信号与系统 第三章

合集下载

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

Fn

1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0

E { 1 [t TT
1 e jnt
jn
|T0

T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2




2E cos( ) 2E cos( )

2
2 2 2

2
[1 ( )2 ]

3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n

e
j

2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....


3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。

信号与系统第三章

信号与系统第三章

a0 ∞ fT ( t ) = + ∑ 2 n=1
Fne jnΩt + F− ne − jnΩt ) (
jnΩt
=
n =−∞


Fn e
F0
a0 2
an + jbn = 2 ∗ = Fn

指数形式的傅立叶级数(2) 指数形式的傅立叶级数(2)
1. 傅里叶系数
a − jbn 1 Fn = n = 2 T T
ε =0
2

t2 t1
f (t ) d t = ∑ C 2 K j j
2 j =1

(Parseval 公式 公式)

§3.2
周期信号的频谱分析
-----傅里叶级数 傅里叶级数
5 页
一、三角形式的傅立叶级数 二、周期信号的频谱 三、指数形式的傅立叶级数 周期信号的功率——Parseval等式 Parseval等式 四、周期信号的功率 Parseval 五、函数对称性与频谱特性
bn ϕn = −arctg an an = An cos (ϕn ) , bn = − An sin (ϕn )
A0 a0 = 2 2
An = an 2 + bn 2

二、周期信号的频谱
概念:周期信号中各次谐波分量的幅度、初相位随频率的变化关系。 概念:周期信号中各次谐波分量的幅度、初相位随频率的变化关系。 An~ω:幅度谱; :幅度谱; 例1: :
在正交函数集 满足: 满足:
1
之外, {ϕ ( t ) ,ϕ ( t ) ,L,ϕ ( t )} 之外,不存在 ϕ ( t ) ≠ 0
2 n

t2 t1

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

信号与系统 第3章-3

信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0

式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0

信号与系统第6讲第3章周期信号的傅里叶级数表示

信号与系统第6讲第3章周期信号的傅里叶级数表示

sin(2 k(1/ 4)) k
sin(k k
/ 2)
根据Example3.5的结果,用性质计算傅里叶级数的系数
分析:原函数为x(t),本函数为g(t)
g (t )
x(t
1)
1 2
,周期方波的参数T
4,T1
1,
如果原函数的系数为ak,x(t 1)的系数为bk
bk
a e jk (2 / 4)1 k
在不连续点上,傅里叶级数的收敛趋势-吉伯斯现象
不连续点上收敛于不连续点的平均值 不连续点附近呈现起伏现象,起伏的峰值不随N增加而降低 峰值为不连续点差值的9%
吉伯斯现象的实际意义
不连续信号的傅里叶级数截断近似在接近不连续点有高频起伏 选择足够大的N,可以保证这些起伏的总能量可以忽略
2024/6/10
2024/6/10
信号与系统-第6讲
19
§3.5 连续时间傅里叶级数性质
(4)Example3.8 计算周期冲激串的傅里叶级数系数 根据性质计算周期方波的系数
周期冲激串可表示为x(t) (t kT ) k
ak
1 T
T / 2 (t)e jk 2t /T dt 1
T / 2
T
周期方波为g (t ),它的导数为q(t )
c0为直流分量, c0 2T1 / T
对照前面 例题验证
结果
20
§3.5 连续时间傅里叶级数性质
(5)Example3.9
1.x(t)是实信号
2.x(t)是周期信号,T 4,傅里叶级数系数ak
3.ak 0,k 1
4.傅里叶系数为bk
e
j
k
/
2
a
的信号是奇信号

