2014届高考数学(理)一轮复习单元测试(配最新高考+模拟)第二章函数
山东省2014年高考一轮专题复习资料函数理
一、选择题1 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)函数()2t a n 22f x x x ππ⎛⎫=-- ⎪⎝⎭在,上的图象大致为【答案】C2 .(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)已知函数()f x 对任意x R∈都有(6)()2(3),(1)f x f x f y f x ++==-的图象关于点(1,0)对称,则(2013)f =( )A .10B .5-C .5D .0【答案】D3 .(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)已知函数2ln ||()x f x x x=-,则函数()y f x =的大致图象为【答案】B4 .(山东省夏津一中2013届高三4月月考数学(理)试题)函数y=f(x),x∈D,若存在常数C,对任意的x l ∈D,仔在唯一的x 2∈D,使得C =,则称函数f(x)在D 上的几何平均数为C .已知f(x)=x 3,x∈[1,2],则函数f(x)=x 3在[1,2]上的几何平均数为 ( )A B .2C .4D .【答案】D5 .(山东省夏津一中2013届高三4月月考数学(理)试题)函数y = 1n|x-1|的图像与函数y=-2 cos πx(-2≤x≤4)的图像所有交点的横坐标之和等于 ( )A .8B .6C .4D .2 【答案】B6 .(山东省文登市2013届高三3月二轮模拟考试数学(理))对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是( )A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 【答案】A7 .(山东省泰安市2013届高三第二次模拟考试数学(理)试题)已知函数()()c o s ,f x x x f x=+则的大致图象是【答案】B8.(山东省泰安市2013届高三第二次模拟考试数学(理)试题)函数()2lg 21y x =+的定义域是 ( )A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,22⎛⎫-⎪⎝⎭C .11,22⎛⎫-⎪⎝⎭ D .1,2⎛⎫-∞-⎪⎝⎭【答案】B9.(山东省莱芜五中2013届高三4月模拟数学(理)试题)已知函数()f x 的定义域为[3,6],则函数y =( )A .3[,)2+∞B .3[,2)2C .3(,)2+∞D .1[,2)2【答案】B10.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知()f x 是定义在R 上的奇函数,满足33()()22f x f x -+=+,当3(0,)2x ∈时, 2()ln(1)f x x x =-+,则函数()f x 在区间[0,6]上的零点个数是 ( )A .3B .5C .7D .9【答案】D11.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞【答案】B12.(山东省济宁市2013届高三4月联考理科数学)已知定义在R 上的函数f(x ),对任意x ∈R ,都有f (x +6)=f (x )+f (3)成立,若函数(1)y f x =+的图象关于直线x =-1对称,则f (201 3)=( )A .0B .201 3C .3D .—201 3【答案】A13.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )= 110x⎛⎫⎪⎝⎭,在x ∈[0,4]上解的个数是 ( )A .1B .2C .3D .4【答案】【答案】D【解析】由)1()1(+=-x f x f ,知)()2(x f x f =+,周期为2,又函数为偶函数,所以)1()1()1(x f x f x f -=+=-,函数关于1=x 对称,在同一坐标内做出函数xy x f y )101(),(==的图象,由图象知在]4,0[内交点个数为个.选 D .14.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))函数y =lg1|1|x +|的大致图象为【答案】【答案】D【解析】函数的定义域为}-1x {x ≠,排除A, C .取特殊值9=x ,则01<-=y ,排除B,选D .15.(山东省菏泽市2013届高三第二次模拟考试数学(理)试题)如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =⎡⎤⎣⎦, 则函数()y g x =的图象为()A ..【答案】A16.(山东省凤城高中2013届高三4月模拟检测数学理试题 )已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,2()log g x x =,则函数()()f x g x ⋅的大致图象为Oxy y 11-1 -1 y【答案】D17.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,()f x x =,则方程3()l o g ||f x x =的解个数是( )A .0个B .2个C .4个D .6个【答案】C18.(山东省德州市2013届高三第二次模拟考试数学(理)试题)若对于定义在R 上的函数f(x),存在常数()t t R ∈,使得f(x+t)+tf(x)=0对任意实数x 均成立,则称f(x)是阶回旋函数,则下面命题正确的是 ( )A .f(x)=2x 是12-阶回旋函数 B .f(x)=sin(πx)是1阶回旋函数 C .f (x)=x 2是1阶回旋函数 D .f(x)=log a x 是0阶回旋函数【答案】B二、填空题19.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知函数()f x 在实数集R 上具有下列性质:①直线1x =是函数()f x 的一条对称轴;②()()2f x f x +=-;③当1213x x ≤<≤时,()()()21f x f x -⋅()210,xx -<则()2012f 、()2013f 从大到小的顺序为_______.【答案】)2013(f ,)2012(f ,)2011(f20.(山东省文登市2013届高三3月二轮模拟考试数学(理))函数12()3sin log f x x x π=-的零点的个数是__________.【答案】 921.(山东省莱芜市莱芜四中2013届高三4月月考数学试题)定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为_________________.【答案】 022.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为_________平方米 .AMEPDCB N F【答案】4823.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)指数函数x a b y⋅=在[]2,b 上的最大值与最小值的和为6,则=a _________.【答案】224.(山东省凤城高中2013届高三4月模拟检测数学理试题 )函数()f x 的定义域为D ,若存在闭区间[,]a b D ⊆,使得函数()f x 满足:①()f x 在[,]a b 内是单调函数;②()f x 在[,]a b 上的值域为[2,2]a b ,则称区间[,]a b 为()y f x =的“倍值区间”.下列函数中存在“倍值区间”的有________ ①)0()(2≥=x x x f ;②()()xf x e x =∈R ; ③)0(14)(2≥+=x x xx f ;④)1,0)(81(log )(≠>-=a a a x f xa【答案】①③④。
2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第1课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第1课时)(新人教A 版)一、选择题1.下列各组函数中表示同一函数的是( )A .f (x )=x 与g (x )=(x )2B .f (x )=|x |与g (x )=3x 3C .f (x )=lne x 与g (x )=e ln xD .f (x )=x 2-1x -1与g (t )=t +1(t ≠1)解析:选D.由函数的三要素中的定义域和对应关系进行一一判断,知D 正确.2.(2011·高考江西卷)若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞) 解析:选A.由题意得:⎩⎪⎨⎪⎧2x +1>0log 12x +>0得-12<x <0.3.(2012·高考福建卷)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π 解析:选B.∵g (π)=0,f (0)=0,故选B. 4.函数y =f (x )的图象如图所示,则f (x )的解析式为( ) A .y =-|x |-1 B .y =|x -1| C .y =-|x |+1 D .y =|x +1|解析:选C.对照函数图象,分别把x =0代入解析式排除A ,把x =-1代入解析式排除B ,把x =1代入解析式排除D ,故选C.5.(2011·高考辽宁卷)设函数f (x )=⎩⎪⎨⎪⎧21-x, x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D.当x ≤1时,由21-x≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).二、填空题6.已知f (x -1x )=x 2+1x2,则f (3)=________.解析:∵f (x -1x )=x 2+1x 2=(x -1x)2+2,∴f (x )=x 2+2,∴f (3)=32+2=11. 答案:117.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f 是从A 到B 的映射,f :x →(x +1,x 2+1),则A 中元素2的象和B 中元素(32,54)的原象分别为________.解析:把x =2代入对应法则,得其象为(2+1,3). 由⎩⎪⎨⎪⎧x +1=32x 2+1=54,得x =12.所以2的象为(2+1,3),(32,54)的原象为12.答案:(2+1,3)、128.(2012·高考陕西卷)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,则f (f (-4))=________.解析:f (-4)=⎝ ⎛⎭⎪⎫12-4=16,所以f (f (-4))=f (16)=16=4.答案:4 三、解答题9.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a ,由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6,又a ≥2,∴a = 6. 综上可知,a 的值为32或 6.10.(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.解:(1)令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1.(2)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).一、选择题1.(2012·高考山东卷)函数f (x )=1x ++4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B.x 满足⎩⎪⎨⎪⎧x +1>0x +1≠1,4-x 2≥0即⎩⎪⎨⎪⎧x >-1x ≠0-2≤x ≤2,解得-1<x <0或0<x ≤2.2.(2012·高考江西卷)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x解析:选D.当函数以解析式形式给出时,求其定义域的实质就是以使函数的解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.函数y =13x的定义域为(-∞,0)∪(0,+∞),而y =1sin x 的定义域为{x |x ∈R ,x ≠k π,k ∈Z },y =ln xx的定义域为(0,+∞),y =x e x的定义域为R ,y =sin x x的定义域为(-∞,0)∪(0,+∞).故选D.二、填空题3.下列对应中,①A ={x |x 是矩形},B ={x |x 是实数},f 为“求矩形的面积”; ②A ={x |x 是平面α内的圆},B ={x |x 是平面α内的矩形};f :“作圆的内接矩形”;③A =R ,B ={x ∈R |x >0},f :x →y =x 2+1;④A =R ,B =R ,f :x →y =1x;⑤A ={x ∈R |1≤x ≤2},B =R ,f :x →y =2x +1. 是从集合A 到集合B 的映射的为________.解析:其中②,由于圆的内接矩形不唯一,因此f 不是从A 到B 的映射;其中④,A 中的元素0在B 中没有对应元素,因此f 不是A 到B 的映射.答案:①③⑤4.设函数f (x )=⎩⎪⎨⎪⎧23x -1x x 2 x <,若f (a )<a ,则实数a 的取值范围是________.解析:当a ≥0时,由23a -1<a 得a >-3取a ≥0.当a <0时,由a 2<a 得,0<a <1,与a <0矛盾, 综上可知a 的取值范围是[0,+∞). 答案:[0,+∞) 三、解答题5.下面是一个电子元件在处理数据时的流程图:(1)试确定y 与x 的函数关系式; (2)求f (-3)、f (1)的值; (3)若f (x )=16,求x 的值.解:(1)y =⎩⎪⎨⎪⎧x +2,x ≥1,x 2+2,x <1.(2)f (-3)=(-3)2+2=11;f (1)=(1+2)2=9.(3)若x ≥1,则(x +2)2=16,解得x =2或x =-6(舍);若x <1,则x 2+2=16,解得x =14(舍)或x =-14. 即x =2或x =-14.。
专题02 函数-2014年高考数学(理)试题分类解析(教师版)
