最全最经典的有理数测试题
初一有理数试题及答案
初一有理数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 计算下列哪个选项的结果是负数?A. 3 + 2B. -3 - 2C. 4 × 2D. -4 ÷ 2答案:B3. 绝对值是5的数是?A. 5B. -5C. 5和-5D. 以上都不是答案:C4. 有理数-2,-1,0,1,2中,最大的数是?A. -2B. -1C. 0D. 2答案:D5. 下列哪个选项表示的是相反数?A. 5和-5B. 3和-3C. 0和-0D. 以上都是答案:D6. 计算下列哪个选项的结果是0?A. 3 - 3B. 4 + (-4)C. 2 × 0D. -2 - (-2)答案:C7. 计算下列哪个选项的结果是正数?A. -3 + 2B. -3 - 2C. -3 × 2D. -3 ÷ 2答案:A8. 计算下列哪个选项的结果是负数?A. -3 × 2B. -3 ÷ 2C. -3 + 2D. -3 - 2答案:D9. 有理数-3,-2,-1,0,1,2,3中,最小的数是?A. -3B. -2C. -1D. 0答案:A10. 下列哪个选项表示的是倒数?A. 5和1/5B. 3和3C. 0和0D. -2和-1/2答案:A二、填空题(每题3分,共30分)1. 有理数-4的相反数是______。
答案:42. 绝对值等于3的数是______。
答案:±33. 计算-2 + 3 = ______。
答案:14. 计算-5 - 3 = ______。
答案:-85. 计算-6 × 2 = ______。
答案:-126. 计算-4 ÷ 2 = ______。
答案:-27. 计算-3 + (-2) = ______。
答案:-58. 计算0 - 5 = ______。
答案:-59. 计算-2 × (-3) = ______。
(完整版)有理数专题训练
有理数专题训练专题一 有理数的概念及其应用例1. 已知a,b 互为相反数,c,d 互为倒数,x 的绝对值是2,求cd m cd b a -++)(的值。
练习: 已知a 、b 互为相反数,c 、d 互为倒数,│x │=3,求代数式a+b -cdx+3x .的值。
巩固:已知a 、b 互为相反数,c 、d 互为倒数,x 的平方等于4,试求()()()200920102d c b a x d c x ⨯-+++⨯⨯- 的值。
专题二 非负数的性质例2. 若0)2(12=-++y x ,求y x 的值练习:已知有理数满足01331=-+++-c b a ,求()2011c b a ⨯⨯的值.巩固:若1-x 与2)2(+y 互为相反数,求32015y x +的值专题三 绝对值的化简例3. 有理数a 、b 、c 在数轴上的位置如图,试化简:||||||23a b b c c a -+---。
练习1. 数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--巩固。
实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-专题四 有理数的实际应用例4. 一辆汽车沿着一条南北方向的公路来回行驶。
某一天早晨从A 地出发,晚上到达B 地。
约定向北为正,向南为负,当天记录如下:(单位:千米)-18.3, -9.5, +7.1, -14, -6.2, +13, -6.8, -8.5(1)问B 地在A 地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?练习:某检修工人检修电话线路,乘车时设定前进为正,后退为负,某天自A 的出发到收工时,所行路程为(单位:千米):4+,3-,22+,8-,2-,17+,3-,2-,12+,5-,7+,问收工时距A 地多远?若每千米耗油4升,问从A 地出发到收工共耗油多少升?巩固:李老师在学校西面的南北路上从某点A 出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A ?(2)李老师离开出发点A 最远时有多少千米? (3)李老师共走了多少千米?专题五 有理数的混合运算例5.计算(1)()⎪⎭⎫ ⎝⎛-⨯--⨯-253112232 (2)()()⎭⎬⎫⎩⎨⎧-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯+----22114.031132练习:(1) 32322)4(3213-⨯--⎪⎭⎫ ⎝⎛-⨯- (2) []24)3(2611--⨯--巩固:(1)20152322)1()31()3.0(2.13-÷-+-÷⨯- (2)⎥⎦⎤⎢⎣⎡----⨯-31)32()2()43(3专题六 分类讨论思想例6. 已知3,4a b ==且b<a ,求a 、b 的值.练习:已知7,5==n m 且n m n m +=+,求m-n 的值.巩固:已知9,42==n m 且m n n m -=-,求m+n 的值.专题七 有理数的运算(裂项相消)例7.计算: 201520141 (4)31321211⨯++⨯+⨯+⨯练习:201520132.........752532312⨯++⨯+⨯+⨯巩固:201520131.........751531311⨯++⨯+⨯+⨯专题八 乘方的应用(错位相减)例8.2015322...........2221+++++=S练习:2015323...........3331+++++=S巩固:2015325...........5551+++++=S定时练习1. 已知a 、b 互为相反数,c 、d 互为倒数,x 2=9,求代数式a+b -cdx+3x .的值2. 若0)3(252=++-y x ,求2015)2(y x +的值3、如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值.4、 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 ?3、 ?5、 +4、 ?8、 +6、 ?3、?6、 ?4、 +10。
有理数经典测试题含答案
有理数经典测试题含答案一、选择题1.在–2,+3.5,0,23-,–0.7,11中.负分数有( )A.l个B.2个C.3个D.4个【答案】B【解析】根据负数的定义先选出负数,再选出分数即可.解:负分数是﹣23,﹣0.7,共2个.故选B.2.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.4.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C 【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵-b<a<-1,∴选项D正确.故选:A.【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.6.16的绝对值是( )A.﹣6 B.6 C.﹣16D.16【答案】D【解析】【分析】利用绝对值的定义解答即可.【详解】1 6的绝对值是16,故选D.【点睛】本题考查了绝对值得定义,理解定义是解题的关键.7.和数轴上的点一一对应的是()A.整数B.实数C.有理数D.无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.8.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.11.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.12.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b【答案】B【解析】【分析】 根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<, ∴22a a b a b a a b ,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.13.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的15.