信号与系统第三章

信号与系统第三章
T1 t0
1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1

信号与系统第三章-周期信号的傅里叶级数表示

信号与系统第三章-周期信号的傅里叶级数表示

一. 连续时间傅里叶级数
成谐波关系的复指数信号集:
k(t) { ejk 0 t}k 0 , 1 , 2 ,
其中1. 每个信号都是以 2 为周期的.
2.公共周期为
2 0
k 0
,且该集合中所有的信号都
是彼此独立的。
若将信号集 k (中t ) 所有的信号线性组合起来
有 x(t) akejk0t, k0,1 , 2
——傅里叶级数的三角函数表示式
若令 ak Bk jCk 则
x (t) a 0 1(B k jC k)e jk 0 t (B k jC k)e jk 0 t
k
k 1
a 0 (B k jC k)e jk 0 t (B k jC k)e jk 0 t k 1
ak* ak
k1
a k * a k A k e jk A k e j k
即: Ak Ak
k k
结论: 若 x ( t ) 是实信号,则有:
a k 的模关于k 偶对称,幅角关于 k 奇对称。
x(t)a 0[A kejk0 tejkA kejk0 tejk] k 1
a02 Akcos(k0tk) k1
B kjC kB kjC k
因此 Bk Bk
Ck Ck
结论: 若 x ( t ) 是实信号,则有:
a k 的实部关于 k 偶对称,虚部关于 k 奇对称。
将关系 Bk Bk , Ck Ck 代入,可得到
x (t) a 0 (B k jC k)e jk 0 t (B k jC k)e jk 0 t k 1 a 0 (B kjC k)ejk 0 t (B kjC k)ejk 0 t k 1 a02 B kcosk0tC ksink0t k1

《信号与系统》第3章 连续信号与系统的频域分析 PPT课件

《信号与系统》第3章 连续信号与系统的频域分析 PPT课件

3.1 信号的正交分解
3.1.1 矢量的正交分解 V2
1. 正交矢量
90 °
o
V1
图 3.1-1 两个矢量正交
两矢量V1与V2正交时的夹角为90°。不难得到两正交矢量的点积为零, 即
V1V 2 V1 V2 cos90 0
V1 Ve

o c12 V2
V2
图 3.1-2 矢量的近似表示及误差
t2 t1
gi
(t)

g
* j
(t
)dt

0 Ki
则该函数集就称为区间(t1, t2)上的正交函数集。 如果
t2 t1
gi
(t)

g
* j
(t
)dt

0 1
则称该函数集为归一化正交函数集。
i j i j
i j i j
用一个在区间(t1, t2)上的正交函数集{gi(t)}中各函数的线性组合就可逼近定 义在(t1, t2)区间上的信号f(t),即
A6 0.8
6 30
其余 An 0
An 3 3
2 2
1
0.8
0.4
o 2 3 4 5 6
(a)
n 45 °
45 °
30 ° 30 °
20 °
15° 10°
图 3.3-1 例 3.3-1 信号
(a) 振幅谱;
o

2
3
4 5
6

(b) 相位谱
(b)
|F n |
上述正交三角函数集中,当n=0时,cos 0°=1, sin 0°=0,而0不应计在此正交函数集 中,故一正交三角函数集可具体写为

信号与系统王明泉科学出版社第三章习题解答

信号与系统王明泉科学出版社第三章习题解答
证明:有题知, (式中 )
左右对t求导,得:
显然, 的指数傅里叶级数为 (式中 )
3.9求题图3.9所示各信号的傅里叶变换。
题图3.9
解:根据定义
3.10计算下列每个信号的傅里叶变换。
(1) ;(2) ;
(3) ;(4)
(5) ;(6)
解: (1)
(2)
(3)由于
根据卷积乘积性质,得
(4)由于
所以
(5) ,设
第3章傅里叶变换与连续系统的频域分析
3.6本章习题全解
3.1证明函数集 在区间 内是正交函数集。
证明:对任意的自然数n,m (n m),有
=0
证毕
3.2一个由正弦信号合成的信号由下面的等式给出:
(1)画出这个信号的频谱图,表明每个频率成分的复数值。对于每个频率的复振幅,将其实部和虚部分开或者将其幅度和相位分开来画。
图3-19-3
3.21用傅里叶变换法求题图3.21所示周期信号 的傅里叶级数。
题图3.21
解:对x(t)一个周期信号x0(t)的傅里叶变换为
X0(j )=
=
傅里叶级数
3.22求题图3.22所示周期性冲激信号的频谱函数。
题图321-1
3.23已知 的幅频与相频特性如题图3.23所示,求其傅里叶逆变换 。
(a)(b)
题图3.12
解:令傅里叶变换对 ,
(1)根据已知图形可知:

已知有
所以
根据傅里叶变换的微积分性质
所以

(2) ,
根据(1)的结论得
根据傅里叶变换的微积分性质
所以

3.13利用傅里叶变换的对称性求下列信号的频谱函数。
(1) ;(2) ;

信号与系统第3章,甘俊英

信号与系统第3章,甘俊英

(n) u(n) u(n 1) u(n)
u(n) (n) (n 1) (n 2) L (n m) m0
n
或 u(n) (k) k
3.矩形序列 1, 0 n N 1
RN (n) 0, n 0
RN (n) 1
0 1 2 N 1
n
N表示矩形序列的长度, RN (n) 还可以表示为
是连续正弦信号 xa (t) 的角频率,称为模拟域频率。
Ts
2 f
fs
又称为归一化频率。
3.2.4 序列的周期性
对于所有 n 值,若存在一个最小正整数 N ,满足
x(n) x(n N) 则称序列 x(n)为周期序列,最小周期为 N
下面讨论正弦序列 x(n) Asin(n ) 的周期性。
x(n N) Asin[(n N) ] Asin(n N )
RN (n) u(n) u(u N )
4.实指数序列 x(n) an , n
通常,单边实指数序列应用更广。单边实指数序列定义为
an , n 0 x(n)

0, n 0
x(n) anu(n)
a 1 ,序列是发散的。 a 0 序列的所有样值都为正值
a 1 ,序列是收敛的
a 0 序列正、负摆动
(n) 是一个确定的物理量,在 n 0时取值为1 ,在其它非零的
离散时间点上取值为零
(t) 不是一个物理量,只是一个数学抽象。
任何序列都可以用一些延迟的单位取样序列的加权和来表示,即
x(n) x(k) (n k) k
【例3-2-6】已知序列x(n) 如图所示,利用单位取样序列 (n) 写出
x(n
1)
(
1 2
)n
1

精品文档-信号与系统(第四版)(陈生潭)-第3章

精品文档-信号与系统(第四版)(陈生潭)-第3章

An cos(nt n )
Fne jnt
n 1
n
F0 2 Fn cos(nt n )
其中:
n 1
an
2 T
t0 T t0
fT (t )cosntdt
bn
2 T
t0 T t0
fT (t )sin ntdt
n0,1,2...
1
n1,2...
Fn
T
t0 T t0
fT (t)e jnt dt
fT (t)sin ntdt
A0 a0 An an2 bn2
n 1,2...
n
arctg
bn an
说明:1.周期信号可分解表示为三角函数的线性组合。
2.物理意义:周期信号可分解为众多频率成整数倍
和正(余)弦函数或分量的线性组合。具体有:
a0 A0 直流分量cost, sin t 基波分量 22
fT (t)
Fne jnt
F e j (nt n ) n
F0
2 Fn cos(nt n )
n
n
n1
各谐波分量的角频率nΩ 是基波角频率Ω的n倍且有不同的
振幅和相位,均有傅立叶系数 Fn Fn e jn 反映出来。
为揭示各谐波振幅、初相随角频率变化情况,特画出振幅
及相位随w变化的曲线称其为频谱图。
的模
最小,(此时的C12称为最佳),当C12=0时,Ve的
模最小,此时V1和V2正交。
2.矢量分解
在平面空间里,相互正交的矢量
V1和V2构成一个正交矢量集,而且为
完备的正交矢量集。平面空间中的任
一矢量V都可表示为V1和V2的线性组合 (如上图)。即:
V=C1V1+C2 V2。式中V1、V2为单位矢量,且V1·V2=0。其中:

信号与系统第3章傅里叶变换

信号与系统第3章傅里叶变换

*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中

信号与系统-第3章

信号与系统-第3章

第3章连续系统的时域分析本章内容LTI系统的时域分析方法线性微分方程的经典解法零输入-零状态微分算子与传输算子冲激响应和阶跃响应冲激响应阶跃响应卷积积分及其应用卷积积分的概念卷积积分的性质卷积积分在LTI系统分析中的应用LTI 连续系统的时域分析1)建立系统数学模型;2)求解线性微分方程。