目录专题21 函数及其表示 ............................................................................................................................................ 1 专题22 函数的定义域与值域 ................................................................................................................................ 1 专题23 函数的单调性与最值 ................................................................................................................................ 2 专题24 函数的奇偶性与周期性 ............................................................................................................................ 4 专题25 二次函数与幂函数 .................................................................................................................................... 6 专题26 对数与对数函数 ........................................................................................................................................ 7 专题27 函数的图象 ................................................................................................................................................ 8 专题28 函数与方程 .............................................................................................................................................. 10 专题29 分段函数 ................................................................................................................................................... 11 专题210 新定义函数 .. (13)专题21 函数及其表示1【2014高考安徽卷理第6题】设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B 23 C 0 D 21- 【答案】A 【曹亚云·解析】231717()()sin 666f f πππ=+ 111117()sin sin 666f πππ=++ 551117()sin sin sin 6666f ππππ=+++ 0sin sin sin 666πππ=+-+ 12=2【2014江西高考理第3题】已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( )A 1B 2C 3D -1 【答案】A【曹亚云·解析】()()11f g = |(1)|51g ⇒= ()10g ⇒= 10a ⇒-= 1a ⇒=专题22 函数的定义域与值域3【2014江西高考理第2题】函数)ln()(2x x x f -=的定义域为( )A )1,0(B ]1,0[C ),1()0,(+∞-∞D ),1[]0,(+∞-∞【答案】C 【曹亚云·解析】20x x ->,10x x ∴><或所以选C4【2014山东高考理第3题】函数的定义域为( )A B C D【答案】C【曹亚云·解析】()22log 10x ->2log 1x ⇒>或2log 1x <-,解得 2x >或102x ∴<>专题23 函数的单调性与最值5【2014高考北京版理第2题】下列函数中,在区间(0,)+∞为增函数的是( )A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+ 【答案】A【曹亚云·解析】因为函数y =[1,)-+∞ 上单调递增,所以选项A 正确;因为函数2(1)y x =-在区间(,1)-∞ 上单调递减,在区间[1,)+∞ 上单调递增,所以选项B 错误;因为函数2x y -=在区间(,)-∞+∞ 上单调递减,所以选项C 错误; 因为函数0.5log (1)y x =+在区间(1,)-+∞ 上单调递减,所以选项D 错误;“高中数学师生群”QQ 群号码:341383390,欢迎各位在读高中学生加入,欢迎各位一线高中数学教师加入“高中数学教师俱乐部”QQ 群号码:44359573,欢迎各位一线高中数学教师加入注:该群为教师群,拒绝学生申请6【2014高考福建卷第4题】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )1)(log 1)(22-=x x f )21,0(),2(+∞),2()21,0(+∞ ),2[]21,0(+∞ABCD【答案】B【曹亚云·解析】由图可知,log 31a = ,所以3a =因为3xy -= 在R 上是减函数,所以选项A 错误; 因为33()y x x =-=-在R 上是减函数,所以选项C 错误; 因为3log ()y x =-在(,0)-∞ 上是减函数,所以选项D 错误;7【2014陕西高考理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =【答案】D【曹亚云·解析】A 选项:由()()12f x y x y +=+,()()111222()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以B 错误;C 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是减函数;D 选项:由()3x y f x y ++=,()()333x y xy f x f y =⋅=,得()()()f x y f x f y +=,所以D 正确为助力学生学习,特为学生提供打印纸质文档服务,A4纸每页01元,可提供“百度文库”或“中学学科网”下载后打印服务,可包邮。
高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ word版含答案
第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ第一节函数及其表示 突破点(一) 函数的定义域基础联通 抓主干知识的“源”与“流”1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.考点贯通 抓高考命题的“形”与“神”求给定解析式的函数的定义域(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] 若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点(2)求x与y的对应关系时需逐个计算,比较繁杂列表法能鲜明地显示自变量与函数值之间的数量关系只能列出部分自变量及其对应的函数值,难以反映函数变化的全貌图象法形象直观,能清晰地呈现函数的增减变化、点的对称关系、最大(小)值等性质作出的图象是近似的、局部的,且根据图象确定的函数值往往有误差考点贯通抓高考命题的“形”与“神”求函数的解析式[典例](1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=12x3-12x2-xB.y=12x3+12x2-3xC.y=14x3-xD.y=14x3+12x2-2x(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x+1).(3)用1x代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0).答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12错误!未找到引用源。
济南市高中2014届毕业班第二次高考模拟检测数学(理)(附答案)
绝密★启用前2014年高考针对性训练(山东卷)(又名:济南市高中2014届毕业班第二次高考模拟检测)数 学(理科)注意事项:1.本试卷共4页,包括选择题题(第1题~第10题)、非选择题(第11题~第21题)两部分.本试卷满分为150分,考试时间为120分钟.2.答题前,请务必将自己的学校、姓名、班级、学号写在答题纸内.试题的答案写在答题纸...上对应题目的答案空格内.(具体说明见答题卡要求)考试结束后,交回答题纸. 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1、设集合}023{2=+-=x x x A ,则满足}2,1,0{=⋃B A 的集合B 的个数是A .1B .3C .4D .62、如图,在复平面内,复数z 1,z 2对应的向量分别是,,则=+21z zA .1B . 5C .2D .33、12cos log 12sin log 22ππ+的值为A .-2B .-1C .12D .14、已知平面向量a ,b 1=2=,且a b a ⊥-)(,则a 与b 的夹角为A .6πB .3πC .32πD .65π5、一个空间几何体的三视图如图所示,该几何体的表面积为A .96B .136C .152D .1926、如图,在△AB C 中,AB =1,AC =3,D 是BC 的中点,则=∙A .3B .4C .5D .不确定7、函数f (x )=cos(πx)x 2的图像大致是8、执行右图的程序框图,输出的S 的值为A .0B .52C .1D . 39、设曲线y =2x -x 2与x 轴所围成的区域为D ,向区域D 内随机投一点,则该点落入区域}2),{(22<y x D y x +∈的概率是A .π-1πB .ππ+1C .23D .3410、已知定义域为R 的函数f (x )=a +2bx +3sin x +bx cos x 2+cos x(a,b ∈R)有 最大值和最小值,且最大值与最小值之和为6,则3a -2b =A .7B .8C .9D .10第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知关于关于x 的不等式12>-+-x a x 的解集为全体实数R ,则实数a 的取值范围是 ▲ .12、已知(1+ax )(1+x )6的展开式中x 2的系数为3,则a = ▲ .13、设x 0是方程10-x =lg x 的解,且x 0∈(k ,k +1)(k ∈Z),则k = ▲ .14、设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≤+--≤8201223y x y x x y ,则x y 的最大值是 ▲ . 15、过双曲线x 2a 2 - y 2b 2 =1(a >0,b >0)的左焦点F (-c ,0),作倾斜角为π6的直线EF 交该双曲 线右支于点P ,O 为坐标原点,若)(21+=且0=∙,则该双曲线的 离心率为 ▲ .三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A,B,C 对应的边分别是a,b,c ,且a =43,b =32,∠A =2∠B . (Ⅰ)求cos B 的值;(Ⅱ)求c 的值.17.(本小题满分12分)甲地区有10名人大代表,其中有4名女性;乙地区有5名人大代表,其中有3名女性,现采用分层抽样法从甲、乙两地区共抽取3名代表进行座谈.(Ⅰ)求从甲、乙两地区各抽取的代表数;(Ⅱ)求从甲组抽取的代表中至少有1名女性的概率;(Ⅲ)记ξ表示抽取的3名代表中女性数,求ξ的分布列及数学期望.18.(本小题满分12分)在四面体A-BCD 中,AD ⊥平面BCD ,BC ⊥CD ,∠DBC =30°,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(Ⅰ)求证:PQ //平面BCD ;(Ⅱ)求二面角C-MN-D 的大小.19.(本小题满分12分)已知数列{b n }满足b n+1 = 12b n + 14,且b 1=72,T n 为{b n }的前n 项和. (Ⅰ)求证:数列{b n -12}是等比数列,并求出{b n }的的通项公式; (Ⅱ)如果对任意n ∈N *,不等式2T n +3·22-n -10k≤n 2+4n +5恒成立,求实数k 的取值范围.20.(本小题满分13分)已知曲线C 上任意一点P 到点F (0,1)的距离比它到直线l :y =-2的距离小1,一个圆的圆心为A (0,4),过点A 的直线与曲线C 交于D,E 两点.(Ⅰ)求曲线C 的方程;(Ⅱ)当线段DE 长度最短时,曲线C 过D 点的切线与圆A 相切的弦长为855,求此时圆A 的方程.21.(本小题满分14分)已知函数f (x )=e x - x - 1,g (x )=x 2e ax .(Ⅰ)求f (x )的最小值;(Ⅱ)求g (x)的单调区间;(Ⅲ)当a =1时,对于在(0,1)中的任一个常数m ,是否存在正数x 0使得f (x 0)>m 2g (x)成立?如果存在,求出符合条件的一个x 0;否则请说明理由.济南市高中2014届毕业班第二次高考模拟检测数学(理科)试题参考答案及评分标准2014.5一、选择题1.C 2.B 3.A 4.D 5.C6.B 7.A 8.B 9.A 10.C二、填空题11.),3()1,(+∞⋃-∞ 12.-2 13.9 14.2 15.1+ 3三、解答题16.(本小题满分12分)(Ⅰ)因为a =43,b =32,∠A =2∠B 所以在△ABC 中,由正弦定理得43sin2B = 32sin B. .....................3分 所以2sin B cos B sin B = 263.故cos B =63. .....................6分 (Ⅱ)由(Ⅰ)得(Ⅰ)cos B =63,所以sin B =B 2cos 1-=33. 又因为∠A =2∠B ,所以cos A =2cos 2B - 1= 13. ............8分 所以sin A =A 2cos 1-= 223. 在△ABC 中,sin C =sin(A +B )=sinAcosB+cosAsinB=539. ...........10分 所以25sin sin ==AC a c . ..............12分17.(本小题满分12分)(Ⅰ)应在甲地区抽去2人,乙地区抽取1人...................................2分(Ⅱ)32210242101416=+=C C C C C P ;所以从甲组抽取的代表中至少有1名女性的概率为23. ............5分 (Ⅲ)依据题意得ξ可取0、1、2、3.由152)0(255101226===C C C C P ξ. ........6分 7531)1(152********===C C C C C P ξ. ......7分 7528)1(152101224===C C C C P ξ; 756)3(152101324===C C C C P ξ .......9分。
2014高考数学总复习(人教新课标理科)单元测试:第2章 函数含解析
第二章单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.已知A={0,1},B={-1,0,1},f是从A到B的映射,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.2个答案A解析当f(0)=-1时,f(1)可以是0或1,则有2个映射.当f(0)=0时,f(1)=1,则有1个映射.2.函数f(x)=错误!+lg(1+x)的定义域是(A.(-∞,-1) B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞)答案C解析由错误!得x>-1且x≠1,即函数f(x)的定义域为(-1,1)∪(1,+∞).3.(2012·天津文)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x,x∈R B.y=log2|x|,x∈R且x≠0C.y=e x-e-x2,x∈R D.y=x3+1,x∈R答案B解析逐项验证即可.4.设奇函数f(x)在(0,+∞)上为单调递减函数,且f(2)=0,则不等式错误!≤0的解集为( A.(-∞,-2]∪(0,2] B.[-2,0]∪[2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]答案D解析本题主要考查函数的奇偶性、单调性及利用图像解不等式,根据已知条件可画出f(x)的草图如图所示.不等式错误!≤0⇔错误!≤0⇔错误!≥0⇔错误!或错误!由图可知不等式的解集为[-2,0)∪(0,2].故选D.5.函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图像大致是( )答案C解析f(x)=1+log2x的图像可由f(x)=log2x的图像上移1个单位得到,且过点(错误!,0)、(1,1),由指数函数性质可知g(x)=21-x为减函数,且过点(0,2),故选C.6.函数f(x)=x2+|x-2|-1(x∈R)的值域是A.[错误!,+∞)B.(错误!,+∞)C.[-错误!,+∞)D.[3,+∞)答案A解析(1)当x≥2时,f(x)=x2+x-3,此时对称轴为x=-错误!,f(x)∈[3,+∞).(2)当x<2时,f(x)=x2-x+1,此时对称轴为x=错误!,f(x)∈[错误!,+∞).综上知,f(x)的值域为[错误!,+∞).7.已知函数f(x)=9x-m·3x+m+1对x∈(0,+∞)的图像恒在x轴上方,则m的取值范围是(A.2-2错误!<m〈2+2错误!B.m〈2C.m〈2+2错误!D.m≥2+2错误!答案 C解析 令t =3x ,即x =log 3t ,则问题转化为函数y =t 2-mt +m+1在(1,+∞)上的图像恒在x 轴的上方,即Δ=(-m )2-4(m +1)〈0或错误!解得m 〈2+2错误!.8.函数f (x )=错误!-6+2x 的零点一定位于区间A .(3,4)B .(2,3)C .(1,2)D .(5,6) 答案 B解析 f (1)=-3<0,f (2)=-32〈0,f (3)=错误!>0,故选B 。
