数学分析试题2
西华师范大学数学分析大二期末试题(含答案)
西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案
解此方程组,得
10.设函数 f ( x ) =
∫
0
x
sin t dt .⑴ 试将 f ( x ) 展成 x 的幂级数,并指出其收敛域.⑵ 若在上式中 t
令 x = 1 ,并利用其展开式的前三项近似计算积分 解: ⑴ 由于
∫
1
sin x dx ,试判断其误差是否超过 0.0001 ? x 0
( t 2 t 4 t 6 t 8 t 10 − 1) t 2 n −2 = 1− + − + − +"+ +" (2n − 1)! 3! 5! 7! 9! 11! 所以,在区间 [0, x ]上逐项积分,得
y x+ y ∫∫ e dxdy ,其中积分区域 D 是由直线 x = 0 , y = 0 及 x + y = 1 所围成的闭区 D
6.计算二重积分 域.
解: 作极坐标变换 x = r cos θ ,
y = r sin θ ,则有
rdr
∫∫ e
D
y x+ y
π
dxdy = ∫ dθ
0
2
1 cos θ + sin θ
Σ
(
)
(
)
= ∫∫∫ z + x + y dV
2 2 2
(
)
Ω
= ∫ dθ ∫ sin ϕdϕ ∫ ρ 4 dρ
0 0 0
−2
2π
π
2 a
2 = πa 5 5
8.求解微分方程 x y ′′ + xy ′ − 4 y = 2 x . 解:
2
这是 Euler 方程,令 x = e ,或 t = ln x ,原方程化为
数学分析试题库-选择题
数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。
数学分析试题及答案解析
WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数学分析(2)期末试题集(填空题)
一、不定积分问题1.设x x ln 为()x f 的一个原函数,则积分()='⎰2e e dx x f x 1212--ee .解: 由原函数概念可得()2ln 1ln x x x x x f -='⎪⎭⎫ ⎝⎛=,因此()()221,0e e f e f -==,于是积分()()()121ln 122222--=--=-='⎰⎰e e xxdx x f x xf dx x f x e ee eee e e. 2. 已知()x f 的一个原函数为x x sin ,设0≠a ,则=⎪⎭⎫⎝⎛⎰dx a x f C a x x a +⎪⎭⎫ ⎝⎛sin 2 .解C a x x a C a x a x a a x d a x f a dx a x f +⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎰⎰sin sin 2.3. 已知21x x f =⎪⎭⎫⎝⎛',则()=x f C x+-1. 4. 已知()x f '的一个原函数为2sin x ,常数0≠a ,则()=+'⎰dx b ax f ()()C b ax ab ax +++2cos 2. 5. 设()0,1ln >+='x x x f ,则()=x f C e x x++ .6.⎰=dx x arctan()C x x x +-+arctan 1(注:用分部积分法⎰⎰⎪⎭⎫⎝⎛+--=x d x x x dx x 111arctan arctan ) 7.⎰=+-+dx x x x 13652()C x x x +-++-23arctan 4136ln 212(注: ()()⎰⎰⎰+-++-+-=+-+43826262113652222x dxx x x x d dx x x x ) 8.()=+⎰dx x e x 221tan C x e x+tan 2 (注: 原式()⎰+=dx x x e x tan 2sec 22) 9.=+⎰dx x x xln ln 1C x x x +++-+++1ln 11ln 1lnln 12 (注: 令t x =+ln 1,原式C t t t dt t t ++-=-=⎰11ln 21222)10.()=-⎰dx x x21ln C x xx x +-+-1ln 1ln (注: 原式()⎰---=x x dx x x 11ln ) 11.()=+⎰--dx e xe x x21()C e ex xx++-+-1ln 1 (注: 原式()()⎰⎰⎰++-+=+-+=+=-----x xx x x x ee d e x e dx e x exd 1111111) 12. =⎰dx x x2sin sin ln C x x x x +---cot sin ln cot (注: 原式()⎰-=x xd cot sin ln )13.()=-⎰dx x x xln 1ln 1C x +ln arcsin 214. ()=++⎰dx xe x x x11C xe xe x x ++1ln(注: 原式()()()()()⎰⎰⎰⎰⎪⎭⎫ ⎝⎛+-=+=+=++=du u u u u du xe x e xe d dx xe x e x e x x x x x x 1111111) 15*()=+⎰dx xx 1ln ()C x x x x +-++arctan 41ln 2(注: 原式()⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛+--+=+-+=+-+=+=x x d dx x x x x xd x x dx x x x x x d x 141ln 21221ln 2121ln 21ln 2 16. ()=+⎰46x x dxC x x ++4ln 24166 (注: 原式⎰⎪⎪⎭⎫ ⎝⎛+-=dx x x x 414165) 17.=⎰dx xx cos tan C x+-cos 218.=+⎰dx x csc 1C x +sin arcsin 219. =-⎰xdx x x arcsin 12()C x x x x +⎥⎦⎤⎢⎣⎡+---3arcsin 131323220. 设()34f x dx xx C '=-+⎰,则()f x = 22x x C -+ .21.32sin cos x xdx =⎰4611sin sin 46x x C -+ . 