由于在其分析过程涉及的函数变量均为时间t ,故称为时域分析法。

这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。

其过程可以归结为:线性微分方程的经典解法)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t f b t f b t y a t y a t ya t y m m m m n n n +′+++=+′+++−−−−L L 微分方程的经典解:y (t ) = y c (t ) + y p (t )(完全解)(齐次解)(特解)经典解法-齐次解不同特征根对应的齐次解的解。

y c (t )的函数形式由上述微分方程的特征根确定。

齐次解是齐次微分方程0)()()()(01)1(1)(=+′+++−−t y a t y a t y a t y n n n L经典解法-齐次解(续)=)(t y c 例如::则微分方程的齐次解为个根是单根,其余,即有重根,是特征方程的假设 - 211r n r r λλλλ===L ∑+=+nr j tj j e c 1λ∑=−r i t i r i i e t c 1λ经典解法-特解特解的函数形式与激励函数的形式有关。

表3-1 不同激励对应的特解A(常数)B(常数)线性微分方程的经典解法1)根据齐次方程的特征根求齐次解;2) 根据激励信号的函数形式求特解;3) 将特解代入原微分方程,根据方程两端对应项系数相等,求得特解中的待定系数;4) 将系统的n个初始条件代入全解中,确定齐次解中n个待定系数。

线性微分方程的经典解法(续)激励信号在t =0时刻接入系统:由于激励信号的作用,响应y (t )及其各阶导数有可能在t =0时刻发生跳变,为区分跳变前后的数值,我们用0-表示激励接入之前的瞬间,并称此时刻为“起始时刻”;而用0+表示激励接入之后的瞬间,并称此时刻为“初始时刻”。

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

信号与系统第3章

信号与系统第3章

于变量n从
,所以称为双边频谱。
25
直流 分量
复指数谐波幅值分量
复指数谐波相位分量
26
3.2.2 周期信号频谱的特点及频带宽度 1. 周期信号频谱的特点 ★离散性 ★谐波性 ★收敛性
27
2. 周期矩形脉冲信号的频谱
f(t) E
0
T
t
周期矩形脉冲信号的周期为T,脉冲宽度为 。
28
周期矩形脉冲信号的傅里叶系数,即频谱 函数为
➢ 三角形式中的傅里叶系数是实函数,而指数形 式中的傅里叶系数一般是复函数。
➢ 是 的偶函数, 是 的奇函数。
19
➢三角傅里叶级数:可以通过不同频率正 弦分量的合成进行仿真。
➢指数傅里叶级数:由于客观上复频率分 量无法描述,所以不能进行仿真。
➢引入复频率分量的意义在于使得数学分 析更加方便,容易描述。
用频谱图描述信号是频域表示的一种方式,它简便、 直观地反映出各个频率分量中振幅和相位与频率变 化的关系。(见图3.2-1、图3.2-2)
23
1.单边频谱
直流• 三角傅里叶级数
分量
正弦谐正波弦分谐量波(分n量>(1)n>,1幅)值都 随着频率的变化而变化
24
2.双边频谱 • 指数傅里叶级数
其中 称为幅度频谱; 称为相位频谱。由
本节要求: 熟悉傅里叶变换的主要性质其含义
51
3.4.1 线性



,则对于任意常数 a1 和 a2,
注意:只有同频率的分量才能进行运算。而 频域加法运算后,其频域范围为两个频谱函 数中最小的下限值,到最大的上限值。
52
3.4.2 对称性

