课题2:椭圆的简单几何性质

合集下载

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案教学目标:1. 理解椭圆的定义及基本几何性质;2. 掌握椭圆的长轴、短轴、焦距等基本参数的计算方法;3. 能够应用椭圆的性质解决实际问题。

教学重点:1. 椭圆的定义及基本几何性质;2. 椭圆的基本参数的计算方法。

教学难点:1. 椭圆的性质在实际问题中的应用。

教学准备:1. 教学课件或黑板;2. 椭圆模型或图片;3. 直尺、圆规等绘图工具。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的基本几何性质,如圆的半径、直径等;2. 提问:同学们知道吗,还有一种曲线也和圆有关系,叫做椭圆。

椭圆有哪些基本性质呢?二、新课讲解(15分钟)1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为常数的点的轨迹;2. 讲解椭圆的基本几何性质:椭圆的长轴、短轴、焦距等;3. 讲解椭圆的基本参数的计算方法:长轴长度、短轴长度、焦距等。

三、例题解析(10分钟)1. 给出例题,让学生独立解答,进行讲解;2. 通过例题,让学生加深对椭圆性质的理解。

四、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识;2. 对学生的练习进行点评,解答学生的疑问。

五、课堂小结(5分钟)2. 强调椭圆性质在实际问题中的应用。

教学反思:本节课通过讲解椭圆的定义、基本几何性质和计算方法,让学生掌握了椭圆的基本知识。

在课堂练习环节,学生能够独立完成练习题,对椭圆的知识有了更深入的理解。

但在实际问题中的应用方面,学生还需加强练习和思考。

在今后的教学中,应更多地提供实际问题,让学生运用椭圆的知识解决问题,提高学生的应用能力。

六、椭圆的标准方程(10分钟)1. 引入椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(a>b>0);2. 讲解椭圆标准方程的来源及意义;3. 讲解如何由椭圆的标准方程求解椭圆的参数。

七、椭圆的焦点与焦距(10分钟)1. 讲解椭圆的焦点定义及性质;2. 讲解焦距的概念及计算方法;3. 引导学生掌握焦点与焦距的关系。

20-21版:2.2.2 椭圆的简单几何性质(二)(创新设计)

20-21版:2.2.2 椭圆的简单几何性质(二)(创新设计)

2.2.2 椭圆的简单几何性质(二)内容要求 1.巩固椭圆的简单几何性质.2.能利用弦长公式解决相关问题.知识点1 点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1. 【预习评价】已知点P (m ,1)在椭圆x 24+y 23=1的外部,则实数m 的取值范围是________. 解析 由题意可知m 24+13>1, 解得m >263或m <-263.答案 ⎝ ⎛⎭⎪⎫-∞,-263∪⎝ ⎛⎭⎪⎫263,+∞ 知识点2 弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2= 1+1k 2(y 1-y 2)2 =1+1k 2(y 1+y 2)2-4y 1y 2.其中x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得. 【预习评价】若直线y =x +1和椭圆x 24+y 2=1交于A ,B 两点,则线段AB 的长为________. 解析 由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +1得5x 2+8x +2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=25,x 1+x 2=-85,所以|AB |=1+12·(-85)2-4×25=45 3. 答案 45 3题型一 直线与椭圆的相交问题【例1】 (2019·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0), 直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2, 与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k 4+5k 2, 代入y =kx +2得y P =8-10k 24+5k 2,进而直线OP 的斜率为y P x P =4-5k 2-10k .在y =kx +2中,令y =0,得x M =-2k .由题意得N (0,-1),所以直线MN 的斜率为-k2. 由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245, 从而k =±2305(满足Δ=(20k )2-4(4+5k 2)>0). 所以直线PB 的斜率为2305或-2305.规律方法 解决直线与椭圆的相交问题,关键是找到图形的几何特征(例如中点、垂直、等腰等),再将几何特征用代数运算的方式加以利用,进行代数运算时要注意消元,达到减少量化简运算式的目的,这两方面是解析几何的本质特征. 【训练1】 (2019·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1). (1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.(1)解 由题意,得b 2=1,c =1,所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1.令y =0,得点M 的横坐标x M =-x 1y 1-1. 又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1 =⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪⎪⎪2t 2-21+2k 2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t . 又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2. 解得t =0,所以直线l 经过定点(0,0). 题型二 中点弦问题【例2】 在椭圆x 2+4y 2=16中,求通过点M (2,1)且被这一点平分的弦所在的直线方程.解 方法一 如果弦所在的直线的斜率不存在,即直线垂直于x 轴, 则点M (2,1)显然不可能为这条弦的中点.故可设弦所在的直线方程为y =k (x -2)+1, 代入椭圆方程得x 2+4[k (x -2)+1]2=16, 即得(1+4k 2)x 2-(16k 2-8k )x +16k 2-16k -12=0, ∵直线与椭圆有两个交点,故Δ=16(12k 2+4k +3)>0, 又x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12,满足Δ>0. ∴直线方程为x +2y -4=0.方法二 设弦的两个端点分别为P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4,y 1+y 2=2, ∵P (x 1,y 1),Q (x 2,y 2)在椭圆上,故有x 21+4y 21=16,x 22+4y 22=16,两式相减得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∵点M (2,1)是PQ 的中点,故x 1≠x 2,两边同除以(x 1-x 2)得(x 1+x 2)+4(y 1+y 2)y 1-y 2x 1-x 2=0,即4+8k =0,∴k =-12.∴弦所在的直线方程为y -1=-12(x -2), 即x +2y -4=0.规律方法 研究直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程,利用根与系数的关系或中点坐标公式解决.涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 【训练2】 已知点P (4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,求直线l 的方程.解 由题意可设直线l 的方程为y -2=k (x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k (4k -2)x +4(4k -2)2-36=0.所以x 1+x 2=8k (4k -2)4k 2+1=8,所以k =-12(满足方程中的Δ>0). 所以直线l 的方程为y -2=-12(x -4),即x +2y -8=0.题型三 椭圆中的综合性问题【例3】 已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:2|FP →|=|F A →|+|FB→|.证明 (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m . 由题设得0<m <32,故k <-12. (2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34, 从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|F A →|+|FB→|=4-12(x 1+x 2)=3. 故2|FP →|=|F A →|+|FB→|. 规律方法 解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.【训练3】 如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. 解 ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP→=9, ∴|AB →||AP →|cos 45°=2|AP →|2cos 45°=9, ∴|AP→|=3. (1)∵P (0,1),∴|OP →|=1,|OA →|=2,即b =2,且B (3,1). ∵B 在椭圆上,∴9a 2+14=1,得a 2=12, ∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3), ∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得 9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t .∵a 2>b 2>0,∴3(3-t )23-2t >(3-t )2>0.∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是⎝ ⎛⎭⎪⎫0,32.课堂达标1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13B.33C.22D.12解析 将方程化为标准方程x 2m 2+y 2m 3=1,因为m >0,所以a 2=m 2,b 2=m3, 所以c 2=a 2-b 2=m 2-m 3=m6, 所以e =ca =m 6m 2=13=33.答案 B2.已知椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( ) A.53B.103C.203D.53解析 易知△ABF 2的内切圆的半径r =12,根据椭圆的性质结合△ABF 2的特点,可得△ABF 2的面积S =12lr =12×2c ×|y 1-y 2|,其中l 为△ABF 2的周长,且l =4a ,代入数据解得|y 1-y 2|=53. 答案 A3.已知椭圆x 2+4y 2=36的弦被A (4,2)平分,则此弦所在的直线方程为( ) A.x -2y =0B.x +2y -4=0C.2x +3y -14=0D.x +2y -8=0解析 设以A (4,2)为中点的椭圆的弦与椭圆交于E (x 1,y 1),F (x 2,y 2), ∵A (4,2)为EF 中点, ∴x 1+x 2=8,y 1+y 2=4,把E (x 1,y 1),F (x 2,y 2)分别代入椭圆x 2+4y 2=36中,得⎩⎨⎧x 21+4y 21=36, ①x 22+4y 22=36, ②则①-②得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∴8(x 1-x 2)+16(y 1-y 2)=0, ∴k =y 1-y 2x 1-x 2=-12,∴以A (4,2)为中点的椭圆的弦所在的直线的方程为y -2=-12(x -4), 整理得x +2y -8=0. 答案 D4.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________. 解析 设M (x ,y ),∵MF 1→·MF 2→=0,∴点M 的轨迹方程是x 2+y 2=c 2,点M 的轨迹是以原点为圆心的圆,其中F 1F 2为圆的直径.由题意知椭圆上的点P 总在圆外,所以|OP |>c 恒成立, 由椭圆性质知|OP |≥b , ∴b >c ,∴a 2>2c 2, ∴⎝ ⎛⎭⎪⎫c a 2<12,∴0<e <22. 答案 ⎝⎛⎭⎪⎫0,225.(2019·全国Ⅲ卷)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析 不妨设F 1,F 2分别为椭圆C 的左、右焦点,分析可知M 在以F 1为圆心、焦距为半径长的圆上,即在圆(x +4)2+y 2=64上. 因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y220=1,解得⎩⎨⎧x =3,y =±15. 又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案 (3,15)课堂小结解决直线与椭圆的综合问题,经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.。