专题2.2 函数的定义域、值域及函数的解析式(预测)-2014年高考数学(理)一轮复习精品资料(解析版)
名师预测1.函数y =(13)x 2的值域是( )A .(0,+∞)B .(0,1)C .(0,1]D .[1,+∞)2.函数f (x )=log 2(3x -1)的定义域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)3.函数y =x x -1-lg 1x 的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1或x <0}D .{x |0<x ≤1}4.下列函数中值域为正实数集的是( ) A .y =-5xB .y =(13)1-xC .y =12x-1D .y =1-2x5.已知函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[1,2],则a 的值为( ) A.22B .2 C. 2D.136.设f (x )=⎩⎪⎨⎪⎧x 2, |x |≥1,x , |x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)7.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <58.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝⎛⎦⎤12,2 B .(-∞,2] C.⎝⎛⎭⎫-∞,12∪[2,+∞)D .(0,+∞)9.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2,2] 10.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________.11.函数y =16-x -x 2的定义域是________.12.函数f (x )=x +x x -2的定义域是________. 13.设函数f (x )=12(x +|x |),则函数f [f (x )]的值域为________.14.函数y =x +1+x -10lg 2-x 的定义域是________.15.函数y =x -x (x ≥0)的最大值为________.16.已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为____________,值域为__________.17.求下列函数的值域.(1)y =1-x 2x +5;(2)y =2x -1-13-4x .18.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.19.已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ). (1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.20.求下列函数的定义域: (1)y =25-x 2+lgcos x ; (2)y =log 2(-x 2+2x ).21.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域.22.已知函数f (x )=x 2+4ax +2a +6. (1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.23.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.答案:B13.解析:先去绝对值,当x≥0时,f(x)=x,故f[f(x)]=f(x)=x,当x<0时,f(x)=0,故f[f(x)]=f(0)=0,即f [f (x )]=⎩⎨⎧xx ≥00x <0,易知其值域为[0,+∞).答案:[0,+∞)(2)法一:(换元法)设13-4x =t ,则t ≥0,x =13-t 24,于是y =g (t )=2·13-t 24-1-t ,=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,又t ∈⎣⎡⎦⎤1,32时,t +4t 单调递减, F (t )单调递增,F (t )∈⎣⎡⎦⎤13,613.即函数f (x )的值域为⎣⎡⎦⎤13,613.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,。
2014年高考数学模拟试题及答案二
2014年高考数学模拟试题及答案二高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.考生务必将答案答在答题卡上,在试卷上作答无效.2.答题前考生务必用黑色字迹的签字笔在答题卡上填写姓名、准考证号,然后再用2B 铅笔将与准考证号对应的信息点涂黑.3.答题卡上第Ⅰ卷必须用2B 铅笔作答,将选中项涂满涂黑,黑度以遮住框内字母为准,修改时用橡皮擦除干净.第Ⅱ卷必须用黑色字迹的签字笔按照题号顺序在各题目的答题区域内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.时间:120分钟 满分:150分一.选择题(每小题5分,共75分)1. 若a 是R 中的元素,但不是Q 中的元素,则a 可以是A.3.14B. -5C. 372.集合﹛0,2,3﹜ 的所有子集个数是A.7B.8C.6D.53. 设f(x)=(2a-1)x+b 在R 上是增函数,则有A.a≥12B. a≤12C. .a ﹥12D. .a ﹤124.设集合A={x ︱-1≤x ﹤2},B={x ︱x ﹤a },若A ∩B≠φ,则a 的取值范围是A.a ﹤2B.a ﹥-2C.a ﹥-1D.-1﹤a 25.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,,5},T={3,6}则Cu(S ∪T)等于A. φB. {2,4,7,8}C. {1,3,5,6}D. {2,4,6,8}6.A={x ︱x 2+x-6=0},B={x ︱mx+1=0},且A ∪B=A,则m 的取值范围为A. {13, 12} B. {0,-13, —12} C. { 0,13, -12} D. {-13, —12}7.如图:可表示函数y= f(x)的图像只能是B. C. D.8.函数 f(x)=2x11+ 的值域是 A.(0,1) B.[0,1) C.(0,1] D.[0,1]9.函数x113y --=的定义域是 A.(-∞,1) B.( -∞,0)∪(0, 1] C.(-∞,0)∪(0,1) D.*1,+∞)10.函数y=x 2+2x+1,x ∈[-2,2] ,则A.函数有最小值0,最大值9B. 函数有最小值2,最大值5C.函数有最小值2,最大值9D. 函数有最小值1,最大值511.函数f(x)是定义在区间[-6,6]上的偶函数,且f(3) ﹥f(1)则下列各式一定成立的是A.f(0) ﹤f(6)B.f(3)﹥f(2)C.f(-1) ﹤f(3)D.f(2) ﹥f(0)12.若 f(x)=-x 2+2ax 与g(x)= 1a x + 在区间[1,2]上都是减函数,则a 的取值范围是 A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1]13.函数y=a x-2+1(a ﹥0且a≠1)的图象必经过点A.(0,1)B.(1,1)C.(2,0)D.(2,2)14.若 -1﹤x ﹤0 ,则不等式中成立的是x y x x y y xA.5-x ﹤5x ﹤0.5xB. 5x ﹤0.5x ﹤ 5-xC. 5x ﹤ 5-x ﹤ 0.5xD. 0.5x ﹤ 5-x ﹤5x15.已知函数 f(x)=x 5+ax 3+bx-8 ,且 f(-2)=10,那么f(2) 等于A.-26B.-18C.-10D.10二.填空题(每小题5分,共25分)16.已知集合A={a2,a+1,-3},B={a-3,2a-1,a 2+1},若A ∩B ={-3}, 则实数a 的值为_____18.已知函数f(x)=4x 2-4mx+1,在(-∞,-2)上递减,在(-2,+∞)上递增.则f(x)在[1,2]上的值域为________19.已知y=(3-a)x 在定义域R 内是减函数,则实数a 的取值范围是____________20.已知y= f(x)是定义在R 上的奇函数,当x ﹥0时, f(x)=x2+x+1,则x ﹤0时,f(x)=_________________三.解答题(共50分) 21.计算.(1)48373)27102(1.0)972(03225.0+-++--π;(2)63125.132⨯⨯. 22.已知函数 f(x)=x 2+2ax+2,x ∈[-5,5](1). 当a=-1时,求函数f(x)的最大值和最小值。
2014届高考数学(理)第一轮复习学案——等比数列及其前n项和含解析
等比数列及其前n 项和[知识能否忆起]1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,若m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r . 特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k ;数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时q ≠-1); a n =a m q n-m.[小题能否全取]1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝⎛⎭⎫32nB .4·⎝⎛⎭⎫23nC .4·⎝⎛⎭⎫32n -1D .4·⎝⎛⎭⎫23n -1 解析:选C (a +1)2=(a -1)(a +4)⇒a =5, a 1=4,q =32,故a n =4·⎝⎛⎭⎫32n -1. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128D .243解析:选A q =a 2+a 3a 1+a 2=2,故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =12(1-2n )1-2=2n -1-12.答案:2 2n -1-125.(2012·新课标全国卷)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-2 1.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. (2)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 2.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.等比数列的判定与证明典题导入[例1] 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.[自主解答] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列. 证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∵b n +1b n =12,∴数列{b n }是等比数列.由题悟法等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. (2012·沈阳模拟)已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }()A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 解析:选A 由log a a n +1-log a a n =2,得log aa n +1a n =2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列.等比数列的基本运算典题导入[例2] (2011·全国高考)设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .[自主解答] 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧ a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3. 当a 1=3,q =2时,a n =3×2n -1,S n =3×(2n -1);当a 1=2,q =3时,a n =2×3n -1,S n =3n -1.由题悟法1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.以题试法2.(2012·山西适应性训练)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式; (2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0). 因为a 2,a 4,a 8成等比数列, 所以(2+3d )2=(2+d )·(2+7d ), 解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n , 则S n =32+34+ (32)=9(1-9n )1-9=98(9n -1).等比数列的性质典题导入[例3] (1)(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B.32C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7 =log 3(a 1a 2…a 7)=log 3a 74 =7log 33π3=7π3,故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.[答案] (1)B (2)C由题悟法等比数列与等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以与等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,若能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7(2)(2012·成都模拟)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C.323(1-4-n )D.323(1-2-n ) 解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8, 解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.