN∥AB,易证∠M=∠ABM+∠CDM,∴6∠M+∠E=360°.(3)360°-m°2n解析:由(2)可得,2n∠ABM+2n∠CDM+∠E=360°,∠M=∠ABM+∠CDM,∴∠M=360°-m°2n.故答案为360°-m°2n.。