22. 设()ln 1f x x '=+,则()f x xx e C ++ .23. 设()31xf x e '-=,则()f x ()1133x eC ++ .24. 若()21x f x dx x C =+++⎰,则()f x 2l n 21x + .25. 设()()()()()()11,F x f x g x f x f x f x =-=+,若()()2F x g x '=⎡⎤⎣⎦,且14f π⎛⎫= ⎪⎝⎭,则()f x tan x . 26.214dx x =+⎰ 1a r c t a n 22xC + . 27. 设0a ≠,则()100ax b dx +=⎰()1011101ax b C a++ . 28. 设()ln 1f x x '=+,则()f x xe x C ++ . 29. 设0b ≠,则2xdx a bx =+⎰ 21ln 2a bx C b++ . 30.2xxde -=⎰ 2212x x xe e C --++ . 31. ()f x 的一个原函数为1x ,则()f x '= 32x.32.(211x dx -=⎰8 .33. 若函数()f x 是(),-∞+∞上的连续函数,且()()210x x f t dt x +=⎰,则()2f =15. (注:()()210x x f t dt x +=⎰两边对x 求导,得()()221231f x x x x ⎡⎤+⋅+=⎣⎦,令1x =,得()251f ⋅=,所以()125f =)34.若()x f 的原函数为x ln ,则()='⎰dx x f x ln x C -+ 。
数学分析第四学期试题
试题(1卷)一.填空(每小题3分,共15分)1.若平面曲线L 由方程0),(=y x F 给出,且),(y x F 在点),(000y x P 的某邻域内满足隐函数定理的条件,则曲线L 在点0P 的切线方程为 ; 2.含参量积分⎰=)()(),()(x d x c dyy x f x F 的求导公式为=')(x F ;3。
Γ函数的表达式为 =Γ)(s ,0>s ;4。
二重积分的中值定理为:若),(y x f 在有界闭区域D 上连续,则存在D ∈),(ηξ,使⎰⎰=Dd y x f σ),( ;5.当0),,(≥z y x f 时,曲面积分⎰⎰S dSz y x f ),,(的物理意义是: 。
二.完成下列各题(每小题5分,共15分)1。
设5422222=-+-++z y x z y x ,求y z x z ∂∂∂∂,; 2。
设 ⎩⎨⎧-=+=,cos ,sin v u e y v u e x u u 求 x v x u ∂∂∂∂, ;3. 求积分)0(ln 1>>-⎰a b dx x x x ab .三。
计算下列积分(每小题10分,共50分)1。
⎰L xyzds,其中L 为曲线)10(21,232,23≤≤===t t z t y t x 的一段;2.⎰+-Ly x xdxydy 22,其中L 为圆t a y t a x sin ,cos ==在第一象限的部分,并取逆时针方向;3.作适当变换计算⎰⎰-+D dxdyy x y x )sin()(, 其中D }{ππ≤-≤≤+≤=y x y x y x 0,0),(; 4。
⎰⎰⎰+Vy x dxdydz22,其中V 是由x y z x x ====,0,2,1与y z =围成的区域;5.dSy xS)(22⎰⎰+,其中S 为圆锥面222z y x =+被平面1,0==z z 截取的部分。
四.应用高斯公式计算dxdy z dzdx y dydz x S333++⎰⎰,其中S 为球面2222a z y x =++的外侧。
数学分析(Ⅱ)试题与参考答案
数学分析(2)期末试题课程名称数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班 应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、 下列级数中条件收敛的是( ).A .1(1)nn ∞=-∑ B .1nn ∞=.21(1)n n n ∞=-∑ D .11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在它的间断点x 处 ( ).A .收敛于()f xB .收敛于1((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是( ).A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x '=( )A .1x B .ln x x C . 21x- D . x e 5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1,则k =( ) A . 2π B .22π C . 2D . 24π6、231ln (ln )(ln )(1)(ln )n nx x x x --+-+-+收敛,则( )A . x e <B .x e >C . x 为任意实数D . 1e x e -<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =. 3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为. 4、已知由定积分的换元积分法可得,1()()bxxaef e dx f x dx =⎰⎰,则a =,b =.5、数集(1)1, 2 , 3, 1nnn n ⎧⎫-=⎨⎬+⎩⎭的聚点为. 6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分) 1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 3、 0 (0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题(第1小题6分,第2、3 小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ-上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=,证明:级数1nn b∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班应用、信息专业一、 单项选择题(每小题3分,3×6=18分)⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D二、 填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈-∞+∞∑三、 计算题(每小题6分,6×5=30分)1. 