南京市2014届数学二模
2014年南京市溧水中考数学二模试卷及答案[1]
![2014年南京市溧水中考数学二模试卷及答案[1]](https://img.taocdn.com/s3/m/69ae8541f7ec4afe04a1df7d.png)
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
(1)求y与t之间的函数关系式;
(2)请简单概括y随t的变化而变化的情况.
25.(8分)已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.
(1)判断⊙O与BC的位置关系,并说明理由;
(2)若CE=2,求⊙O的半径r.
26.(9分)
(1)探究规律:
已知:如图(1),点P为□ABCD内一点,△PAB、△PCD的面积分别记为S1、S2,□ABCD的面积记为S,试探究S1+S2与S之间的关系.
22.(本题8分)
解:设每次降价百分率为x,……………………………………1分
根据题意,得 =32.……………………………4分
解得x1=0.2,x2=0.8…………………………………………6分
当x1=0.2时,最后价格为 ,
第一次降价为 ,…………………………7分
当x2=0.8时,最后价格为:
,不合题意,舍去.
3.计算 的结果是()
A. B. C. D.
4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()
A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米
5.如图,△ABC中,D、E两点分别在AB、AC上,且AD=31,BD=29,
2014年南京市溧水区中考二模数学试卷
![2014年南京市溧水区中考二模数学试卷](https://img.taocdn.com/s3/m/b5eca8b4d1f34693daef3e25.png)
2014年江苏南京溧水中考二模数学一、选择题(共6小题;共30分)1. 计算的值是 ( )A. B. C. D.2. 不等式组的解集是 ( )A. B. C. D.3. 计算的结果是 ( )A. B. C. D.4. 地球绕太阳每小时转动通过的路程约是千米,用科学记数法表示地球一天(以小时计)转动通过的路程约是 ( )A. 千米B. 千米C. 千米D. 千米5. 如图,中,、两点分别在、上,且,,,.若,则图中、、、的大小关系,下列正确的为 ( )A. B. C. D.6. 在平面直角坐标系中,为坐标原点,点A的坐标为,为轴上一点,且使得为等腰三角形,则满足条件的点的个数为 ( )A. B. C. D.二、填空题(共10小题;共50分)7. 分解因式:.8. 计算:.9. 方程的解为.10. 甲、乙、丙三位选手各次射击成绩的平均数和方差.统计如下表:则射击成绩最稳定的选手是(填"甲"、"乙"、"丙"中的一个).11. 如图①,两个等边,的边长均为,将沿方向向右平移到的位置,得到图②,则阴影部分的周长为.12. 在中,,,那么.13. 已知一次函数的图象过点,.若,则.14. 如图,四边形内接于,,,则.15. 如图,在函数的图象上有点、、、、、,点的横坐标为,且后面每个点的横坐标与它前面相邻点的横坐标的差都是,过点、、、、、分别作轴、轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为、、、、,则.(用含的代数式表示)16. 如图,相距的两个点,在直线上,它们分别以和的速度在上同时向右平移,当点,分别平移到点,的位置时,半径为的与半径为的相切,则点平移到点的所用时间为.三、解答题(共11小题;共143分)17. 解方程组18. 计算:.19. 已知:如图,.(1)求证:四边形为平行四边形;(2)若、分别平分、,且,求证:四边形为菱形.20. 以下是某省2013年教育发展情况有关数据:全省共有各级各类学校所,其中小学所,初中所,高中所,其它学校所;全省共有在校学生万人,其中小学万人,初中万人,高中万人,其它万人;全省共有在职教师万人,其中小学万人,初中万人,高中万人,其它万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中;(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整;(3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出;(师生比=在职教师数∶在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)21. 甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五星纸片的人才能得到球票.刚要抓阄,甲问:"谁先抓?先抓的人会不会抓中的机会比别人大?"你认为他的怀疑有没有道理?谈谈你的想法和原因.22. 某市为了解决市民看病难的问题,决定下调药品的价格.现将某种原价为元的药品,经过连续两次降价后,价格控制在元范围内.若两次降价相同的百分率,且已知第二次下降了元,试求第一次降了多少元.23. 某数学兴趣小组,利用树影测量树高.如图①,已测出树的影长为,并测出此时太阳光线与地面成夹角.(1)求出树高;(2)因水土流失,此时树沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.24. 如图,正方形的边长为,点,,分别为,,的中点.现从点观察线段,当长度为的线段(图中的黑粗线)以每秒个单位长的速度沿线段从左向右运动时,将阻挡部分观察视线,在区域内形成盲区.设的左端点从点开始,运动时间为秒.设区域内的盲区面积为(平方单位).(1)求与之间的函数关系式;(2)请简单概括随的变化而变化的情况.25. 已知:如图,四边形为菱形,的外接圆与相切于点,交于点.(1)判断与的位置关系,并说明理由;(2)若,求的半径.26. (1)探究规律:已知:如图,点为平行四边形内一点,、的面积分别记为、,平行四边形的面积记为,试探究与之间的关系.(2)解决问题:如图矩形中,,,点、、、分别在、、、上,且,.点为矩形内一点,四边形、四边形的面积分别记为、,求.27. 已知二次函数的图象与轴交于点、(点在点的左侧),顶点为.(1)通过配方,确定点坐标;(2)二次函数的图象与轴交于点、(点在点的左侧),顶点为.①若存在以六点、、、、、中的四点为顶点的四边形为菱形,则;②是否存在以六点、、、、、中的四点为顶点的四边形为矩形?若存在,求出的值;若不存在,请说明理由.答案第一部分1. C2. D3. D4. B5. D【解析】,,,,,.,..,.,.6. B 【解析】如图,满足条件的点的个数为.第二部分7.8.9. ,10. 乙11.【解析】由题意知以,,,为顶点的四个小三角形是等边三角形,故阴影部分左边的三条边之和等于,右边三条边之和等于,故阴影部分的周长为.12.【解析】提示:根据,可得,所以.13.【解析】将点坐标代入可得可得.由可得.14.【解析】提示:利用同弧所对的圆周角相等及平行线的性质可以求出15.【解析】的坐标为,的坐标为,的坐标为,的坐标为,的坐标为,,..故答案为.16. 或【解析】设点平移到点,所用的时间为,根据题意得:,,,.如图此时外切:,.如图此时内切:,或,均解得,此时两圆心重合,舍去;如图此时内切:,,此时两圆心重合,舍去;如图此时外切:,.点平移到点,所用的时间为或.第三部分17. ①②,得.解得.把代入②,得.原方程组的解是原式18.19. (1),,,..四边形为平行四边形.(2),.,..,..,..同理,.,.四边形为菱形.20. (1) 2013年全省教育发展情况统计表(2)(3)①小学师生比,初中师生比,高中师生比为,小学学段的师生比最小.②小学在校学生数最多等.③高中学校所数偏少等.21. 甲的怀疑没有道理.理由如下:设五角星为,两张空白为,画树状图为:第一个人抽到的概率为,第二个人抽到的概率为,第三个人抽到的概率为,所以他们抽到的概率相等,此规则是公平的.22. 设每次降价百分率为.根据题意,得解得不合题意舍去答:第一次降价元.23. (1)在中,,,..(2)以点为圆心、长为半径画圆.当光线与圆相切时,影长最长.与圆相切,.在中,,,.24. (1)当时,如图.可得,所以..;当时,如图.可得,所以..;当时,如图.可得,所以...所以(2)秒内,随的增大而增大;秒到秒,的值不变;秒到秒,随的增大而减小.25. (1)连接、.与相切于点,..四边形为菱形,垂直平分,.的外接圆的圆心在上.,,,..为半径,与相切.(2),,.,.,即..26. (1).证明:过点做,,.则平行四边形,平行四边形.平行四边形平行四边形,.(2)连接、、、.,,,所以.所以.同理可得.所以四边形为平行四边形.平行四边形矩形.由(1)可得平行四边形.所以.27. (1)点坐标为.(2)①.②、、、四点在同一直线上,不可能构成四边形.显然,.也不可能为矩形的一个内角.四边形为矩形的顶点只能是、、、或、、、.当四边形为矩形时,抛物线可由抛物线关于轴对称的抛物线沿轴平移得到,.当四边形为矩形时,.,即...当四边形为矩形时,同上求得.。
江苏省南京市鼓楼区2014年中考二模数学试卷及答案
![江苏省南京市鼓楼区2014年中考二模数学试卷及答案](https://img.taocdn.com/s3/m/7b7cb8e619e8b8f67d1cb902.png)
9.在 Rt△ABC 中,CD 是斜边 AB 上的中线,如果 AB=4.8 cm,那么 CD= ▲ .
5 4 3
15 10
8.7
13.8 9.1
11.1
1 0
5 0
2012 2013
2010
2011
年份
2010 2011
2012
2013
年份
(第 19 题)
根据以上信息,解答下列问题: (1) 2012 年农村居民人均可支配收入比 2011 年城镇居民人均可支配收入的一半少 0.05 万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到 0.1 万元); (2)在 2010~2013 年这四年中,城镇居民人均可支配收入和农村居民人均可支配收入相 差数额最大的年份是 ▲ 年. A
11.若某个圆锥底面半径为 3,侧面展开图的面积为 12π,则这个圆锥的高为
▲
.
12. 如图,把面积分别为 9 与 4 的两个等边三角形的部分重叠,若两个阴影部分的面积分别 记为 S1 与 S2(S1>S2),则 S1-S2= ▲ .
13. 如图,将△ ABC 绕点 A 逆时针方向旋转到△ ADE 的位置,点 B 落在 AC 边上的点 D 处, 设旋转角为 (0<<90).若B=125,E=30,则= ▲ ° .