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.16.已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是()A.a+b B.a﹣b C.|a+b| D.|a﹣b|【答案】D【解析】【分析】根据数轴确定出a是负数,b是正数,并且b的绝对值大于a的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.17.下列结论中:①若a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离正确的个数有②④两个故选B18.12的相反数与﹣7的绝对值的和是()A.5 B.19 C.﹣17 D.﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D.【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.19.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.20.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .。
有理数的运算经典测试题附解析
有理数的运算经典测试题附解析一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为( )A .611610⨯B .711.610⨯C .71.1610⨯D .81.1610⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.-2的倒数是( )A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107 B .82.98×105 C .8.298×106 D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.如图,是一个计算流程图.当16x =时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。
有理数测试题及答案
有理数测试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 1/3D. 0.8080080008…(每两个8之间依次增加一个0)答案:C2. 有理数的英文是什么?A. Rational numberB. Irrational numberC. Real numberD. Complex number答案:A3. 若a和b是有理数,且a/b ≠ 0,那么a和b至少有一个数是?A. 正数B. 负数C. 零D. 整数答案:D4. 两个有理数相加,结果必然是?A. 有理数B. 无理数C. 整数D. 零答案:A5. 以下哪个操作不会改变一个有理数的值?A. 乘以一个非零有理数B. 加上一个无理数C. 除以一个非零有理数D. 减去一个相同的有理数答案:D二、填空题1. 请写出一个有理数的例子:__________。
答案:2/32. 有理数可以表示为两个整数的比,即 a/b,其中a和b都是__________。
答案:整数3. 若一个有理数的分母为零,则该有理数是__________。
答案:未定义4. 一个有理数可以是__________或__________。
答案:正数负数5. 请写出一个无限循环小数的有理数例子:__________。
答案:1/3 = 0.33333…三、简答题1. 请简述什么是有理数。
答案:有理数是可以表示为两个整数的比的数,其中分母不为零。
这包括有限小数、无限循环小数以及整数。
2. 有理数和无理数有什么区别?答案:有理数可以表示为两个整数的比,而无理数则不能。
有理数可以是有限小数或无限循环小数,而无理数则是无限不循环小数。
3. 如何判断一个数是否是有理数?答案:如果一个数可以表示为两个整数的比,并且分母不为零,那么这个数就是有理数。
例如,所有整数、分数和无限循环小数都是有理数。
4. 请举例说明有理数的加法和减法。
答案:例如,1/2 + 1/3 = 5/6,这是一个有理数的加法例子。
有理数经典测试题及答案
有理数经典测试题及答案一、选择题1.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】 本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2,2a )可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A 、2a 和a 都是非负数,故错误;B 、当a=0时,(-a +2,2a )在x 轴上,故正确;C 、当a=0时,a 没有倒数,故错误;D 、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.7.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.11.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.12.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大13.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=. 故选D .考点:1.非负数的性质;2.勾股定理.15.2019的倒数的相反数是( )A .-2019B .12019- C .12019D .2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019,12019的相反数为12019-,所以2019的倒数的相反数是12019-,故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.已知整数01234,,,,,a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010- 【答案】D【解析】【分析】 通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.。
有理数经典测试题附答案
【详解】
∵-3<a<-2,1<b<2,∴|a|>|b|,∴答案A错误;
∵a<0<b,且|a|>|b|,∴a+b<0,∴a<-b,∴答案B错误;
∵-3<a<-2,∴答案C错误;
∵a<0<b,∴b>a,∴答案D正确.
故选:D.
11.下列各数中,绝对值最大的数是( )
A.1B.﹣1C.3.14D.π
【答案】D
【解析】
分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.
详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,
∴绝对值最大的数是π,
故选D.
点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.
【详解】
当 时, , ,此选项错误;
B、当a<b<c时, , ,此项错误;
C、当c<a<b时, , ,此项正确
D、当c<b<a时, , ,此选项错误;
故选C.
【点睛】
本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.
15.下列运算正确的是( )
A. =-2B.|﹣3|=3C. = 2D. =3
【详解】
由题意可知:ab=1,c+d=0, ,f=64,
∴ , ,
∴
= ;
故答案为:D
【点睛】
此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.
7.下列各数中,最大的数是( )
A. B. C.0D.-2
【答案】B
【解析】
【分析】
将四个数进行排序,进而确定出最大的数即可.