解111(1)1x x x x=-++1(1)dx x x ∴+⎰(3分)11()1dx x x =-+⎰ln ln 1.x x C =-++(3分)2. 解 由分部积分公式得231ln ln 3x xdx xdx =⎰⎰ 3311ln ln 33x x x d x =-⎰(3分) 33111ln 33x x x dx x =-⋅⎰ 3211ln 33x x x dx =-⎰ 3311ln 39x x x C =-+(3分) 3. 解 令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得⎰2220cos atdt π=⎰(3分)6722(1cos2)2at dtπ=+⎰221(sin2)22at tπ=+2.4aπ=(3分)4.解由洛必达(L'Hospital)法则得2coslimsinxxtdtx→⎰2coslimcosxxx→=(4分)lim cosxx→=1=(2分)5.解=(2分)2sin cosx x dxπ=-⎰424(cos sin)(sin cos)x x dx x x dxπππ=-+-⎰⎰(2分)244(sin cos)(sin cos)x x x xπππ=+-+2.=(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(,),x n∀∈-∞∞∀+(正整数)22sin1nxn n≤(3分)而级数211nn∞=∑收敛,故由M判别法知,21sinnnxn∞=∑在区间(,)-∞+∞上一致收敛.(3分)682. 解 幂级数1nn x n∞=∑的收敛半径1R ==,收敛区间为(1,1)-.(2分)易知1n n x n ∞=∑在1x =-处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)-.(2分) 01, (1, 1)1n n x x x ∞==∈--∑(2分) 逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑(2分)3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
数学分析试题及答案
(十四)《数学分析II 》考试题一填空(共15分,每题5分):1 设 E = {x — [x] I x e 则 s upE = 1 , inf E = 0"'(5) = 2,则鳏今若警=竺,sin ax, x < 0,ln(l + x) +。
在"。
处可导,灿 Jb= o二计算下列极限:(共20分,每题5分)1 1 1 11 lim (1 + — + — + ----------- F —)〃 ; ,一823 n故 lim (1 + 土 + ! + 〃一>8 2 3]+ + —2 hm ------------- ---------- :— (V/?)解:由Stolz 定理, 「 1 + A /2 + — yfn..lim ----------- — --------- = lim —。
/_____ 今〃f° (而)3 f (如)一(J. — 1)=lim____ _____________〃一8( — — 1)(〃 + 一 1) + 〃 一 1)=lim"*(〃 —(〃一 1))(2” + — 1)—1)1 + J1--2=怛 I ------------ " 1=32 +、)F ),,小 1 1解:由于1<(1 + 5 +氏+・…+上是沽,又limS = l,n〃一>81 1+ —)〃 = lony/n(y/n + y/n — 1)「sinx —sin6f3 lim ------------------------L x — ac x + a ・ x — a「 sin X —sin Q 2cos -------------------------- sin ----------- 解:lim ------------------- = Um -------------- 2 ---------X* x — a — x — a . X — Usin ----------=lim cos ------------------------ =—— = cost/.2X — Cl ~~2~4 lim(l + 2x) ve .X —()解:lim(l + 2x)' = lim (l + 2x)A —>0X —>Qi2x2=e 2三计算导数(共15分,每题5分): 1 /(x) = Vx 2 + 1 — ]n(x + J-? +1), '(x); 2x 1 + _ _____解:e)=玉 _ 2«.『+l=^2 Jx? + 1 X ++ 1 yjx 1 +1 yjx 2 + 1 」X’ + 1 x-1 表示的函数的二阶导数 y = “sin t(“sin ,)' 3〃sirr ,cos , - —- = z ----------------- = -tanf, dx (acos t) — 3ocos~fsin ,d^y — sec" t sec 、 ~ o dx~ (t/cos ,)' 3“cosUsin ,3 设 y = (3x2 _ 2)sin2x,求y (I(x,)o 2 求由方程! 解: 解:由Leibniz 公式 y <,00) =C 1%(sin2x)<100)(3x 2 -2) + C l l 00(sin 2x)(99>(3x 2 -2y + C^(sin 2x)(98)(3x 2 -2/ =2,0° sin(2x + 衅)(3子一 2) +100 ・ 2的 siii(2x + 哗)6x + 悴298 sin(2x + 哗)• 6= 2,00(3x 2 - 2)sin 2x - 600 • 2W xcos 2x - 29700 x 2<?8 sin 2x = 2*12/ -229708 )sin 2.s 1200xcos2炸四(12分)设u>0, {%}满足:X 。
