12[1].2_一次函数的扩展(分段函数)11

合集下载

一次函数——分段函数

一次函数——分段函数

§19.2.6 分段函数教学设计教学任务分析教学目标知识与能力1.学会观察图像,从图像获取必要的信息2. 学习分类讨论的分析方法,会根据题意求出分段函数的解析式,并解决实际问题过程与方法1.培养学生发现问题、提出问题、分析问题、解决问题的能力;2.经历将实际问题转化为数学问题的过程,获得建立函数模型解决实际问题的经验和方法;3.结合一次函数的图像和性质探究实际问题中的数量关系,体会数形结合的思想.情感态度与价值观1.让学生感受数学源于生活、服务于生活,体会数学的应用价值;2.通过合作探究,增强学生的应用意识和创新意识,激发学生学习数学的兴趣,感受成功的喜悦.重点 1.学习分类讨论的分析方法,建立数学模型;2.综合运用一次函数解决实际问题.难点如何将实际问题转化为数学问题,建立函数模型.教学方法小组合作、探究式.教学过程问题与情景师生行为设计意图[ 环节1 ] 创设情境,导入新课,读取图像,获取信息引例:一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?学生可能观察到:教师引导建立一次函数模型.展示具体解答过程.教师应当关注:(1)引导学生观察收入金钱y和千克x之间的函数关系的理解;(2)学生能否通过数形结合法去分析和解决问题.唤起学生的求知欲,使学生认识到数学是与生活密不可分的.让学生主动观察图像,善于从函数图象中获取信息.把知识的发现权交给学生,让他们在解决问题的过程中,经历发现问题→提出问题→分析问题→解决问题的过程.费105元时,则该用户该月用了 多少度电?[ 环节3 ] 获取经验、总结提升例3:某医药研究生开发了一种新药,在实验药效时发现,如果成人按规剂量服用,那么服用药后2h 时血液中含药量最高,达每毫升6ug ,接着逐步衰减,10h 时血液中含药量每毫升3ug ,每毫升血液中含药量y (ug )随时间x (h )的变化如图所示,当成人按规定剂量服药后。

一次函数的应用(分段函数)

一次函数的应用(分段函数)
价格,从而做出更明智的投资决策。
交通流量的分段函数模型
总结词
交通流量的分段函数模型能够根据交通流量的变化规 律,优化交通管理,提高道路通行效率。
详细描述
交通流量在不同时间段和不同路段的分布是不均匀的。 分段函数可以根据交通流量的变化规律,将流量数据划 分为几个不同的区间,每个区间用一次函数表示。这种 模型可以帮助交通管理部门更好地了解交通流量的分布 情况,预测未来的交通流量,从而制定合理的交通管理 措施,缓解交通拥堵,提高道路通行效率。同时,分段 函数模型还可以用于交通信号灯的控制、停车场的泊位 分配等方面,提高整个交通系统的运行效率。
分段函数与极限的结合
01
02
03
极限的定义
分段函数在某点的极限是 指当自变量趋近于该点时, 函数值的趋近值。
极限的性质
分段函数在某点的极限存 在,则该点的左右极限相 等且等于该点的函数值。
极限的计算
通过求分段函数在某点的 左右极限,可以确定该点 的极限值。
分段函数与导数的结合
导数的定义
分段函数在某点的导数表 示该点附近函数值的切线 斜率。
总结词
分段函数在计算机科学中常被用于实现一些特定的算法和数据结构。
详细描述
例如,在一些排序算法中,分段函数可以用来实现快速查找和定位数据元素的功能。此外,在一些数据压缩算法 中,分段函数也被用来实现高效的数据压缩和解压缩。同时,在一些人工智能算法中,分段函数也被用来实现分 类和预测等功能。
04 分段函数与其他数学知识 的结合
03 分段函数在生活中的应用
经济学中的分段函数应用
总结词
分段函数在经济学中有着广泛的应用,主要用于描述和分析各种经济现象和规 律。
详细描述