有理数经典题型十题
有理数经典题型十题一、题型一:有理数的概念判断1. 下列数中:-2,0,(1)/(3),0.5,π,-0.3,-(5)/(2),其中有理数有()A. 6个B. 5个C. 4个D. 3个解析:有理数是整数(正整数、0、负整数)和分数的统称。
-2是整数,0是整数,(1)/(3)是分数,0.5=(1)/(2)是分数,-0.3 =-(3)/(10)是分数,-(5)/(2)是分数,而π是无理数。
所以有理数有-2,0,(1)/(3),0.5,-0.3,-(5)/(2)共6个,答案是A。
二、题型二:有理数的大小比较2. 比较-3,-(5)/(2),0,1的大小,并用“<”连接。
解析:先把-(5)/(2)=- 2.5。
负数小于0和正数,两个负数比较大小,绝对值大的反而小。
| - 3|=3,|-(5)/(2)| = 2.5,因为3>2.5,所以-3<-(5)/(2)。
所以-3<-(5)/(2)<0<1。
三、题型三:有理数的加法运算3. 计算(-2)+3+(-5)解析:begin{align}(-2)+3+(-5) =(-2)+3 - 5 =1-5 =-4end{align}四、题型四:有理数的减法运算4. 计算5 - (-3)解析:减去一个数等于加上这个数的相反数,所以5-(-3)=5 + 3=8。
五、题型五:有理数的乘法运算5. 计算(-2)×(-3)×(-4)解析:begin{align}(-2)×(-3)×(-4) =6×(-4) = - 24end{align}几个不为0的数相乘,负因数的个数为奇数时,积为负。
这里有3个因数,其中负因数有2个,负因数个数为偶数,先计算(-2)×(-3) = 6,再乘以-4得到-24。
六、题型六:有理数的除法运算6. 计算(-12)÷(-3)解析:两数相除,同号得正,异号得负,并把绝对值相除。
有理数经典测试题含解析
有理数经典测试题含解析一、选择题1.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在2.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.3.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64, ∴2222e =±=(),33644f ==,∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.4.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.5.﹣3的绝对值是( )A .﹣3B .3C .-13D .13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.若x <2+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】a = 的化简得出即可.解析:∵x <2+|3﹣x|=2352x x x -+-=- .故选D.10.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.11.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.12.已知a b 、两数在数轴上的位置如图所示,则化简代数式|||1||1|a b a b ---++的结果是( )A .2b -B .2aC .2D .22a -【答案】A【解析】【分析】根据数轴判断出绝对值符号内式子的正负,然后去绝对值合并同类项即可.【详解】解:由数轴可得,b <−1<1<a ,∴a −b >0,1−a <0,b +1<0,∴|||1||1|a b a b ---++, ()()11a b a b =-+--+,11a b a b =-+---,2b =-,故选:A .【点睛】本题考查数轴,绝对值的性质,解答此题的关键是确定绝对值内部代数式的符号.13.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.14.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .15.下列运算正确的是( )A =-2B .|﹣3|=3C =± 2 D【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.16.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .17.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010- 【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值. 【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.如图所示,数轴上点P 所表示的数可能是( )A 30B 15C 10D 8【答案】B【解析】【分析】点P 在3与4之间,满足条件的为B 、C 两项,点P 与4比较靠近,进而选出正确答案.【详解】∵点P 在3与4之间,∴3<P <49P 16∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.。
有理数的运算经典测试题含答案解析
有理数的运算经典测试题含答案解析一、选择题1.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0. 3.由四舍五入得到的近似数36.810⨯,下列说法正确的是( )A .精确到十分位B .精确到百位C .精确到个位D .精确到千位【答案】B【解析】试题解析:个位代表千,那么十分位就代表百,故选B .4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为()A.2.4×103B.2.4×105C.2.4×107D.2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A.4℃B.﹣4℃C.4℃或者﹣4℃D.34℃【答案】A【解析】【分析】所求的数值就是最高气温与最低气温的差,利用有理数的减法法则即可求解.【详解】19﹣15=4(℃)答:这天的最低气温比最高气温低4℃.故选A.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.6.温州市2019年一季度生产总值(GDP)为129 800 000 000元.