椭圆的简单几何性质(第2课时)高中数学获奖教案

椭圆的简单几何性质(第2课时)高中数学获奖教案

3.1.2椭圆的简单几何性质(第二课时)(人教A版选择性必修数学第一册第三章圆锥曲线的方程)一、教学目标1.掌握椭圆的第二定义;2.能够自主探究椭圆的简单几何性质.二、教学重难点1.推导椭圆的第二定义和焦半径公式;2.研究椭圆几何性质的思路与方法.三、教学过程1.复习巩固活动:完成下表【活动预设】由学生完成上表【设计意图】带领学生复习上节课学习的椭圆的简单几何性质. 2.课堂探究 2.1 探究1活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点,O 为坐标原点.探究:当P 在何位置时,|OP|最小?P 又在何位置时,|OP|最大?【活动预设】由学生自主完成问题1:如果椭圆方程变为一般方程:x 2a 2+y 2b 2=1(a >b >0),结论又会如何呢? 【预设的答案】当P 在短轴顶点时,|OP|min =b ;当P 在长轴顶点时,|OP|max =a . 【设计意图】渗透从特殊到一般的思想 2.2 探究2活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【活动预设】由学生自主完成问题2:上述|PF 1|=12|x 0+8|,|x 0+8|有什么几何意义?【预设的答案】代表P(x 0,y 0)到直线x =−8的距离 【设计意图】渗透数形结合的思想问题3:也就是说|PF 1|=12|PM|,椭圆上任意一点P(x 0,y 0),它到左焦点的距离和它到直线x =−8的距离之比为常数12,那么对于一般的椭圆是否有类似的性质呢?我们考虑下面的一般情况:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【预设的答案】设P(x 0,y 0),则PF 12=(x 0+c)2+y 02 因为y 02=b 2(1−x 02a 2) 所以PF 12=(x 0+c)2+b 2(1−x 02a 2)=(a 2−b 2)x 02a2+2cx 0+b 2+c 2=c 2a 2 x 02+2cx 0+a 2=c 2a 2(x 0+a 2c )2即|PF 1|=ca |x 0+a 2c |设直线l 1:x =−a 2c ,P 到直线l 1的距离为PM ,则|PF 1|=ca |PM|,|PF 1||PM|=ca =e 【设计意图】渗透从特殊到一般的思想. 2.3 概念形成椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点,P(x 0,y 0)为椭圆E 上一动点.左准线l 1:x =−a 2c ,右准线l 2:x =a 2c 椭圆第二定义:P 到左焦点的距离|PF 1|与它到左准线l 1:x =−a 2c 的距离|PM 1|的比为离心率e ,即|PF 1||PM 1|=e =ca ; P 到右焦点的距离|PF 2|与它到右准线l 2:x =a 2c 的距离|PM 2|的比为离心率e ,即|PF 2||PM 2|=e =ca .焦半径公式:|PF 1|=c a (a 2c +x 0)= a +ex 0,|PF 2|=c a (a 2c −x 0)= a−ex 0|PF 1|min =a−c , |PF 1|max =a +c .3.课堂巩固例:动点M(x,y)与定点F(4,0)的距离和M 到定直线l:x =254的距离的比是常数45,求动点M 的轨迹.(x−4)2+y 2|x−254|=45所以25[(x−4)2+y 2]=16(x−254)2化简得:9x 2+25y 2=225 所以x 225+y 29=1【设计意图】引出椭圆第二定义拓展:动点M 到定点F 的距离与到定直线l 的距离之比是一个常数,动点M 的轨迹是否也是椭圆呢?【设计意图】留给学生课后自主研究 4.课后探究探究1:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠F 1PF 2最大?P 又在何位置时,∠F 1PF 2最小?探究2:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),A 1、A 2分别为椭圆E 的左、右顶点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠A 1PA 2最大?P 又在何位置时,∠A 1PA 2最小?【设计意图】鼓励学生利用课余时间自主探究 5.课堂小结思考:这节课我们主要学习了什么内容?体现了哪些数学思想方法?【设计意图】梳理本节课所学内容,总结数学思想方法.。

2.2.2椭圆的简单几何性质

2.2.2椭圆的简单几何性质

知识巩固 1. 椭圆的一个焦点和短轴的两端点构 成一个正三角形,则该椭圆的离心率 是
3 2
.
书本47页例6
新知探究 1.对于椭圆的原始方程,
(x + c) + y + (x - c) + y = 2a
2 2 2 2
变形后得到 a - cx = a (x - c) + y ,
(x-c)+ y
2 2
A1(-a,0)
F1
o

F2
A2(a,0)x
B2(0,-b)
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
长轴长:2a,短轴长:2b。 a、b分别叫做椭圆的长半轴长和短半轴长。
3.对称性
x y 2 1(a b 0) 2 a b
②当c=-25时直线m’与椭圆的交点P’到直线l的距离最大, 40 25 65 41 9 此时 P(4,- ), d最大 5 41 42 52 9 15 41 所以,椭圆上点 P(-4, )到直线l的最小距离为 , 5 41 9 65 41 点P(4,- )到直线l的最大距离为 . 5 41
(3)已知椭圆的两个焦点为F1、F2,A为椭圆上一 点,且 AF1 AF2 0,∠AF2F1=60°,求该椭圆的离 心率.
题型四:直线与椭圆的位置关系
例1.已知椭圆4x2+y2=1及直线y=x+m.当直线和椭圆 有公共点时,求实数m的取值范围.
老师你双11怎么过~
2 y2 x 练1.已知椭圆C: 1及直线L:y=2x+m.求当m取 4 2
一.复习
1.椭圆的定义
平面内与两个定点F1,F2的距离的和等于常数2a (2a>|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆 的焦点,两个焦点的距离叫做焦距2c.

3.1.2 椭圆的简单几何性质(第2课时)备课笔记

3.1.2 椭圆的简单几何性质(第2课时)备课笔记

3.1.2椭圆的简单几何性质第2课时本小节内容选自《普通高中数学选择性必修第一册》人教A 版(2019)第二章《圆锥曲线的方程》的第一节《椭圆》。

以下是本节的课时安排:第三章圆锥曲线的方程课时内容 3.1.1椭圆及其标准方程 3.1.2椭圆的简单几何性质所在位置教材第105页教材第109页新教材内容分析椭圆是生产生活中的常见曲线,教材在用细绳画椭圆的过程中,体会椭圆的定义,感知椭圆的形状,为选择适当的坐标系,建立椭圆的标准方程、研究椭圆的几何性质做好铺垫。

通过对椭圆标准方程的讨论,使学生掌握标准方程中的a,b,c,e 的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。

核心素养培养通过椭圆的标准方程的推导,培养数学运算的核心素养;通过对椭圆的定义理解,培养数学抽象的核心素养。

通过椭圆的几何性质的研究,培养数学运算的核心素养;通过直线与椭圆的位置关系的判定,培养逻辑推理的核心素养。

教学主线椭圆的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。

本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。

1.进一步掌握椭圆的方程及其性质的应用,培养数学抽象的核心素养.2.会判断直线与椭圆的位置关系,培养数学运算的核心素养.3.能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题,培养数学运算的核心素养.重点:直线与椭圆的位置关系难点:直线与椭圆的位置关系的应用(一)新知导入一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。

过对称轴的截口ABC 是椭圆的一部分,灯丝位于椭圆的一个焦点1上,片门位另一个焦点2上,由椭圆一个焦点1发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点2。