分段函数的理解

分段函数的理解

分段函数的理解分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数。

1、它是一个函数,不是几个不同函数的组合,是同一函数在自变量X的不同取值范围内的不同表达式。

2、最简单的分段函数是一次函数的分段函数。

分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。

谈谈中考中的分段函数在现实生活中存在着很多需分段计费的实际问题,分段函数是近几年中考数学中一种重要的题型。

分段函数的应用题多设计成两种(段)情况以上,解答时需分段讨论。

它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。

这些分段函数都是直线型,通常是由正比例函数的图像和一次函数的图像构成。

下面我们归纳分析如下,供学习时参考。

一、两段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。

例1、某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费______元;(2)分别写出当0≤x≤100 , x≥100时,x与y之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)当0≤x≤100时,设y与x之间的函数关系式为y=kx,x=100时,y=40 所以y=2/5xx≥100时, 设y与x之间的函数关系式为y=kx+b由图知:x=100时,y=40;x=200时,y=60 则有 ,解之得 k=1/5,b=20 所求函数关系式为y=1/5x+20(3)把x=280代入y=1/5x+20,得y=1/5x280+20=76,即月通话为280分钟时,应交话费76元.【巩固练习】1、水费中的分段函数某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图(1)分别写出当0≤x≤15和x≥15时, y与x的函数关系式;(2)若某户该月用水21吨, 则应交水费多少元?2、电费中分段函数今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时, y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?1.2一次函数与一次函数构成的分段函数1、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)分别写出当0≤x≤20和x≥20时, y与x的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?1.3常数函数与一次函数构成的分段函数例1、有甲、乙公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)分别写出当0≤x≤100和x≥100时, y与x的函数关系式(3)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?二、三段型分段函数如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P 在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()三、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。

第12章 12.2 第4课时 一次函数的应用——分段函数

第12章 12.2 第4课时 一次函数的应用——分段函数

教材感知
课关堂键能检力测
-12-
①一次购买种子数量不超过 10 千克时,销售价格为 5 元/千克; ②一次购买 30 千克种子时,付款金额为 100 元; ③一次购买 10 千克以上种子时,超过 10 千克的那部分种子的价格打 五折; ④一次购买 40 千克种子比分两次购买且每次购买 20 千克种子少花 20 元钱. 其中正确的是_①__②__③__(把正确序号填在横线上).
教必材备知感识知
课堂检测
-5-
5.某超市利用“五一”开展促销活动,店前公告如下:凡是一次性 购买 3 件某种服装,每件仅售价 80 元,如超过 3 件,则其超过的件数打 8 折,顾客所付款 y(元)与所购买的件数 x(x≥3)之间的函数表达式为 y= 6_4_x_+__4_8__.
教必材备知感识知
教材 y=4 代入 y=83x 中,得 x1=32;把 y=4 代入 y=-181x+11112中, 得 x2=127.x2-x1=127-32=124=7(小时),所以有效时间是 7 小时.
第十六章
夯实训练
整合方法
综学合科素探养究
-18-
11.为了节约资源,科学指导居民改善居住条件,小王向房管部门提
出了一个购买商品房的政策性方案.
人均住房面积(平方米)
单价(万元/平方米)
不超过 30
0.3
超过 30 不超过 m 部分(45≤m≤60)
0.5
超过 m 部分
0.7
第十六章
夯实训练
整合方法
综学合科素探养究
-19-
根据这个购房方案: (1)若某三口之家欲购买 120 平方米的商品房,求其应缴纳的房款; 解:由题意,这个三口之家应缴购房款为 0.3×3×30+0.5×(120- 3×30)=42(万元).