将129 800 000 000用科学记数法表示应为()A.1298×108B.1.298×108C.1.298×1011D.1.298×1012【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】129 800 000 000=1.298×1011,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.和﹣的关系是( )A.互为倒数B.互为相反数C.互为负倒数D.以上都不对【答案】C【解析】【分析】根据相反数及倒数的定义求解.【详解】解:∵×(﹣)=-1,∴和﹣互为负倒数,故选C.【点睛】判断两个式子之间的关系,一般有互为相反数、互为倒数和互为负倒数等几种.8.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.-3的倒数是()A.13B.3 C.0 D.13-【答案】D【解析】【分析】根据倒数的定义判断.【详解】-3的倒数是:1 3 -故选:D【点睛】本题主要考查了倒数的定义,掌握乘积为1的两个有理数互为倒数是解题的关键.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.国家发改委2020年2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为()A.2×710D.0.2×81010C.20×710B.2×8【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2亿=200000000=2×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .867【答案】C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.15.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为( )A .8.5×105B .8.5×106C .85×105D .85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n ,其中1≤|a|<10,n 为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107B .82.98×105C .8.298×106D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.计算(-2)100+(-2)99的结果是( )A .2B .2-C .992-D .992【答案】D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D .20.清代·袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( ) A .8.4×10-5B .8.4×10-6C .84×10-7D .8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】。
有理数专题练习题(有答案)
【典型例题】一、有理数的概念及分类1、对有理数的分类进行考查20|,0,-(-2017),-2,95%,5.7-3.8,-10,5,-|-7正数集合:{ 5、-(-2017)、95% 、5.7 };20| 、-2 };负数集合:{-3.8、-10、 -|-7非负整数集合:{ 5、0 、-(-2017) };20| };负分数集合:{ -|-72、对有理数的概念进行考查下列说法中正确的是( D )A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称有理数二、数轴1、综合互为相反数、互为倒数、绝对值来进行考查已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求代数式20032)2004+x-a++-的值.+b+x()()(cdabcd解:因为a,b 互为相反数,c,d 互为倒数,所以a+b=0,cd=1, |x|=2,所以x=2或x=-2,x ²=4.代入原式中 当x=2时,原式=4-(0+1)×2+0+(-1)=1 当x=-2时,原式=4-(0+1)×(-2)+0+(-1)=5 三、绝对值1、绝对值的几何意义若a,b,c,d 为有理数,且|a-b|=|b-c|=|c-d|=1,则|a-d|= . 3或12、化简绝对值若有理数a,b,c 在数轴上的位置如图所示,则|a+b|-|b-1|-|a-c|-|1-c|= .|a+b|-|b-1|-|a-c|-|1-c|=-(a+b )-(1-b)-(c-a)-(1-c)=-2 3、零点分段法已知632=++-x x ,则x = .当x<-3时,|x-2|+|x+3|=-(x-2)-(x+3)=6 x=-7/2 当-3<x<2时,|x-2|+|x+3|=-(x-2) +(x+3)=6 x 无解a b 1c当x>2时,|x-2|+|x+3|=(x-2) +(x+3)=6 x=5/2 4、绝对值的非负性及分数列项综合考查①已知|2|-ab 与|1|-a 互为相反数,试求下式的值:)2017)(2017(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab . ②若c b a 、、为有理数,且0≠abc ,则abcabc c c b b a a ||||||||-++= . 解:①因为|2|-ab 与|1|-a 互为相反数,则|2|-ab =0,|1|-a =0, 所以ab=2,即a=1, b=2,所以原式=1/(1*2)+1/(2*3)+....+1/(2018*2019) =1-1/2+1/2-1/3+.....+1/2018-1/2019 (约去中间项) =1-1/2019 =2018/2019②当a 、b 、c 、都为正时,原式=1+1+1-1=2当a 、b 、c 、有一个为负,两个正时,原式=1+1-1+1=2 当a 、b 、c 、有两个为负,一个正时,原式=1-1-1-1=-2 当a 、b 、c 、都为负时,原式=-1-1-1-1=-4 四、科学记数法(此类考题很简单)据统计,2016年“十一”国庆长假期间,成都市共接待国内外游客约319万人次,与2015年同比增长16.43%,数据319万用科学记数法表示为 。
有理数经典测试题含答案
有理数经典测试题含答案理数经典测试题1. 将4.2和3.5相加,得出的结果是多少?请写出详细计算过程和结果。
解答:要将4.2和3.5相加,我们首先对齐小数点,然后逐位相加。
4.2的小数部分是2,3.5的小数部分是5。
将它们相加得到7。
然后,将整数部分4和3相加得到7。
所以,4.2加上3.5的结果是7.7。