数学分析试题及答案解析
《数学分析2》A 试卷一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()⎰dx x f 可表为()C dt t f xa+⎰( ).2.若()()x g x f ,为连续函数,则()()()[]()[]⎰⎰⎰⋅=dx x g dx x f dx x g x f ( ). 3. 若()⎰+∞adx x f 绝对收敛,()⎰+∞adx x g 条件收敛,则()()⎰+∞-adx x g x f ][必然条件收敛( ). 4. 若()⎰+∞1dx x f 收敛,则必有级数()∑∞=1n n f 收敛( )5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ).6. 若数项级数∑∞=1n n a 条件收敛,则一定可以经过适当的重排使其发散于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分)1.若()x f 在[]b a ,上可积,则下限函数()⎰ax dx x f 在[]b a ,上( )A.不连续B. 连续C.可.不能确定2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )A. ()x f 在[]b a ,上一定不可积;B. ()x f 在[]b a ,上一定可积,但是()()⎰⎰≠bab adx x g dx x f ;C. ()x f 在[]b a ,上一定可积,并且()()⎰⎰=bab adx x g dx x f ;D. ()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D. 不确定4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B. 若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;C. 若1,1<>∃+n n u uN n N ,时有当,则级数∑n u 一定收敛;D. 若1,1>>∃+n n u uN n N ,时有当,则级数∑n u 一定发散;5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的;C. ∑n n x a 的和函数在收敛域上各点存在各阶导数;D. ∑n n x a 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1. ()()()n n n n n n n+++∞→Λ211lim2. ()⎰dx xx 2cos sin ln四. 判断敛散性(每小题5分,共15分)1.dx xx x ⎰∞+++-021132.∑∞=1!n n n n3. ()nnn nn 21211+-∑∞=五. 判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n n nxx f n Λ2. (][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。
数学分析(2)期末试题参考答案
∑ A′
∑ ℓα (
)
µ(Iα) µ Jβxα,γ
≥
ε0 m
>
ε.
α=1 γ=1
α=1
γ=1
另 一 方 面, 对 于 每 个 xα, 存 在 一 个 Kk, 使 得 xα ∈ Kk。 因 为 P 是 利 用 K1, . . . , Kκ 的边界构造的网格分划,所以相应的 Iα × Jβxα,γ 一定包含在这个
恰好覆盖
Em,于是
∑A′
α=1
µ(Iα)
≥
ε0。对于每个
Iα (1 于是
≤ α ≤ A′),取一个
∑ℓα
γ=1
µ(Jβxα ,γ
)
≥
1 m
xα ∈ Iα ∩ Em,设 ,所以我们有
Jβxα,1 , . . . , Jβxα,ℓα
恰好覆盖
Kxα ,
∑ A′ ∑ ℓα ( µ Iα
) × Jβxα,γ
=
i) 求证:
∫
∫
∫
ωi = ωi + ωi, i = 1, 2.
γ3
γ1
γ2
ii) 求证:
∫
lim
ωi = 0, i = 1, 2.
R→+∞ γ2
iii) 计算广义积分:
C = ∫ +∞ cos (x2) dx, S = ∫ +∞ sin (x2) dx
0
0
() 解答: i) 因为 ωi ∈ Ω1 R2 、dωi = 0 (i = 1, 2),所以由 Green 公式可知结论
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是
数学分析2试题B及答案(
fn (x)
x
f (x) ,
fn (x) f (x) n2 (
x2
1
1 n2
x)
1 ,所以 limsup(
n
n
fn (x)
f (x) ) 0 ,即
函数列 fn (x)
x2
1 n2
,
n 1, 2,L 在 R 上一致收敛。
三、1、证明: t R, b ( f (x) tg(x))2dx b f 2 (x)dx 2t b f (x)g(x)dx t2 b g 2 (x)dx 0 ,所以,
2
二、1、解:
lim
n
n2 2n2 1
1 2
0
,所以该级数发散。
2、解: lim n n
n 2n1
1 2
1 ,所以该级数收敛。
3、解: x [0, ),
sgn(sin x) 1 x2
1
1 x
2
1 x2
,因为
1 dx 收敛,所以 1 x2
sgn(sin x) dx 绝对收敛。 1 1 x2
4、解: x R, lim n
n1
n1
n1
n1
级数 bn (bn an an ) (bn an ) an 收敛。
n1
n1
n1
n1
四、解: A 2 1 a2 (1 cos )2 d 3 a2
20
2
五、解:
R
1,收敛域为 (1,1)
,和函数
f
(x)
n1
nxn
x
n1
nxn1
x
n1
xn
x
1
x
5、求极限: lim 0
x0
数学分析(2)期末试题集(证明题部分)
故 是偶函数;
(2)
其中 在 与 之间.