沪科版数学八年级上册第12章一次函数分段函数教学设计

沪科版数学八年级上册第12章一次函数分段函数教学设计
-组织学生进行小组讨论,共同探讨一次函数及分段函数的相关问题,鼓励学生发表自己的观点,倾听他人的意见,提高合作交流能力。
-组织学生分享在实际问题中运用一次函数和分段函数的解题经验,促进学生之间的相互学习,提高知识的运用能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习积极性,树立学生的自信心。
-通过设计实际案例,如“出租车的计费标准”,让学生学会运用分段函数知识解决问题,提高解决问题的能力。
(二)过程与方法
1.培养学生的观察能力,让学生通过观察实例、图像等,发现一次函数及分段函数的规律。
-组织学生观察不同一次函数的图像,引导学生发现斜率k与截距b的变化对图像的影响,培养学生的观察能力。
-引导学生观察分段函数的图像和实际案例,让学生通过自主探究,发现分段函数的性质及其在各个区间内函数值的变化规律。
5.学生在解决实际问题时,可能缺乏独立思考、分析问题的能力。教师应关注学生的思维过程,引导学生运用所学知识,形成解决问题的策略。
针对以上学情,教师应充分运用多样化的教学手段和方法,关注学生的个体差异,激发学生的学习兴趣,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.一次函数的斜率、截距概念及其在实际问题中的应用是本章节的教学重点,也是学生的难点。斜率、截距的理解与运用直接关系到学生对一次函数图像特征的理解。
2.学生在解决分段函数问题时,往往对函数值的计算和图像的绘制感到困惑。教师应引导学生学会分析分段函数的特点,逐步引导学生掌握分段函数的计算方法。
3.部分学生对数学学科兴趣不足,学习积极性不高。教师需结合生活实际,设计有趣、具有挑战性的问题,激发学生的学习兴趣,提高学生的参与度。
4.学生在小组合作中,可能存在交流不充分、分工不明确等问题。教师应引导学生学会有效沟通、合理分工,培养学生的团队协作能力。

沪科版 初二八年级数学 上册(教学设计 教案)第12章 一次函数 12.2 第4课时 一次函数的应用——分段函数2

沪科版 初二八年级数学 上册(教学设计 教案)第12章 一次函数 12.2 第4课时 一次函数的应用——分段函数2

12.2 一次函数第4课时一次函数的应用--分段函数定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X 之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。

K3x+b3 a2≤x≤a3…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。

所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。

(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。

(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。

(四), 一次函数的分段函数是简单的分段函数。

分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。

在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。

收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y (元)是月通话时间x (分钟)的正比例函数,当x ≥100时, 月话费y (元)是月通话时间x (分钟)的一次函数. 解:(1)观察图象可知月通话为100分钟时,应交话费40元; (2)设y 与x 之间的函数关系式为y =kx +b 由图上知:x =100时,y =40;x =200时,时,y =60则有 4010060200k b k b =+⎧⎨=+⎩,解之得1520k b ⎧=⎪⎨⎪=⎩所求函数关系式为1205y x =+.. (3)把x =280代入关系式1205y x =+,得128020765y ∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y (元)与用水量x (吨)的函数关系如图2.(1) 分别写出当0≤x ≤15和x ≥15时,y 与x 的函数关系式; (2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x ≤15时y 是x 的正比例函数; x ≥15时,y 是x 的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5 所以y =2.5x -10.5图2 (2) 当该用户该月用21吨水时, 三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ; 设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15 综上可得0.65(0100)0.815(100)xx y x x ⎧=⎨-⎩≤≤≥(2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.分段函数,是近几年中考数学中经常遇到的题型。

一次函数的图像(解析版)

一次函数的图像(解析版)