鼓楼区 2014 届九年级二模试卷
数
学
注意事项: 1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在答题卡上, 答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再 将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑. 如需改动, 请用橡皮擦干净后, 再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡 相应位置 上) ... .... 1.下列运算,正确的是 A.a+a=a2 B.a· a=2a C.3a3-2a2=a D.2a· 3a2=6a3 2.对多项式 x2-3x+2 分解因式,结果为 A.x(x-3)+2 3.对于函数 y=一 B.(x-1)(x-2) 2 ,下列说法正确的是 x B.自变量 x 的取值范围是全体实数 D.y 随 x 的增大而增大 C.(x-1)(x+2) D.(x+1)(x-2)
江苏省南京市盐城市2014届高三数学二模试题-文(含解析)苏教版
![江苏省南京市盐城市2014届高三数学二模试题-文(含解析)苏教版](https://img.taocdn.com/s3/m/57f72adbdd36a32d72758146.png)
江苏省南京市盐城市2014届高三数学二模试题文(含解析)苏教版一、填空题1。
【题文】函数f (x)=lnx+错误!的定义域为.【结束】2。
【题文】已知复数z1=-2+i,z2=a+2i(i为虚数单位,a错误!R).若z1z2为实数,则a的值为.【结束】3.【题文】某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有.【解析】4.【题文】盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为.【结束】5。
【题文】已知等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,则错误!的值为.【结束】6。
【题文】执行如图所示的流程图,则输出的k的值为.7。
【题文】函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如下图所示,则f(错误!)的值为.考点:三角函数解析式【结束】8。
【题文】在平面直角坐标系xOy中,双曲线错误!-错误!=1(a>0,b>0)的两条渐近线与抛物线y2=4x的准线相交于A,B两点.若△AOB的面积为2,则双曲线的离心率为.【结束】9。
【题文】表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为.【结束】的夹角大小为.【结束】11.【题文】在平面直角坐标系xOy中,过点P(5,3)作直线l与圆x2+y2=4相交于A,B两点,若OA⊥OB,则直线l的斜率为.【结束】12。
【题文】已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),且. [来源:]若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,则实数k的值为.02)2(2=++-x k x ,因为相切,所以,08)2(2=-+=∆k 又,0>k 所以.222-=k考点:分段函数图像【结束】[来源:Zxxk 。
南京市玄武区2014初三数学中考二模卷
![南京市玄武区2014初三数学中考二模卷](https://img.taocdn.com/s3/m/b662026b1ed9ad51f01df267.png)
下列可以得到上述运算结果的算式是 A.ab 半径为 A.6 cm B.7 cm C.8 cm
y
-1
B.a 1b
-
C.ab
D.(ab)2
5.若一个圆锥的侧面展开图是一个半径为 10 cm,圆心角为 252°的扇形,则该圆锥的底面 D.10 cm
6.如图,一个菱形的一组相邻顶点分别在 x 轴和 y 轴上,它的 两条对角线分别与 x 轴和 y 轴平行. 一条直线经过这个菱形 的对角线交点,这条直线对应的函数关系式为 y=kx+b(k <0) .涂有“ A.1 个 C.4 个 ”部分的面积记为 S1,涂有“ B.2 个 D.无数个 ”部分 的面积记为 S2,当 S1=S2 时,k 所有可能的值有
A C
▲
cm. (结果精
E
N
A O1
B
l
M F D
H B
O2
(第 14 题)
(第 15 题)
15.如图,直线 l 分别与⊙O1、⊙O2 相切与点 A、B,AO1=1,BO2=2.⊙O1 沿着直线 l 的 方向向右平移,当⊙O1 与⊙O2 相交时,AB 长的范围为 ▲ .
— 2 —
16.某地居民年收入所得税征收标准如下:不超过 28 000 元部分征收 a%的税,超过 28 000 元的部分征收(a+2)%的税.如果某居民年收入所得税是其年收入的(a+0.25)%,那么 该居民的年收入为 ▲ 元. 三、解答题(本大题共 11 小题,共 88 分.解答时应写出文字说明、证明过程或演算步骤) 3x+2=5y, 17. (6 分)解方程组2x-3 17 2 +y= 2 . x2-6x+9 x 18. (8 分)点 A、B 在数轴上,它们对应的数分别是 和 ,且 A、B 关于原点对 x-1 3x-x2 称.求 x 的值. 19. (7 分)如图,在□ABCD 中,O 是 AC 与 BD 的交点,过点 O 的直线分别与 AB、CD 的延长线交于点 E、F.当 AC 与 EF 满足什么条件时,四边形 AECF 是菱形?请给出证 明.
2014年南京市高淳区二模参考答案
![2014年南京市高淳区二模参考答案](https://img.taocdn.com/s3/m/ebfe4b26cfc789eb162dc80e.png)
(2)① 由函数图象可知,AB=2×2=4cm,BC=1×2=2cm. 当点 P 运动到点 B 时,△PAD 的面积为 a;作 BH⊥AD,垂足为 H. 在 Rt△ BHA 中,由∠A=60°,AB=4,得 BH=AB×sin60°=2 3, 1 ∴S△BAD= ×4×2 3=4 3,即 a=4 3. …………4 分 2 ∵P 从点 A 出发沿 AB-BC-CD 运动到达点 D 时路程为(4+2+2 3) =6+2 3(cm) ,∴运动时间为(6+2 3)÷2=3+ 3(s)……5 分 即点 G 的坐标为(3+ 3,0) . ………………6 分
A N F E B M C D
∵AM⊥BC,CN⊥AD, ∴∠ABM+∠BAM=90° ,∠CDN+∠DCN=90° , ∴∠BAM=∠DCN ∴△AEB ≌ △CFD. ………………3 分 ………………4 分
(2)∵△AEB ≌ △CFD, ∴AE=CF. ………………5 分
∵AD∥BC,CN⊥AD ∴∠BCN=∠CND=90° ∵AM⊥BC,∴∠AMB=90° ∴AM∥CN ………………6 分
ห้องสมุดไป่ตู้
即⊙O 的半径为 2. (其它解法参照给分)
5 27. (13 分)解: (1)B(-m,0) ,C(0,- m) . 2
………………2 分
5 (2)设 AC 的函数关系式为:y=kx+b,将 A(5,0) ,C(0,- m)的坐标代入 2
0=5k+b, 可得: 5m - 2 =b.
3 (1,3) (2,3) (3,3) ………5 分 …………6 分
1 2 3
以上共有 9 种可能的结果,且每种结果出现的可能性相同.
2 其中,出现数字之和为 3 的共有 2 种可能,即出现数字之和为 3 的概率 P1= ; 9 1 出现数字之和为 4 的共有 3 种可能,即出现数字之和为 4 的概率 P2= .……7 分 3 ∵P2>P1,∴乙选择数字 4 时获胜的概率比甲获胜的概率大. ………………8 分
2014年南京市玄武区中考二模数学试卷
![2014年南京市玄武区中考二模数学试卷](https://img.taocdn.com/s3/m/9ce59d97680203d8ce2f2425.png)
2014年南京市玄武区中考二模数学试卷一、选择题(共6小题;共30分)1. 方程的解是A. B. C. D.2. 下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的是A. ,B. ,C. ,D. ,3. 去年11月11日,天猫和淘宝的日总销售额超过亿元,亿用科学记数法表示为A. B. C. D.4. ,经过运算后得到的结果如下表所示:运算结果下列可以得到上述运算结果的算式是A. B. C. D.5. 若一个圆锥的侧面展开图是一个半径为,圆心角为的扇形,则该圆锥的底面半径为A. B. C. D.6. 如图,一个菱形的一组相邻顶点分别在轴和轴上,它的两条对角线分别与轴和轴平行.一条直线经过这个菱形的对角线交点,这条直线对应的函数关系式为.涂有“”部分的面积记为,涂有“”部分的面积记为,当时,所有可能的值有A. 个B. 个C. 个D. 无数个二、填空题(共10小题;共50分)7. 不等式组的负整数解为.8. 如果定义为与中较大的一个,那么.9. 方程的解是;.10. 如图,在一个矩形中,有两个面积分别为,(,)的正方形.这个矩形的面积为(用含,的代数式表示).11. 在中,,,若,则.12. 将反比例函数的图象沿直线翻折后的图象不经过第象限.13. 在正比例函数(为常数,且)中,一组自变量,,,的平均数为,则这组自变量对应的函数值,,,的平均数为.14. 如图所示为一把剪刀的局部示意图,刀片内沿在,上,是刀片外沿.,相交于点,,相交于点,刀片宽.小丽在使用这把剪刀时,不超过.若想一刀剪断宽的纸带,则刀身长至少为(结果精确到,参考数据:,).15. 如图,直线分别与、相切与点、,,沿着直线的方向向右平移,当与相交时,长的范围为.16. 某地居民年收入所得税征收标准如下:不超过元部分征收的税,超过元的部分征收的税.如果某居民年收入所得税是其年收入的,那么该居民的年收入为元.三、解答题(共11小题;共143分)17. 解方程组18. 点、在数轴上,它们对应的数分别是和,且、关于原点对称.求的值.19. 如图,在平行四边形中,点是与的交点,过点的直线分别与,的延长线交于点,.当与满足什么条件时,四边形是菱形?请给出证明.20. 一只不透明的袋子中装有个白球和个红球,这些球除颜色外都相同.(1)搅匀后,从中任意摸出一个球,恰好是红球的概率是;(2)搅匀后,从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.①求两次都摸到红球的概率;②经过了次“摸球—记录—放回”的过程,全部摸到红球的概率.21. 高老师将九(1)班某次数学测验成绩分成,,,四组,制作了如下统计表:成绩分频数频率(1)请写出,间满足的一个等式;(2)制作相应的频数分布直方图;(3)九(2)班该次数学测验成绩在组的有人,两个班总人数相同,则该次数学测验成绩的中位数较高的班级为.(填写“九(1)”,“九(2)”或“不确定”)22. (1)如图①,请用尺规作图作出圆的一条直径(不写作法,保留作图痕迹);(2)如图②,,,,为圆上四点,,,请只用无刻度的直尺,画出圆的一条直径(不写画法,保留画图痕迹).23. 如图,直线与轴垂直,垂足为,它与从原点出发的三条射线分别交于点,,.射线,,分别表示正常行走的人,站在自动扶梯上不走的人,在自动扶梯上同时正常行走的人所移动的路程与时间的函数关系,在这些关系中,正常行走的人的速度相同,自动扶梯的速度也相同.(1)猜想线段,,之间满足的数量关系,并说明理由;(2)已知,,正常行走的人的速度是自动扶梯的速度的多少倍?24. 如图①,老旧电视机屏幕的长宽比为,但是多数电影图象的长宽比为,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为寸(即屏幕对角线长度);①该屏幕的长寸,宽寸;”,求该电视机屏幕的浪费比.②已知“屏幕浪费比黑色带子的总面积电视机屏幕的总面积(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形)恰好包含面积相等且长宽比分别为的屏幕(矩形)与的屏幕(矩形).求这种屏幕的长宽比.(参考数据:,结果精确到)25. 如图,在梯形中,,点,分别在轴和轴上.是中点,以为圆心,长为半径作半圆,为该半圆与的一个公共点,且.(1)试说明:与半圆相切于点;(2)求点的坐标.26. 若二次函数的图象记为,其顶点为,二次函数的图象记为,其顶点为,且满足点在上,点在上,则称这两个二次函数互为“伴侣二次函数”.(1)一个二次函数的“伴侣二次函数”有个;(2)①求二次函数与轴的交点;②求以上述交点为顶点的二次函数的“伴侣二次函数”.(3)试探究与满足的数量关系.27. 如图,,为直线上的两个动点(在的左侧),点为直线外一点,且到直线的距离为,.(1)当时,求的长;(2)当时,作,垂足为.若,求的长.答案第一部分1. D2. A3. C4. B5. B6. A第二部分7. ,,8.9. ,10.11.12. 三13.14.15.16.第三部分17.由,得将代入中,得解得将代入得:则方程组的解为:18. 由题意得,即.解得,经检验,是原方程的根,所以.19. 当时,四边形是菱形,证明:在平行四边形中,,,,.在与中,,,又,四边形是平行四边形.时,平行四边形是菱形.20. (1)(2)①搅匀后从中任意摸出个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出个球,所有可能出现的结果有:红红、红红、红白、红红、红红、红白、白红、白红、白白,共有种,它们出现的可能性相同.所有的结果中,满足“两次都是红球”(记为事件)的结果只有种,所以.②21. (1).(2)(3)九(2)22. (1)如图所示.(2)如图所示.23. (1).在时间相同的情况下,人,自动扶梯,人自动扶梯.人自动扶梯自动扶梯人自动扶梯自动扶梯人(2)在中,,;在中,,;.人自动扶梯.即正常行走的人的速度是自动扶梯的速度的倍.24. (1)①;②设在该屏幕上播放长宽比为的视频时,视频的宽为寸(长为寸).,解得.所以黑色带子的宽的和.所以屏幕浪费比.(2)由题意:,,得,.因为矩形矩形,所以.所以,所以.答:这种屏幕的长宽比约为.25. (1)连接,.因为,,所以,又因为点在半圆上,所以,在与中所以,所以,又因为点在半圆上,是的一条半径,所以与半圆相切于点.(2)因为,所以点在半圆上,又因为,所以与半圆相切.所以,作,垂足为.设,在中,,所以,解得.作,垂足为,与交于点.同理,可得,则.所以.26. (1)无数(2)①令,即.解得:,.所以二次函数与轴的交点坐标为,.②因为,所以顶点坐标为.设以为顶点且经过的抛物线的函数关系式为,将,代入得.所以二次函数的一个“伴侣二次函数”为,同理可求以为顶点且经过的抛物线的函数关系式.即二次函数的另一个“伴侣二次函数”为.(3)设,其顶点为;,其顶点为.根据“伴侣二次函数”定义可得所以.当时,且.当时,,为任意不为零的实数.27. (1)如图①,作,垂足为,作,垂足为.在中,,.,,即.在中,,,即,(舍去),.(2)如图①所示,当点在点右侧时,易证,,即.又,,,,,..又在中,.即.解得:,,.如图②所示,当点在点左侧时,易证,.,即.,,,,,,.又在中,,即.解得.,.。