(2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝⎛⎭⎫122n -5. 故a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).1.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q 为( )A .-12 B .1C .-12或1D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3. 当q ≠1时,S 3=a 1(1-q 3)1-q =a 1(1+q +q 2)=3a 1q 2,解得q =-12,综上q =-12或q =1.2.(2012·东城模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152 B.154 C .4D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152.3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16. 又∵等比数列{a n }的各项都是正数,∴a 7=4. 又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知: 2(14-a )=(a -2)2,解得a =6或a =-4(舍去), 同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn =( )A.32 B.32或23C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.(2012·西城期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________. 解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n ,∴1a n =⎝⎛⎭⎫12n ,1a 2n =⎝⎛⎭⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列, ∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n 10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *).(2)因为S n =a 1(1-3n )1-3=12a 1·3n -12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.12. (2012·山东高考)已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5, 得⎩⎪⎨⎪⎧5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7.(2)对m ∈N *,若a n =7n ≤72m ,则n ≤72m -1.因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列, 故S m =b 1(1-q m )1-q =7×(1-49m )1-49=7×(72m -1)48=72m +1-748.1.若数列{a n }满足a 2n +1a 2n=p (p 为正常数,n ∈N *),则称数列{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若a 2n +1a 2n =p ,则a n +1a n =±p ,不是定值;若a n +1a n =q ,则a 2n +1a 2n=q 2,且q 2为正常数,故甲是乙的必要不充分条件.2.(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:法一:S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0, 解得q =32(q =-1不合题意,舍去).法二:设等比数列{a n }的首项为a 1,由S 2=3a 2+2,得 a 1(1+q )=3a 1q +2.①由S 4=3a 4+2,得a 1(1+q )(1+q 2)=3a 1q 3+2.② 由②-①得a 1q 2(1+q )=3a 1q (q 2-1). ∵q >0,∴q =32.答案:323.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:依题意S n =4a n -3(n ∈N *), n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. (2)因为a n =⎝⎛⎭⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝⎛⎭⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝⎛⎭⎫43n -11-43=3·⎝⎛⎭⎫43n -1-1(n ≥2), 当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝⎛⎭⎫43n -1-1.1.(2012·大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:选B ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n ,∴a n =S n -S n -1=2a n +1-2a n ,∴3a n =2a n +1,∴a n +1a n =32. 又∵S 1=2a 2,∴a 2=12,∴a 2a 1=12, ∴{a n }从第二项起是以32为公比的等比数列, ∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎡⎦⎤1-⎝⎛⎭⎫32n -11-32=⎝⎛⎭⎫32n -1. ( 也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,求得S n =⎝⎛⎭⎫32n -1 ) 2.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12. (2)由(1)可得a 1-a 1⎝⎛⎭⎫-122=3. 故a 1=4,从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 3.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013. 解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).∵d >0, 故解得d =2.∴a n =1+(n -1)·2=2n -1. 又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1. (2)由c 1b 1+c 2b 2+…+c n b n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n. 两式相减得:n ≥2时,c n b n=a n +1-a n =2. ∴c n =2b n =2·3n -1(n ≥2). 又当n =1时,c 1b 1=a 2,∴c 1=3. ∴c n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2. ∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.。
2014年高考数学模拟试题及答案(理)
2013-2014学年度高考模拟试题数学(理)一、选择题:本大题共12小题,每小题5分,共60分,1.若集A ={x |-1≤2x +1≤3},B ={x |2x x-≤0},则A ∪B = ( )A .{x |-1≤x <2}B .{x |-1≤x ≤2}C .{x |0≤x ≤2}D .{x |0≤x ≤1} 2.函数()lg f x x =的零点是( )A .(1,0)B .(1,0)和(1,0)-C .1D .1和1-3.复数i +2与复数i +31在复平面上的对应点分别是A 、B ,则AO B ∠等于 ( ) A 、6π B 、4π C 、3π D 、2π 4.已知函数)4lg(x y -=的定义域为A ,集合{}a x x B <=|,若P :”“A x ∈是 Q :”“B ∈x ”充分不必要条件,则实数a 的取值范围是( ) A .4≥a B .4≤a C .4>a D .4<a 5.已知等差数列{}n a 中,37101140,4a a a a a +-=-=,记12n n S a a a =+++,S 13=( )A .78B .68C .56D .526.要得到一个奇函数,只需将x x x f cos 3sin )(-=的图象( )A 、向右平移6π个单位B 、向右平移3π个单位C 、向左平移3π个单位 D 、向左平移6π个单位 7.已知x >0,y >0,若222y xm m x y8+>+恒成立,则实数m 的取值范围是( ) A .m ≥4或m ≤-2 B .m ≥2或m ≤-4 C .-2<m <4 D .-4<m <28(0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A 9.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''+>.且(3)0g =.则不等式()()0f x g x <的解集是 ( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0, 3)C .(-∞ ,- 3)∪(3,+∞)D .(-∞,- 3)∪(0, 3)10.已知函数x x f 2sin 1)(π+=,若有四个不同的正数i x 满足M x f i =)((M 为常数),且8<i x ,)4,3,2,1(=i ,则4321x x x x +++的值为( ) A 、10 B 、14 C 、12 D 、12或2011.已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 取值范围是( )A.10,5,5+∞(]()B.10,[5,5+∞())C.11,]5,775(()D.11,[5,775())12.在平面直角坐标系xOy 中,点A (5,0),对于某个正实数k ,存在函数f (x )=a 2x (a >0).使得OP =λ·(OA OA+OQ OQ)(λ为常数),这里点P 、Q的坐标分别为P (1,f (1)),Q (k ,f (k )),则k 的取值范围为( )A .(2,+∞)B .(3,+∞)C .[4,+∞)D .[8,+∞) 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13. 过点(1,1)-的直线与圆2224110x y x y +---=截得的弦长为线的方程为 。
2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第12课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第12课时)(新人教A 版)一、选择题1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2. 又∵x ∈(0,1),∴0<a <1.故选B.2.(2013·威海调研)函数y =4xx 2+1( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,有最小值-2D .无最值解析:选C.∵y ′=x 2+-4x ·2x x +=-4x 2+4x +.令y ′=0,得x =1或-1,f (-1)=-42=-2,f (1)=2.结合图象故选C.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对解析:选A.f ′(x )=6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f (0)=m 最大,∴m =3,而f (-2)=-37,f (2)=-5,∴f (x )min =-37.4.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4解析:选C.∵f ′(x )=2x +2+a x,f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立,所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.5.(2011·高考湖南卷)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12C.52D.22解析:选D.由题意|MN |=t 2-ln t (t >0),不妨令h (t )=t 2-ln t ,则h ′(t )=2t -1t,令h ′(t )=0,解得t =22,因为t ∈⎝ ⎛⎭⎪⎫0,22时,h ′(t )<0,当t ∈⎝ ⎛⎭⎪⎫22,+∞时,h ′(t )>0,所以当t =22时,|MN |达到最小. 二、填空题6.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,则x =m 2,由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]7.函数y =sin2x -x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值是________,最小值是________. 解析:∵y ′=2cos2x -1=0,∴x =±π6.而f ⎝ ⎛⎭⎪⎫-π6=-32+π6,f ⎝ ⎛⎭⎪⎫π6=32-π6,端点f ⎝ ⎛⎭⎪⎫-π2=π2,f ⎝ ⎛⎭⎪⎫π2=-π2,所以y 的最大值是π2,最小值是-π2.答案:π2 -π28.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的函数关系为P =24200-15x 2,且生产x 吨的成本为R =50000+200x (元).则该厂每月生产________吨该产品才能使利润达到最大,最大利润是________万元.(利润=收入-成本)解析:每月生产x 吨时的利润为f (x )=(24200-15x 2)x -(50000+200x )=-15x 3+24000x -50000(x ≥0).由f ′(x )=-35x 2+24000=0,解得x 1=200,x 2=-200(舍去).因f (x )在[0,+∞)内只有一个极值点x =200使f ′(x )=0,故它就是最大值点,且最大值为f (200)=-15×2003+24000×200-50000=3150000(元).所以每月生产200吨产品时的利润达到最大,最大利润为315万元. 答案:200 315 三、解答题9.(2011·高考北京卷)已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与↘ ↗所以,f (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.10.(2011·高考江苏卷)请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0, 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.一、选择题1.