5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。

高中数学函数知识点归纳

高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点同学们归纳总结过吗,没有的话,快来小编这里瞧瞧。

下面是由小编为大家整理的“高中数学函数知识点归纳”,仅供参考,欢迎大家阅读。

高中数学函数知识点归纳(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

八年级数学上册第12章12.2第4课时分段函数及的实际应用教案新版

八年级数学上册第12章12.2第4课时分段函数及的实际应用教案新版

第4课时分段函数及一次函数的实际应用◇教学目标◇【知识与技能】1.了解分段函数的概念和出现的意义;2.能根据实际问题写出分段函数的表达式,并能解决相关问题.【过程与方法】经历对实际问题建立数学模型的过程,体会待定系数法的作用和一次函数模型的价值.【情感、态度与价值观】通过让学生经历用一次函数来解决实际问题的函数模型的过程,使学生感受到数学与生活的联系.让学生参与到教学活动中,提高学习及运用数学知识的积极性.◇教学重难点◇【教学重点】用一次函数知识来解决实际问题.【教学难点】建立实际问题的数学模型.◇教学过程◇一、情境导入我们前面学习了一次函数的一些知识,今天我们学习分段函数及一次函数的实际应用.二、合作探究典例1为节约用水,某城市制定以下用水收费标准:每户每月用水不超过8 m3时,每立方米收取1元外加0.3元的污水处理费;超过8 m3时,超过部分每立方米收取1.5元外加1.2元的污水处理费,设一户每月用水量为x m3,应缴水费y元.(1)给出y与x之间的函数表达式;(2)画出上述函数图象;(3)当该市一户某月的用水量为x=5 m3或x=10 m3时,求其应缴的水费;(4)该市一户某月缴水费26.6元,求该户这个月用水量.[解析](1)y与x之间的函数表达式为y=(2)如图所示,函数图象是一段折线.(3)当x=5 m3时,y=1.3×5=6.5(元);当x=10 m3时,y=2.7×10-11.2=15.8(元).即当用水量为5 m3时,该户应缴水费6.5元;当用水量为10 m3时,该户应缴水费15.8元. (4)y=26.6>1.3×8,可见该户这月用水超过8 m3,因此2.7x-11.2=26.6,解方程,得x=14.即该户本月用水量为14 m3.典例2某单位有职工几十人,想在节假日期间组织到外地处旅游当地有甲、乙两家旅行社,它们服务质量基本相同,到H地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠,问该单位选择哪家旅行社,使其支付的旅游总费用较少?[解析]方法1设该单位参加旅游人数为x.那么如选甲旅行社,应付80x元,选乙旅行社,应付(60x+1000)元.记y1=80x,y2=60x+1000,在同一直角坐标系中作出两个函数的图象(如图),y1与y2的图象交于点(50,4000).观察图象,可得:当人数为50时,选择甲或乙旅行社费用都一样;当人数为0~49时,选择甲旅行社费用较少;当人数为51~100时,选择乙旅行社费用较少.方法2设选择甲、乙旅行社所需费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000.画一次函数y=20x-1000的图象,如图,它与x轴交点为(50,0).由图可知:(1)当x=50时,y=0,即y1=y2,甲、乙两家旅行社的费用一样;(2)当x>50时,y>0,即y1>y2,乙旅行社的费用较低;(3)当x<50时,y<0,即y1<y2,甲旅行社的费用较低.三、板书设计分段函数及一次函数的实际应用1.分段函数.2.分段函数及一次函数的实际应用.◇教学反思◇分段函数在实际生活中经常用到,因为一个函数不是在所有的自变量范围内可以通用,所以经常需要对自变量的范围进行分段讨论,分段函数的画法就是分别画出各个适用范围的一段,通过这节课的学习,让学生进一步理解自变量取值范围的意义.。

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学一次函数的性质与应用问题【方法归纳】(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图x的图象向下平移1个单位长度得到.象由函数y=12(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y= 2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y= kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由x平移得到,且过点(0,−1).函数y=12(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平x,且经过点A(2,2).行于直线y=12(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x 12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函.数y=mx(1)当函数y=m的图象经过点Q时,求m的值并画出直线y=-x-m.x(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=kx的图象上,求m的值;(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kx(k≠0)的两个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0) x的图象向上平移3个单位长度得到.的图象由函数y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;②如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于4√5,求k的取值5范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y 轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k 的取值范围.22.(2022·北京房山·一模)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P,Q两点(Q在P,H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ·PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则⊙O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),⊙O关于直线m的“特征数”为_____________;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作⊙F.若⊙F与直线l相离,点N(–1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的一个动点,2①若点A与点B的“非常距离”为4,直接写出点B的坐标:;②求点A与点B的“非常距离”的最小值;(2)已知C是直线y=1x+2上的一个动点,2①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;②若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。

一次函数之分段函数学案

一次函数之分段函数学案

●一次函数(四)——分段函数【教学目标】:1.分段函数的特点,会根据题意求出分段函数的解析式并画出函数图象.2.及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.用一次函数及其图象解决简单的实际问题,发展学生的数学应用能力.4.并感知数学建模的一般思想.【教学重难点】:分段函数的初步认识与简单多变量问题的解决:对数学建模的过程、思想、方法的领会,提升分析问题的能力。