2. 将-5/6和3/4相减,得出的结果是多少?请写出详细计算过程和结果。
解答:要将-5/6和3/4相减,我们需要找到它们的最小公倍数,并将分子进行调整。
首先,我们计算5和6的最小公倍数,它们的最小公倍数是30,所以我们可以将-5/6变为-25/30,将3/4变为22/30。
然后,我们将它们相减:-25/30 - 22/30 = -47/30。
所以,-5/6减去3/4的结果是-47/30。
3. 将2/3和7/8相乘,得出的结果是多少?请写出详细计算过程和结果。
解答:要将2/3和7/8相乘,我们将分数的分子相乘,分母相乘。
2乘以7得到14,3乘以8得到24。
所以,2/3乘以7/8的结果是14/24。
我们可以进一步约分这个分数,得到7/12。
4. 将9/10除以3/5,得出的结果是多少?请写出详细计算过程和结果。
解答:要将9/10除以3/5,我们需要将除法转化为乘法的倒数操作。
我们先计算3/5的倒数,也就是5/3。
然后,我们将9/10和5/3相乘:9/10 × 5/3 = 45/30。
我们可以进一步约分这个分数,得到3/2。
5. 将-2/3和5/6相加,得出的结果是多少?请写出详细计算过程和结果。
解答:要将-2/3和5/6相加,我们需要找到它们的最小公倍数,并将分子进行调整。
首先,我们计算3和6的最小公倍数,它们的最小公倍数是6,所以我们可以将-2/3变为-4/6,将5/6保持不变。
然后,我们将它们相加:-4/6 + 5/6 = 1/6。
所以,-2/3加上5/6的结果是1/6。
6. 将-7/8和2/5相减,得出的结果是多少?请写出详细计算过程和结果。
第一章《有理数》测试卷(含答案)-
第一章《有理数》测试卷(含答案)- 第一章《有理数》测试卷时间:90分钟总分:120分一、选择题(每题2分,共30分)1.下列说法正确的是()A。
所有的整数都是正数B。
不是正数的数一定是负数C。
0不是最小的有理数D。
正有理数包括整数和分数2.的相反数的绝对值是()A。
-B。
2 C。
-2 D.3.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A。
a>b B。
a0 D。
a>b4.在数轴上,原点及原点右边的点表示的数是()A。
正数 B。
负数 C。
非正数 D。
非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A。
是正数 B。
不是0 C。
是负数 D。
以上都不对6.下列各组数中,不是互为相反意义的量的是()A。
收入200元与支出20元B。
上升10米和下降7米C。
超过0.05mm与不足0.03m D。
增大2岁与减少2升7.下列说法正确的是()A。
-a一定是负数B。
│a│一定是正数C。
│a│一定不是负数D。
-│a│一定是负数8.如果一个数的平方等于它的倒数,那么这个数一定是()A。
0 B。
1 C。
-1 D。
±19.如果两个有理数的和除以它们的积,所得的商为零,那么这两个有理数()A。
互为相反数但不等于零B。
互为倒数C。
有一个等于零D。
都等于零10.若0<m<1,m、m2、的大小关系是()A。
m<m2<B。
m2<m<C。
<m<m2D。
<m2<m11.xxxxxxx取近似值,保留三个有效数字,结果是()A。
4.60×106B。
xxxxxxxC。
4.61×106D。
4.605×10612.下列各项判断正确的是()A。
a+b一定大于a-bB。
若-ab<0,则a、b异号C。
若a3=b3,则a=bD。
若a2=b2,则a=b13.下列运算正确的是()A。
-22÷(-2)2=1B。
有理数测试题
有理数测试题一、选择题1、下列说法正确的是( )A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数2.下列各图中,是数轴的是( ) A.-1 0 1 -1 0 1 3.下列个组数中,数值相等的是( )A 32和23 ;B -23和(-2)3C -32和(-3)2 ;D —(3×2)2和-3×224.下列四组有理数的大小比较正确的是( )A. —32 =(—3)2B. -->-+||||11C. —(—2)= —2-D. 43->54- 5、下列各对数中,数值相等的是( )A -27与(-2)7B -32与(-3)2C -3×23与-32×2 D ―(―3)2与―(―2)36.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -7.下列算式正确的是( );A 、—32=9 ;B 、1441=-÷-)()( ; C 、1682-=-)(;D 、325-=---)( 8.下列计算正确的是( )(A )1313÷= (B )-2-2=0 (C )10111-=-() (D ) (5)(3)15-⨯-=- 9.下列各对数中,不是相反数的是( )A +(-3)与 –[-(-3)]B 41-与4(1)-C -(-8)与 -|-8 |D -5.2与-[+(-5.2)]1.在下列各数 :()2+-,23-,315231200124------,)(,,)(中,负数有( )个。
2、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是( ) 3. 平方等于16的数是 ( )4、若其中至少有一个正数的5个有理数的积是负数,这五个因数中有( )个正数。
5、绝对值大于或等于1,而小于4的所有的正整数的和是( )6、比-7.1大,而比1小的整数的个数是( )7、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( ) 8、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( ) 9、有这样5个数:-3,-5 , 0 , 3 ,41从中取出2个数,这2个数的乘积最小值是( ) 10、如果数轴上的点A 对应有理数为-2,那么与A 点相距3个单位长度的点所对应的有理数为___________。
《有理数》综合测试题
《有理数》综合测试题
一、选择题
1、有理数“a/b”,含义是()
A、a代表数值,b代表分母
B、a代表分子,b代表数值
C、a代表分子,b代表分母
D、a代表数值,b代表分子
答案:C、a代表分子,b代表分母
2、将相似的有理数的分数表示形式进行统一叫做()
A、最小分子约分
B、同分母化
C、最大公约数化
D、最大分母约分
答案:B、同分母化
3、在实数范围内,在实数范围内,可以整除的两个有理数被称为()
A、相等有理数
B、同类有理数
C、最大公约数
D、相反有理数
答案:A、相等有理数
4、既不是正数也不是负数的是()
A、0
B、-5
C、5
D、-0
答案:A、0
5、给定min(-9/8,3/-6),则min(-9/8,3/-6)=()