,则
若 为偶函数,则

信号与系统第3章正交函数集

信号与系统第3章正交函数集

2
1 { T2 T2 T1 T1
f
2(t)dt
T2 T1
n i1
ai2 fi2(t)dt
T2 2 f (t) n
T1
i1
ai
fi (t)dt}
(2)
(ai )
1{ T2 T1
2a T2
T1
i
fi2(t)dt
T2 2 f
T1
(t) fi (t)dt} 0有:
T2
T1
2ai
fi2
(t)dt
T2 T1
2
f
(t)
fi
(t
)dt
ai
f T2
T1 T2
T1
(t) fi (t)dt fi 2 (t)dt
T2 T1
f (t) fi (t)dt Ki
第十九页,编辑于星期六:十六点 十二分。
如果 F 中的函数为复函数
则有:
ai
T2
T1 T2
T1
f (t) fi*(t)dt fi (t) fi*(t)dt
ai
fi
(t)]2
dt
2 1 T2 T1
T2 T1
{
f
2
(t)
[
n i1
ai
fi
(t)]2
2
f
(t)
n i1
ai
fi
(t)}dt
2
1 { T2 T2 T1 T1
f 2(t)dt
T2 T1
[
n i1
ai
fi
(t)]2
dt
T2 T1
2
f
(t)
n i1
ai
fi (t)dt}

《信号与系统》第3章

《信号与系统》第3章

信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1

Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1

T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章

信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1

a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。

信号与系统第三章(陈后金)3.

信号与系统第三章(陈后金)3.

离散时间LTI系统的响应
3. 卷积法: 系统完全响应 = 零输入响应+零状态响应
y[k] yzi [k] yzs [k] yzi [k] x[k]* h[k]
✓ 求解齐次差分方程得到零输入响应
✓ 利用信号分解和线性非时变特性可求出 零状态响应
一、零输入响应
定义:系统的零输入响应是输入信号为零,仅由系 统的初始状态单独作用而产生的输出响应。
离散时间LTI系统的响应
1. 迭代法
n
m
ai y[k i] bj x[k j]
i0
j0
已知 n 个初始状态{ y[1], y[2], y[2],∙∙∙∙, y[n] } 和输入,由差分方程迭代出系统的输出。
n
m
y[k] ai y[k i] bj x[k j]
C2

1 2
解得 C1=1,C2= 2
yzi [k] (1)k 2(2)k k 0
[例] 已知某线性时不变系统的动态方程式为: y[k]+4y[k1]+4y[k2]=x[k]
解: (2) 求非齐次方程y[k]5y[k1]+6y[k2] =x[k]的特解yp[k]
由输入x[k]的形式,设方程的特解为
yp[k] Ak2k , k 0
将特解带入原差分方程即可求得常数A= 2。
[例]已知某二阶线性时不变离散时间系统的差分方程
y[k]5y[k1]+6y[k2] = x[k] 初始条件y[0] = 0,y[1] = 1,输入信号 x[k] = 2k u[k],求系统的完全响应y[k]。
1) 若初始条件不变,输入信号 x[k] = sin0 k u[k],

信号与系统教案第3章

信号与系统教案第3章

2. 差分方程
包含未知序列y(k)及其各阶差分的方程式称为差分方程。
将差分展开为移位序列,得一般形式 y(k) + an-1y(k-1) +…+ a0y(k-n) = bmf(k)+…+ b0f(k-m)
差分方程本质上是递推的代数方程,若已知初始条件和激励, 利用迭代法可求得其数值解。
第3-3页

©东北电力大学电气工程学院
第3-6页

©东北电力大学电气工程学院
信号与系统
3.1
LTI离散系统的响应
例:若描述某系统的差分方程为 P88例题3.1-2 y(k)+ 4y(k – 1) + 4y(k – 2) = f(k) 已知初始条件y(0)=0,y(1)= – 1;激励f(k)=2k,k≥0。求方程的
全解。 解: 特征方程为 λ2 + 4λ+ 4=0 特征根λ1=λ2= – 2,为二重根,差分方程齐次解为 yh(k)=(C1k +C2) (– 2)k 特解为 yp(k)=P (2)k , k≥0 代入差分方程得 P(2)k+4P(2)k –1+4P(2)k–2= f(k) = 2k , 解得 P=1/4 所以得特解: yp(k)=2k–2 , k≥0 故全解为 y(k)= yh+yp = (C1k +C2) (– 2)k + 2k–2 , k≥0 代入初始条件解得 C1=1 , C2= – 1/4
求单位序列响应h(k)。 P97例题3.2-1给的是框图 解 根据h(k)的定义 有 h(k) – h(k –1) – 2h(k –2) = δ(k) h(–1) = h(–2) = 0 (1)递推求初始值h(0)和h(1) 方程(1)移项写为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如音乐信号各频率分量的振幅乘以相同的常数
三.函数的对称性与傅里叶级数的关系
第 24