【自学指导】:学生看P118---P119思考以下问题:1)注意P118例5中的分析部分,知晓如何确定自变量的取值范围。

2)注意P119中的“书签”,两个函数解析式是如何得到的,对自变量又有什么要求,依据是什么?【自学检测】:1.如图6-5-2中的折线ABC,为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.当t≥3时,该图象的解析式为;从图象中可知,通话3分钟需要付电话费元;通话7分钟需付电话费元.【教学指导】:分段函数图像的独特性。

一次分段函数的书写形式。

分段函数应注意那些(自变量的取自范围和因变量的取值范围)。

【师生共同探究,总结】:◆定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y 与自变量X 之间存在k 1x+b 1 x ≤a 1y = k 2x+b 2 a 1≤x ≤a 2 ① 的函数解析式,则称该函数解析式为X 的分段函数。

K 3x+b 3 a 2≤x ≤a 3… … … …应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K 1X+b 1 Y=K 2X+b 2……等几个不同函数的简单组合,而k 1x+b 1, k 2x+b 2 ……是函数Y 的几种不同的表达式.,例如Y={ 这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X 和110×80%X 是同一函数中的自变量X 在两种不同取值范围内的不同表达式。

一次函数(分段函数)PPT教学课件

一次函数(分段函数)PPT教学课件

b
3 .所以 30
y=3x-30.


(2)当 0≤x<30 时,y=60,
所以 4 月份上网 20 小时,应付上网费 60 元.
பைடு நூலகம்
(3)由 75=3x-30,解得 x=35,
所以 5 月份小李上网 35 小时.
2.“五一黄金周”的某一 天,小明全家上午8时自驾小汽车 从家里出发,到距离180千米的某著名旅游景点游玩。该小汽
小明全家当天17:00到家。
14
(3)本题答案不唯一,只要合理即可,但需注意合理性, 主要体现在: ①9:30前必须加一次油; ②若8:30前将油箱加满,则当天在油用完前的适当时 间必须第二次加油; ③全程可多次加油,但加油总量至少为25升。
15
试一试:近几年来,由于经济和社会发展迅速,用电矛盾 越来越突出。为缓解用电紧张,某电力公司特制定了新的 用电收费标准,每月用电量x(度)与应付电费y(元)的关 系如图所示。
9
(2)求y与x之间的函数关系式
B A
O(0,0) A(100,60) B(200,110)
当0 x 100时:
y3x 5
当x 100时:y 1 x 10
2
10
(2)求y与x之间的函数关系式
(3)月用电量为260度时, 应交电费多少元?
B A
当x 260时,
y 1 260 10 2
例题讲解
例3:某地区的电力资源丰富, 并且得到了较好的开发。 该地区一家供电公司为了 鼓励居民用电,采用分段 计费的方法来计算电费。 月用电量x(度)与相应 电费y(元)之间的函数 图象如图所示。
• (1)月用电量为100度时, 应交电费 60元;

一次函数的扩展(分段函数

一次函数的扩展(分段函数
分段函数在其定义域的某些子区间上,可以采用一次函数的形式来描述变量间的变化关 系。
实际应用举例
经济学中的税收计算
税收往往根据收入的不同区间采用不同的税率,这可以通过分段函数来表示。例如,个人所得税的计算就可 以根据收入的不同水平,采用不同的税率进行计算。
物理学中的运动描述
在某些情况下,物体的运动规律在不同的时间段内遵循不同的规律,这可以用分段函数来描述。例如,自由 落体运动在初始阶段和后续阶段的速度和位移关系可以用不同的函数来表示。
分段函数的图像由各个区间上 的函数图像组成,整体上呈现 为多个相连的直线段。在分段 点处,函数图像可能发生转折 或连续但不可导。
分段函数具有多样性、灵活性 和复杂性。不同区间上的一次 函数可以有不同的斜率和截距 ,从而构成丰富多样的分段函 数。
对未来学习的建议
01
03
深入学习分段函数 02
加强数学基础
在某些情况下,分段函数的最值可能出现在分段点处,因此需要特别注意分段点的取值情况。
与其他知识点结合应用
分段函数可以与导数、积分等知识点 结合应用,解决一些复杂的数学问题 。
在一些实际问题中,分段函数可以与 概率、统计等知识点结合应用,建立 更加符合实际情况的数学模型。
06 总结与展望
知识点回顾总结
THANKS FOR WATCHING
感谢您的观看
扣除数进行计算。
05 分段函数在数学领域的应 用
解方程和不等式问题
分段函数可以表示复杂的数学关系, 通过解方程或不等式,可以找到满足 特定条件的解集。
VS
在解决一些实际问题时,分段函数可 以描述不同区间内变量的关系,从而 建立数学模型进行求解。
求最值问题
分段函数的最值问题可以通过分析各段函数的单调性和极值点来解决。