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 x ≤480000 x >,则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300 解析:选D.由题意得,总成本函数为 C =C (x )=20000+100x ,所以总利润函数为P =P (x )=R (x )-C (x )=⎩⎪⎨⎪⎧300x -x 22-20000 x 60000-100xx >,而P ′(x )=⎩⎪⎨⎪⎧300-x x ,-100 x >,令P ′(x )=0,得x =300,易知x =300时,P 最大.2.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,给出以下结论:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]; ②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于0. 其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 解析:选C.∵f (0)=0,∴c =0,∵f ′(x )=3x 2+2ax +b . ∴⎩⎪⎨⎪⎧ f =-1f -=-1,即⎩⎪⎨⎪⎧3+2a +b =-13-2a +b =-1. 解得a =0,b =-4,∴f (x )=x 3-4x ,∴f ′(x )=3x 2-4.令f ′(x )=0,得x =±233∈[-2,2],∴极值点有两个.∵f (x )为奇函数,∴f (x )max +f (x )min =0. ∴①③正确,故选C. 二、填空题3.(2013·嘉兴质检)不等式ln(1+x )-14x 2≤M 恒成立,则M 的最小值是________.解析:设f (x )=ln(1+x )-14x 2,则f ′(x )=[ln(1+x )-14x 2]′=11+x -12x =-x +x -+x, ∵函数f (x )的定义域需满足1+x >0,即x ∈(-1,+∞). 令f ′(x )=0得x =1,当x >1时,f ′(x )<0,当-1<x <1时,f ′(x )>0,∴函数f (x )在x =1处取得最大值f (1)=ln2-14.∴要使ln(1+x )-14x 2≤M 恒成立,∴M ≥ln2-14,即M 的最小值为ln2-14.答案:ln2-144.将边长为1 m 的正三角形薄铁片,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.解析:设剪成的小正三角形的边长为x ,则梯形的周长为3-x ,梯形的面积为12·(x +1)·32·(1-x ),所以s =-x212x +32-x=43·-x21-x 2(0<x <1). 由s (x )=43·-x21-x 2,得 s ′(x )=43·x --x 2--x2-2x-x 22=43·-x -x --x 22. 令s ′(x )=0,且0<x <1,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′(x )>0. 故当x =13时,s 取最小值3233.答案:3233三、解答题5.(2013·大同调研)已知函数f (x )=ax 3+x 2+bx (a 、b 为常数,g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值、最小值.解:(1)∵f ′(x )=3ax 2+2x +b ,∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . ∵g (x )为奇函数,∴g (-x )=-g (x ),∴⎩⎪⎨⎪⎧3a +1=0b =0,解得:⎩⎪⎨⎪⎧a =-13b =0.∴f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2,∴当x ∈(-∞,-2),(2,+∞)时,g (x )单调递减, 当x ∈(-2,2)时,g (x )单调递增,又g (1)=53,g (2)=423,g (2)=43,∴g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.。
高考数学一轮总复习 第二章 函数、导数及其应用 第8讲 幂函数课件 理
定点
(0,0),(1,1)
(1,1)
1.所有幂函数的图象都经过的定点的坐标是( C )
A.(0,0)
C.(1,1)
1
2.函数 y=x3 的图象是( B )
B.(0,1) D.(-1,-1)
3.已知幂函数 y=f(x)的图象过点(4,2),则 f13=( B )
调性(比较大小).命题
图象,了解它们
形式一般为选择题、填
的变化情况
空题中的一部分
1.幂函数的定义 一般地,形如 y=xα(α∈R)的函数称为幂函数,其中 x 是自 变量,α是常数.
2.幂函数的图象
1
五个常用幂函数 y=x,y=x2,y=x3,y=x 2 ,y=x-1 的图 象,如图 2-8-1.
答案:E C A G B D H F 【规律方法】(1)探讨幂函数图象的分布规律,应先观察图 象是否过原点,过原点时α>0,否则α<0;若α>0,再观察图象 是上凸还是下凸,上凸时 0<α<1,下凸时α>1;最后由 x>1 时, α的值按逆时针方向依次增大得出结论.
(2)幂函数 y=xα(α∈R)的图象如下表:
f(x)=12x-x
1 3
,f(0)=1>0,f13=12
1 3
-13
1 3
,由于
幂函数
y=x
1 3
单调递增,得
f13=12
1 3
-13
1 3
>0;f12=12
1 2
-12
1 3
,ห้องสมุดไป่ตู้
解:由函数 f(x)在(0,+∞)上是增函数,
得
2014高考数学一轮复习第二章函数及其表示训练理新人教A版
【创新设计】2014高考数学一轮复习第二章函数及其表示训练理新人教A版第一节函数及其表示[备考方向要明了][归纳·知识整合]1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:12 30°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x -1,x 表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. [自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3) ———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. ③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝ ⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式.解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A.124B.112C.16 D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.[答案] A ———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12B.45C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); (3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项. 2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,,x 2,x ∈[1,+,若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2B .y =ln e x与y =e ln xC .y =x -x +x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,-x ,x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6. 6.(2013·泰安模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则函数f (3)=________.解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则ff+f f+…+f f=________.解析:令b =1,∵f a +f a=f (1)=1,∴f f+f f+…+f f=2 011.答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2;当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B图象与事实相吻合.2.下列对应关系是集合P上的函数的是________.(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x∈P,y∈Q;(3)P={三角形},Q={x|x>0},对应关系f:对P中三角形求面积与集合Q中元素对应.解析:对于(1),集合P中元素0在集合Q中没有对应元素,故(1)不是函数;对于(3)集合P不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数:(1)y=x-2·x+2,y=x2-4;(2)y=x,y=3t3;(3)y=|x|,y=(x)2.解:∵y=x-2·x+2的定义域为{x|x≥2},y=x2-4的定义域为{x|x≥2或x≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y=3t3=t,∴y=x与y=3t3是同一函数.(3)∵y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},∴它们不是同一函数.4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.第二节 函数的定义域和值域[备考方向要明了][归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个?提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x是圆满函数;②y=2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系? 提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=4-xx -1有意义,只需⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.下表表示y 是x 的函数,则函数的值域是( )A .[2,5]B .NC .(0,20]D .{2,3,4,5}解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 3.若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)解析:选A 根据题意得log 12(2x +1)>0, 即0<2x +1<1,解得-12<x <0,即x ∈⎝ ⎛⎭⎪⎫-12,0. 4.(教材改编题)函数y =f (x )的图象如图所示,则函数y =f (x )的定义域为________,值域为________.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7),值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.(教材改编题)若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:∵x -4有意义,∴x -4≥0,即x ≥4. 又∵y =x 2-6x +7=(x -3)2-2, ∴y min =(4-3)2-2=1-2=-1. ∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] (1)(2012·山东高考)函数f (x )=1x ++ 4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________.[自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. (2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8.∴函数y =f (x )的定义域为[-1,8]. [答案] (1)B (2)[-1,8]本例(2)改为f (x )的定义域为[0,3],求y =f (x 2-1)的定义域. 解:∵y =f (x )的定义域为[0,3], ∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2].———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________. (2)已知f (x )的定义域是[-2,4],求f (x 2-3x )的定义域.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ](2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].[例2] 求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x. [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}. 法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1,即函数值域是{y |y ∈R ,y ≠1}.(2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(3)法一:(基本不等式法)当x >0时,x +4x≥2x ×4x=4, 当且仅当x =2时“=”成立;当x <0时,x +4x =-(-x -4x)≤-4,当且仅当x =-2时“=”成立.即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2.x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增,当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减. 故x =-2时,f (x )极大值=f (-2)=-4;x =2时,f (x )极小值=f (2)=4.即函数的值域为(-∞,-4]∪[4,+∞).若将本例(3)改为“y =x -4x”,如何求解?解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x的值域为R .———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.分离常数法:形如y =cx +dax +ba的函数可用此法求值域.单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域. (1)y =x 2+2x ,x ∈[0,3];(2)y =x 2-xx 2-x +1;(3)y =log 3x +log x 3-1.解:(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎢⎡⎭⎪⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t-1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1, 当且仅当t =1t即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎢⎡⎦⎥⎤-t +⎝ ⎛⎭⎪⎫-1t -1≤-2-1=-3.