2014年南京市中考数学二模试题(含答案)
![2014年南京市中考数学二模试题(含答案)](https://img.taocdn.com/s3/m/984591100b4c2e3f57276385.png)
2014年南京市中考数学二模试题(含答案)2014年中考数学模拟试题(二)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-13的倒数为()A.13B.3C.-13D.-32.下列运算中,结果是的是()A.B.C.D.3.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状.B.调查你所在的班级同学的身高情况.C.调查我市食品合格情况.D.调查南京市电视台《今日生活》收视率.4.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④5.若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶B.8桶C.9桶D.10桶6.在△ABC中,∠ABC=30°,AB边长为6,AC边的长度可以在1、3、5、7中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.10的平方根为▲.8.因式分解:ab2-a=▲.9.点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为▲.(填一个即可)10.关于x、y的二元一次方程组的解为▲.11.如图,将正五边形ABCDE的C点固定,并依顺时针方向旋转,若要使得新五边形A´B´C´D´E´的顶点D´落在直线BC上,则至少要旋转▲°.12.已知点A(1,y1)、B(–4,y2)在反比例函数y=kx(k<0)的图像上,则y1和y2的大小关系是▲.13.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=25,EM=5,则⊙O的半径为▲.14.二次函数图像过点(–3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为▲.15.如图,在△ABC中,AB=AC=3,高BD=5,AE平分∠BAC,交BD于点E,则DE的长为▲.16.若,,,…,则的值为▲.(用含的代数式表示)三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:18.(8分)先化简再求值:,其中是方程的根.19.(8分)(1)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为▲.20.(8分)为了解八年级学生每天的课外阅读情况,学校从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(说明:每组时间段含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)①“2−2.5小时”的部分对应的扇形圆心角为▲度;②课外阅读时间的中位数落在▲内.(填时间段)(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?21.(8分)已知:如图,在中,,的平分线交于,,垂足为,连结,交于点.(1)求证:;(2)过点作∥交于点,连结,求证:四边形EFCD为菱形.22.(8分)如图,在一次夏令营活动中,小明同学从营地出发,要到地的北偏东60°方向的处,他先沿正东方向走了730m到达地,再沿北偏东45°方向走,恰能到达目的地.求两地距离.(参考数据3≈1.73、2≈1.41) 23.(8分)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,∠DBC=∠BAC. (1)判断BC与⊙O有何位置关系,并说明理由;(2)若⊙O的半径为4,∠BAC=30°,求图中阴影部分的面积.25.(8分)提高南京长江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数图像如下.当车流密度不超过20辆/千米,此时车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数;当桥上的车流密度达到200辆/千米,造成堵塞,此时车流速度为0.(1)求当20≤x≤200时大桥上的车流速度v与车流密度x的函数关系式. (2)车流量y(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)满足y=x•v,当车流密度x为多大时,车流量y可以达到最大,并求出最大值.(精确到1辆/小时)26.(8分)已知平行四边形ABCD中,AB=5,BC=132,E为AB中点,F是BC边上的一动点.(1)如图①,若∠B=90°,作FG⊥CE交AD于点G,作GH⊥BC,垂足为H.求FH的长;(2)如图②,若sinB=35,连接FA交CE于M,当BF为多少时,FA⊥CE?27.(10分)【阅读理解】(1)发现一:一次函数y=kx+b(k、b为常数且k≠0),若k的绝对值越大,此一次函数的图像与过点(0,b)且平行于x轴的直线所夹的锐角就越大.根据发现请解决下列问题:图①是y=k1x+2、y=k2x+2、y=k3x+2、y =k4x+2四个一次函数在同一坐标系中的图像,比较k1、k2、、k3、k4的大小▲.(用“<”或“>”号连接)(2)发现二:我们知道函数y1=k1x+b1与y2=k2x+b2的交点的横坐标是方程k1x+b1=k2x+b2的解.类似的,=12x+1的解就是y=和y=12x+1的两个图像交点的横坐标.求含有绝对值的方程=12x+1的解.解:在同一直角坐标系中画出y=y=12x+1的图像如图②.由图像可知方程=12x+1的解有两个.情况一:由图像可知当x>1时,y==x-1,即x-1=12x+1,解得x =4情况二:由图像可知当x≤1时,y==-x+1,即-x+1=12x+1,解得x =0所以方程=12x+1的解为x1=4、x2=0利用以上方法,解关于x的方程=﹣12x+1.(3)【拓展延伸】解关于x的方程=ax(a为常数且a≠0).(用含a的代数式表示)2014年中考数学模拟试题(二)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)题号123456答案DDBBCB二、填空题(本大题共10小题,每小题2分,共20分)7.±108.a(b-1)(b+1)9.(–1,1)(不唯一)10.x=1,y=111.72°12.y1<y213.314.y=–(x+1)2+415.25516.三、解答题(本大题共11小题,共88分)17.解:原式=33—2×32+4—3+1………………………………………………4分=3+5…………………………………………………………………………6分18.解:原式=………………………………………………………1分=×………………………………………………………3分=-…………………………………………………………………………5分解得x1=1,x2=0………………………………………………7分x1=1分式无意义;把x2=0代入原式=12……………………………………8分19.(1)画树状图略……………………………………………………………………4分所以P(2次摸出的球都是白球)=49.………………………………………6分(2)…………………………………………………………………………………8分20.(1)从八年级抽取了120名学生…………………………………………………4分(2)①36;②1−1.5小时.…………………………………………………6分(3)八年级学生课外阅读时间不少于 1.5小时的估计有240人…………………8分21.证明:(1)∵,的平分线交于,∴在△ACD和△AED中∴△ACD≌△AED………………………………2分∴AC=AE………………………………………………………………3分∴…………………………………………………………4分(2)四边形是菱形.……………………………………5分∵AC=AE,∴CH=HE∵∥,∴,又∴△FEH≌△DCH……………………………………7分∴FH=DH∴四边形是平行四边形.又∵∴四边形是菱形.………………………8分22.解:作CD⊥AB,垂足为D,在Rt△ACD中,tan∠CAB=…………1分在Rt△BCD中,tan∠CBD=…………2分设CD为x则AD==3x………3分BD==x………4分AB=AD-BD730=3x-x…………5分x=…………6分在Rt△BCD中,Sin∠CBD=BC=×2=1410………8分答:BC距离为1410米.23.设原来报名参加的学生有x人, (1)分依题意,得.…………………………………………………4分解这个方程,得x=20.…………………………………………………6分经检验,x=20是原方程的解且符合题意 (7)分答:原来报名参加的学生有20人. (8)分24.解:(1)BC是O的切线.连接BO并延长交⊙O于点E,连接DE,¬¬¬ (1)分则∠BDE=90°,………………………………………………………………………2分所以∠EBD+∠BED=90°,因为∠DBC=∠DAB,∠DAB=∠E,所以∠EBD+∠DBC=90°,…………………………………………………………3分即OB⊥BC,又点B在⊙O上,所以BC是O的切线 (4)分(2)由圆心角的性质可知,∠BOD=2∠A=60°,………………………………………5分即△BOD是边长为4的等边三角形,S扇形=83π………………………………………6分S△BOD=43……………………………………7分所以S阴影=S扇形–S△BOD=83π–43………………………………………………………8分25.解:(1)设v=kx+b,把(20,60)(200,0)代入60=20k+b,0=200k+b……………2分解得k=-13,b=2003v=-13x+2003…………………………………3分(2)当0≤x≤20时y=60x当x=20时y最大为1200辆;………………4分当20<x≤200时y=x•v=-13x2+2003x…………………………………5分=-13(x-100)2+100003……………………………………7分当x=100时,y最大为3333辆.因为3333>1200,所以当x=100时,y最大为3333辆.…………………8分26.解:(1)∠FMC=∠B=90°………………………………1分∠GFH+∠BCE=∠BEC+∠BCE=90°∠BEC=∠GFH………………………………………2分易证△BEC∽△HFG……………………………………3分BEFH=BCGH即2.5FH=6.55FH=2513………………4分(2)作AT⊥BC,ER⊥BC易证△REC∽△TFAREFT=RCAT………………5分AT=ABsinB=3BT=4ER=1.5CR=4.51.5FT=4.53…………………………6分FT=1…………………………7分BF=BT-FT=3………………8分27.(1)k4<k3<k2<k1………………………………………………………………………………………2分(2)在同一直角坐标系中画出y=y=-12x+1的图像,由图像可知方程=12x+1的解有两个.情况一:当x>-2时,y==x+2,即x+2=﹣12x+1.解得x=-23,…………………4分情况二:当x≤-2时,y==-x-2,即-x-2=-12x+1解得x=-6…………………6分所以方程=-12x+1.的解为x1=-23或x2=-6(3)当a<-1时,有一个解,-x+2=ax,解得x=2a+1;………………………………7分当-1≤a<0时,无解; (8)分当0<a<1时,有两个解,当x<2时,-x+2=ax,解得x=2a+1;当x≥2时,x-2=ax,解得x=21-a…………………………9分当a≥1时,有一个解,-x+2=ax,解得x=2a+1;…………………………………………10分。
南京市、盐城市2014届高三年级第二次模拟考试数学试题及答案
![南京市、盐城市2014届高三年级第二次模拟考试数学试题及答案](https://img.taocdn.com/s3/m/f35f6eee71fe910ef12df8a1.png)
南京市2014届高三年级第二次模拟考试 数 学 2014.03 注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f(x)=lnx +1-x 的定义域为 ▲ .2.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为 ▲ .3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3码,则两次抽取的卡片号码中至少有一个为偶数的概率为 5.已知等差数列{an}的公差d 不为0,且a1,a3,a76.执行如图所示的流程图,则输出的k 的值为 ▲ .7.函数f(x)=Asin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ8.在平面直角坐标系xOy 中,双曲线x2a2-y2b2=1(a >0,b A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P(5,3)作直线l 与圆x2+y2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f(x)是定义在R 上的奇函数,当0≤x ≤1时,f(x)=x2,当x >0时,f(x +1)=f(x)+f(1),且.a (第7题图)若直线y =kx 与函数y =f(x)的图象恰有5个不同的公共点,则实数k 的值为 ▲ . 13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f(x)=ax +sinx +cosx .若函数f(x)的图象上存在不同的两点A ,B ,使得曲线y =f(x)在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,PA ⊥PB , BP =BC ,E 为PC 的中点.(1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面PAC .16.(本小题满分14分) 在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A(x1 ,y1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B(x2,y2).