A、-0.25
B、-1.25
C、-1.75
D、-2.25
答案: B、-1.25
二、填空题
1、(2/1)和____具有相同的数值。
A、(2/2)
2、有理数a/b和-a/-b是____,-a/b是____。
A、相等的;相反的
3、有理数-7/4,该数的倒数是____。
A、-4/7
4、对于两个有理数a/b、c/d,如果a/b>c/d,则a/b的数值
____c/d的数值。
A、大于
5、有理数a/b的倒数为b/a,其中a、b互质时,设有理数a/b的数值为x,则有____。
A、b/a的数值为1/x
三、计算题
1、计算(3/4)×(5/6)的值,并表示为最简分数。
答案:5/8。
关于有理数的题
20 道关于有理数的题题目一:计算(-3)+5。
解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|-3| = 3,|5| = 5,5 的绝对值较大,所以结果为正。
5 - 3 = 2。
题目二:计算8+(-6)。
解析:异号两数相加,8 的绝对值较大,结果为正。
8 - 6 = 2。
题目三:计算(-7)-4。
解析:两个负数相加,结果为负。
(-7)+(-4)= -11。
题目四:计算12-(-8)。
解析:减去一个负数等于加上这个数的相反数。
12 + 8 = 20。
题目五:计算(-5)×3。
解析:异号两数相乘得负。
(-5)×3 = -15。
题目六:计算4×(-6)。
解析:异号两数相乘得负。
4×(-6) = -24。
题目七:计算(-8)÷4。
解析:异号两数相除得负。
(-8)÷4 = -2。
题目八:计算24÷(-6)。
解析:异号两数相除得负。
24÷(-6) = -4。
题目九:计算(-2)×(-3)×(-4)。
解析:先算(-2)×(-3)=6,再算6×(-4)= -24。
题目十:计算(-3)×4÷(-6)。
解析:(-3)×4 = -12,-12÷(-6)=2。
题目十一:比较大小:-3 和-2。
解析:两个负数比较大小,绝对值大的反而小。
|-3| = 3,|-2| = 2,3>2,所以-3<-2。
题目十二:计算|-5|+(-3)。
解析:|-5| = 5,5+(-3)=2。
题目十三:计算(-4)×3 - (-2)×4。
解析:(-4)×3 = -12,(-2)×4 = -8,-12 - (-8)= -12 + 8 = -4。
题目十四:计算18÷(-3)+(-2)×4。
解析:18÷(-3)= -6,(-2)×4 = -8,-6 + (-8)= -14。
有理数练习题及答案
有理数练习题及答案一、选择题(每题2分,共10分)1. 下列各数中,是正数的是()A. -3B. 0C. 5D. -22. 若a > 0,b < 0,则a + b的值()A. 一定大于0B. 一定小于0C. 可能为正数也可能为负数D. 一定等于03. 下列哪个选项表示的数是负数()A. +3B. -3C. 0D. 24. 若|a| = 5,|b| = 3,且a + b = 0,则a和b的值可以是()A. a=5, b=-5B. a=-5, b=5C. a=5, b=3D. a=-5, b=-35. 两个负数相加,其和()A. 一定是正数B. 一定是负数C. 可能是正数也可能是负数D. 无法确定二、填空题(每题2分,共10分)6. 若一个数的绝对值是4,则这个数可以是________。
7. 两个数的和为-6,其中一个数是-3,另一个数是________。
8. 一个数的相反数是-8,这个数是________。
9. 有理数-15的绝对值是________。
10. 若a和b互为相反数,且a=-2,则b=________。
三、计算题(每题5分,共30分)11. 计算下列各数的和:-3,+5,-7,+9。
12. 求下列各数的绝对值:-2,0,5,-10。
13. 计算:(-4) × (-3)。
14. 计算:-6 - (-3)。
15. 计算:|-12| - |-4|。
16. 计算:(-2)² - 3 × (-1)。
四、解答题(每题10分,共40分)17. 某商店在一天内卖出了价值-150元的商品(亏损),又购入了价值+200元的商品。
请问该商店这一天的净收入是多少?18. 某学生在一次数学竞赛中,答对了5题,每题得2分,答错了3题,每题扣1分。
求该学生的最终得分。
19. 某工厂生产一批零件,合格率为95%,不合格率为5%。
如果工厂生产了1000个零件,求不合格的零件有多少个?20. 某公司在一个月内,第一周的利润是-5000元,第二周的利润是+3000元,第三周的利润是-2000元,第四周的利润是+4000元。
有理数经典练习题集合
-11ab有理数一. 选择题5、有理数a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是 ( ) A. a >b >0>c B. b >0>a >c C. b <-c <0<-a D. a <b <c <0 6、在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是( )A.-1B.-6C.-2或-6D.无法确定 7.下列正确的式子是 ( ) A.021>-- B.4)4(--=-- C.5465->- D.π->-14.3 8、 若a<0,b<0,则下列各式正确的是( )A 、a-b<0B 、a-b>0C 、a-b=0D 、(-a)+(-b)>0 9、已知|1|a +与|4|b -互为相反数,则ab 的值是( )。
A.-1B.1C.-4D.4 2.下列各组数中,相等的是( ).A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)316、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为( ) A 、121 B 、321C 、641D 、128115.两个非零有理数的和为零,则它们的商是( )A .0B .1-C .+1D .不能确定 17.如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a 20.有理数a 、b 在数轴上的对应的位置如图所示: 则( )A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 21.下列各式中正确的是( )A .22)(a a -= B .33)(a a -=; C .|| 22a a -=- D .|| 33a a =2、下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.―(―3)2与―(―2)33、在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( ) A.