(二)椭圆的简单几何性质知识点一点与椭圆的位置关系【探究1】根据点与圆的位置关系,你能得出点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系有哪些?怎样判断?◆点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内部⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外部⇔x 20a 2+y 20b2>1.【做一做1】点(1,1)与椭圆22132x y +=的位置关系为()A.在椭圆上B.在椭圆内C.在椭圆外D.不能确定【做一做2】若点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________.知识点二直线与椭圆的位置关系【探究2】类比直线与圆的位置关系,思考直线与椭圆有几种位置关系?怎样判断其位置关系?◆直线与椭圆的位置关系(直线斜率存在时)直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a >b >0)的位置关系判断方法:kx +m+y 2b 2=1,消y 得一个关于x的一元二次方程.位置关系公共点个数组成的方程组的解判定方法(利用判别式Δ)相交2个2解Δ>0相切1个1解Δ=0相离0个0解Δ<0斜率不存在时,观察可得.【做一做1】直线y =x +1与椭圆x 2+y 22=1的位置关系是()A.相离B.相切C.相交D.无法确定【做一做2】(教材P114练习2改编)椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.1.直线与椭圆的位置关系例1.已知直线y =x +m 与椭圆x 216+y 29=1,当直线和椭圆相离、相切、相交时,分别求m 的取值范围.[分析]将直线方程与椭圆方程联立,利用判别式Δ判断.【类题通法】代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.【巩固练习1】(1)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是()A.63B.-63C.±63D.±33(2)直线y =kx -k +1(k ∈R )与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.2.弦长问题例2.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线方程.[分析](1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建立关于m 的不等式求解;(2)利用弦长公式建立关于m 的函数关系式,通过函数的最值求得m 的值,从而得到直线方程.【类题通法】1.求直线被椭圆截得弦长的方法:法一是求出两交点坐标,用两点间距离公式;法二是用弦长公式|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|,其中k 为直线AB 的斜率,A (x 1,y 1),B (x 2,y 2).2.有关直线与椭圆相交弦长最值问题,要特别注意判别式的限制.【巩固练习2】已知椭圆C 的中心在原点O ,焦点在x 轴上,其长轴长为焦距的2倍,且过点F 为其左焦点.(1)求椭圆C 的标准方程;(2)过左焦点F 的直线l 与椭圆交于A ,B 两点,当|AB |=185时,求直线l 的方程.3.中点弦问题例3.过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A ,B 两点,使线段AB 被P 点平分,求此直线的方程.[分析]由于弦所在直线过定点P (2,1),所以可设出弦所在直线的方程为y -1=k (x -2),与椭圆方程联立,通过中点为P ,得出k 的值,也可以通过设而不求的思想求直线的斜率.【类题通法】关于中点弦问题,一般采用两种方法解决(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算.(2)利用“点差法”即若椭圆方程为x 2a 2+y 2b2=1,直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),且弦AB 的中点为M (x ,y +y 21b2=1,①+y 22b2=1,②①-②:a 2(y 21-y 22)+b 2(x 21-x 22)=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·xy.这样就建立了中点坐标与直线的斜率之间的关系,从而使问题得以解决.【巩固练习3】已知椭圆方程是x 29+y 24=1,求以A (1,1)为中点的弦MN 所在的直线方程.1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为()-233,2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是()A.相交B.相切C.相离D.不确定3.直线y =x +1被椭圆x24+y 22=1所截得的弦的中点坐标是()-23,-132,4.椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn 的值是()A.22B.233C.922D.2327(五)课堂小结,反思感悟1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识?(2)在解决问题时,用到了哪些数学思想?3.1.2椭圆的简单几何性质(2)-A 基础练一、选择题1.(2020·河北桃城衡水中学期末)已知椭圆()2222:10x y C a b a b+=>>,若长轴长为8,离心率为12,则此椭圆的标准方程为()A.2216448x y +=B.2216416x y +=C.221164x y +=D.2211612x y +=2.(2020全国高二课时练)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为22143x y +=,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为()A.2B.4C.6D.83.(2020·金华市曙光学校月考)无论k 为何值,直线2y kx =+和曲线22194x y +=交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点4.(2019·安徽安庆月考)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为()A.22B.2115.(多选题)(2020广东濠江高二月考)椭圆22116x y m+=的焦距为,则m 的值为()A.9B.23C.16-D.16+6.(多选题)(2020全国高二课时练)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是()A.焦距长约为300公里B.长轴长约为3988公里C.两焦点坐标约为()1500±,D.离心率约为75994二、填空题7.(2020·全国课时练习)若直线2y kx =+与椭圆22132x y +=有且只有一个交点,则斜率k 的值是_______.8.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点1F ,2F 的椭圆Γ与双曲线'Γ构成,现一光线从左焦点1F 发出,依次经'Γ与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的'Γ去掉,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若214t t =,则Γ与'Γ的离心率之比为______.9.(2020·福建漳州高二月考)已知1F ,2F 是椭圆222:1(04)16x y C b b+=<<的左、右焦点,点P 在C 上,线段1PF 与y 轴交于点M ,O 为坐标原点,若OM 为12PF F △的中位线,且||1OM =,则1PF =________.10.(2020上海华师大二附中月考)已知点F 为椭圆22:143x y Γ+=的左焦点,点P 为椭圆Γ上任意一点,点O 为坐标原点,则OP FP ⋅的最大值为________三、解答题11.我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径3400km =R )的中心F 为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为800km ,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为80000km .假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 时进行变轨,其中,a b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到100km ).12.(2020全国高二课时练习)已知椭圆C:()222210x y a b a b +=>>经过点3(1,)2M ,12,F F 是椭圆C 的两个焦点,12||F F =P 是椭圆C 上的一个动点.(1)求椭圆的标准方程;(2)若点在第一象限,且1214PF PF ⋅≤ ,求点的横坐标的取值范围;3.1.2椭圆的简单几何性质(2)-B 提高练一、选择题1.(2020·江苏省镇江中学开学考试)设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若2122BF F F ==则该椭圆的方程为()A.22143x y +=B.2213x y +=C.2212x y +=D.2214x y +=2.(2020·安徽省太和中学开学考试)“1a =”是“直线y x a =+与椭圆22:12516xy C +=有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.(2020·辽宁大连月考)2020年3月9日,我国在西昌卫星发射中心用长征三号运载火箭,成功发射北斗系统第54颗导航卫星.第54颗导航卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,若其近地点、远地点离地面的距离大约分别是115R ,13R ,则第54颗导航卫星运行轨道(椭圆)的离心率是()A.25B.15C.23D.194.(2020山东泰安一中高二月考)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论不正确的是()A.卫星向径的最小值为a c -B.卫星向径的最大值为a c+C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大5.(多选题)设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则()A.AF BF +为定值B.ABF 的周长的取值范围是[]6,12C.当2m =时,ABF 为直角三角形D.当1m =时,ABF 6.(多选题)(2020江苏扬州中学月考)已知椭圆()22:10x y C a b a b+=>>的左、右焦点分别为1F ,2F 且122F F =,点()1,1P 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.1QF QP +的最小值为21a -B.椭圆C 的短轴长可能为2C.椭圆C 的离心率的取值范围为510,2⎛⎫- ⎪ ⎪⎝⎭D.若11PF FQ =,则椭圆C +二、填空题7.(2020·广西南宁高二月考)已知O 为坐标原点,点1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则OB =________.8.(2020南昌县莲塘第一中学月考)已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.9.(2020·山东泰安实验中学期末)直线2y x =+交椭圆2214x y m +=于,A B 两点,若AB =,则m的值为__________.10.(2020·河南南阳中学高二月考)过椭圆2222:1(0)x y M a b a b +=>>右焦点的直线0x y +=交于,A B 两点,P 为AB 的中点,且OP 的斜率为12,则椭圆M 的方程为__________.三、解答题11.(2020·贵港市高级中学期中)已知平面内两定点(1,0),(1,0)M N -,动点P 满足||||PM PN +=.(1)求动点P 的轨迹C 的方程;(2)若直线1y x =+与曲线C 交于不同的两点A 、B ,求||AB .12.(2020天津实验中学高二月考)已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B 2OB =(O 为原点)(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP ,求椭圆的方程.。

椭圆的简单几何性质(教案)

椭圆的简单几何性质(教案)

椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。

2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。

3. 能够运用椭圆的性质解决相关几何问题。

教学重点:1. 椭圆的定义及其基本性质。

2. 椭圆几何参数的计算方法。

教学难点:1. 椭圆性质的应用。

教学准备:1. 教学课件或黑板。

2. 尺子、圆规等绘图工具。

教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。

二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。

b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。

c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。

3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。

三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。

2. 学生分组讨论并解答,教师巡回指导。

四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。

2. 学生独立完成练习题,教师批改并给予反馈。

五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。

2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。

教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。

在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。

通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。

但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。

六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。

椭圆的简单几何性质(教案)

椭圆的简单几何性质(教案)

椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本几何性质。

2. 学会运用椭圆的性质解决相关问题。

3. 培养学生的观察能力、推理能力和解决问题的能力。

教学内容:1. 椭圆的定义2. 椭圆的焦点3. 椭圆的长轴和短轴4. 椭圆的离心率5. 椭圆的面积教学准备:1. 教学课件或黑板2. 椭圆模型或图片3. 直尺、圆规等绘图工具教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆模型或图片,让学生观察并描述椭圆的特点。

2. 引导学生思考:椭圆与其他几何图形(如圆、矩形等)有什么不同?二、椭圆的定义(10分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和等于常数的点的集合。