(1)若x1=35,求x2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S1,S2,且S1=43S2,求tan α的值.17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).(第16题图) P NC PB C DE A (第15题图)18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x2a2+y2b2=1(a >b >0)的左、右焦点分别为F1,F2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b),求过P ,Q ,F2三点的圆的方程; (3)若F1P →=λQF1→,且λ∈[12,2],求OP →·OQ →的最大值.19.(本小题满分16分)已知函数f(x)=ax +bxex ,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f(x)的极值; (2)设g(x)=a(x -1)ex -f(x).① 当a =1时,对任意x ∈(0,+∞),都有g(x)≥1成立,求b 的最大值;② 设g′(x)为g(x)的导函数.若存在x >1,使g(x)+g′(x)=0成立,求ba 的取值范围.20.(本小题满分16分)已知数列{an}的各项都为正数,且对任意n ∈N*,a2n -1,a2n ,a2n +1成等差数列, a2n ,a2n +1,a2n +2成等比数列. (1)若a2=1,a5=3,求a1的值;(2)设a1<a2,求证:对任意n ∈N*,且n ≥2,都有an +1an <a2a1.南京市2014届高三年级第二次模拟考试数学附加题 2014.03 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与 DB 的延长线交于点E ,AD 与BC 交于点F . (1)求证:四边形ACBE 为平行四边形;(2)若AE =6,BD =5,求线段CF 的长.B .选修4—2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ;(2)若A ⎣⎡⎦⎤x y =⎣⎡⎦⎤ab ,求x ,y 的值.C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cosθ关于直线θ=π4(ρ∈R)对称的曲线的极坐标方程.D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y|≤16,|x -y|≤14,求证:|x +5y|≤1.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E(X). 23.(本小题满分10分)设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n ∈N*,f(n)∈Z ;②任意m ,n ∈N*,有f(m)f(n)=f(mn)+f(m +n -1).A EBC F D第21题A 图(1)求f(1),f(2),f(3)的值; (2)求f(n)的表达式.南京市2014届高三年级第二次模拟考试 数学参考答案 说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题:15.证:(1)设AC ∩BD =O ,连结OE . 因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /⊂平面BDE ,OE ⊂平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面PAB ⊥平面ABCD ,BC ⊥AB ,平面PAB ∩平面ABCD =AB ,所以BC ⊥平面PAB . …………………………………………8分 因为AP ⊂平面PAB ,所以BC ⊥PA .因为PB ⊥PA ,BC ∩PB =B ,BC ,PB ⊂平面PBC ,所以PA ⊥平面PBC . …………………………………………12分 因为BE ⊂平面PBC ,所以PA ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,PA ,PC ⊂平面PAC ,所以BE ⊥平面PAC . …………………………………………14分16.解:(1)因为x1=35,y1>0,所以y1=1-x 21=45.所以sin α=45,cos α=35. …………………………………………2分所以x2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………………6分(2)S1=12sin αcos α=-14sin2α.因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S2=-12sin (α+π4)cos (α+π4)=-14sin(2α+π2)=-14cos2α.…………………………………………8分因为S1=43S2,所以sin2α=-43cos2α,即tan2α=-43. (10)分所以2tanα1-tan2α=-43,解得tanα=2或tan α=-12.因为α∈(π4,π2),所以t anα=2. …………………………………………14分17.解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………………………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………………………………6分 AP2=AM2+MP2-2 AM·MP·cos ∠AMP =163sin2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =163sin2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60 时,工厂产生的噪声对居民的影响最小.……………………………………14分 解法二:设AM =x ,AN =y ,∠AMN =α. 在△AMN 中,因为MN =2,∠MAN =60°, 所以MN2=AM2+AN2-2 AM·AN·cos ∠MAN , 即x2+y2-2xycos60°=x2+y2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=y sin α,所以sin α=34y ,cosα=x2+4-y22×2×x =x2+(x2-xy)4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分在△AMP 中,AP2=AM2+PM2-2 AM·PM·cos ∠AMP ,即AP2=x2+4-2×2×x×x -2y4=x2+4-x(x -2y)=4+2xy .………………………………………12分因为x2+y2-xy =4,4+xy =x2+y2≥2xy ,即xy ≤4. 所以AP2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分18.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a2c =2, 解得c =1,a2=2,所以b2=a2-c2=1.所以椭圆的方程为x22+y2=1. …………………………………………2分(2)因为P(0,1),F1(-1,0),所以PF1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x22+y2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分解法一:因为kPF 1·kPF 2=-1,所以△PQF2为直角三角形. ……………………6分 因为QF2的中点为(-16,-16),QF2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分解法二:设过P ,Q ,F2三点的圆为x2+y2+Dx +Ey +F =0,则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0, 解得⎩⎨⎧D =13,E =13,F =-43.所以圆的方程为x2+y2+13x +13y -43=0. …………………………………………8分(3)设P(x1,y1),Q(x2,y2),则F1P →=(x1+1,y1),QF1→=(-1-x2,-y2).因为F1P →=λQF1→,所以⎩⎨⎧x1+1=λ(-1-x2),y1=-λy2,即⎩⎨⎧x1=-1-λ-λx2,y1=-λy2,所以⎩⎪⎨⎪⎧(-1-λ-λx2)22+λ2y 22=1,x 222+y 22=1,解得x2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x1x2+y1y2=x2(-1-λ-λx2)-λy 22=-λ2x22-(1+λ)x2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2 λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号.所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分19.解:(1)当a =2,b =1时,f (x)=(2+1x)ex ,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=(x +1)(2x -1)x2ex . …………………………………………2分令f ′(x)=0,得x1=-1,x2=12,列表由表知f (x)的极大值是f (-1)=e -1,f (x)的极小值是f (12)=4e .……………………………………4分(2)① 因为g (x)=(ax -a)ex -f (x)=(ax -bx -2a)ex ,当a =1时,g (x)=(x -bx-2)ex .因为g (x)≥1在x ∈(0,+∞)上恒成立,所以b≤x2-2x -xex 在x ∈(0,+∞)上恒成立. …………………………………………8分记h(x)=x2-2x -xex (x >0),则h ′(x)=(x -1)(2ex +1)ex.当0<x <1时,h ′(x)<0,h(x)在(0,1)上是减函数;当x >1时,h ′(x)>0,h(x)在(1,+∞)上是增函数. 所以h(x)min =h(1)=-1-e -1.所以b 的最大值为-1-e -1. …………………………………………10分 ② 因为g (x)=(ax -b x -2a)ex ,所以g ′(x)=(b x2+ax -bx -a)ex .由g (x)+g ′(x)=0,得(ax -b x -2a)ex +(b x2+ax -bx-a)ex =0,整理得2ax3-3ax2-2bx +b =0.存在x >1,使g (x)+g ′(x)=0成立,等价于存在x >1,2ax3-3ax2-2bx +b =0成立. …………………………………………12分 因为a >0,所以b a =2x3-3x22x -1.设u(x)=2x3-3x22x -1(x >1),则u ′(x)=8x[(x -34)2+316](2x -1)2.因为x >1,u ′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以b a >-1,即ba 的取值范围为(-1,+∞). …………………………………………16分20.解:(1)因为a3,a4,a5成等差数列,设公差为d ,则a3=3-2d ,a4=3-d .因为a2,a3,a4成等比数列,所以a2=a 23a4=(3-2d)23-d . …………………………………………3分因为a2=1,所以(3-2d)2 3-d =1,解得d =2,或d =34.因为an >0,所以d =34.因为a1,a2,a3成等差数列,所以a1=2a2-a3=2-(3-2d)=12.…………………………………5分(2)证法一:因为a2n -1,a2n ,a2n +1成等差数列,a2n ,a2n +1,a2n +2成等比数列, 所以2a2n =a2n -1+a2n +1,① a 2 2n +1=a2na2n +2.② 所以a 2 2n -1=a2n -2a2n ,n ≥2.③所以a2n -2a2n +a2na2n +2=2a2n .因为an >0,所以a2n -2 +a2n +2=2a2n . …………………………………………7分 即数列{a2n }是等差数列.所以a2n =a2 +(n -1)(a4-a2).由a1,a2及a2n -1,a2n ,a2n +1是等差数列,a2n ,a2n +1,a2n +2是等比数列,可得a4=(2a2-a1)2a2.所以a2n =a2 +(n -1)(a4-a2)=(a2-a1)n +a1a2.所以a2n =[(a2-a1)n +a1]2a2.所以a2n +2=[(a2-a1)(n +1)+a1]2a2. (10)分从而a2n +1=a2na2n +2=[(a2-a1)n +a1][(a2-a1)(n +1)+a1]a2.所以a2n -1=[(a2-a1)(n -1)+a1][(a2-a1)n +a1]a2.①当n =2m ,m ∈N*时,an +1an -a2a1=[(a2-a1)m +a1][(a2-a1)(m +1)+a1]a2[(a2-a1)m +a1]2a2-a2a1=(a2-a1)(m +1)+a1(a2-a1)m +a1-a2a1=-m(a1-a2)2a1[(a2-a1)m +a1]<0. …………………………………………14分②当n =2m -1,m ∈N*,m ≥2时,an +1an -a2a1=[(a2-a1)m +a1]2a2[(a2-a1)(m -1)+a1][(a2-a1)m +a1]a2-a2a1=(a2-a1)m +a1(a2-a1)(m -1)+a1-a2a1=-(m -1)(a1-a2)2a1[(a2-a1)(m -1)+a1]<0.综上,对一切n ∈N*,n ≥2,有an +1an <a2a1. …………………………………………16分证法二:①若n 为奇数且n ≥3时,则an ,an +1,an +2成等差数列.因为an +2an +1-an +1an =an +2an -a2n +1an +1an =(2an +1-an)an -a2n +1an +1an =-(an +1-an)2an +1an ≤0,所以an +2an +1≤an +1an .②若n 为偶数且n ≥2时,则an ,an +1,an +2成等比数列,所以an +2an +1=an +1an .由①②可知,对任意n ≥2,n ∈N*,an +2an +1≤an +1an ≤…≤a3a2.