-12 B.-101C .-0.01 D.-54、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A.0B.-1 C .1 D.0或16、计算:(-2)100+(-2)101的是( )A.2100B.-1C.-2D.-21002.下面计算正确的是( )A.()2222--=; B.()22363⎛⎫--= ⎪⎝⎭; C.()4433-=-; D.()220.10.1-= 6.如果0a b +>,且0ab <,那么( ) A.0,0a b >> ; B.0,0a b <<;C.a 、b 异号 D. a 、b 异号且负数和绝对值较小1、下列各数对中,数值相等的是( )A 、+32与+23B 、—23与(—2)3C 、—32与(—3)2D 、3×22与(3×2)25、已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( ) A 、a >b B 、ab <0 C 、b —a >0 D 、a +b >07、6)5(-表示的意义是( )A 、6个—5相乘的积B 、-5乘以6的积C 、5个—6相乘的积D 、6个—5相加的和 2.如果a<2,那么│-1.5│+│a-2│等于( )A .1.5-aB .a-3.5C .a-0.5D .3.5-a3.现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③倒数等于其本身的有理数只有1;•④平方等于其本身的有理数只有1.其中正确的有( ) A .0个 B .1个 C .2个 D .大于2个 4.下列各组数中,互为相反数的是( ) A .2与12B .(-1)2与1C .-1与(-1)2D .2与│-2 17.以-273 0C 为基准,并记作0°K,则有-272 0C 记作1°K,那么100 0C 应记作( )(A )-173°K (B )173°K (C )-373°K (D )373°K18.用科学记数法表示的数1.001×1025的整数位数有 ( )(A) 23位 (B) 24位 (C) 25位 (D) 26位1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdba cd p的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a << C .a a a <<21 D .aa a 12<<4.下列说法中正确的是 ( ).A. 若,0>+b a 则.0,0>>b aB.若,0<+b a 则.0,0<<b aC.若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b abac5.ccb b a a ++的值是 ( ) A .3± B .1± C .3±或1± D .3或1 6.设n 是正整数,则n)1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2 二. 填空题(每小题3分,共24分) 3.35-的倒数的绝对值是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“第一章 有理数”单元测试卷班级: 姓名: 学号: 得分:说明:本测试卷需考查你的基本运算能力,不含复杂繁琐的运算,故不能使用计算器。
若使用计算器者,从总分中扣除20分计算得分。
一、速算填空:(本大题共20小题,共10分,但每错一题扣1 分,直到扣完为止。
)(1)、___)9()6(=-++ , (2)、___)9()6(=--+, (3)、___)9()6(=-⨯+, (4)、___)14()56(=-÷-, (5)、___4716=-, (6)、___46=+-, (7)、____)3(3=-, (8)、____)2(4=-, (9)、____24=-,(10)、____)1(2008=-, (11)、____)2(3=--, (12)、___565=--, (13)、___2131=-, (14)、___)103()65(=-⨯-, (15)、___8325.0=÷-, (16)、____5.04=, (17)、___55=+-, (18)、___1020=--,(19)、___)1.6()9.5(=---, (20)、___)13(0)56()7(=-÷⨯-⨯-。
二、填空题:(每小题3分,共30分)1、如果节约10吨水记作+10吨,那么浪费8吨水记作 。
2、最小的自然数是 ,最大的负整数是 ,最小的非负数是 。
3、既不是正数,也不是负数的数是 。
4、相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 。
5、绝对值等于5的数是 。
6、比较大小:218- 73- 7、地球上的陆地面积约为149 000 000km 2,用科学记数法表示为 。
8、由四舍五入得到的近似数0.0060,精确到 位,有 个有效数字,它们是 。
9、若0)4(32=-+-y x ,则___=-y x 。
10、绝对值小于2007的所有整数的和等于 。
三、选择题:(每小题3分,共21分)1、一个数加上-12得-5,则这个数是( )A 、17B 、7C 、-17D 、-72、下列各对数中,不是互为相反数的是( )A 、)3(--与3--B 、23-与2)3(-C 、100-与2)10(-D 、3)2(-与32-3、两个非零有理数的和为0,它们的商是( )4、数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知A 在B 的右侧,C 在B 的左侧,D 在B 、C 之间,则下列式子成立的是( )A 、a<b<c<dB 、b<c<d<aC 、c<d<b<aD 、c<b<d<a5、若x 为有理数,则x x +必是 ( )A 、非正数B 、非负数C 、0D 、正数6、下列各语句中正确的是( )A 、若a>-0.5,则a 是正数B 、若a <0,则a a <C 、若b a >,则b a >D 、若b a =,则b a =7、a ,b ,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A 、a+b<0B 、a+c<0C 、a-b>0D 、b-c<0四、计算:(每小题5分,共30分)1、)24()19(2840-+----2、)7(141399-⨯3、3322)2(2)2(2-+---- 4、22)21(75.065)6.1(4-+⨯--÷-5、2222007)2(492)3()1(-÷--⨯-+-6、⎥⎦⎤⎢⎣⎡-÷÷-+---)2()532.01(53五、解答题(9分)某校初一年级共有8个班,以每班65人为标准,超过的人数记为正数,不足的人数记为负数,统计情况记录如下:-1,-6,+2,-3,+4,0,-7,+3,求该校初一年级总人数。