一次函数的应用分段函数完整版PPT课件

一次函数的应用分段函数完整版PPT课件
因此,-11.2=26.6, 解方程,得 x=14. 即该户本月用水量为14m3.
方法总结 要能根据函数图象的性质和图象上的数据分析得出 函数的类型和所需要的条件,结合实际意义得到正确的结论, 读函数的图象时首先要理解横纵坐标表示的吞没,改造沙漠, 保护土地资源已经成为一项十分紧迫的任务,某地区 现有土地100万平方千米,沙漠200万平方千米,土地 沙漠化的变化情况如下图所示.
叫做分段函数.
注意:1.它是一个函数;
解:设购买量为x千克,付款2金.要额写明为自y元变.量取值范围.
当0≤x≤2时,y=5x;
y
当x>2时,
14
y=4x+2(x>2)
y=4(x-2)+10=4x+2. 10
∴y = 5x(0≤x≤2) 4x+2(x>2)
y=5x(0≤x≤2)
函数图象为:
O 123
当堂练习
1.一个试验室在0:00—2:00保持20℃的恒温,在2:
00—4:00匀速升温,每小时升高5℃.写出试验室温度T
(单位:℃)关于时间t(单位:h)的函数解析式,并
画出函数图象.
解:(1)由题意得
当0≤t≤2时,T=20;
T/℃ 40
当2<t≤4时,T=20+5(t-2)=5t+10 30
3.某医药研究所开发了一种新药,在实际验药时发现,如果成人按 规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时) 的变化情况如图所示,当成年人按规定剂量服药,
(1)服药后__2__小时,血液中含药量最高,达到每毫升___6__毫克; (2)服药5小时,血液中含药量为每毫升__3__毫克;
(1)如果不采取任何措施,那么 到第5年底,该地区沙漠面积 将增加多少万千米2?

第12章一次函数小结评价与复习PPT课件(沪科版)

第12章一次函数小结评价与复习PPT课件(沪科版)

6. 填空题:
有下列函数:① y 6x 5 , ② y = 2 x ,
③ y x 4 , ④ y 4x 3 . 其中过原点的直
线是__②___;函数y随x的增大而增大的是_①__、__②__、__③__;函 数y随x的增大而减小的是__④____;图象在第一、二、三象 限的是__③___.
解不等式ax+b>0(a,
求直线y= ax+b在 x轴上
b是常数,a≠0) . 从“形”的角度看 方的部分(射线)所对
应的横坐标的取值范
围.
四、一次函数与二元一次方程 一般地,任何一个二元一次方程都可以转化为一次函
数y=kx+b(k、b为常数,且k≠0)的情势,所以每个二元一 次方程都对应一个一次函数,也对应一条直线.
10· · O· s5·=2x 1·(00≤x≤5) x(秒)
课堂小结