考虑上式右端两个因子之积:当 时, ,即有 ;当 时, ,同样有 ;当 时, ,也就是说,在 上有 ,所以, 单调不减.
20.设 在 上连续,在 内可导,且 ,记 ,
(1)求 ;
(2)求证: ,使得 ;
(3)求证: ,使得 .
(1)解 ;
(2)证:因为 ,又 在 上连续,在 内可导,由罗尔中值定理, ,使得 ,即 ;
,
即有 .
(2)首先,由分部积分公式,有
,
再由被积函数的连续性,可知存在 ,使得
,
而 ,所以必有 ;
又由分部积分法,可得
.
17.设函数 在 上连续,且 .试证明:在 内至少存在两个不同的点 与 ,使 .
证法1令 ,则有 .
,
由连续函数的性质,必存在 ,使得 . 在 和 上都满足洛尔中值定理的条件,故存在 ,使得
.
证法2由 知, 至少存在一个零点 .
若 在 只有一个零点,则 在 的两侧异号且不变号,不妨设
.
由 与 ,同时注意到 在 上的单调性,则有
,
此为矛盾.因此至少存在两个不同的点 与 ,使 .
18.设 在 上有二阶连续导数,且 .
(1)写出 的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在 上至少存在一点 ,使得 .
证取变换 ,则 ,已知积分等式变为
.
注意到 时,也有 ,因而 在 上连续,于是
.
由此可得 ,使得 .
13.设 在 上连续且单调减少,证明对任意的常数 ,有
.
证法1只需证明积分 .为此令 ,所以
,
故结论成立.
证法2
数学分析(2)试题及答案
一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ⎰⎰=-a aa dx x f dx x f 0)(2)( B 0)(=⎰-aadx x fC⎰⎰-=-a aadx x f dx x f 0)(2)( D )(2)(a f dx x f aa=⎰-3、 下列广义积分中,收敛的积分是( ) A⎰11dx xB ⎰∞+11dx xC ⎰+∞sin xdx D ⎰-1131dx x 4、级数∑∞=1n na收敛是∑∞=1n na部分和有界且0lim =∞→n n a 的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 5、下列说法正确的是( ) A∑∞=1n na和∑∞=1n nb收敛,∑∞=1n nn ba 也收敛 B∑∞=1n na和∑∞=1n nb发散,∑∞=+1)(n n nb a发散 C∑∞=1n na收敛和∑∞=1n nb发散,∑∞=+1)(n n nb a发散 D ∑∞=1n n a 收敛和∑∞=1n n b 发散,∑∞=1n n n b a 发散 6、)(1x an n∑∞=在[a ,b ]收敛于a (x ),且a n (x )可导,则( )A )()('1'x a x an n=∑∞= B a (x )可导C⎰∑⎰=∞=ban ban dx x a dx x a )()(1 D ∑∞=1)(n n x a 一致收敛,则a (x )必连续7、下列命题正确的是( ) A )(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛 B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛D)(1x an n∑∞=在[a ,b ] 条件收敛必收敛8、∑∞=++-012121)1(n n nx n 的和函数为 A xe B x sin C )1ln(x + D x cos9、函数)ln(y x z +=的定义域是( ) A {}0,0|),(>>y x y x B {}x y y x ->|),( C {}0|),(>+y x y x D {}0|),(≠+y x y x 10、函数f (x,y )在(x 0,,y 0)偏可导与可微的关系( ) A 可导必可可导必不可微C 可微必可导D 可微不一定可导 二、计算题:(每小题6分,共30分)1、⎰=914)(dx x f ,求⎰+22)12(dx x xf2、计算⎰∞++02221dx xx 3、计算∑∞=11n nx n 的和函数并求∑∞=-1)1(n n n4、设023=+-y xz z ,求)1,1,1(xz ∂∂5、求2220lim y x yx y x +→→三、讨论与验证题:(每小题10分,共20分)1、 讨论⎪⎩⎪⎨⎧=≠+-=)0,0(),(0)0,0(),(),(2222y x y x y x y x xyy x f 在(0,0)点的二阶混合偏导数2、 讨论∑∞=+-221sin 2)1(n n n n nx的敛散性 四、证明题:(每小题10分,共30分)1、设)(1x f 在[a ,b ]上Riemann 可积,),2,1()()(1 ==⎰+n dx x f x f ban n ,证明函数列)}({x f n 在[a ,b ]上一致收敛于03、 设)(x f 在[a ,b ]连续,证明⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并求⎰+π2cos 1sin dx xxx参考答案一、1、B 2、B 3、A 4、c 5、C 6、D 7、D 8、C 9、C 10、C 二、1、⎰⎰++=+202222)12()12(21)12(x d x f dx x xf (3分)令122+=x u ,⎰⎰==+912022)(21)12(du u f dx x xf (3分)2、⎰∞++02221dxx x =4)1arctan(lim )1()1(11lim 002π=+=+++∞→∞→⎰A A A A x x d x (6分) 3、解:令)(x f =∑∞=11n nx n ,由于级数的收敛域)1,1[-(2分),)('x f =x x n n -=∑∞=-1111,)(x f =)1ln(110x dt tx -=-⎰(2分),令1-=x ,得 2ln )1(1=-∑∞=n nn 4、解:两边对x 求导02232=--x x xz z z z (3分)xz zz x 2322-=(2分)2)1,1,1(=∂∂x