当且仅当-t =-1t 即log 3x =-1,x =13时,等号成立.综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] 已知函数f (x )=ax 2+bx .若至少存在一个正实数b ,使得函数f (x )的定义域与值域相同,求实数a 的值.[自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎥⎤-∞,-b a ∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎢⎡⎦⎥⎤0,-b a , 由于此时f (x )max =f ⎝ ⎛⎭⎪⎫-b 2a =b2-a ,故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a , 则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4.综上所述,a 的值为0或-4. ——————————————————— 由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ], ∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13, ∴a =2,b =4,a +b =6. 答案:61种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例](2013·福州模拟)函数f(x)=x+2x+1-1-x的定义域为________________.[解析] ∵要使函数f(x)=x+2x+1-1-x有意义,则⎩⎪⎨⎪⎧1-x≥0,x+1≠0,∴⎩⎪⎨⎪⎧x≤1,x≠-1,∴函数f(x)的定义域为{x|x≤1,且x≠-1}.[答案] (-∞,-1)∪(-1,1][易误辨析]1.本题若将函数f(x)的解析式化简为f(x)=(x+1)-1-x后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练]1.若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( ) A.⎣⎢⎡⎦⎥⎤12,5B.⎣⎢⎡⎦⎥⎤56,5C.⎣⎢⎡⎦⎥⎤2,103D.⎣⎢⎡⎦⎥⎤3,103解析:选C 令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数.又因为g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1fx 的值域为⎣⎢⎡⎦⎥⎤2,103.2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________. 解析:令2+x =t ,则x =(t -2)2(t ≥2). ∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0, 即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题(本大题共6小题,每小题5分,共30分)1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( ) A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <5解析:选D 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,2x >10-2x ,即52<x <5. 3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.(2013·南昌模拟)函数y = x x --lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}解析:选B 由⎩⎪⎨⎪⎧x x -,1x>0,得x ≥1.5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2, 2 ]解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2. 6.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g x ,gx -x ,x ≥g x ,则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B. )[0,+∞C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题(本大题共3小题,每小题5分,共15分) 7.函数y =16-x -x2的定义域是________.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2) 8.设x ≥2,则函数y =x +x +x +1的最小值是______.解析:y =x ++x ++1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t=t+4t +5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 答案:2839.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈,2].当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]三、解答题(本大题共3小题,每小题12分,共36分)10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间. ∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域. 解:依题意有x >0,l (x )=x -2+32=x 2-8x +25,所以y =x l x =xx 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝ ⎛⎭⎪⎫1x -4252+925,所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l x 的值域是⎝ ⎛⎦⎥⎤0,53. 12.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. ∵二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, ∴g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x解析:选A 当x >0时,1x有意义,因此函数y =1x的定义域为{x |x >0}.对于A ,函数f (x )=ln x 的定义域为{x |x >0}; 对于B ,函数f (x )=1x的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ; 对于D ,函数f (x )=e x的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.函数y =x +-x 2-3x +4的定义域为( )A .[-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)由f (x )=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],知f (x )∈⎣⎢⎡⎦⎥⎤13,3,令t =f (x )∈⎣⎢⎡⎦⎥⎤13,3 记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有: ①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a , ③当13<a <3时,g (x )的最小值h (a )=3-a 2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧hm =n 2,h n =m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m +n =6,这与m >n >3矛盾,故不存在满足题中条件的m ,n 的值.第三节 函数的单调性与最值[备考方向要明了][归纳·知识整合]1.函数的单调性 (1)单调函数的定义:(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 具有(严格的)单调性,这一区间叫做y =f (x )的单调区间.[探究] 1.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞),这种表示法对吗?提示:首先函数的单调区间只能用区间表示,不能用集合或不等式的形式表示;如果一个函数有多个单调区间应分别写,分开表示,不能用并集符号“∪”联结,也不能用“或”联结.2.函数f (x )在区间[a ,b ]上单调递增与函数f (x )的单调递增区间为[a ,b ]含义相同吗? 提示:含义不同.f (x )在区间[a ,b ]上单调递增并不能排除f (x )在其他区间上单调递增,而f (x )的单调递增区间为[a ,b ]意味着f (x )在其他区间上不可能单调递增.2.函数的最值 [探究] 3.函数的单调性、最大(小)值反映在其图象上有什么特征?提示:函数的单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.[自测·牛刀小试]1.(教材习题改编)函数f (x )=2x -1,x ∈[2,6],则下列说法正确的有( ) ①函数f (x )为减函数;②函数f (x )为增函数;③函数f (x )的最大值为2;④函数f (x )的最小值为25.A .①③B .①③④C .②③④D .②④解析:选B 易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )min =f (6)=25,f (x )max=f (2)=2.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.3.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C ∵函数f (x )为R 上的减函数,且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1), ∴⎪⎪⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0. ∴x ∈(-1,0)∪(0,1).4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为________;f (x )max =________.解析:∵函数f (x )=x 2-2x 的对称轴为x =1.∴函数f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为[1,4],单调递减区间为[-2,1). 又f (-2)=4+4=8,f (4)=16-8=8. ∴f (x )max =8. 答案:[1,4] 85.(教材习题改编)若函数f (x )=4x 2-kx -8在[5,20]上是单调递增函数,则实数k 的取值范围是________.解析:∵函数f (x )=4x 2-kx -8的对称轴为x =k8,又函数f (x )在[5,20]上为增函数, ∴k8≤5,即k ≤40. 答案:(-∞,40][例1] 已知函数f (x )= x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数. [自主解答] (1)由2f (1)=f (-1), 可得22-2a = 2+a ,得a =23. (2)证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)= x 21+1-ax 1- x 22+1+ax 2=x 21+1- x 22+1-a (x 1-x 2) =x 21-x 22x 21+1+ x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+ x 22+1-a . ∵0≤x 1< x 21+1,0<x 2< x 22+1, ∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0, ∴f (x )在[0,+∞)上单调递减. ——————————————————— 判断或证明函数的单调性的两种方法(1)利用定义的基本步骤是:。
2014届高考数学(浙江专用)一轮复习学案第二章函数2.1函数及其表示Word版含解析
第二章 函数 2.1 函数及其表示考纲要求1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用.(1)函数的定义域、值域.在函数y =f (x ),x ∈A 中,x 叫做自变量,__________叫做函数的定义域;与x 的值相对应的y 值叫做函数值,__________叫做函数的值域,显然,值域是集合B 的子集.(2)函数的三要素:__________、__________和__________. 3.函数的表示方法表示函数的常用方法有__________、__________和__________. 4.分段函数若函数在其定义域的不同子集上,因__________不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的__________,其值域等于各段函数的值域的__________,分段函数虽由几个部分组成,但它表示的是一个函数.1.设f ,g 都是从A 到A则f (g (3))等于( ). A .1 B .2C .3D .不存在2.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( ).A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x3.下列各函数中,表示同一个函数的是( ).A .f (x )=lg x 2,g (x )=2lg xB .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )=1+u1-u,g (v )=1+v1-vD .f (x )=x ,g (x )=x 2 4.(2012山东高考)函数f (x )=1ln (x +1)+4-x 2的定义域为( ).A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x 等于( ).A .log 32B .-2C .log 32或-2D .2一、函数的概念【例1-1】已知a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( ).A .-1B .0C .1D .±1【例1-2】设函数f (x )(x ∈N )表示x 除以2的余数,函数g (x )(x ∈N )表示x 除以3的余数,则对任意的x ∈N ,给出以下式子:①f (x )≠g (x );②g (2x )=2g (x ); ③f (2x )=0;④f (x )+f (x +3)=1.其中正确的式子编号是__________.(写出所有符合要求的式子编号). 【例1-3】以下给出的同组函数中,是否表示同一函数?为什么?(1)f 1:y =xx;f 2: y =1.(2)f 1:y =|x |;f 2:y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0.