偶函数 奇函数 奇谐函数 偶谐函数
注:指交流分量

1.偶函数
25

f (t)
信号波形相对于纵轴是对称的
E
f (t) f (t)
T1 2
T1 T1
a 2 f (t) cos n t d t
第3章 傅里叶变换
引言
第 2

从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解,即分解为三角函 数或复指数函数的组合。
频域分析将时间变量变换成频率变量,揭示了信号 内在的频率特性以及信号时间特性与其频率特性之间的 密切关系,从而导出了信号的频谱、带宽以及滤波、调 制和频分复用等重要概念。
an cn cosn dn sinn
bn cn sin n dn cosn
a
tg n
nb n
b
tg n n a n

幅度频率特性和相位频率特性
15

周期信号可分解为直流,基波(1)和各次谐波 (n1 : 基波角频率的整数倍)的线性组合。
cn ~ 1关系曲线称为幅度频谱图; n ~ 1关系曲线称为相位频谱图。
n
T T1
1
12
an
4 T1
T1
2 0
f (t) cos n1t d t
2 T1
b 2 f (t) sin n t d t
n
T T1
1
12
bn 0
傅里叶级数中不含正弦项,只含直流项和余弦项。
Fn为实函数。
f (t) E
T1 2
T1 2
a0
1 T1
T1
2 T1
2
f (t)dt
1
1T g( g 1

一个重要思想:对于LTI系统,
不同的信号分解方法引出不同的
第 3
系统分析方法。

例如信号的冲激分解, 引出系统的卷积分析方法:
e(t)
e( ) (t ) d
rzs (t) e(t) h(t)
e( )h(t ) d
● 本章将对连续信号作傅里叶分解,从而引出系统的频域分析方 法,即傅里叶分析法。为此,讨论下图的问题。
i
rzs (t) xi H (si ) esit ( t )
i
● 本章令 s=jω,将信号 e(t) 分解成复指数函数的特例,即虚指
数函数,则LTI系统的 rzs(t) 可用虚指数函数的线性组合表示
e(t) xi ejωit ( t )
i
rzs (t) xi H (jωi ) e jωit ( t )
i
● 这就是信号与系统频域分析的基本思想。
● 本章,通过信号与系统的频域分析,将引出许多重要概念。

傅里叶生平
5 页
• 1768年生于法国
• 1807年提出“任何周 期信号都可用正弦函 数级数表示”
• 1822年首次发表“热 的分析理论”
傅立叶的两个最主要的贡献——
第 6

• “周期信号都可表示为成谐波关系的正 弦信号的加权和” ——傅里叶的第一个主要论点
T1
2 T1
f (t) d t
=0
2
T
2
T
0
t
2
an
2 T1
T1
2 T1
f (t) cos
2
n1t
dt 0
E 2
bn
2 T1
T1
21 T1
f
(t ) sin
2
n1t
dt 4
T1
T1
2 0
f (t)sin n1t d t
傅里叶级数中无余弦分量,Fn为虚函数。
f (t)
T
2
T
0
t0T1 f (t)dt
t0
一般周期信号都满足这些条件。
周期信号的另一种三角函数正交集表示
第 13

余弦形式 或
正弦形式
f (t) c0 cn cos(n1t n ) n1
f (t) d0 dn sin(n1t n ) n1
比较几种系数的关系
第 14

a c d
0
0
0
cn dn an2 bn2
当n 1,3,5L 时 当n 2, 4, 6L 时
an bn 0
an
4 T1
T1
2 0
f (t) cosn1t d t
bn
4 T1
T1
2 0
f (t)sin n1t d t
§3.3 典型周期信号的傅里叶级数
第 32 页
● 将周期信号作FS展开, 目的在于了解它的频率 特性, 即它由那些指数(正弦)频率分量组成, 各 分量振幅的相对大小, 以及各分量初相的相对关系。 显然, 这些信息都在指数、余弦形式的FS之中。
n 1, 2,L