初一年级第一学期第一次月考一、填空(每空1分,共30分)1、 面与面相交成___________,线与线相交得到_________。
2、 点动成_________,__________动成面,面动成_________。
3、 六棱柱有____个顶点,_____条棱,____个面,侧面的形状都是________。
4、 有理数包括______和________。
5、 下列各数中:7,-9.25,109-,-301,274 ,31.25,157 ,-3.5,0,2,215,-7,1.25,-37,-3,43-。
正整数是{ } 正分数是{ } 负整数是{ } 负分数是{ } 正数是{} 负数是{ }6、 用“<”“>”或“=”连接,并说明理由。
(1)-2____+6 (理由是) (2)0_____-1.8 (理由是 )(3)23-_____-4(理由是 ) 7、 用“<”“>”或“=”连接。
(1)7-_____7+ (2)98-_____109- 8、 如果+20%表示增加20%,那么-6%表示___________。
9、 如果-4米表示一个物体向西运动4米,那么+2米表示______________,物体原地不动记为___________.10、 在数轴上距原点2个单位长度的点表示______和_______。
二、判断(每题2分,共14分)1、 经过一点可以作两条直线。
( )2、 棱柱侧面的形状可能是梯形。
( )3、 长方体的截面形状一定是长方形。
( )4、 棱柱的每条侧棱都相等。
()5、 面有曲、平之分,线有曲、直之分。
()6、 有理数如-1/100在数轴上无法表示出来。
()7、 -1/2一定大于-1/4。
()三、选择题(每题3分,共15分)1、 下面不能折成一个正方体表面的是()A B C D2、 下列图形中三角形的个数是()A.4个B.6个C. 9个D.10个3、 如图中,几何体的截面形状是()A B C D4、 黄山的气温由中午的零上2℃下降了7℃后的气温是()A. 7℃B.5℃C.-5℃D.-9℃5、 下列不正确的式子是()A.7.1>-9.5B.135125<C.3.1>-1.3D.2152->- 四、如图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连接(15分)。
五、画出俯视图(10分)34 12 3主视图 左视图六、在数轴上表示下列各数,并比较它们的大小。
(10分)53-,0,1.5,-6,2,415- 七、将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入下图中使得每行的3个数,每列八、计算题(2³5=10分)1、(-10)+(-1)2、0+(-2)3、(-301)+125+301+(-75)4、(-25)+34+156+(-65)5、41+(-23)+(-31)+0九、从下图中最小的数开始,由小到大依次用线段连接各数,看你画了什么-4.7 -4.5-4/27 -5 -4 -35 3 2 09 7 6第一章 有理数1.1.1 相反意义的量1.任意写出5个正数:_______;任意写出5个负数:___________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有________________;负数有_________________.4.如果向东为正,那么 -50m 表示的意义是……( )A .向东行进50mC .向北行进50m B .向南行进50mD .向西行进50m 5.下列结论中正确的是 …………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 …………………………………( )A .2个B .3个C .4个D .5个1.1.2相反意义的量统一表示(正数和负数)1. (1)向北跑100步记作-100步,那么向南跑90步记作 .(2)股票涨1.67%记作+1.67%,那么-1.02%表示意义是 .2.某一天白天平均气温为5℃记作 ,晚上平均气温比白天下降了8℃,则晚上的平均气温为 .3.在数-1,2,- 13,0.5,6中负数是 ;正数是 . 4.某大楼地上共有20层,地下共有4层,若用正负数表示这栋楼每层的楼层号,则地上的最高层表示为 ,地下的最低层表示为 。
某人乘电梯从地下最底层升至地上6层,电梯一共升了 层.5.检查商店出售的袋装白糖,白糖加袋按规定重503g ,一袋白糖重502g ,就记作-1g ,如果一袋白糖重505g ,那么应记作 .6.下面说法正确的是( )A .正数都带有“+”号B .不带“+”号的数都是负数D .0既不是正数也不是负数1.2.1有理数1.把下列各数填在合适的集合中。
+7,-5,217,61-,79,0,0.67,321-,+5.1,-19%整数集 负数集2.下列说法正确的是( )A .-1不是正数,它是负数B .整数是正整数和负整数的统称C .有理数是正整数、负整数、正分数、负分数的统称D .正有理数是正整数和正分数的统称3.关于最小的负有理数说法正确的是( )A .-1 B.-0.001 C .-11000 D.不存在 4.下列说法正确的个数为( )①O 是整数 ②负分数一定是负有理数 ③一个数不是正数就是负数④π是有理数 A .O 个 B.2个 C.3个 D.1个5.非负数的组成为( ) A .0 B.正数和零 C.正数 D.以上都不对6. 请把下列小数化为分数:(1) 0. 2= (2)—0. 35=1.2.2 数轴1.下列各图表示数轴是否正确?为什么?⑴⑵⑶⑷2.指出数轴上点A 、B 、C 、D 分别表示什么数.3.画出数轴,并在数轴上画出表示下列各数的点: -1.8, 0, -3.5, 310, 216再按数轴上从左到右的顺序,将这些数重新排成一行.1.2.3 相反数1、判断改错题①符号不同的两个数叫做相反数。
( )②零的相反数是它本身。
( )③一个数的相反数一定是负数。
( )④ -8是相反数。
( )⑤数轴上位于原点两侧且到原点距离相等的两点表示的两个数互为相反数。
()⑥正数的相反数大于它本身。
( )2、填空:(1)当a=4时,-a= ,4的相反数是 ;(2)当a=0时,-a= ,0 的相反数是 ;(3)当a=-(-6)时,-a= ,-6的相反数是 。
3.化简下列各数:(1)-(-16); (2)-(+20);(3)+(+50);4.在数轴上标出2,-4.5,0各数与它们的相反数.1.2.4 绝对值1、求出下列各数的绝对值-11;-6.8;-56;0;-(-25). 2、化简下列各数35-- ; 11+- ; (3.3)-+ ; (0.5)-- 3、在数轴上把下面各数的绝对值分别表示出来并比较它们绝对值的大小。