2. 解释椭圆的焦点概念,说明焦点的作用。

3. 引导学生通过实际操作,绘制一个椭圆,并标记出焦点。

三、椭圆的焦点(10分钟)1. 介绍椭圆的焦点与椭圆的离心率的关系。

2. 引导学生通过实际操作,观察焦点的位置与椭圆的形状之间的关系。

3. 解释椭圆的离心率的定义及其几何意义。

四、椭圆的长轴和短轴(10分钟)1. 介绍椭圆的长轴和短轴的概念。

2. 引导学生通过实际操作,测量和记录椭圆的长轴和短轴的长度。

3. 解释长轴和短轴与椭圆的形状之间的关系。

五、椭圆的面积(10分钟)1. 介绍椭圆的面积的计算公式。

2. 引导学生通过实际操作,计算一个给定椭圆的面积。

3. 解释椭圆面积与长轴和短轴之间的关系。

教学评价:1. 通过课堂讲解和实际操作,学生能够理解椭圆的定义及其基本几何性质。

2. 通过解决问题和完成作业,学生能够运用椭圆的性质解决相关问题。

3. 通过课堂讨论和提问,学生能够展示对椭圆的理解和应用能力。

六、椭圆的离心率(10分钟)1. 回顾椭圆的离心率的定义和计算方法。

2. 引导学生通过实际操作,观察离心率与椭圆的形状之间的关系。

3. 解释离心率在几何中的应用,如椭圆的焦点和直线的交点等。

七、椭圆的参数方程(10分钟)1. 介绍椭圆的参数方程及其意义。

椭圆的简单几何性质(系列课)

椭圆的简单几何性质(系列课)

椭圆的简单几何性质(系列课)浙江省象山中学 蒋 亮一、教案描述:椭圆的简单几何性质包括椭圆的范围、对称性、顶点、离心率、椭圆的第二定义等等,教材中单独地把它分成几块拿出来讨论,显得极不自然。

特别是椭圆的第二定义,教材通过一个例子给出,思路不蹈常规,这一切都是教材的简洁性决定的。

我在教学设计中,创设了问题情境,把这些内容有机地串联起来,整个过程如同一次重大战役,环环紧扣,层层深入,促进学生思维的展开,增强创新意识的培养。

过程如下:(一)、以问题为中心,注重过程教学。

首先,设计如下情境,提出反常规的问题。

师:上几节课,我们导出了椭圆的标准方程,整个过程严谨周密,现摘录如下: 设M ()y x ,是椭圆上任意一点,焦点F 1和F 2的坐标分别是()0,c -,()0,c (图1)。

由椭圆的定义可得: ()())1(22222a y c x y c x =+-+++ 将这个方程移项,两边平方得 ())2(222y c x a cx a +-=- 两边再平方,整理得)3()0(12222>>=+b a by a x 问题1:为什么将(3)式作为椭圆的标准方程?对于这一问题学生首先会感到奇怪,似乎(3)式作为标准方程那是顺理成章的,进而会展开热烈的讨论,教师总结一下大致有以下几点理由:1、(3)式简捷,具有对称的美感。

2、(3)式为我们提供了求椭圆轨迹的标准方程,方便用待定系数法求解轨迹的方程。

3、根据解析几何用曲线的方程研究曲线的几何性质这一特点,(3)式方便研究椭圆的几何性质。

针对上述理由3,教师可以组织学生就如何利用(3)式从整体上把握椭圆的曲线的形状,展开讨论。

这样便自然引出:范围、对称性、顶点、离心率等课文要求的内容。

若要进一步研究椭圆的曲线,自然需要列表、描点、连线等常用手段,于是课文中的例1便自然出来了。

上述讨论需要一个课时左右。

(二)以探究为热点,培养创新意识。

由于有了第一节课的基础,本节课教师的问题设计显然容易且自然多了。

1.椭圆的几何性质(简单性质)

1.椭圆的几何性质(简单性质)

e =
c a
a2=b2+c2
已知椭圆方程为16x =400, 例1、已知椭圆方程为16x2+25y2=400,则 它的长轴长是: 10 ;短轴长是 短轴长是: 8 ; 它的长轴长是 短轴长是
焦距是: 焦距是
6
;离心率等于 离心率等于: 离心率等于
焦点坐标是: 焦点坐标是
(±3, 0) ;顶点坐标是 (±5, 0) (0, ±4) ; 顶点坐标是: 顶点坐标是
x2 y2 + = 1 的两个焦点为 1 、F2 ,过左焦点作 的两个焦点为F 椭圆 45 20
直线与椭圆交于A, 两点, 的面积为20, 直线与椭圆交于 ,B 两点,若△ AB F2 的面积为 , 求直线的方程。 求直线的方程。
y
(x1 , y1) A
o
(x2 , y2) B F1 F2
x
作业
1.已知椭圆的中心在原点,焦点在坐标轴上,长 已知椭圆的中心在原点,焦点在坐标轴上, 已知椭圆的中心在原点 轴是短轴的三倍,且椭圆经过点P( , ), ),求 轴是短轴的三倍,且椭圆经过点 (3,0),求 椭圆的方程. 椭圆的方程 2 2 x + 2 y = 4 的左焦点作倾斜角为 30 0 2.过椭圆 过椭圆 的直线AB, 求线段AB的长度 的长度. 的直线 , 求线段 的长度
B2
A1
b F1
a F2
A2
o c
B1
3、椭圆的顶点 、
x a
2 2
y2 + = 1( a > b > 0 ) 2 b
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 长轴、短轴:线段 长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短 轴。 a、b分别叫做椭圆的长半轴长和短半轴长。 a、b分别叫做椭圆的长半轴长和短半轴长。 分别叫做椭圆的长半轴长和短半轴长 y