z(1分)5、解:x yx yx ≤+≤||0222(5分)0lim 22200=+→→y x y x y x (1分) 由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、⎪⎩⎪⎨⎧=+≠++-+=000)(4),(22222222224y x y x y x y y x x y y x f x (2分) ⎪⎩⎪⎨⎧=+≠++--=000)(4),(22222222224y x y x y x y y x x x y x f y (4分) 1)0,0(),0(lim )0,0(02-=∆-∆=∂∂∂→∆yf y f x y zx x y1)0,0()0,(lim )0,0(02=∆-∆=∂∂∂→∆xf x f y x zy y x (6分)2、解:由于x nx nn n n n 221sin 2|sin 2)1(|lim =-+∞→(3分),即1sin 22<x 级数绝对收敛1sin 22=x 条件收敛,1sin 22>x 级数发散(7分)所以原级数发散(2分)四、证明题(每小题10分,共20分)1、证明:因为)(1x f 在[a ,b ]上可积,故在[a ,b ]上有界,即0>∃M ,使得]),[()(1b a x M x f ∈∀≤,(3分)从而)(|)(|)(12a x M dt t f x f xa -≤≤⎰一般来说,若对n 有)!1()()(1--≤-n a x M x f n n (5分)则)()!1()()(1∞→--≤-n n a b M x f n n ,所以)}({x f n 在[a ,b ]上一致收敛于0(2分)⎰⎰⎰=+++=+aa Ta Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、 y e x z y x 1=∂∂,2y x e y z y x -=∂∂,(7分)则012=-=∂∂+∂∂yx ye y xe y z y x z x y xy x (3分)3、 证明:令t x -=π⎰⎰⎰⎰-=---=πππππππ00)(sin )(sin ))(sin()()(sin dt t tf dt t f dt t f t dx x xf 得证(7分)8cos 1sin 2cos 1sin 20202ππππ=+=+⎰⎰dx x x dx xx x (3分)(十七)数学分析2考试题二、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在 [a,b ] 上可积的充要条件是( ) A >0, >0和>0使得对任一分法,当()<时,对应于i的那些区间x i 长度之和∑x i <B >0,>0, >0使得对某一分法,当()<时,对应于i的那些区间x i 长度之和∑x i <C >0,>0使得对任一分法,当()<时,对应于i的那些区间x i 长度之和∑x i <D>0,>0,>0使得对任一分法,当()<时,对应于i的那些区间x i 长度之和∑x i <2、函数)(x f 连续,则在[a,b ]上⎰xdt t f dx d 21)(=( )A )2(x fB )2(2x fC )(2x fD )()2(2x f x f -4、=⎰-1121dx x ( )A -2B 2C 0D 发散 4、0lim ≠∞→n n a ,则∑∞=1n na( )A 必收敛B 必发散C 必条件收敛D 敛散性不定5、若级数∑∞=1n nb是∑∞=1n na更序级数,则( )A∑∞=1n na和∑∞=1n nb同敛散 B∑∞=1n nb可以发散到+∞C 若∑∞=1n na绝对收敛,∑∞=1n nb也收敛 D 若∑∞=1n na条件收敛,∑∞=1n nb也条件收敛6、)(1x an n∑∞=在[a ,b ]一致收敛,且a n (x )可导(n =1,2…),那么( )A f (x )在[a ,b ]可导,且∑∞==1'')()(n nx ax fB f (x )在[a ,b ]可导,但)('x f 不一定等于∑∞=1')(n nx aC ∑∞=1')(n nx a点点收敛,但不一定一致收敛 D∑∞=1')(n nx a不一定点点收敛7、函数项级数)(1x an n∑∞=在D 上一致收敛的充要条件是( )A >0, N ()>0,使m >n> N 有ε<++)()(1x a x a m nB >0, N>0,使m >n> N 有ε<++)()(1x a x a m nC >0, N ()>0,使m >n> N 有ε<++)()(1x a x a m n D>0,N ()>0,使m >n> N 有ε<++)()(1x a x a m n8、∑∞=-1)1(1n n x n的收敛域为( ) A (-1,1) B (0,2] C [0,2) D [-1,1)9、重极限存在是累次极限存在的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 10、=∂∂),(00|),(y x xy x f ( ) A x y x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000B x y x f y x x f x ∆-∆+→∆),(),(lim 00000C x y x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim00000D xy x x f x ∆∆+→∆),(lim 000三、计算题:(每小题6分,共30分)1、dx x x x ⎰-++11211cos sin2、计算由曲线2,0,1==+=xy y x y 和2e x =围成的面积3、求2xe -的幂级数展开5、 已知),(),,(v u f xy y x f z +=可微,求yx z∂∂∂26、 求yx yx y x f +-=),(在(0,0)的累次极限 三、判断题(每小题10分,共20分)1、 讨论∑∞=3cosln n nπ的敛散性2、 判断∑∞=+121n nnxx 的绝对和条件收敛性 四、证明题(每小题10分,共30分)1、设f (x )是[-a ,a ]上的奇函数,证明0)(=⎰-aadx x f2、证明级数∑∞==04)!4(n n n x y 满足方程y y =)4(3、 证明S 为闭集的充分必要条件是S c 是开集。