(3)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2,f 2:(4)f 1:y =2x ;f 2方法提炼1.要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.请做演练巩固提升2二、求函数的解析式【例2-1】若函数f (x )=xax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.【例2-2】若2f (x )-f (-x )=x +1,求f (x ).【例2-3】已知y =f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +x 2. (1)求x >0时,f (x )的解析式;(2)若关于x 的方程f (x )=2a 2+a 有三个不同的解,求a 的取值范围. 方法提炼函数解析式的求法:1.凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;2.待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;3.换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;4.方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).提醒:因为函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域,否则会导致错误.请做演练巩固提升1三、分段函数及其应用【例3】(2012江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为__________. 方法提炼解决分段函数问题的基本原则是分段进行,即自变量的取值范围属于哪一段范围,就用这一段的解析式来解决.请做演练巩固提升3忽略分段函数中自变量的取值范围而致误 【典例】设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (-2)=f (0),f (-1)=-3,求关于x 的方程f (x )=x 的解.错解:当x ≤0时,f (x )=x 2+bx +c . 因为f (-2)=f (0),f (-1)=-3,所以⎩⎪⎨⎪⎧ (-2)2-2b +c =c ,(-1)2-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2. 所以f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0.当x ≤0时,由f (x )=x 得x 2+2x -2=x 得x =-2或x =1.当x >0时,由f (x )=x 得x =2. 所以方程f (x )=x 的解为:-2,1,2.分析:(1)条件中f (-2),f (0),f (-1)所适合的解析式是f (x )=x 2+bx +c ,所以可构建方程组求出b ,c 的值.(2)在方程f (x )=x 中,f (x )用哪个解析式,要进行分类讨论.正解:当x ≤0时,f (x )=x 2+bx +c , 因为f (-2)=f (0),f (-1)=-3, ∴⎩⎪⎨⎪⎧ (-2)2-2b +c =c ,(-1)2-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2. ∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0.当x ≤0时,由f (x )=x 得,x 2+2x -2=x ,得x =-2或x =1.由于x =1>0,所以舍去. 当x >0时,由f (x )=x 得x =2, 所以方程f (x )=x 的解为-2,2. 答题指导:1.对于分段函数问题,是高考的热点.在解决分段函数问题时,要注意自变量的限制条件.2.就本题而言,当x ≤0时,由f (x )=x 得出两个x 值,但其中的x =1不符合要求,错解中没有舍去此值,因而导致了增解.分段函数问题分段求解,但一定注意各段的限制条件.1.已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=( ).A .lg 1xB .lg 1x -1C .lg 2x -1D .lg 1x -22.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=__________. 3.(2012陕西高考)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f (f (-4))=______.4.设g (x )是定义在R 上、以1为周期的函数.若函数f (x )=x +g (x )在区间[0,1]上的值域为[-2,5],则f (x )在区间[0,3]上的值域为__________.5.对a ,b ∈R ,记min{a ,b }=⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,函数f (x )=min ⎩⎨⎧⎭⎬⎫12x ,-|x -1|+2(x ∈R )的最大值为________.参考答案基础梳理自测 知识梳理1.数集 集合 任意 数x 都有唯一确定 数f (x ) 任意 元素x 都有唯一确定 元素y f :A →B f :A →B2.(1)x 的取值范围A 函数值的集合{f (x )|x ∈A } (2)定义域 值域 对应关系 3.解析法 列表法 图象法 4.对应法则 并集 并集 基础自测1.C 解析:由题中表格可知g (3)=1, ∴f (g (3))=f (1)=3.故选C.2.C 解析:依据函数的概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应,选项C 不符合.3.C 解析:选项A 和B 定义域不同,选项D 对应法则不同.4.B 解析:由⎩⎪⎨⎪⎧ln(x +1)≠0,x +1>0,4-x 2≥0得⎩⎪⎨⎪⎧x ≠0,x >-1,-2≤x ≤2,所以定义域为(-1,0)∪(0,2].5.A 解析:当x ≤1时,3x =2, ∴x =log 32;当x >1时,-x =2,∴x =-2(舍去). ∴x =log 32. 考点探究突破【例1-1】 C 解析:a =1,b =0, ∴a +b =1.【例1-2】 ③④ 解析:当x 是6的倍数时,可知f (x )=g (x )=0,所以①不正确;容易得到当x =2时,g (2x )=g (4)=1,而2g (x )=2g (2)=4,所以g (2x )≠2g (x ),故②错误;当x ∈N 时,2x 一定是偶数,所以f (2x )=0正确;当x ∈N 时,x 和x +3中必有一个为奇数、一个为偶数,所以f (x )和f (x +3)中有一个为0、一个为1,所以f (x )+f (x +3)=1正确.【例1-3】解:(1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R . (2)不同函数.f 1(x )的定义域为R ,f 2(x )的定义域为{x ∈R |x ≠0}. (3)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (4)同一函数.理由同(3).【例2-1】2x x +2 解析:由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得xax +b =x ,变形得x ⎝⎛⎭⎫1ax +b -1=0,解此方程得x =0或x =1-ba,又∵方程有唯一解, ∴1-b a=0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.【例2-2】解:∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1.即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +1,2f (-x )-f (x )=-x +1.解方程组消去f (-x ),得f (x )=x3+1.【例2-3】解:(1)任取x >0,则-x <0, ∴f (-x )=-2x +(-x )2=x 2-2x . ∵f (x )是奇函数,∴f (x )=-f (-x )=2x -x 2. 故x >0时,f (x )=2x -x 2.(2)∵方程f (x )=2a 2+a 有三个不同的解, ∴-1<2a 2+a <1.∴-1<a <12.【例3】-10 解析:因为f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,函数f (x )的周期为2,所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,根据f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,得到3a +2b =-2,又f (1)=f (-1),得到-a +1=b +22,即2a +b =0,结合上面的式子解得a =2,b =-4,所以a +3b =-10.演练巩固提升1.C 解析:令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1,故选C.2.2 解析:因为f (x )=lg x ,f (ab )=1,所以lg ab =1,所以f (a 2)+f (b 2)=lg a 2+lg b 2=lg a 2b 2=2lg ab =2.3.4 解析:∵f (-4)=⎝⎛⎭⎫12-4=16, ∴f (f (-4))=f (16)=16=4.4.[-2,7] 解析:设x 1∈[0,1],f (x 1)=x 1+g (x 1)∈[-2,5]. ∵函数g (x )是以1为周期的函数,∴当x 2∈[1,2]时,f (x 2)=f (x 1+1)=x 1+1+g (x 1)∈[-1,6]. 当x 3∈[2,3]时,f (x 3)=f (x 1+2)=x 1+2+g (x 1)∈[0,7]. 综上可知,当x ∈[0,3]时,f (x )∈[-2,7].5.1 解析:y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.。
[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第二篇 第2讲 函数的单调性与最值
第2讲函数的单调性与最值A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2013·长沙一模)下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x| D.y=2|x|解析对于C中函数,当x>0时,y=-lg x,故为(0,+∞)上的减函数,且y=-lg |x|为偶函数.答案 C2.(2011·辽宁)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x +4的解集为().A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析法一由x∈R,f(-1)=2,f′(x)>2,可设f(x)=4x+6,则由4x+6>2x +4,得x>-1,选B.法二设g(x)=f(x)-2x-4,则g(-1)=f(-1)-2×(-1)-4=0,g′(x)=f′(x)-2>0,g(x)在R上为增函数.由g(x)>0,即g(x)>g(-1).∴x>-1,选B.答案 B3.(2012·浙江)设a>0,b>0. ().A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a<bC.若2a-2a=2b-3b,则a>bD.若2a-2a=2b-3b,则a<b解析利用原命题与逆否命题的真假性相同求解.当0<a≤b时,显然2a≤2b,2a≤2b<3b,∴2a+2a<2b+3b,即2a+2a≠2b+3b成立.∴它的逆否命题:若2a +2a =2b +3b ,则a >b 成立,故A 正确,B 错误.当0<a ≤b 时,由2a ≤2b,2a <3b ,知2a -2a 与2b -3b 的大小关系不确定,∴C 不正确,同理D 不正确.答案 A4.(2013·苏州调研)设函数f (x )=⎩⎨⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g (x )=⎩⎨⎧ x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).故选B.答案 B二、填空题(每小题5分,共10分)5.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 解析 ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎨⎧ a 2-2a ,-2≤a <1,-1,a ≥1. 答案 ⎩⎨⎧a 2-2a ,-2≤a <1-1,a ≥1 6.奇函数f (x )(x ∈R )满足:f (-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x 2-4)f (x )<0的解集为________.解析 当x 2-4>0,即x <-2或x >2时,f (x )<0.由f (x )的图象知,x <-4或2<x <4;当x 2-4<0,即-2<x <2时,f (x )>0,则-2<x <0.故x ∈(-∞,-4)∪(-2,0)∪(2,4).答案(-∞,-4)∪(-2,0)∪(2,4)三、解答题(共25分)7.(12分)设函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明设x1<x2,∴Δx=x2-x1>0,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R上的增函数.(2)解f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m-2)<3=f(2).又由(1)的结论知f(x)是R上的增函数,∴3m2-m-2<2,∴-1<m<4 3.8.(13分)已知函数f(x)=x2+ax(x≠0,a∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解(1)当a=0时,f(x)=x2(x≠0)为偶函数;当a≠0时,f(-x)≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数.(2)设x2>x1≥2,则f(x1)-f(x2)=x21+ax1-x22-ax2=x1-x2x1x2[x1x2(x1+x2)-a],由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.要使f(x)在区间[2,+∞)上是增函数,只需f(x1)-f(x2)<0,即x1x2(x1+x2)-a>0恒成立,则a≤16.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ). A .2 B .3 C .6 D .9解析 f (1)=f (0+1)=f (0)+f (1)+2×0×1=f (0)+f (1),∴f (0)=0.f (0)=f (-1+1)=f (-1)+f (1)+2×(-1)×1=f (-1)+f (1)-2,∴f (-1)=0. f (-1)=f (-2+1)=f (-2)+f (1)+2×(-2)×1=f (-2)+f (1)-4,∴f (-2)=2. f (-2)=f (-3+1)=f (-3)+f (1)+2×(-3)×1=f (-3)+f (1)-6,∴f (-3)=6. 答案 C2.