椭圆的简单几何性质(二)精品教案

椭圆的简单几何性质(二)精品教案

2.1.2 椭圆的简单几何性质(二)学习目标 1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系的相关知识.知识点一 点与椭圆的位置关系 思考 点与椭圆有几种位置关系?答案 三种位置关系:点在椭圆上,点在椭圆内,点在椭圆外. 设点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0).(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外⇔x 20a 2+y 20b2>1.知识点二 直线与椭圆的位置关系 思考1 直线与椭圆有哪几种位置关系? 答案 三种位置关系:相离、相切、相交.思考2 我们知道,可以用圆心到直线的距离d 与圆的半径r 的大小关系判断直线与圆的位置关系,这种方法称为几何法,能否用几何法判断直线与椭圆的位置关系? 答案 不能.思考3 用什么方法判断直线与椭圆的位置关系? 答案 代数法——判断直线与椭圆公共点个数来确定. 直线y =kx +m 与椭圆x 2a 2+y 2b2=1,联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消y 得一个一元二次方程.知识点三 直线与椭圆的相交弦思考 若直线与椭圆相交,如何求相交弦弦长?答案 弦长公式:(1)|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]; (2)|AB |=1+1k2|y 1-y 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2](直线与椭圆的交点A (x 1,y 1),B (x 2,y 2),k 为直线的斜率).其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.类型一 直线与椭圆的位置关系例1 (1)直线y =kx -k +1与椭圆x 22+y 23=1的位置关系是( )A.相交B.相切C.相离D.不确定 答案 A解析 直线y =kx -k +1=k (x -1)+1过定点(1,1),且该点在椭圆内部,因此必与椭圆相交. (2)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .求k 的取值范围.解 由已知条件知直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1.整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.反思与感悟 直线与椭圆的位置关系判别方法(代数法) 联立直线与椭圆的方程,消元得到一元二次方程 (1)Δ>0⇔直线与椭圆相交⇔有两个公共点. (2)Δ=0⇔直线与椭圆相切⇔有且只有一个公共点. (3)Δ<0⇔直线与椭圆相离⇔无公共点.跟踪训练1 (1)已知直线l 过点(3,-1),且椭圆C :x 225+y 236=1,则直线l 与椭圆C 的公共点的个数为( ) A.1 B.1或2 C.2 D.0(2)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B.-63 C.±63 D.±33答案 (1)C (2)C解析 (1)因为直线过定点(3,-1)且3225+(-1)236<1,所以点(3,-1)在椭圆的内部,故直线l 与椭圆有2个公共点.(2)把y =kx +2代入x 23+y 22=1得(2+3k 2)x 2+12kx +6=0,由于Δ=0,∴k 2=23,∴k =±63.类型二 直线与椭圆的相交弦问题例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310.所以线段AB 的长度为310. (2)方法一 设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧y -2=k (x -4),x 236+y 29=1,消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0. 这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.反思与感悟 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 跟踪训练2已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧b =3,c a =12,a 2=b2+c 2,解得b =3,c =1,a =2,∴椭圆的方程为x 24+y 23=1.(2)由题意可得以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,可得|m |<52,(*) ∴|CD |=21-d 2=21-4m 25=255-4m 2.设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =-12x +m ,x 24+y23=1,化为x 2-mx +m 2-3=0,可得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得 4-m 25-4m2=1,解得m =±33满足(*). 因此直线l 的方程为y =-12x +33或y =-12x -33.类型三 椭圆中的最值(范围)问题例3 已知焦点在x 轴上的椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32).(1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,1PF Q S ∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程,整理,得(3+4k 2)y 2+6ky -9k 2=0, Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2.1PF Q S ∆=12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴1PF Q S ∆=3-3(1t +13)2+43,∵0<1t <13,∴1PF Q S ∆∈(0,3),∴当直线PQ 与x 轴垂直时1PF Q S ∆最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PF Q S ∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.反思与感悟 求最值问题的基本策略(1)求解形如|P A |+|PB |的最值问题,一般通过椭圆的定义把折线转化为直线,当且仅当三点共线时|P A |+|PB |取得最值.(2)求解形如|P A |的最值问题,一般通过二次函数的最值求解,此时一定要注意自变量的取值范围.(3)求解形如ax +by 的最值问题,一般通过数形结合的方法转化为直线问题解决. 跟踪训练3 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段|AB |长度的最小值.解 (1)椭圆C :x 2+2y 2=4化为标准方程为x 24+y 22=1,∴a =2,b =2,c =2, ∴椭圆C 的离心率e =c a =22.(2)设A (t,2),B (x 0,y 0),x 0≠0,∵OA ⊥OB , ∴OA →·OB →=0,∴tx 0+2y 0=0,∴t =-2y 0x 0,又∵x 20+2y 20=4,∴0<x 20≤4.∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8,当且仅当x 202=8x 20,即x 20=4时等号成立, ∴线段|AB |长度的最小值为2 2.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A.-2<a < 2B.a <-2或a > 2C.-2<a <2D.-1<a <1答案 A解析 由题意知a 24+12<1,解得-2<a < 2.2.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( )A.相交B.相切C.相离D.相切或相交 答案 C解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0. ∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离. 3.椭圆x 24+y 23=1的右焦点到直线y =3x 的距离是( )A.12B.32 C.1 D.3 答案 B解析 椭圆的右焦点为F (1,0),由点到直线的距离公式得d =33+1=32.选B. 4.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离是( )A.3B.11C.2 2D.10解析 设与直线x +2y -2=0平行的直线为x +2y +m =0与椭圆联立得,(-2y -m )2+4y 2-16=0,即4y 2+4my +4y 2-16+m 2=0得2y 2+my -4+m 24=0. Δ=m 2-8⎝⎛⎭⎫m 24-4=0,即-m 2+32=0, ∴m =±4 2.∴两直线间距离最大是当m =42时, d max =|-2-42|5=10. 5.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB |=__________.答案423解析 由题意⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1, 解得A ,B 两个不同的点的坐标分别为(0,1),⎝⎛⎭⎫-43,-13, 故|AB |=169+169=423. 6.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为__________.答案 2b 2a解析 ∵垂直于椭圆长轴的弦所在直线为x =±c ,由c 2a 2+y 2b 2=1,得y 2=b 4a 2, ∴|y |=b 2a ,故弦长为2b 2a.解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.已知AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( ) A.b 2 B.ab C.ac D.bc答案 D解析 当直线AB 为y 轴时面积最大,|AB |=2b ,△AFB 的高为c ,∴此时S △AFB =12·2b ·c =bc .2.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A.k <-22或k >22 B.-22<k <22 C.k ≤-22或k ≥22 D.-22≤k ≤22答案 C解析 由⎩⎪⎨⎪⎧y =kx +1x 2+2y 2=1,得(2k 2+1)x 2+4kx +1=0. ∵直线与椭圆有公共点. ∴Δ=16k 2-4(2k 2+1)≥0,则k ≥22或k ≤-22. 3.直线l 交椭圆x 216+y 212=1于A ,B 两点,AB 的中点为M (2,1),则l 的方程为( )A.2x -3y -1=0B.3x -2y -4=0C.2x +3y -7=0D.3x +2y -8=0答案 D解析 根据点差法求出k AB =-32,∴l 的方程为y -1=-32(x -2),∴化简得3x +2y -8=0.4.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个答案 A解析 若直线与圆没有交点,则d =4m 2+n 2>2,∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1, ∴点(m ,n )在椭圆的内部,故直线与椭圆有2个交点.5.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1答案 C解析 ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2.由题意知椭圆上的点在该圆的外部,设椭圆上任意一点P (x ,y ),则|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22.∵0<e <1,∴0<e <22. 6.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为( )A.67B.167C.716D.76 答案 B解析 椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3, ∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+122x +8=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-1227,x 1x 2=87,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=167.二、填空题7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.答案 27解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)与直线方程联立消去x 得(a 2+3b 2)y 2+83b 2y +16b 2-a 2b 2=0,由Δ=0及c =2得a 2=7,∴2a =27.8.以等腰直角三角形ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.答案 2-1或22解析 当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a =c b 2+c2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以离心率e =c a =2c 2a =m (1+2)m =2-1. 9.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为原点,则△OAB 的面积为________.答案 53解析 直线方程为y =2x -2,与椭圆方程x 25+y 24=1联立,可以解得A (0,-2),B ⎝⎛⎭⎫53,43,∴S △=12|OF |·|y A -y B |=53(也可以用设而不求的方法求弦长|AB |,再求出点O 到AB 的距离,进而求出△AOB 的面积). 三、解答题10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解 由题意得|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =8,得a =2.又e =c a =12, ∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1. 11.已知椭圆的短轴长为23,焦点坐标分别是(-1,0)和(1,0).(1)求这个椭圆的标准方程;(2)如果直线y =x +m 与这个椭圆交于不同的两点,求m 的取值范围.解 (1)∵2b =23,c =1,∴b =3,a 2=b 2+c 2=4.故所求椭圆的标准方程为x 24+y 23=1. (2)联立方程组⎩⎪⎨⎪⎧y =x +m ,x 24+y 23=1, 消去y 并整理得7x 2+8mx +4m 2-12=0.若直线y =x +m 与椭圆x 24+y 23=1有两个不同的交点, 则有Δ=(8m )2-28(4m 2-12)>0,即m 2<7,解得-7<m <7.即m 的取值范围是(-7,7).12.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0. 设A (x 1,y 1)、B (x 2,y 2),则|AB |=(k 2+1)(x 1-x 2)2=2·4b 2-4(a +b )(b -1)(a +b )2. ∵|AB |=22,∴a +b -ab a +b=1.① 设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =a a +b, ∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23. ∴椭圆方程为x 23+23y 2=1. 13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,求椭圆C 的方程.解 由题意知离心率e =c a =23,c =23a , 由b 2=a 2-c 2,得b =53a . ∴椭圆C 的方程为x 2a 2+9y 25a2=1.① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝⎛⎭⎫x -23a ,与①联立得 32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8. 由|AB |=1+3|x 1-x 2|=2|a 4-7a 8|=54a =154, 解得a =3,∴b =53a = 5. ∴椭圆C 的方程为x 29+y 25=1.。

《椭圆的几何性质》2

《椭圆的几何性质》2
1.
1.
16 9
2







2
x
y
4.
1.
45 36
x2 y 2
2.
1.
4
9
2
2
x
y
5.

1.
100 64
x2 y 2
3.
1.
34 25
x2 y 2
x2 y 2
6.
1或
1.
25 16
16 25
3
复习练习
2、下列方程所表示的曲线中,关于x轴和y 轴都对称的是( D )
y
就是椭圆的焦半径公式.
y
M
F1 O
2
椭圆 2

2
+ 2

M
F2
|MF1|=a+ex0 |MF2|=a-ex0







O
F1
x
= 1 > > 0 的焦半径公式是
F2
2
椭圆 2

2
+ 2

x
= 1 > > 0 的焦半径公式是
|MF1|=a+ey0
|MF2|=a-ey0
17
5、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心
1
率为

1
2
6、若椭圆的 的两个焦点把长轴分成三等分,则其离心率为
3。
7、以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同
的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,

椭圆的简单几何性质教案

椭圆的简单几何性质教案

一、教案基本信息椭圆的简单几何性质教案课时安排:1课时教学目标:1. 让学生掌握椭圆的定义及基本性质。

2. 培养学生运用几何知识分析问题、解决问题的能力。

3. 引导学生发现椭圆在实际生活中的应用,培养学生的学习兴趣。

教学内容:1. 椭圆的定义2. 椭圆的基本性质3. 椭圆的标准方程4. 椭圆的焦点与离心率5. 椭圆的参数方程二、教学过程1. 导入:利用多媒体展示一些生活中的椭圆形状的物体,如地球、月球、鸡蛋等,引导学生发现椭圆在生活中的广泛存在。