又因为a3a2-a2a1=2a2-a1a2-a2a1=2a2a1-a12-a22a2a1=-(a1-a2)2a2a1,因为a1<a2,所以-(a1-a2)2a2a1<0,即a3a2<a2a1.综上,an +1an <a2a1.南京市2014届高三年级第二次模拟考试数学附加题参考答案及评分标准 2014.03说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲解:(1)因为AE 与圆相切于点A ,所以∠BAE =∠ACB .因为AB =AC ,所以∠ABC =∠ACB .所以∠ABC =∠BAE .所以AE ∥BC .因为BD ∥AC ,所以四边形ACBE 为平行四边形.…………………………………4分(2)因为AE 与圆相切于点A ,所以AE2=EB·(EB +BD),即62=EB·(EB +5),解得BE =4. 根据(1)有AC =BE =4,BC =AE =6.设CF =x ,由BD ∥AC ,得AC BD =CF BF ,即45=x 6-x ,解得x =83,即CF =83.………………………10分 B .选修4—2:矩阵与变换解:(1)由题意,得⎣⎡⎦⎤1 a -1 b ⎣⎡⎦⎤21=2⎣⎡⎦⎤21,即⎩⎨⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎡⎦⎤1 2-1 4. ………………………………………5分 (2)解法一:A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,即⎣⎡⎦⎤1 2-1 4 ⎣⎡⎦⎤x y =⎣⎡⎦⎤24, 所以⎩⎨⎧x +2y =2,-x +4y =4,解得⎩⎨⎧x =0,y =1.………………………………………10分 解法二:因为A =⎣⎡⎦⎤1 2-1 4,所以A -1=⎣⎢⎡⎦⎥⎤23 -13 16 16. ………………………………………7分 因为A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,所以⎣⎡⎦⎤x y =A -1⎣⎡⎦⎤a b =⎣⎢⎡⎦⎥⎤23 -13 16 16 ⎣⎡⎦⎤24=⎣⎡⎦⎤01. 所以⎩⎨⎧x =0,y =1. ………………………………………10分 C .选修4—4:坐标系与参数方程解法一:以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cosθ的直角坐标方程为 (x -1)2+y2=1,且圆心C 为(1,0).………………………4分直线θ=π4的直角坐标方程为y =x , 因为圆心C(1,0)关于y =x 的对称点为(0,1),所以圆心C 关于y =x 的对称曲线为x2+(y -1)2=1. ………………………………………8分所以曲线ρ=2cosθ关于直线θ=π4(ρR)对称的曲线的极坐标方程为ρ=2sinθ.…………………10分 解法二:设曲线ρ=2cosθ上任意一点为(ρ′,θ′),其关于直线θ=π4对称点为(ρ,θ), 则⎩⎪⎨⎪⎧ρ′=ρ,θ′=2k π+π2-θ. ………………………………………6分 将(ρ′,θ′)代入ρ=2cosθ,得ρ=2cos(π2-θ),即ρ=2sinθ. 所以曲线ρ=2cosθ关于直线θ=π4(ρ∈R)对称的曲线的极坐标方程为ρ=2sinθ.…………………10分 D .选修4—5:不等式选讲证: 因为|x +5y|=|3(x +y)-2(x -y)|. ………………………………………5分 由绝对值不等式性质,得|x +5y|=|3(x +y)-2(x -y)|≤|3(x +y)|+|2(x -y)|=3|x +y|+2|x -y|≤3×16+2×14=1. 即|x +5y|≤1. ………………………………………10分22.(本小题满分10分)解(1)记“恰有2人申请A 大学”为事件A ,P(A)=C42×2234=2481=827. 答:恰有2人申请A 大学的概率为827. ………………………………………4分 (2)X 的所有可能值为1,2,3.P(X =1)=334=127, P(X =2)=C43×A32+3×A3234=4281=1427, P(X =3)=C42×A3334=3681=49. X所以X 的数学期望E(X)=1×127+2×1427+3×49=6527. ………………………………………10分 23.解:(1)因为f(1)f(4)=f(4)+f(4),所以5 f(1)=10,则f(1)=2.……………………………………1分 因为f(n)是单调增函数,所以2=f(1)<f(2)<f(3)<f(4)=5.因为f(n)∈Z ,所以f(2)=3,f(3)=4. ………………………………………3分(2)解:由(1)可猜想f (n)=n+1.证明:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z ,所以f (n+1)≥f (n)+1.首先证明:f (n)≥n+1.因为f (1)=2,所以n =1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)≥k+1.则f(k+1)≥f (k)+1≥k+2,即n=k+1时,命题也成立.综上,f (n)≥n+1.………………………………………5分由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1.下面证明:f (n)=n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)=k+1,则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2,又f(k+1)≥k+2,所以f(k+1)=k+2.即n=k+1时,命题也成立.所以f (n)=n+1 ………………………………………10分。
2014年南京秦淮区二模数学试卷5.22
![2014年南京秦淮区二模数学试卷5.22](https://img.taocdn.com/s3/m/78f6707e01f69e3142329404.png)
27. (12 分)已知,在△ABC 中,∠C=90° ,P 为 AB 上一点(点 P 不与点 A 重合) ,以 P 为圆心,PA 为半径作⊙P. (1)当⊙P 与直线 BC 相切时,如图,设切点为 D. ①连接 AD,判断∠CAD 与∠BAD 的数量关系,并说明理由; ②若 BC=a,AC=b,求⊙P 的半径(用含 a、b 的代数式表示) . (2)当⊙P 与直线 BC 相交时,设交点分别为 E、F(点 E 在点 F 的左侧,且点 E 不 与点 C 重合) .连接 EA、FA. ①判断∠CAE 与∠BAF 的数量关系,并说明理由; ②若∠B=22.5° ,当∠CAE=∠EAF 时,CE∶EF∶FB= ▲ .
C
A (第 22 题)
B
23. (8 分)甲、乙两观光船分别从 A、B 两港同时出发,甲船开往 B 港,乙船开往 A 港, 两船在静水中速度相同, 水流速度为 5 km/h, 甲船逆流而行 4 小时到达 B 港. 若y (km) 表示距离 A 港的路程,x(h)表示行驶的时间,下图表示甲船距离 A 港的路程与行驶 时间之间的函数关系,结合图象解答下列问题: (1)A、B 两港距离 为 ▲ km/h; ▲ km,船在静水中的速度
B
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分. 不需写出解答过程,请把答案直 接填写在答题卷相应位置 上) ....... 1 7.函数 y= 的自变量 x 的取值范围是 x-2 ▲ .
8.如图,将含有 30° 角的三角尺 ABC 的直角顶点 C 放在直线 DE 上,FG∥DE,且 FG 与 AB 交于点 H.若∠ACD=38° ,则∠FHA= ▲ ° .
M a b
N P (第 4 题)
5.某厂一月份生产机器 100 台,计划第一季度共生产 331 台.设二、三月份每月的平均 增长率为 x,根据题意列出的方程是 A.100(1+x)2=331 C.100+100(1+x)2=331 B.100(1+x)+100(1+x)2=331 D.100+100(1+x)+100(1+x)2=331
江苏省南京市2014鼓楼区中考数学二模试卷及答案
![江苏省南京市2014鼓楼区中考数学二模试卷及答案](https://img.taocdn.com/s3/m/26d57f25b84ae45c3a358c08.png)
(第12题)(第13题)11 900 000个,将这个数用科学记数法表示为 ▲ (保留2个有效数字). 9.在Rt △ABC 中,CD 是斜边AB 上的中线,如果AB =4.8 cm ,那么CD = cm . 10. 化简 a (a -b )2 - b(b -a )2的结果是 ▲ . 11.若某个圆锥底面半径为3,侧面展开图的面积为12π,则这个圆锥的高为 ▲ .12. 如图,把面积分别为9与4的两个等边三角形的部分重叠,若两个阴影部分的面积分别记为S 1与S 2(S 1>S 2),则S 1-S 2= ▲ .13. 如图,将△ABC 绕点A 逆时针方向旋转到△ADE 的位置,点B 落在AC 边上的点D 处,设旋转角为α (0︒<α<90︒).若∠B =125︒,∠E =30︒,则∠α= ▲ °.14.如图,将矩形ABCD 折叠,使得A 点落在CD 上的E 点,折痕为FG ,若AD =15cm ,AB =12cm ,FG =13cm ,则DE 的长度为 ▲ cm .15.根据如图所示的函数图象,可得不等式ax 2+bx +c <kx的解集为 ▲ .16.已知二次函数y =a (x +1)(x -3)的图象与x 轴交于点A ,B ,与y 轴交于点C ,则使△ABC 为等腰三角形的a 的值为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:21 2 - 1 232 + 18. 18.(6分)解方程:5x -4x -2=4x +103x -6-1.19.(8分)根据某市农村居民与城镇居民人均可支配收入的数据绘制如下统计图:2010—2013年 人均可支配收入统计图2010—2013年 城镇居民人均可支配收入年增长率统计图2.93.3 434 5 收入∕万元 农村居民城镇居民1015 增长率(%)8.713.89.111.1(第15题)x -3 2 3y =ax 2+bx +cy =kxy(第14题)FABDCGE。
江苏省淮安、南京、盐城市2014届高三第二次模拟考试数学试题(纯WORD版)
![江苏省淮安、南京、盐城市2014届高三第二次模拟考试数学试题(纯WORD版)](https://img.taocdn.com/s3/m/86906f412e3f5727a5e962b6.png)
江苏省南京、盐城、淮安市2014届高三第二次模拟考试数 学 2014.03注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f (x )=ln x +1-x 的定义域为 ▲ .2.已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 ▲ . 3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为 ▲ .5.已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为6.执行如图所示的流程图,则输出的k 的值为 ▲ .a(第3题图)(第6题图)7.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π3)的值为 ▲ .8.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ .9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1),且. 若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ .13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AB ⊥平面ABCD ,P A ⊥PB , BP =BC ,E 为PC 的中点. (1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面P AC .(第7题图)PBCDEA(第15题图)在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.(第16题图) APMNBC(第17题图)已知函数f (x )=ax +b x e x,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f (x )的极值; (2)设g (x )=a (x -1)e x -f (x ).① 当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;② 设g′(x )为g (x )的导函数.若存在x >1,使g (x )+g′(x )=0成立,求ba 的取值范围.20.(本小题满分16分)已知数列{a n }的各项都为正数,且对任意n ∈N *,a 2n -1,a 2n ,a 2n +1成等差数列, a 2n ,a 2n +1,a 2n +2成等比数列.(1)若a 2=1,a 5=3,求a 1的值;(2)设a 1<a 2,求证:对任意n ∈N *,且n ≥2,都有a n +1a n <a 2a 1.南京市2014届高三年级第二次模拟考试数学附加题 2014.03注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答.题纸..上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域......内.作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与 DB 的延长线交于点E ,AD 与BC 交于点F . (1)求证:四边形ACBE 为平行四边形; (2)若AE =6,BD =5,求线段CF 的长.B .选修4—2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ; (2)若A⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,求x ,y 的值.C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E (X ).A EBC F D第21题A 图23.