数学分析2期末考试题库完整
数学分析2期末试题库 《数学分析II 》考试试题(1)一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、∑∞=1n na收敛的cauchy 收敛原理3、 全微分 二、计算题:(每小题8分,共32分)1、4202sin limx dt t x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。
3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和4、已知zy x u = ,求yx u∂∂∂2三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。
,一、叙述题:(每小题5分,共10分)1、 叙述反常积分a dx x f ba,)(⎰为奇点收敛的cauchy 收敛原理2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)212111(lim nn n n +++++∞→ 2、求摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的面积3、求⎰∞+∞-++dx x xcpv 211)(4、求幂级数∑∞=-12)1(n nn x 的收敛半径和收敛域 5、),(y x xy f u =, 求yx u∂∂∂2三、讨论与验证题:(每小题10分,共30分)1、yx y x y x f +-=2),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为什么?2、讨论反常积分⎰∞+0arctan dx x xp的敛散性。
《数学分析II》期末试卷+参考答案
《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。
yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。
a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。
四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。
]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。
求。
∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。
证明:存在且小于)(lim x f x +∞→41π+。
七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。
1>x 判别级数∑∞=2)(1n n f 的敛散性。
八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。
求级数的和。
∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。
二.。
3=a 三. 是紧集。
四.一致收敛。
五.43。
六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。
数学分析期末考试题1、2(第二份有答案)
第三学期数学分析考试题一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( )6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( )9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分)1.设)sin(y x e z xy+=,则其全微分=dz . 2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad . 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 .5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 3.设]1,0[]1,0[⨯=A ,求⎰⎰++=Ay x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a axy x 与x 轴所围的面积.四、(10分)密度22),,(y x z y x +=ρ的物体V 由曲面222y x z +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++S dxdy z dzdx y dydz x222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 六、(第1小题8分,第2小题7分,共15分).1. 求曲线6222=++z y x ,22y x z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:221140π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xx x x ab .第三学期数学分析参考答案及评分标准一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. (⨯) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( √ ) 3.连续函数的全增量等于偏增量之和. ( ⨯) 4.xy y x f =),(在原点不可微. ( √ )5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ⨯)6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( √ )7.