2. 知识讲解:1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。

2. 讲解椭圆的基本性质:(1)椭圆的两个焦点在椭圆的长轴上,且长轴长度为2a。

(2)椭圆的短轴长度为2b。

(3)椭圆的离心率e=c/a,其中c为焦距,a为半长轴,b为半短轴。

(4)椭圆的面积S=πab。

3. 讲解椭圆的标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。

4. 讲解椭圆的参数方程:椭圆的参数方程为x=acosθ,y=bsinθ。

3. 案例分析:给出一个实际问题,如求解椭圆上一点到两焦点的距离之和。

引导学生运用椭圆的性质解决问题。

4. 课堂练习:布置一些有关椭圆性质的练习题,让学生课后巩固所学知识。

5. 总结:对本节课的内容进行总结,强调椭圆的基本性质及应用。

三、课后作业1. 复习椭圆的定义及基本性质。

2. 练习椭圆的标准方程和参数方程的转化。

3. 寻找生活中的椭圆形状物体,了解椭圆在实际中的应用。

四、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆知识的理解和运用能力。

五、教学评价通过课堂讲解、练习和课后作业,评价学生对椭圆定义、基本性质、标准方程和参数方程的掌握程度,以及运用椭圆知识解决实际问题的能力。

六、教学活动设计1. 互动提问:在上一节课中,我们学习了椭圆的定义及基本性质,谁能简要回顾一下椭圆的定义是什么?2. 小组讨论:请同学们分成小组,讨论如何运用椭圆的性质解决实际问题。

高中数学_椭圆的简单几何性质(2)教学设计学情分析教材分析课后反思

高中数学_椭圆的简单几何性质(2)教学设计学情分析教材分析课后反思

(六)教学设计椭圆的简单几何性质(2)教学设计一、基本情况1.面向对象:高二学生2.学科:数学3.课题:椭圆的几何性质4.课时:2课时5.课前准备:(1)学生回顾本节内容,熟悉椭圆的范围、对称性和顶点,离心率等性质(2)教师准备课件。

二、教材分析《椭圆的几何性质》是人教版2-1的内容。

本节课是在学生学习了椭圆的定义和标准方程的基础上,由椭圆方程出发研究椭圆的几何性质。

这是学生第一次利用方程研究曲线的几何性质,要注意对研究结果的掌握,更要重视对研究方法的学习。

本节课使学生感受“数”和“形”的对立统一,是研究双曲线和抛物线几何性质的基础,起着承上启下的作用。

三、教学目标知识目标1.通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质。

2.领会椭圆几何性质的内涵,并会运用它们解决一些简单问题。

3.通过对方程的讨论,让学生领悟解析几何是怎样用代数方法研究曲线性质的。

能力目标1.培养学生观察、分析、抽象、概括的能力。

2.渗透数形结合、类比等数学思想。

3.强化学生的参与意识,培养学生的合作精神。

情感目标1.通过自主探究、交流合作,使学生体验探究的过程,从中体会学习的愉悦,激发学生的学习积极性。

2.通过数与形的辨证统一,对学生进行辩证唯物主义教育。

3.通过感受椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生良好的思维品质,激发学生对美好事物的追求。

四、教学重点与难点重点:掌握椭圆的范围、对称性、顶点等简单几何性质。

难点:利用椭圆的标准方程探究椭圆的几何性质。

五、学法、教法与教学用具1.学法:(1)自主探究+合作学习:教师设置问题,鼓励学生从椭圆的标准方程出发,自主探究,合作交流,发现数学规律和问题解决的途径,使学生经历知识形成的过程。