(本小题满分10分)设f (n )是定义在N *上的增函数,f (4)=5,且满足:①任意n ∈N *,f (n )∈Z ;②任意m ,n ∈N *,有f (m )f (n )=f (mn )+f (m +n -1). (1)求f (1),f (2),f (3)的值; (2)求f (n )的表达式.参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题15.证:(1)设AC ∩BD =O ,连结OE .因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /⊂平面BDE ,OE ⊂平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面P AB ⊥平面ABCD ,BC ⊥AB ,平面P AB ∩平面ABCD =AB ,所以BC ⊥平面P AB . ………………………………………8分 因为AP ⊂平面P AB ,所以BC ⊥P A .因为PB ⊥P A ,BC ∩PB =B ,BC ,PB ⊂平面PBC ,所以P A ⊥平面PBC . …………………………………………12分 因为BE ⊂平面PBC ,所以P A ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,P A ,PC ⊂平面P AC ,所以BE ⊥平面PAC . …………………………………………14分 16.解:(1)解法一:因为x 1=35,y 1>0,所以y 1=1-x 21=45.所以sin α=45,cos α=35. ………………………2分所以x 2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………6分解法二:因为x 1=35,y 1>0,所以y 1=1-x 21=45.A (35,45),则OA →=(35,45),…………2分OB →=(x 2,y 2), 因为OA →·OB →=|OA →||OB →|cos ∠AOB ,所以35x 2+45y 2= 2 2 ……4分又x 22+y 22=1,联立消去y 2得50 x 22-302x 2-7=0 解得x 2=-2 10或7210,又x 2<0,所以x 2=- 210. ………………………6分 解法三:因为x 1=35,y 1>0,所以y 1=1-x 21=45. 因此A (35,45),所以tan α=43.………2分所以tan(α+π4)=1+tan α1-tan α=-7,所以直线OB 的方程为y =-7x ……………4分由⎩⎨⎧y =-7x ,x 2+y 2=1.得x =± 2 10,又x 2<0,所以x 2=- 210. …………………6分(2)S 1=12sin αcos α=-14sin2α. …………………………………………8分因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S 2=-12sin(α+π4)cos(α+π4)=-14sin(2α+π2)=-14cos2α.……………………………10分因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43. …………………………………12分所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12. 因为α∈(π4,π2),所以tan α=2.………14分17、解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………6分 AP 2=AM 2+MP 2-2 AM ·MP ·cos ∠AMP =163sin 2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =163sin 2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60 时,工厂产生的噪声对居民的影响最小.……………………………………14分解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. ……………2分 在△AMN 中,∠ANM =∠PMD =θ,∴MN sin60°=AM sin θ,AM =433sin θ,∴AD =433sin θ+2cos θ,(θ≥π2时,结论也正确).……………6分 AP 2=AD 2+PD 2=(433sin θ+2cos θ)2+(2sin θ)2=163sin 2θ+833sin θcos θ+4cos 2θ+4sin 2θ …………………………8分 =163·1-cos2θ2+433sin2θ+4=433sin2θ-83cos2θ+203=203+163sin(2θ-π6),θ∈(0,2π3). …………………………12分 当且仅当2θ-π6=π2,即θ=π3时,AP 2取得最大值12,即AP 取得最大值23.此时AM =AN =2,∠P AB =30° …………………………14分 解法三:设AM =x ,AN =y ,∠AMN =α.在△AMN 中,因为MN =2,∠MAN =60°, 所以MN 2=AM 2+AN 2-2 AM ·AN ·cos ∠MAN ,即x 2+y 2-2xy cos60°=x 2+y 2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=ysin α,所以sin α=34y ,cosα=x 2+4-y 22×2×x =x 2+(x 2-xy )4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分在△AMP 中,AP 2=AM 2+PM 2-2 AM ·PM ·cos ∠AMP ,即AP 2=x 2+4-2×2×x ×x -2y 4=x 2+4-x (x -2y )=4+2xy .………………………………………12分因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy ,即xy ≤4. 所以AP 2≤12,即AP ≤23.A PMNBC第17题图D当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分 解法四(坐标法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系. 设M (x 1,0),N (x 2,3x 2),P (x 0,y 0).∵MN =2,∴(x 1-x 2)2+3x 22=4. …………………………………………2分 MN 的中点K (x 1+x 22,32x 2).∵△MNP 为正三角形,且MN =2.∴PK =3,PK ⊥MN .∴PK 2=(x 0-x 1+x 22)2+(y 0-32x 2)2=3,k MN ·k PK =-1,即3x 2x 2-x 1·y 0-32x 2x 0-x 1+x 22=-1, …………………………………………6分∴y 0-32x 2=x 1-x 23x 2(x 0-x 1+x 22),∴(y 0-32x 2)2=(x 1-x 2)23x 22(x 0-x 1+x 22)2 ∴(1+(x 1-x 2)23x 22)(x 0-x 1+x 22)2=3,即43x 22(x 0-x 1+x 22)2=3,∴(x 0-x 1+x 22)2=94x 22. ∵x 0-x 1+x 22>0 ∴x 0-x 1+x 22=32x 2,∴x 0=12x 1+2x 2,∴y 0=32x 1. …………………………………………8分∴AP 2=x 20+y 20=(2x 2+12x 1)2+34x 21=x 21+4x 22+2x 1x 2 =4+4x 1x 2≤4+4×2=12, …………………………………………12分 即AP ≤23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 解法五(变换法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系. 设M (x 1,0),N (x 2,3x 2),P (x 0,y 0).∵MN =2,∴(x 1-x 2)2+3x 22=4.即x 21+4x 22=4+2x 1x 2∴4+2x 1x 2≥4x 1x 2,即x 1x 2≤2. …………………4分 ∵△MNP 为正三角形,且MN =2.∴PK =3,PK ⊥MN .MN →顺时针方向旋转60°后得到MP →. MP →=(x 0-x 1,y 0),MN →=(x 2-x 1,3x 2).∴⎣⎢⎡⎦⎥⎤12 32-32 12⎣⎢⎡⎦⎥⎤x 2-x 13x 2=⎣⎢⎡⎦⎥⎤x 0-x 1y 0,即 x 0-x 1=12(x 2-x 1)+32x 2,y 0=-32(x 2-x 1)+32x 2.∴x 0=2x 2+12x 1,y 0=32x 1. …………………………………………8分∴AP 2=x 20+y 20=(2x 2+12x 1)2+34x 21=x 21+4x 22+2x 1x 2 =4+4x 1x 2≤4+4×2=12, …………………………………………12分 即AP ≤23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 解法六(几何法):由运动的相对性,可使△PMN 不动,点A 在运动.由于∠MAN =60°,∴点A 在以MN 为弦的一段圆弧(优弧)上,…………4分 设圆弧所在的圆的圆心为F ,半径为R ,由图形的几何性质知:AP 的最大值为PF +R . …………8分 在△AMN 中,由正弦定理知:MN sin60°=2R ,∴R =23, …………10分 ∴FM =FN =R =23,又PM =PN ,∴PF 是线段MN 的垂直平分线. 设PF 与MN 交于E ,则FE 2=FM 2-ME 2=R 2-12=13.即FE =33,又PE =3. ……………………………12 ∴PF =43,∴AP 的最大值为PF +R =23. 答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 18、(1)解:由题意得⎩⎪⎨⎪⎧2c=2,a 2c =2,解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x 22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分 解法一:因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分APMNBCF E因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分解法二:设过P ,Q ,F 2三点的圆为x 2+y 2+Dx +Ey +F =0, 则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0,解得⎩⎨⎧D =13,E =13,F =-43.所以圆的方程为x 2+y 2+13x +13y -43=0. …………………………………………8分(3)解法一:设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎨⎧(-1-λ-λx 2)22+λ2y 22=1,x 222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x 1x 2+y 1y 2=x 2(-1-λ-λx 2)-λy 22=-λ2x 22-(1+λ)x 2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号. 所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分解法二:当PQ 斜率不存在时,在x 22+y 2=1中,令x =-1得y =± 22.所以11(1)(222OP OQ ⋅=-⨯-+-=,此时11,22λ⎡⎤=∈⎢⎥⎣⎦…………………………2 当PQ 斜率存在时,设为k ,则PQ 的方程是y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1.得(1+2k 2)x 2+4k 2x +2k 2-2=0, 韦达定理 22121222422==1212k k x x x x k k--+++,………………………………………4 设P (x 1,y 1),Q (x 2,y 2) ,则212121212(1)(1)OP OQ x x y y x x k x x ⋅=+=+++22212122222222222(1)()224(1)12122 61215122(12)2k x x k x x k k k k k k k k k k k =++++--=+++++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=-<+分。
2014年江苏省南京市高淳区中考二模数学试题及答案
![2014年江苏省南京市高淳区中考二模数学试题及答案](https://img.taocdn.com/s3/m/66cbfbadb0717fd5360cdc47.png)
l
O
B
A N M
x
C
(第 27 题)
九年级数学试卷
第 6 页
共 6 页
九年级数学(二)参考答案及评分标准
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置 上) ....... 1 A 2 D 3 C 4 B 5 B 6 D
1
2
3
(第 21 题)
22. (7 分)如图,利用热气球探测器测量大楼 AB 的高度.从热气球 P 处测得大楼顶部 B 的俯角为 37°,大楼底部 A 的俯角为 60°,此时热气球 P 离地面的高度为 120 m.试求大 楼 AB 的高度(精确到 0.1 m) . (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, 3≈1.73) P
∵AM⊥BC,CN⊥AD, ∴∠ABM+∠BAM=90° ,∠CDN+∠DCN=90° , ∴∠BAM=∠DCN ∴△AEB ≌ △CFD. „„„„„„3 分 „„„„„„4 分
(2)∵△AEB ≌ △CFD, ∴AE=CF. „„„„„„5 分
∵AD∥BC,CN⊥AD ∴∠BCN=∠CND=90° ∵AM⊥BC,∴∠AMB=90° ∴AM∥CN „„„„„„6 分
C B a M N
P A 图1 (第 25 题) 九年级数学试卷 第 5 页 共 6 页
D
O
2
3 图2
G
x(S)
26. (10 分)如图,△ABC 中,AB=AC,以 AC 为直径的⊙O 与边 AB、BC 分别交于点 D、E.过 E 作直线与 AB 垂直,垂足为 F,且与 AC 的延长线交于点 G. (1)判断直线 FG 与⊙O 的位置关系,并证明你的结论; (2)若 BF=1,CG=2,求⊙O 半径.