平面图形都是可求面积的. (⨯) 8.学过的各种积分都可以以一种统一的形式来定义. ( √ )9.第二型曲面积分也有与之相对应的“积分中值定理”. (⨯)10.二重积分定义中分割T 的细度T 不能用}{max 1i ni σ∆≤≤来代替. ( √ ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dzdy y x y x x e dx y x y x y e xy xy )]cos()sin([)]cos()sin([+++++++.2.设32),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3). 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy 2 .4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532. 5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分) 1.求极限xy y x y x )(lim22)0,0(),(+→.解:先求其对数的极限)ln(lim22)0,0(),(y x xy y x +→.由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令,所以)ln(lim22)0,0(),(y x xy y x +→=0,故xy y x y x )(lim22)0,0(),(+→=1.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xy z . 解:方程ze z y x =++两边对x ,y 求偏导数,得 xze x z z∂∂=∂∂+1 y z e y z z ∂∂=∂∂+1 解得11-=∂∂=∂∂z e y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=z zz z z xy e e y z e e e y z 。
本科数学分析试题及答案
本科数学分析试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-1, 1)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 极限lim (sin(x))/x 当x→0的值是:A. 1B. -1C. 0D. 不存在4. 以下哪个选项是Riemann积分的基本性质?A. 加法性质B. 可加性C. 可乘性D. 线性5. 函数f(x) = |x|在x=0处的导数是:A. 1B. -1C. 0D. 不存在6. 如果函数f(x)在区间[a, b]上连续,那么:A. 它在该区间上一定有最大值和最小值B. 它在该区间上一定可导C. 它在该区间上一定可积D. 它在该区间上一定有界7. 以下哪个序列是发散的?A. 1, 1/2, 1/3, ...B. 1, 2, 4, 8, ...C. -1, 1, -1, 1, ...D. 2, 2, 2, ...8. 函数f(x) = x^2在区间[0, 1]上的最大值是:A. 0B. 1C. 2D. 49. 如果一个函数在区间[a, b]上可积,那么:A. 它在该区间上一定连续B. 它在该区间上一定有界C. 它的反函数在[a, b]上可积D. 它的绝对值在[a, b]上可积10. 以下哪个选项是Cauchy收敛准则的一个结果?A. 如果序列的部分和有界,则序列收敛B. 如果序列的项趋于0,则序列收敛C. 如果序列的项趋于一个极限,则序列收敛D. 如果序列的任意子序列都收敛,则序列收敛二、填空题(每题4分,共20分)11. 函数f(x) = x^3 - 6x^2 + 11x - 6在x=2处的值为______。
12. 如果函数f(x)在点x=a处可导,那么极限lim (f(x) - f(a))/(x - a) 当x→a的值是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每小题2分,共20分)
1、0
lim ()G-x x f x δ+→=∞的“”语言为。
2、数α为数集S 的上确界的定义为。
3、0
lim ()x x f x A →=的归结原则为。
4、设3|1,2n S x x n N +⎧
⎫==-∈⎨⎬⎩⎭
,则inf S =,sup S =。
5、曲线2
22
x y x x =+-的渐近线为。
6、曲线ln(1)x y e =+上过点的切线垂直于直线2+1y x =-。
7、极限2cot 0lim 1+3tan )x x x →(=。
8、设1a ≠-,则lim 1n
n
n a a →∞+=。
9、若当0x →x α
是同阶无穷小量,则α=。
10、函数2ln y x x =-的单减区间为。
二、计算题(1-6题每小题6分,7、8题每小题7分,共50分)
1、求极限212lim 1n
n n n →∞⎛⎫+- ⎪⎝⎭
;
2、求极限n
3、求极限0tan sin lim ln(1)
x x x x x +→-+; 4、求极限011lim 1x x x e →⎛⎫- ⎪-⎝⎭
;
5、设2()2arctan(1)x f x x =+()df x ;
6、设sin x t t =-,1cos y t =-,求22d y dx
;
7、设2ln(1) , 0() , 0
x x x f x ax b x ⎧++>=⎨+≤⎩在0x =连续且可导,求a b 、的值;
8、求函数[]sin 1
x x y x =-的间断点,并指出间断点的类型。
三、证明题(每小题10分,共30分)
1、用ε-“”语言证明:1n =;
2、用ε-“”语言证明:11lim 1x x
+→=; 3、设f 是闭区间[,]a b 上的二阶可导函数,()()0f a f b ==,并存在一点(,)c a b ∈,使得 ()0f c >,证明至少存在一点(,)a b ξ∈,使得()0n f ξ<。