(2)反馈练习法:以练习来检验知识的应用情况,找出掌握不足的内容以及存在的差距。

2.教法:本节课采用自主探究、合作交流相结合的教学方法,运用多媒体教学手段,通过设置问题,让学生在独立思考的基础上合作交流,加强知识发生过程的教学。

〖2021年整理〗《椭圆的简单几何性质》优秀教案

〖2021年整理〗《椭圆的简单几何性质》优秀教案

椭圆的简单几何性质(第一课时)(杨军君)一、教学目标 (一)学习目标1给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率; 2在图形中,能指出椭圆中e c b a ,,,的几何意义及其相互关系; 3知道离心率大小对椭圆扁平程度的影响 (二)学习重点1用方程研究椭圆上点的横纵坐标范围,对称性; 2椭圆的简单几何性质 (三)学习难点椭圆的离心率及椭圆几何性质的简单应用 二教学设计 (一)预习任务设计 1预习任务(1)读一读:阅读教材第43页至第46页(2)想一想:椭圆的离心率对椭圆扁平程度的影响?(3)写一写:焦点分别在,x y 轴上的椭圆的范围、对称性、顶点 2预习自测判断(正确的打“√”,错误的打“×”)(1)椭圆22221(0)x y a b a b +=>>的长轴长为a ( )(2)椭圆的离心率e 越大,椭圆就越圆( )(3)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为2212516x y +=( )(4)已知点(,)m n 在椭圆228324x y +=上,则24m +的最大值为4+( ) 【知识点】椭圆的几何性质【解题过程】通过椭圆的标准方程22221x y a b +=可认识到椭圆的相应几何量:长轴长2a ,短轴长2b ,离心率e ca=,的取值范围取值范围a x a -≤≤【思路点拨】通过椭圆的标准方程认识几何性质 【答案】(1)×;(2)×;(3)×;(4)√ (二)课堂设计 1知识回顾椭圆的标准方程:当焦点在轴时,)0(12222>>=+b a b y a x当焦点在轴时,)0(12222>>=+b a b x a y2新知讲解探究一:具体方程,认识图形 ●活动① 图形引发性质运用所学的知识,你能否画出方程14922=+y x 所对应的曲线?(如果不能精确地画出,也可以画出它的草图)预案一:利用椭圆的定义,用绳子画图;预案二:根据所学先判断其为椭圆,求与x 轴y 轴的交点再连结;预案三:根据所学判断椭圆具有对称性,只需比较精确地画出第一象限的部分;【设计意图】让学生在画曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点研究曲线的性质,可以从整体上把握它的形状,大小和位置以椭圆)0(12222>>=+b a b y a x 为例,你觉得应该从哪些方面研究它的几何性质?【设计意图】引出研究曲线性质的意义,为后面研究椭圆的几何性质指明角度 探究二:简化抽象、探究性质 ●活动① 归纳梳理、理解提升 (1)范围:由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b≤≤,∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤说明椭圆位于直线x a =±,y b =±所围成的矩形里 (2)对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称所以,椭圆关于x 轴、y 轴和原点对称这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心 (3)顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点同理令0y =得x a =±,即1(,0)A a -,2(,0)A a是椭圆与x 轴的两个交点 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22R t O BF ∆中,2||O B b =,2||O F c =,22||BF a =,且2222222||||||O F B F O B =-,即222c a b =-(4)离心率:椭圆的焦距与长轴的比e ca=叫椭圆的离心率 ∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a+=e 1,0c a b →→→⎧⎨⎩当时,椭圆图形越扁; e 00,c b a →→→⎧⎨⎩当时,椭圆越接近于圆●活动② 巩固基础、检查反馈 例1根据下列条件求椭圆的标准方程 (1)28,e 3c ==; (2)过点(3,0)P ,离心率e =,求椭圆的标准方程 【知识点】椭圆的标准方程以及离心率 【解题过程】(1)8e ,1223c c a a e =∴===,又2222212880b a c =-=-= ∴椭圆标标准方程为22114480x y +=或22114480y x += (2)当椭圆的焦点在x 轴上时,3,c a ca ==∴=从而222963b a c =-=-=,∴椭圆的方程为22193x y +=当椭圆的焦点在y 轴上时,3,c b a === 227a ∴=,∴椭圆方程为221927x y += ∴所求椭圆的方程为221927x y +=或22193x y += 【思路点拨】已知椭圆的某些性质,和与性质相关的条件求标准方程仍需先判定焦点位置,从而确定方程形式,并用待定系数的思想,求出方程中的,a b 值,得到方程【答案】(1)22114480x y +=或22114480y x +=;(2)221927x y +=或22193x y +=同类训练 已知椭圆()22550mx y m m +=>的离心率为e =,求m 的值 【知识点】椭圆的离心率【解题过程】依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ====,得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=【思路点拨】根据椭圆焦点的位置确定,,a b c 的值,结合离心率的定义建立方程求解 【答案】m =3或253例2已知12,F F 分别为椭圆12222=+by a x 的左右焦点,P 是以12F F 为直径的圆与椭圆的一个交点,且12212PF F PF F ∠=∠,求这个椭圆的离心率 【知识点】椭圆的离心率【解题过程】由题意12PF F ∆为直角三角形,且90P ∠=,1260PF F ∠=,122F F c =,则12,PF c PF ==,所以由椭圆的定义知,122PF PF a +=,即2c a =,得离心率e 1ca== 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围1-同类训练 已知椭圆12222=+by a x (0)a b >>,过椭圆的右焦点作x 轴的垂线交椭圆于A B 、两点,0OA OB ⋅=,求椭圆的离心率 【知识点】椭圆的离心率【解题过程】2(,0)F c ,把x c =代入椭圆12222=+b y a x 得2(,)b A c a由0OA OB ⋅=,结合图形得22||||OF AF =,即:22222e e 10e b c b ac a c ac a =⇒=⇒-=⇒+-=⇒=【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围 【答案】1+52- 例3如图,设(),M x y 与定点()4,0F 的距离和它到直线:254x =的距离的比是常数45,求点的轨迹方程【知识点】椭圆的方程以及离心率 【解题过程】分析:若设点(),M x y ,则()224MF x y =-+,到直线:254x =的距离254d x =-,则容易得点的轨迹方程25:44,5d M l x MF M P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设是点到直线的距离,根据题意,点的轨迹就是集合2(4)4.2554x y x -+=-22925225,x y +=将上式两边平方,并化简,得22 1.259x y +=即 所以,点M 的轨迹是长轴、短轴长分别为10,6的椭圆【思路点拨】利用条件直接求轨迹方程,我们可以将例3抽象为下面问题:点(,)P x y 与定点(,0)F c 的距离和它到一定直线2:a l x c =的距离之比是常数ca (0)a c >>,求点P 的轨迹方程(记222b ac =-,则轨迹方程为22221x y a b+=)【答案】221 259x y+=3课堂总结知识梳理椭圆的简单几何性质:标准方程)(012222>>=+b a by a x )0(12222>>=+b a bx a y 图形范围 ,a x a b y b -≤≤-≤≤,a y a b x b -≤≤-≤≤顶点 1(,0)A a -2(,0)A a 1(0,)B b -2(0,)B b 1(0,)A a -2(0,)A a 1(,0)B b -2(,0)B b 长轴长 2a短轴长 2b对称性对称轴:,x y 轴;对称中心:(0,0)cb a ,,关系 222a bc =+离心率e c a=重难点归纳利用椭圆轴长、离心率、准线等性质求解椭圆方程时,需注意:(1)在,,,e a b c 四个参数中,只要知道其中的任意两个,便可求出其它两个,必须正确地掌握四个参数间的相互关系;(2)离心率的转化和变形:22222e 1()1(1)2c b be b a e a a==-⇒=-⇒=- (三)课后作业 基础型 自主突破+错误!=1的离心率为错误!,则m 的值为( ) 【知识点】椭圆的离心率【解题过程】由题意得a 2=2,b 2=m ,∴c 2=2-m ,又错误!=错误!,∴错误!=错误!,∴m =错误! 【思路点拨】利用椭圆离心率定义解题【答案】B1:错误!+错误!=1和椭圆C 2:错误!+错误!=1 0错误!8=错误!错误!b >0的左、右焦点为F 1、F 2,离心率为错误!,过F 2的直线交C 于A 、B 两点,若△AF 1B 的周长为4错误!,则C 的方程为( )+错误!=1 错误!+2=1 错误!+错误!=1 错误!+错误!=1 【知识点】椭圆的几何性质【解题过程】根据条件可知错误!=错误!,且4a =4错误!, ∴a =错误!,c =1,b =错误!,椭圆的方程为错误!+错误!=1 【思路点拨】过焦点的直线利用椭圆的定义 【答案】A+错误!=1a >b >0的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ) -2【知识点】椭圆的几何性质【解题过程】∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,又由|AF 1|、|F 1F 2|、|F 1B |成等比数列得a -ca +c =4c 2,即a 2=5c 2,所以离心率e =错误! 【思路点拨】利用椭圆的几何性质中量的关系 【答案】B轴上,其上任意一点到两焦点的距离和为8,焦距为2错误!,则此椭圆的标准方程为________ 【知识点】椭圆的定义【解题过程】由已知,2a =8,2c =2错误!,∴a =4,c =错误!,∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为错误!+2=1 【思路点拨】利用条件求a,b,c 的值 【答案】错误!+2=16已知椭圆的短半轴长为1,离心率00,∴a 2>1, ∴1b >0,半焦距为c ,则错误!∴错误!∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为错误!+错误!=1【思路点拨】利用椭圆a,b,c 三者关系以及椭圆定义解题 【答案】错误!+错误!=1+错误!=1的左焦点为F ,直线=m 与椭圆相交于点A 、B 当△F AB 的周长最大时,△F AB 的面积是________【知识点】椭圆的几何性质【解题过程】如图,当直线=m ,过右焦点1,0时,△F AB 的周长最大,由错误!解得=±错误!,∴|AB |=3 ∴S =错误!×3×2=3 【思路点拨】数形结合解题 【答案】3 探究型 多维突破0,0是椭圆错误!+错误!=1上一点,A 点的坐标为6,0,求线段错误!错误!错误!错误!错误!错误!错误!22(26)(2)184x y -+=22(3)12x y -+=22(3)12x y -+=12:2:1PF PF =12:2:1PF PF =+32=mm >0的离心率e =错误!,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标 【知识点】椭圆的几何性质【解题过程】椭圆方程可化为错误!+错误!=1, ∵(2)033m m m m m m +-=>++,∴m >错误! 即a 2=m ,b 2=错误!,22(2)3m m c a b m +=-=+由e =错误!得,错误!=错误!,∴m =1 ∴椭圆的标准方程为2+错误!=1, ∴a =1,b =错误!,c =错误!∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1-错误!,0,F 2错误!,0;四个顶点分别为A 1-1,0,A 21,0,B 10,-错误!,B 2021错误!【思路点拨】利用离心率的定义建立关系6已知椭圆上横坐标等于焦点横坐标的点,它到轴的距离等于短半轴长的错误!,求椭圆的离心率【知识点】椭圆的几何性质【解题过程】解法一:设焦点坐标为F1-c,0,F2c,0,M是椭圆上一点,依题意设M点坐标为c,错误!b在Rt△MF1F2中,|F1F2|2+|MF2|2=|MF1|2,即4c2+错误!b2=|MF1|2,而|MF1|+|MF2|=错误!+错误!b=2a,整理,得3c2=3a2-2ab又c2=a2-b2 3b=2a∴错误!=错误!∴e2=错误!=错误!=1-错误!=错误!,∴e=错误!解法二:设Mc,错误!b,代入椭圆方程,得错误!+错误!=1,∴错误!=错误!,∴错误!=错误!,即e=错误!【思路点拨】利用椭圆的几何关系结合椭圆离心率的定义解题。

椭圆的简单几何性质

椭圆的简单几何性质

1椭圆的简单几何性质一、几何性质1.范围:椭圆的范围是b y b a x a ≤≤-≤≤-,2.对称性:椭圆关于x 轴、y 轴及原点都是对称的,这时坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.3.顶点:在椭圆的标准方程里,令y =0,得a x ±=可得A 1(-a ,0)、A 2(a ,0)是椭圆在x 轴上的两个顶点,,同理. 令x =0得y =±b ,所以得到:B 1(0,-b )、B 2(0,b )是椭圆在y 轴的两个顶点(1)椭圆上任意一点P (x ,y )与两焦点构成的三角形称为焦点三角形,周长为2(a+c )(2)椭圆的一个焦点、中心和短轴的一个端点构成了一个直角三角形,称为椭圆的特征三角形,边长满足222c b a +=4.离心率:离心率ac e =a b a b a 2221-=-=,(0<e <1)⎩⎨⎧,椭圆越接近圆趋近时,趋近,椭圆越扁平趋近时,趋近001c e a c e 5.椭圆的准线:⎪⎪⎩⎪⎪⎨⎧±=±=c a y y c a x x 22准线线的方程准线线的方程轴上时,当焦点在轴上时,当焦点在二、椭圆的第二定义平面内与一个顶点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 的点的轨迹是椭圆 三、椭圆的其他几何性质(1)焦准距:椭圆的焦点到相应准线的距离叫做焦准距,焦准距cb 2=2(2)通径:过椭圆的焦点且垂直于长轴的弦叫做椭圆的通径,通径长=ab 2,它是过椭圆焦点的弦中最短的一条弦。

(3)椭圆上到中心距离最远或最近的点:设),(y x P 为椭圆上的任意一点,则当P 在短轴端点处时OP 最短,则当P 在长轴端点处时OP 最长 四、椭圆的焦半径及其应用(1)若椭圆方程为),(,1112222y x P by a x =+为椭圆上任一点,)0,()0,(21c F c F -是椭圆的两个焦点,则21,PF PF 分别为椭圆的焦半径,由椭圆的第二定义知:11211ex a PF e ca x PF +=⇒=+,)0(12122>>-=⇒=-b a ex a PF e x ca PF若椭圆方程为),(,1112222y x P bx a y =+为椭圆上任一点,)0()0(21c F c F ,,-是椭圆的两个焦点,则21,PF PF 分别为椭圆的焦半径,由椭圆的第二定义知:11211ey a PF e ca y PF +=⇒=+,)0(12122>>-=⇒=-b a ey a PF e y ca PF(2)由椭圆的焦半径公式可以推出:如果椭圆上的三点A,B,C 到同一焦点的距离成等差数列,则A,B,C 三点的横坐标(或纵坐标)也成等差数列,这样解决问题时就比较方便。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案教案:椭圆的简单几何性质一、教学目标:1.了解椭圆的定义和基本性质;2.掌握椭圆的离心率与长短轴长度的关系;3.能够判定给定的图形是否为椭圆。