南京市2014届数学二模
![南京市2014届数学二模](https://img.taocdn.com/s3/m/d0d6a37869eae009591bec1f.png)
南京市2014届高三年级第二次模拟考试数 学 2014.03注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f (x )=ln x +1-x 的定义域为 ▲ .2.已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 ▲ . 3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为 ▲ .5.已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为6.执行如图所示的流程图,则输出的k 的值为 ▲ . a(第3题图)(第6题图)7.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π3)的值为 ▲ .8.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ .9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >1时,f (x +1)=f (x )+f (1),且. 若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ .13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ . 一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1](第7题图)二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AB ⊥平面ABCD ,P A ⊥PB , BP =BC ,E 为PC 的中点. (1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面P AC . 15.证:(1)设AC ∩BD =O ,连结OE .因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /⊂平面BDE ,OE ⊂平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面P AB ⊥平面ABCD ,BC ⊥AB ,平面P AB ∩平面ABCD =AB ,所以BC ⊥平面P AB . ………………………………………8分 因为AP ⊂平面P AB ,所以BC ⊥P A .因为PB ⊥P A ,BC ∩PB =B ,BC ,PB ⊂平面PBC ,所以P A ⊥平面PBC . …………………………………………12分 因为BE ⊂平面PBC ,所以P A ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,P A ,PC ⊂平面P AC ,所以BE ⊥平面PAC . …………………………………………14分16.(本小题满分14分)在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).PBCDEA(第15题图)(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.16.解:(1)因为x 1=35,y 1>0,所以y 1=1-x 21=45.所以sin α=45,cos α=35. ………………………2分所以x 2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………6分(2)S 1=12sin αcos α=-14sin2α. …………………………………………8分因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S 2=-12sin(α+π4)cos(α+π4)=-14sin(2α+π2)=-14cos2α.……………………………10分因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43. …………………………………12分所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12. 因为α∈(π4,π2),所以tan α=2.………14分 17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AM sin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………………………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………………………………6分 AP 2=AM 2+MP 2-2 AM ·MP ·cos ∠AMP(第16题图)APMNBC(第17题图)=163sin 2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =163sin 2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60 时,工厂产生的噪声对居民的影响最小.……………………………………14分 解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. ……………2分 在△AMN 中,∠ANM =∠PMD =θ,∴MN sin60°=AM sin θ,AM =433sin θ,∴AD =433sin θ+2cos θ,(θ≥π2时,结论也正确).……………6分 AP 2=AD 2+PD 2=(433sin θ+2cos θ)2+(2sin θ)2=163sin 2θ+833sin θcos θ+4cos 2θ+4sin 2θ …………………………8分 =163·1-cos2θ2+433sin2θ+4=433sin2θ-83cos2θ+203=203+163sin(2θ-π6),θ∈(0,2π3). …………………………12分 当且仅当2θ-π6=π2,即θ=π3时,AP 2取得最大值12,即AP 取得最大值23.此时AM =AN =2,∠P AB =30° …………………………14分 解法三:设AM =x ,AN =y ,∠AMN =α.在△AMN 中,因为MN =2,∠MAN =60°, 所以MN 2=AM 2+AN 2-2 AM ·AN ·cos ∠MAN ,即x 2+y 2-2xy cos60°=x 2+y 2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=ysin α,所以sin α=34y ,cosα=x 2+4-y 22×2×x =x 2+(x 2-xy )4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分A PMNBC第17题图D即AP 2=x 2+4-2×2×x ×x -2y 4=x 2+4-x (x -2y )=4+2xy .………………………………………12分因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy ,即xy ≤4. 所以AP 2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a 2c =2, 解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x 22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分 因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分 因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分(3)解法一:设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎨⎧(-1-λ-λx 2)22+λ2y 22=1,x 222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x x +y y =x (-1-λ-λx )-λy 2=-λx 2-(1+λ)x -λ=-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号. 所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分19.(本小题满分16分)已知函数f (x )=ax +b x e x,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f (x )的极值; (2)设g (x )=a (x -1)e x -f (x ).① 当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;② 设g′(x )为g (x )的导函数.若存在x >1,使g (x )+g′(x )=0成立,求ba 的取值范围.解:(1)当a =2,b =1时,f (x )=(2+1x)e x ,定义域为(-∞,0)∪(0,+∞).所以f ′(x )=(x +1)(2x -1)x 2e x. …………………………………………2分令f ′(x )=0,得x 1=-1,x 2=12,列表由表知f (x )的极大值是f (-1)=e -1,f (x )的极小值是f (12)=4e .……………………………………4分(2)① 因为g (x )=(ax -a )e x -f (x )=(ax -bx -2a )e x ,当a =1时,g (x )=(x -bx-2)e x .因为g (x )≥1在x ∈(0,+∞)上恒成立,所以b ≤x 2-2x -xe x 在x ∈(0,+∞)上恒成立. …………………………………………8分记h (x )=x 2-2x -xe x (x >0),则h ′(x )=(x -1)(2e x +1)e x.当0<x <1时,h ′(x )<0,h (x )在(0,1)上是减函数;所以h (x )min =h (1)=-1-e -1.所以b 的最大值为-1-e -1. …………………………………………10分②:因为g (x )=(ax -b x -2a )e x ,所以g ′(x )=(b x 2+ax -bx -a )e x .由g (x )+g ′(x )=0,得(ax -b x -2a )e x +(b x 2+ax -bx -a )e x =0,整理得2ax 3-3ax 2-2bx +b =0. 存在x >1,使g (x )+g ′(x )=0成立,等价于存在x >1,2ax 3-3ax 2-2bx +b =0成立. …………………………………………12分因为a >0,所以b a =2x 3-3x22x -1.设u (x )=2x 3-3x22x -1(x >1),则u ′(x )=8x [(x -34)2+316](2x -1)2.因为x >1,u ′(x )>0恒成立,所以u (x )在(1,+∞)是增函数,所以u (x )>u (1)=-1,所以b a >-1,即ba 的取值范围为(-1,+∞). …………………………………………16分20.(本小题满分16分)已知数列{a n }的各项都为正数,且对任意n ∈N *,a 2n -1,a 2n ,a 2n +1成等差数列, a 2n ,a 2n +1,a 2n +2成等比数列.(1)若a 2=1,a 5=3,求a 1的值;(2)设a 1<a 2,求证:对任意n ∈N *,且n ≥2,都有a n +1a n <a 2a 1.解:(1)因为a 3,a 4,a 5成等差数列,设公差为d ,则a 3=3-2d ,a 4=3-d .因为a 2,a 3,a 4成等比数列,所以a 2=a 23a 4=(3-2d )23-d . ………………3分因为a 2=1,所以(3-2d )2 3-d =1,解得d =2,或d =34.因为a n >0,所以d =34.因为a 1,a 2,a 3成等差数列,所以a 1=2a 2-a 3=2-(3-2d )=12.……………5分 (2)证法一:因为a 2n -1,a 2n ,a 2n +1成等差数列,a 2n ,a 2n +1,a 2n +2成等比数列,所以2a 2n =a 2n -1+a 2n +1,① a 2 2n +1=a 2n a 2n +2.②;所以a 22n -1=a 2n -2a 2n ,n ≥2.③ 所以a 2n -2a 2n +a 2n a 2n +2=2a 2n .因为a n >0,所以a 2n -2 +a 2n +2=2a 2n . …………7分 即数列{a 2n }是等差数列.所以a 2n =a 2 +(n -1)(a 4-a 2).由a 1,a 2及a 2n -1,a 2n ,a 2n +1是等差数列,a 2n ,a 2n +1,a 2n +2是等比数列,可得a 4=(2a 2-a 1)2a 2.………………8分所以a 2n =a 2 +(n -1)(a 4-a 2)=(a 2-a 1)n +a 1a 2.所以a 2n =[(a 2-a 1)n +a 1]2a 2.……………………10分所以a 2n +2=[(a 2-a 1)(n +1)+a 1]2a .从而a 2n +1=a 2n a 2n +2=[(a 2-a 1)n +a 1][(a 2-a 1)(n +1)+a 1]a 2.所以a 2n -1=[(a 2-a 1)(n -1)+a 1][(a 2-a 1)n +a 1]a 2.………………12分①当n =2m ,m ∈N *时,a n +1a n -a 2a 1=[(a 2-a 1)m +a 1][(a 2-a 1)(m +1)+a 1]a 2[(a 2-a 1)m +a 1]2a 2-a 2a 1=(a 2-a 1)(m +1)+a 1(a 2-a 1)m +a 1-a 2a 1 =-m (a 1-a 2)2a 1[(a 2-a 1)m +a 1]<0. ……………14分②当n =2m -1,m ∈N *,m ≥2时,a n +1a n -a 2a 1=[(a 2-a 1)m +a 1]2a 2[(a 2-a 1)(m -1)+a 1][(a 2-a 1)m +a 1]a 2-a 2a 1=(a 2-a 1)m +a 1(a 2-a 1)(m -1)+a 1-a 2a 1=-(m -1)(a 1-a 2)2a 1[(a 2-a 1)(m -1)+a 1]<0.综上,对一切n ∈N *,n ≥2,有a n +1a n <a 2a 1. ………………16分证法二:①若n 为奇数且n ≥3时,则a n ,a n +1,a n +2成等差数列.因为a n +2a n +1-a n +1a n =a n +2a n -a 2n +1a n +1a n =(2a n +1-a n )a n -a 2n +1a n +1a n =-(a n +1-a n )2a n +1a n ≤0,所以a n +2a n +1≤a n +1a n.………………9分②若n 为偶数且n ≥2时,则a n ,a n +1,a n +2成等比数列,所以a n +2a n +1=a n +1a n.………11分由①②可知,对任意n ≥2,n ∈N *, a n +2a n +1≤a n +1a n≤…≤a 3a 2.………13分又因为a 3a 2-a 2a 1=2a 2-a 1a 2-a 2a 1=2a 2a 1-a 12-a 22a 2a 1=-(a 1-a 2)2a 2a 1,因为a 1<a 2,所以-(a 1-a 2)2a 2a 1<0,即a 3a 2<a 2a 1.………15分综上,a n +1a n <a 2a 1.…………16分.南京市2014届高三年级第二次模拟考试数学附加题 2014.03注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答.题纸..上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域......内.