解析法 列表法 图象法
一次函数y=kx+b(k,b为常数, 且k≠0),特例y=kx(k为常 数,且k≠0).
一次函数与一元一次 方程、一元一次不等式
一次函数与二 元一次方程
用待定系数 法求一次函 数的解析式
1. 设所求的一次函数表达式为y=kx+b; 2. 根据已知条件列出关于k、b的方程组; 3. 解方程,求出k、b; 4. 把求出的k,b代回表达式即可.
x
当x>1时,y1在y2上方,据此解题即可.
【答案】C.
方法总结 本题考查了一次函数与一元一次不等式,从函数的角度看,
就是寻求一次函数y=ax+b的值大于(或小于)0的自变量x的取 值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上 (或下)方部分所有的点的横坐标所构成的集合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版数学八年级上学期多媒体课件
11.2.2:一次函数的扩展(分段函数)
八年级 数学
第十一章 函数
11.2.2一次函数 y/千米
分段函数
小明从家里出发去菜地浇水, 又去玉米地锄草,然后回家,其 中x表示时间,y表示小明离他家 的距离。
2
1.1
0
15
25
37
55
80
x/分
该图表示的函数是正比例函数吗? 是一次函数吗?你是怎样认为的?
2、较复杂的综合题的解法,先画出草图, 然后根据数形结合,及待定系数求出相应的解 析式
的图象
八年级 数学
第十一章 函数
11.2.2一次函数
分段函数
数形结合
平面直角坐标系上的点 实数对
点A ( m, n )在直线y = kx + b上 n = km + b
八年级 数学
第十一章 函数
11.2.2一次函数 例题
分段函数
直线L与直线L1 y=20-x交于点P,与X轴交于点A(8,0); 且PAO的面积为18,求直线L的解析式 解:设直线L为y = kx +b ∵交点P也在直线y = 20 – x上 ∴P点的坐标为(x ,20-x) 又∵S∆PAO = 18 ∴
八年级 数学
第十一章 函数
11.2.2一次函数
分段函数
八年级 数学
第十一章 函数
11.2.2一次函数
分段函数
作出函数 y = |x|的图象 解:函数可变为: y=
{ -x
x
( x ≥0 )
(x < 0 )
分别作出 y = x (x≥0)及y = - x (x<0)的图象
即得 y =
{ -x
x
( x ≥0 ) (x < 0 )
思路导引:分段函数要根据自变量的取值范围分段描述.
解:当 0<t≤3 时,y=2.4; 当 t>3 时,y=2.4+0.5(t-3)=0.5t+0.9.
函数图象由一条线段和一条射线组成,如图 2:
图2 【规律总结】分段函数是一个函数而不是多个函数,求出的分
段函数解析式必须写出自变量的取值范围.
3.某市推出电脑上网包月制,每月收取费用 y(元)与上网时间
2
直线 y = kx +b
P( x,20-x )
经过点P(24,-4),A(8,0)的 直线为 y = 1 x+2 4
A(8,0) 直线 y = 20-x
直线L的解析式为
y = 2 x - 4或 y =
1
1 4
x +2
八年级 数学
第十一章 函数
11.2.2一次函数
课堂小结
:
1、分段函数,讨论的方法与一次函数类似。 可分段讨论。
1 2
直线 y = kx +b
P( x, 20-x )
|OA|· |20-x| = 18
A(8,0) 直线 y = 20-x
即: |20 - x|= 4
∴ x =16 或 x = 24
八年级 数学
第十一章 函数
11.2.2一次函数
分段函数
因此,P点的坐标为P(16, 4) 或P(24, -4) 经过点P(16,4),A(8,0)的 1 直线为 y = x - 4
35 是__________.
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b, 则

30k b 60 40k b 90
,解得

k 3 b 30
.所以 y=3x-30.
(2)当 0≤x<30 时,y=60, 所以 4 月份上网 20 小时,应付上网费 60 元. (3)由 75=3x-30,解得 x=35, 所以 5,其中 BA 是线段,且 BA∥x 轴,AC 是
射线.
图4
y=3x-30 (1)当 x≥30 时,y 与 x 之间的函数解析式为______________; 60 (2)若小李 4 月份上网 20 小时,他应付________元上网费用;
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间
{
20x+200
(0≤x<5)
300 (5≤x≤15)
上述函数,称为分段函数。
八年级 数学
第十一章 函数
11.2.2一次函数
分段函数
y=
{
20x+200
(0≤x<5)
300 (5≤x≤15)
例 2:从广州市向北京市打长途电话,按时间收费,3 分钟内 收费 2.4 元,每加 1 分钟收费 0.5 元,求时间 t(分)与电话费 y(元) 之间的函数解析式,并画出函数的图象.
八年级 数学
第十一章 函数
11.2.2一次函数
分段函数
小芳以200米/分钟的速度起跑后,先匀加速跑5分钟,
每分钟提高速度20米/分,又匀速跑10分钟,请写出这段时
间里她的跑步速度y(米/分钟)随跑步时间x(分钟)变化的 函数关系式。 解:跑步的速度 y (米/分)随跑步时间 x (分钟)变化 的函数关系式为: y=
相关文档
最新文档