二、教学内容:1.椭圆的定义;2.椭圆的焦点、离心率与长短轴之间的关系;3.如何判定给定的图形是否为椭圆。

三、教学过程:Step 1:导入新知引入椭圆的概念:椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a,且到两个点F1和F2的距离之差的绝对值等于常数2b的点的轨迹。

图示:绘制一个椭圆的图形,并标出其中心O、两个焦点F1、F2、长轴2a和短轴2b。

Step 2:椭圆的性质性质1:椭圆的任意一点到两个焦点的距离之和等于椭圆的长轴长度,即PF1+PF2=2a。

图示:绘制一个椭圆,任意选取一点P,并测量该点到两个焦点的距离PF1和PF2,证明PF1+PF2=2a。

性质2:椭圆的离心率e与椭圆的长短轴长度之比的平方等于1,即e^2=1-(b^2/a^2)。

图示:绘制一个椭圆,其中心O、两个焦点F1、F2和两个顶点A、B。

测量焦距CP和长轴2a的长度,以及短轴2b的长度,计算离心率e,并验证e^2=1-(b^2/a^2)。

Step 3:判定椭圆的图形给定一组数据,由学生判断该图形是否为椭圆。

示例:数据为横坐标x和纵坐标y的点集合。

图示:将一组数据绘制成一个坐标系,并将数据的散点连线,观察图形是否为椭圆。

Step 4:练习与巩固为学生提供一系列的练习题,巩固椭圆的性质和判定方法。

四、教学资源:1.教学PPT;2.椭圆的示意图;3.测量工具(尺子、量角器);4.练习题集合。

五、教学评价:1.在教学过程中,引导学生积极参与讨论、思考,并及时给予帮助和指导;2.在练习环节中,及时纠正学生的错误,鼓励他们在做错的题目上找到错误原因并进行改正。

六、教学延伸:1.椭圆的方程:利用椭圆的性质,可以推导出椭圆的标准方程和一般方程;2.椭圆的焦点性质:椭圆的焦点位置与长短轴之间的关系。

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计

课题:椭圆的简单几何性质教材:人教版全日制普通高级中学教科书数学(选修2-1)【教学目标】知识与技能:掌握椭圆的简单几何性质,并能初步运用其探索方法研究问题。

过程与方法:通过学生亲身的实践体验,利用椭圆的方程讨论椭圆的几何性质,经历由形到数,由数到形的思想跨越,感知用代数的方法探究几何性质的过程,感受“数形结合”思想在数学中的重要地位。

情感、态度与价值观:在自然和谐的教学氛围中,通过师生间的、生生间的平等交流,塑造学生团结协作,钻研探究的品质和态度,培养学生研究问题的技能;通过对椭圆几何性质的发现,学生得到美的感受,体验到探求之后的成功与喜悦。

【教学重点】掌握椭圆的简单几何性质,并能初步运用其探索方法研究问题,体会数形结合思想方法在数学中的应用。

【教学难点】利用曲线方程研究曲线几何性质的基本方法和离心率定义的给出过程。

【教学方法】采用的教学方法主要是情境激趣法、引导发现法、合作探究法。

(一)情境激趣法:注重数学知识与实际的联系,同时也发展学生的应用意识,开阔他们的视野。

(二)引导发现法:符合教学原则,充分调动学生的主动性与积极性。

(三)合作探究法:1.体验数学发现和创造的过程,发展他们的创新意识;2.使学生体验到团结协作的力量以及探索发现的成就。

【教学工具】借助多媒体辅助手段,利用幻灯片、几何画板软件制作课件及实物投影,通过图形引导学生形象直观地体验由数到形的过渡,便于学生观察、认知、探求、发现、归纳。

【教学过程】板书设计课题:2.2.2椭圆的简单几何性质2222+=1x y a b (a>,b>0)2222+=1(>>0)x y a b b a 1对称性2顶点,长轴,短轴 3范围4离心率(影响椭圆形状) 定义: 范围;《椭圆的简单几何性质》教学设计思路说明1、这节课安排了复习回顾,导入新课、尝试探求、归纳新知、知识巩固提高、课堂总结和作业等几个教学环节。

它是在教师引导下,通过学生积极思考,自主探求,合作探究,从而实现教学目的的要求,完成教学任务的一种教学方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题2:简单几何性质、椭圆的第二定义、第三定义
师生共同探究:
1、范围:
(1)椭圆上点的横坐标的范围是a x a -≤≤;
(2)椭圆上点的横坐标的范围是b y b -≤≤;
2、对称性:
(1)椭圆上的点关于x 轴对称;
(2)椭圆上的点关于y 轴对称;
(3)椭圆上的点关于原点O 对称;
3、顶点
(1)顶点坐标:1212(,0),(,0),(0,),(0,)A a A a B b B b --;
(2)焦点坐标:12(,0),(,0)F c F c -
(3)长轴2a ,长半轴a ;短轴2b ,短半轴b 。

(1)经过一焦点的光线经椭圆反射后必经过另一焦点;
(2)电影放映“灯泡”的制作原理;
三、椭圆的第二定义:
平面内任意一点到定点的距离与到定直线的距离的比等于定值e (01e <<)的点的轨迹;
注:ⅰ、“建立,,a b c 的齐次方程、齐次分式、齐次不等式求离心率或离心率的范围”是常见的方法。

教材:P 41例6
四、椭圆的第三定义:
平面内任意一点与两个定点的连线的斜率的乘积为λ(0,1λλ<≠-)的点的轨迹; 教材:P 35例3
练习、ABC ∆的两个顶点的坐标分别为()()5,0,5,0-,边AC 、BC 所在直线的斜率之积为12
-
,则顶点C 的轨迹方程为 ; 答案:()22
102525
2
x y y +=≠ 五、学生巩固训练
一、选择题
1、椭圆()22
11m x my --=的长轴长是( ) A
B
C
D
. 2、椭圆125
92
2=+y x 的准线方程是 ( ) (A)425±=x (B)516±=y (C)516±=x (D)4
25±=y 3、以椭圆15
82
2=+y x 的焦点为顶点、顶点为焦点的双曲线的方程是( ) (A) 13522=-y x (B)13822=-y x (C) 15322=-y x (D)18
32
2=-y x
4、离心率为2
,且过点(2,0)的椭圆方程是( ) A .2214x y += B .2214x y +=,或2
214
y x += C .2241x y += D .2244x y +=,或22
416x y +=
5、设椭圆的两个焦点分别为12,F F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为 ( )
A .2
B .12
C .2
D 1 6、点(3,1)P -在椭圆22
221(0)x y a b a b
+=>>的左准线上,过点且方向为(2,5)a =- 的光线,经直线2y =-反射后通过椭圆的左焦点,则这个椭圆的离心率为( )
A B .13 C D .12 7、若焦点在轴上的椭圆22
12x y m
+=的离心率为12,则m=
A B .32 C 83. D .23
8、平面上有三个点集合M 、N 、P ,{(,)|||||1}M x y x y =+<,{(,)|||1,||1,||1}P x y x y x y =+<<<,
{(,)|N x y =<,则( ) A .M P N 苘 B .M N P 苘 C .P N M 苘 D .以上均不成立。

9、在平面直角坐标系中,若方程表示的曲线()()2
222123m x y y x y +++=-+为椭圆,则m 的取值范围为( )
A .()0,1
B .()1,+∞
C .()0,5
D .()5,+∞
二、填空题:
1、已知椭圆22
221(0)x y a b a b
+=>>的半焦距为c ,若,,a b c 依次成等差数列,则该椭圆的离心率为 ; (答案:45
) 三、解答题:
1、(成才之路教师用书P292) 设椭圆22
221(0)x y a b a b
+=>>的两焦点为12,F F ,若在椭圆上存在一点P ,使12PF PF ⊥,求椭圆离心率e 的取值范围。

2、(成才之路教师用书P295)
过椭圆2222x y +=的上焦点F 的直线l 交椭圆与A 、B 两点,求AOB ∆(O 为原点)面积的最大值。

3、过椭圆22
221(0)x y a b a b
+=>>的左焦点F 任作一条与两坐标轴都不垂直的弦AB ,若点M 在x 轴上,且使得MF 为AMB ∆的一条内角平分线,则称点M 为该椭圆的“左特征点”。

(1)求椭圆2
215
x y +=的“左特征点”;(2)试根据(1)中结论猜测:椭圆22
221(0)x y a b a b
+=>>的“左特征点”M 是怎样的一个点?并证明你的结论。

● 板书设计
● 教学反思:
● 作业布置:。

相关文档
最新文档