作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与 DB 的延长线交于点E ,AD 与BC 交于点F . (1)求证:四边形ACBE 为平行四边形; (2)若AE =6,BD =5,求线段CF 的长.A .选修4—1:几何证明选讲解:(1)因为AE 与圆相切于点A ,所以∠BAE =∠ACB .因为AB =AC ,所以∠ABC =∠ACB .所以∠ABC =∠BAE .所以AE ∥BC .因为BD ∥AC ,所以四边形ACBE 为平行四边形.…………………………………4分 (2)因为AE 与圆相切于点A ,所以AE 2=EB ·(EB +BD ),即62=EB ·(EB +5),解得BE =4. 根据(1)有AC =BE =4,BC =AE =6.设CF =x ,由BD ∥AC ,得AC BD =CF BF ,即45=x 6-x ,解得x =83,即CF =83.………………………10分B .选修4—2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ;(2)若A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,求x ,y 的值. 解:(1)由题意,得⎣⎡⎦⎤1 a -1 b ⎣⎡⎦⎤21=2⎣⎡⎦⎤21,即⎩⎨⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎡⎦⎤1 2-1 4. ………………………………………5分(2)解法一:A⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,即⎣⎡⎦⎤1 2-1 4 ⎣⎡⎦⎤x y =⎣⎡⎦⎤24,所以⎩⎨⎧x +2y =2,-x +4y =4, ………………………………………8分解得⎩⎨⎧x =0,y =1.………………………………………10分A EBC F D第21题A 图解法二:因为A =⎣⎡⎦⎤1 2-1 4,所以A -1=⎣⎢⎡⎦⎥⎤23 -13 16 16. ………………………………………7分 因为A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,所以⎣⎡⎦⎤x y =A -1⎣⎡⎦⎤a b =⎣⎢⎡⎦⎥⎤23 -13 16 16⎣⎡⎦⎤24=⎣⎡⎦⎤01. 所以⎩⎨⎧x =0,y =1. ………………………………………10分 C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程. 解法一:以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程为 (x -1)2+y 2=1,且圆心C 为(1,0).………………………4分直线θ=π4的直角坐标方程为y =x , 因为圆心C (1,0)关于y =x 的对称点为(0,1),所以圆心C 关于y =x 的对称曲线为x 2+(y -1)2=1. ………………………………………8分所以曲线ρ=2cos θ关于直线θ=π4(ρR )对称的曲线的极坐标方程为ρ=2sin θ.…………………10分 解法二:设曲线ρ=2cos θ上任意一点为(ρ′,θ′),其关于直线θ=π4对称点为(ρ,θ), 则⎩⎪⎨⎪⎧ρ′=ρ,θ′=2k π+π2-θ. ………………………………………6分 将(ρ′,θ′)代入ρ=2cos θ,得ρ=2cos(π2-θ),即ρ=2sin θ.所以曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程为ρ=2sin θ.…………………10分D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1. 证: 因为|x +5y |=|3(x +y )-2(x -y )|. ………………………………………5分 由绝对值不等式性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1. 即|x +5y |≤1. ………………………………………10分【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E (X ).22.(本小题满分10分)解(1)记“恰有2人申请A 大学”为事件A ,P (A )=C 42×2234=2481=827. 答:恰有2人申请A 大学的概率为827. ………………………………………4分 (2)X 的所有可能值为1,2,3.P (X =1)=334=127, P (X =2)=C 43×A 32+3×A 3234=4281=1427, P (X =3)=C 42×A 3334=3681=49. X 的概率分布列为:所以X 的数学期望E (X )=1×127+2×1427+3×49=6527. ………………………………………10分 23.(本小题满分10分)设f (n )是定义在N *上的增函数,f (4)=5,且满足:①任意n ∈N *,f (n )∈Z ;②任意m ,n ∈N *,有f (m )f (n )=f (mn )+f (m +n -1).(1)求f (1),f (2),f (3)的值;(2)求f (n )的表达式.23.解:(1)因为f (1)f (4)=f (4)+f (4),所以5 f (1)=10,则f (1)=2.……………………………………1分 因为f (n )是单调增函数,所以2=f (1)<f (2)<f (3)<f (4)=5.因为f (n )∈Z ,所以f (2)=3,f (3)=4. ………………………………………3分(2)解:由(1)可猜想f (n)=n+1.证明:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z,所以f (n+1)≥f (n)+1.首先证明:f (n)≥n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)≥k+1.则f(k+1)≥f (k)+1≥k+2,即n=k+1时,命题也成立.综上,f (n)≥n+1.………………………………………5分由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1.下面证明:f (n)=n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)=k+1,则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2,又f(k+1)≥k+2,所以f(k+1)=k+2.即n=k+1时,命题也成立.所以f (n)=n+1 ………………………………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为MN=2,所以AM=sin(120°-θ).………………………………………2分
在△APM中,cos∠AMP=cos(60°+θ).…………………………………………6分
AP2=AM2+MP2-2AM·MP·cos∠AMP
=sin2(120°-θ)+4-2×2×sin(120°-θ)cos(60°+θ)………………………………8分
由解得或所以点Q的坐标为(-,-).……………………4分
因为kPF·kPF=-1,所以△PQF2为直角三角形.……………………6分
因为QF2的中点为(-,-),QF2=,
所以圆的方程为(x+)2+(y+)2=.……………………8分
(3)解法一:设P(x1,y1),Q(x2,y2),则=(x1+1,y1),=(-1-x2,-y2).
因为AP平面BDE,OE平面BDE,
所以AP∥平面BDE.…………………………………………6分
(2)因为平面PAB⊥平面ABCD,BC⊥AB,平面PAB∩平面ABCD=AB,
所以BC⊥平面PAB.………………………………………8分
因为AP平面PAB,所以BC⊥PA.
因为PB⊥PA,BC∩PB=B,BC,PB平面PBC,
5.已知等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,则的值为▲.
6.执行如图所示的流程图,则输出的k的值为▲.
7.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π) 的图象如下图所示,则f()的值为▲.
8.在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=4x的准线相交于A,B两点.若△AOB的面积为2,则双曲线的离心率为▲.
参考公式:
柱体的体积公式:V=Sh,其中S为柱体的底面积,h为柱体的高.
圆柱的侧面积公式:S侧=2πRh,其中R为圆柱的底面半径,h为圆柱的高.
一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)
1.函数f(x)=lnx+的定义域为▲.
2.已知复数z1=-2+i,z2=a+2i(i为虚数单位,aR).若z1z2为实数,则a的值为▲.
=sin2(θ+60°)-sin(θ+60°)cos(θ+60°)+4
=[1-cos (2θ+120°)]-sin(2θ+120°)+4
=-[sin(2θ+120°)+cos (2θ+120°)]+
=-sin(2θ+150°),θ∈(0,120°).…………………………………………12分
当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP取得最大值2.
所以x2=cos(α+)=cosαcos-sinαsin=-.…………………………………6分
(2)S1=sinαcosα=-sin2α.…………………………………………8分
因为α(,),所以α+(,).
所以S2=-sin(α+)cos(α+)=-sin(2α+)=-cos2α.……………………………10分
整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g(x)+g′(x)=0成立,
等价于存在x>1,2ax3-3ax2-2bx+b=0成立.…………………………………………12分
因为a>0,所以=.
设u(x)=(x>1),则u′(x)=.
因为x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,
一、填空题:本大题共14小题,每小题5分,计70分.
1.(0,1]2.43.3004.5.26.47.1
8.9.10.60°11.1或12.2-213.(,)14.[-1,1]
二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)
15.(本小题满分14分)
9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为▲.
10.已知||=1,||=2,∠AOB=,=+,则与的夹角大小为▲.
11.在平面直角坐标系xOy中,过点P(5,3)作直线l与圆x2+y2=4相交于A,B两点,若OA⊥OB,则直线l的斜率为▲.
12.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>1时,f(x+1)=f(x)+f(1),且.
因为S1=S2,所以sin2α=-cos2α,即tan2α=-.…………………………………12分
所以=-,解得tanα=2或tanα=-.因为α(,),所以tanα=2.………14分
17.(本小题满分14分)
如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N(异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).
因为=,即=,
所以sinα=y,cosα===.…………………………………………6分
cos∠AMP=cos(α+60°)=cosα-sinα=·-·y=.……………………………8分
在△AMP中,AP2=AM2+PM2-2AM·PM·cos∠AMP,
即AP2=x2+4-2×2×x×=x2+4-x(x-2y)=4+2xy.………………………………………12分
所以>-1,即的取值范围为(-1,+∞).…………………………………………16分
所以PA⊥平面PBC.…………………………………………12分
因为BE平面PBC,所以PA⊥BE.
因为BP=PC,且E为PC中点,所以BE⊥PC.
因为PA∩PC=P,PA,PC平面PAC,
所以BE⊥平面PAC.…………………………………………14分
16.(本小题满分14分)
在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交
AP2=AD2+PD2=(sinθ+2cosθ)2+(2sinθ)2
=sin2θ+sinθcosθ+4cos2θ+4sin2θ…………………………8分
=·+sin2θ+4=sin2θ-cos2θ+
=+sin(2θ-),θ∈(0,).…………………………12分
当且仅当2θ-=,即θ=时,AP2取得最大值12,即AP取得最大值2.
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,
BP=BC,E为PC的中点.
(1)求证:AP∥平面BDE;
(2)求证:BE⊥平面PAC.
15.证:(1)设AC∩BD=O,连结OE.
因为ABCD为矩形,所以O是AC的中点.
因为E是PC中点,所以OE∥AP.…………………………………………4分
因为=λ,所以即
所以解得x2=.…………………………………………12分
所以·=x1x2+y1y2=x2(-1-λ-λx2)-λy=-x22-(1+λ)x2-λ
=-()2-(1+λ)·-λ=-(λ+).…………………………………………14分
因为λ∈[,2],所以λ+≥2=2,当且仅当λ=,即λ=1时,取等号.
于点A(x1,y1),α∈(,).将角α终边绕原点按逆时针方向旋转,交单位圆于点B(x2,y2).
(1)若x1=,求x2;
(2)过A,B作x轴的垂线,垂足分别为C,D,记△AOC及
△BOD的面积分别为S1,S2,且S1=S2,求tanα的值.
16.解:(1)因为x1=,y1>0,所以y1==.
所以sinα=,cosα=.………………………2分
答:设计∠AMN为60时,工厂产生的噪声对居民的影响最小.……………………………………14分
解法二(构造直角三角形):
设∠PMD=θ,在△PMD中,
∵PM=2,∴PD=2sinθ,MD=2cosθ.……………2分
在△AMN中,∠ANM=∠PMD=θ,∴=,
AM=sinθ,∴AD=sinθ+2cosθ,(θ≥时,结论也正确).……………6分
当x>1时,h′(x)>0,h(x)在(1,+∞)上是增函数.
所以h(x)min=h(1)=-1-e-1.
所以b的最大值为-1-e-1.…………………………………………10分
②:因为g(x)=(ax--2a)ex,所以g′(x)=(+ax--a)ex.
由g(x)+g′(x)=0,得(ax--2a)ex+(+ax--a)ex=0,
解:(1)当a=2,b=1时,f(x)=(2+)ex,定义域为(-∞,0)∪(0,+∞).
所以f′(x)=ex.…………………………………………2分
令f′(x)=0,得x1=-1,x2=,列表
x
(-∞,-1)
-1
(-1,0)
(0,)
(,+∞)
f′(x)
-
-
f(x)
↗
极大值
↘
↘
极小值
↗
由表知f(x)的极大值是f(-1)=e-1,f(x)的极小值是f()=4.……………………………………4分
因为x2+y2-xy=4,4+xy=x2+y2≥2xy,即xy≤4.
所以AP2≤12,即AP≤2.
当且仅当x=y=2时,AP取得最大值2.
答:设计AM=AN=2 km时,工厂产生的噪声对居民的影响最小.………………………………14分
18.(本小题满分16分)
在平面直角坐标系xOy中,已知椭圆C∶+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,一条准线方程为x=2.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
南京市2014届高三年级第二次模拟考试
数学2014.03
注意事项:
1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.