双边频谱图
19

幅度频谱 Fn ~ 1曲线
相位频谱 n ~ 1曲线
第 20 页
● 若指数傅里叶系数 Fn 是实数,则其幅度谱和相位谱 可以合画。

● 相位谱,二者同一个函数,无任何问题。
21

n ~ 1 曲线
n ~ 1曲线
● 幅度谱,二者直流振幅相同 ,谐波有别(2倍关系);
第 34

先求指数傅里叶系数 Fn ,进而得到Cn以及余弦FS。
Fn
1 T
/2 / 2
Ee jnω1t
dt
E T
e jnω1t jnω1
/2 / 2
E jnω1T
e e jnω1 / 2
jnω1 / 2
E jn2 π
e e jnω1 / 2
jnω1 / 2
E nπ
§3.2 周期信号的傅里叶级数分析
主要内容
第 10

•三角函数形式的傅氏级数 • 指数形式的傅氏级数 •函数的对称性与傅里叶级数的关系 •傅里叶有限级数与最小均方误差
一.三角函数形式的傅里叶级数
第 11

周期信号
f t
, 周期为 T
, 基波角频率为
2 ,频率f
1
1
1
1
T
T
在满足狄利克雷条件时可展成
rzs (t) h(t) e(t)
h( )es(t )d
est h( )es d
令 H (s) h(t)est d t 则
rzs (t) H (s) est ( t )
【讨论】
● 若激励为 es0t , 则零状态响应
rzs (t) H (s0 ) es0t ( t )
说明:
周期信号可分解为 , 区间上的指数信号ejn1t
的线性组合。
两种系数之间的关系
第 18

F0 c0 d0 a0
Fn
Fn
e jn
1 2
an
jbn
Fn
Fn
e jn
1 2
an jbn
Fn
Fn
1 2
cn
1 2
dn
1 2
an2 bn2
Fn Fn cn
j(Fn Fn ) bn
cn2 dn2 an2 bn2 4Fn Fn
• “非周期信号都可用正弦信号的加权 积分表示”
——傅里叶的第二个主要论点
第 7 页
• 时域分析中,将任意信号分解成冲激函数 的加权积分;
• 变换域分析中,将任意信号分解成虚指数 函数的加权积分;
• 将任意信号表示为不同频率正弦分量的线 性组合称为信号的频谱分析;
• 用频谱分析的观点来分析系统称为系统的 频域分析法或傅里叶变换分析法。
2
E 2
f
(t)
E
(sin 1t
1 2
sin
21t
1 3
sin
31t
....)
第 28 页
t

3.奇谐函数
29

若波形沿时间轴平移半个周
f (t)
期并相对于该轴上下反转, L
此时波形并不发生变化:
T
f
(t)
f
t
T1 2
L
OT T
t
2
f(t)的傅氏级数偶次谐波为零,即
a0 0
n 2, 4,6L 时 n 1,3,5L 时
an bn 0
an
4 T1
T1
2 0
f (t) cos n1t d t
bn
4 T1
T1
2 0
f (t)sin n1t d t

4.偶谐函数
30

波形移动 T1 与原波形重合,
f (t)
2
称为偶谐函数。
L
f
(t)
f
t
T1 2
T1 T1 O
T1
2
2
L
T1 t
f(t)的傅氏级数奇次谐波为零,只有偶次谐波分量
第 22
这相当于将第 k次谐波振幅的幅度减半,分给正负频率分量。 页
cn ~ 1 曲线
Fn ~ 1曲线
第 23 页
• 用指数FS和余弦FS两种级数描述同一个信号频谱, 频率特性完全一致吗?回答是肯定的!因为振幅 和初相的相对比例关系不变。
• 其实,工程上关心的幅度谱,主要不是各次谐波 振幅的绝对大小,而是各次谐波振幅的相对比例 关系,以便确定信号的有效带宽。从而确定处理 信号的系统带宽,以满足信号的基本无失真传输。 故,cn和Fn二者均可。
相关文档
最新文档