(2013·太原质检)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎨⎧ f (x ),f (x )≤K ,K ,f (x )>K ,取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间 为( ). A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞) 解析 f 12(x )=⎩⎪⎨⎪⎧ 2-|x |,2-|x |≤12,12,2-|x |>12⇔ f 12(x )=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12|x |,x ≤-1或x ≥1,12,-1<x <1.f 12(x )的图象如右图所示,因此f 12(x )的单调递增区间为(-∞,-1).答案 C二、填空题(每小题5分,共10分)3.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如右图,则不等式f (x )<0的解集是________.解析 法一 奇函数关于原点对称.∵当0<x <2时,f (x )>0⇒-2<x <0时,f (x )<0;当2<x ≤5时,f (x )<0⇒-5≤x <-2时,f (x )>0.∴综上,f (x )<0的解集为{x |-2<x <0或2<x ≤5}.法二 由于f (x )为在[-5,5]上的奇函数,通过数形结合可解决问题. 作图可得{x |-2<x <0或2<x ≤5}.答案 {x |-2<x <0或2<x ≤5}4.已知函数f (x )=⎩⎨⎧e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题: ①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2. 其中正确命题的序号是____________.解析 根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 答案 ①③④三、解答题(共25分)5.(12分)(2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.解 (1)当a >0,b >0时,因为a ·2x ,b ·3x 都单调递增,所以函数f (x )单调递增;当a <0,b <0时,因为a ·2x ,b ·3x 都单调递减,所以函数f (x )单调递减.(2)f (x +1)-f (x )=a ·2x +2b ·3x >0.(i)当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b , 解得x >log 32⎝ ⎛⎭⎪⎫-a 2b ;(ii)当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b , 解得x <log 32⎝ ⎛⎭⎪⎫-a 2b . 6.(13分)(2012·潍坊一模)已知函数f (x )在(-1,1)上有定义,f ⎝ ⎛⎭⎪⎫12=-1,当且仅当0<x <1时,f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.证明 (1)函数f (x )的定义域为(-1,1),再由f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy , 令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f ⎝ ⎛⎭⎪⎫x -x 1-x 2=f (0)=0, ∴f (x )=-f (-x ),即f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f ⎝ ⎛⎭⎪⎫x 2-x 11-x 1x 2. ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,即x 2-x 11-x 2x 1>0. 又∵(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0,∴x 2-x 1<1-x 2x 1,∴0<x 2-x 11-x 2x 1<1. 由题意,知f ⎝ ⎛⎭⎪⎫x 2-x 11-x 1x 2<0,即f (x 2)<f (x 1), ∴f (x )在(0,1)上单调递减,又f (x )为奇函数且f (0)=0,∴f (x )在(-1,1)上单调递减.。
2014年高考数学一轮复习第2章函数、导数及其应用12精品训练理(含解析)新人教B版
2014年高考数学一轮复习 第2章 函数、导数及其应用12精品训练 理(含解析)新人教B 版[命题报告·教师用书独具]1.(2012年高考辽宁卷)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 解析:根据函数的导数小于0的解集就是函数的单调减区间求解.由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B2.(2012年高考陕西卷)设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 解析:利用导数法求解.∵f (x )=2x +ln x (x >0),∴f ′(x )=-2x 2+1x.由f ′(x )=0解得x =2.当x ∈(0,2)时,f ′(x )<0,f (x )为减函数; 当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数. ∴x =2为f (x )的极小值点. 答案:D3.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:依题意得,当x ∈(-∞,c )时,f ′(x ) >0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ),选C.答案:C4.若f (x )=-12(x -2)2+b ln x 在(1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)解析:由题意可知f ′(x )=-(x -2)+b x≤0在(1,+∞)上恒成立,即b ≤x (x -2)在x ∈(1,+∞)上恒成立,由于φ(x )=x (x -2)=x 2-2x (x ∈(1,+∞))的值域是(-1,+∞),故只要b ≤-1即可.正确选项为C.答案:C5.已知函数的图象如图所示,则其函数解析式可能是( )A .f (x )=x 2-2ln|x | B .f (x )=x 2-ln|x | C .f (x )=|x |-2ln|x | D .f (x )=|x |-ln|x |解析:经分析知,函数正的极小值点的横坐标应小于1,对四个选项求导可知选B 项. 答案:B 二、填空题6.(2013年扬州检测)若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.解析:f ′(x )=3x 2+2x +m ,由f ′(x )≥0,得m ≥-3x 2-2x ,令g (x )=-3x 2-2x ,则g (x )=-3⎝⎛⎭⎪⎫x +132+13≤13.∴m ≥13.答案:⎣⎢⎡⎭⎪⎫13,+∞ 7.(2013年济宁模拟)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是________.解析:f ′(x )=3x 2-6b .当b ≤0时,f ′(x )≥0恒成立,函数f (x )无极值. 当b >0时,令3x 2-6b =0得x =±2b .由函数f (x )在(0,1)内有极小值,可得0<2b <1, ∴0<b <12.答案:⎝ ⎛⎭⎪⎫0,12 8.函数f (x )=x ln x 的单调递增区间是________.解析:函数f (x )的定义域为(0,+∞),∵f ′(x )=ln x +1由f ′(x )>0,得x >1e,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 答案:⎝ ⎛⎭⎪⎫1e ,+∞9.已知函数f (x )=-12x 2+4x -3ln x 在 [t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或者t <3<t +1,得0<t <1或者2<t <3.答案:(0,1)∪(2,3) 三、解答题10.已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x =1和x =-23处都取得极值.(1)求a ,b 的值;(2)求函数f (x )的单调递增区间.解析:(1)∵f (x )=x 3+ax 2+bx +c ,∴f ′(x )=3x 2+2ax +b .由题易知,⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫-23=0,f=0,解得⎩⎪⎨⎪⎧a =-12,b =-2.(2)由(1)知,f ′(x )=3x 2-x -2=(3x +2)(x -1), ∵当x ∈⎣⎢⎡⎭⎪⎫-1,-23时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-23,1时,f ′(x )<0;当x ∈(1,2]时,f ′(x )>0.∴f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-1,-23和(1,2]. 11.(2013年兰州调研)已知实数a >0,函数f (x )=ax (x -2)2(x ∈R )有极大值32. (1)求函数f (x )的单调区间; (2)求实数a 的值.解析:(1)f (x )=ax 3-4ax 2+4ax ,f ′(x )=3ax 2-8ax +4a .令f ′(x )=0,得3ax 2-8ax +4a =0. ∵a ≠0,∴3x 2-8x +4=0,∴x =23或x =2.∵a >0,∴当x ∈⎝ ⎛⎭⎪⎫-∞,23或x ∈(2,+∞)时,f ′(x )>0. ∴函数f (x )的单调递增区间为⎝⎛⎭⎪⎫-∞,23和(2,+∞);∵当x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0,∴函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫23,2. (2)∵当x ∈⎝⎛⎭⎪⎫-∞,23时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,∴f (x )在x =23时取得极大值,即a ·23⎝ ⎛⎭⎪⎫23-22=32.∴a =27.12.(能力提升)已知函数f (x )=1x+a ln(x +1).(1)当a =2时,求f (x )的单调区间和极值;(2)若f (x )在[2,4]上为单调函数,求实数a 的取值范围.解析:(1)由x ≠0且x +1>0得函数f (x )的定义域为(-1,0)∪(0,+∞),又f ′(x )=-1x 2+2x +1=2x 2-x -1x 2x +=x -x +x 2x+,由f ′(x )>0得-1<x <-12或x >1,由f ′(x )<0得-12<x <0或0<x <1,所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-1,-12和(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫-12,0和(0,1). f (x )和f ′(x )随x 的变化情况如下表:由表知f (x )的极大值为f ⎝ ⎛⎭⎪⎫-2=-2-2ln 2,极小值为f (1)=1+2ln 2.(2)f ′(x )=ax 2-x -1x 2x +,若f (x )在区间[2,4]上为增函数,则当x ∈[2,4]时,f ′(x )≥0恒成立,即ax 2-x -1x 2x +≥0,则a ≥x +1x 2,当x ∈[2,4]时,x +1x 2=1x +1x 2≤34,所以a ≥34.若f (x )在区间[2,4]上为减函数,则当x ∈[2,4]时,f ′(x )≤0恒成立,即ax 2-x -1x 2x +≤0,则a ≤x +1x 2, 当x ∈[2,4]时,x +1x 2=1x +1x 2≥516,所以a ≤516. 综上得a ≥34或a ≤516.[因材施教·学生备选练习]1.(2013年长春模拟)已知函数f (x )=13x 3+12ax 2+bx +c 在x 1处取得极大值,在x 2处取得极小值,且满足x 1∈(-1,1),x 2∈(2,4),则a +2b 的取值范围是( )A .(-11,-3)B .(-6,-4)C .(-11,3)D .(-16,-8)解析:依题意得,f ′(x )=x 2+ax +b ,x 1,x 2是方程f ′(x )=0的两个根,于是有⎩⎪⎨⎪⎧f -=-2+a -+b =1-a +b >0,f=12+a +b =1+a +b <0,f =22+2a +b =4+2a +b <0,f=42+4a +b =16+4a +b >0,如图,在坐标平面内画出该不等式组表示的平面区域,阴影部分表示的四边形的四个顶点的坐标分别为(-3,-4),(-1,-2),(-3,2),(-5,4),经验证得:当a =-5,b =4时,z =a +2b 取得最大值3;当a =-3,b =-4时,z =a +2b 取得最小值-11.于是z =a +2b 的取值范围是 (-11,3),故选C.答案:C2.(2013年广州模拟)已知函数f (x )=ln(2ax +1)+x 33-x 2-2ax (a ∈R ).(1)若x =2为f (x )的极值点,求实数a 的值;(2)若y =f (x )在[3,+∞)上为增函数,求实数a 的取值范围; (3)当a =-12时,方程f (1-x )=-x 33+b x有实根,求实数b 的最大值.解析:(1)f ′(x )=2a 2ax +1+x 2-2x -2a =x [2ax 2+-4a x -a 2+2ax +1.因为x =2为f (x )的极值点,所以f ′(2)=0, 即2a4a +1-2a =0,解得a =0. (2)因为函数f (x )在区间[3,+∞)上为增函数, 所以f ′(x )=x [2ax 2+-4a x -a 2+2ax +1≥0在区间[3,+∞)上恒成立.①当a =0时,f ′(x )=x (x -2)≥0在[3,+∞)上恒成立,所以f (x )在[3,+∞)上为增函数,故a =0符合题意.②当a ≠0时,由函数f (x )的定义域可知,必须有2ax +1>0对x ≥3恒成立,故只能a >0, 所以2ax 2+(1-4a )x -(4a 2+2)≥0在[3,+∞)上恒成立. 令函数g (x )=2ax 2+(1-4a )x -(4a 2+2),其对称轴为x =1-14a,因为a >0,所以1-14a<1,要使g (x )≥0在[3,+∞)上恒成立,只要g (3)≥0即可,即g (3)=-4a 2+6a +1≥0,所以3-134≤a ≤3+134.因为a >0,所以0<a ≤3+134.综上所述,a 的取值范围为⎣⎢⎡⎦⎥⎤0,3+134.(3)当a =-12时,方程f (1-x )=-x 33+b x可化为ln x -(1-x )2+(1-x )=b x.问题转化为b =x ln x -x (1-x )2+x (1-x )=x ln x +x 2-x 3在(0,+∞)上有解,即求函数g (x )=x ln x +x 2-x 3的值域.因为函数g (x )=x (ln x +x -x 2),令函数h (x )=ln x +x -x 2(x >0), 则h ′(x )=1x+1-2x =x +-xx,所以当0<x <1时,h ′(x )>0,从而函数h (x )在(0,1)上为增函数,当x >1时,h ′(x )<0,从而函数h (x )在(1,+∞)上为减函数,因此h (x )≤h (1)=0.而x >0,所以b =x ·h (x )≤0, 因此当x =1时,b 取得最大值0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届高考数学(理)一轮复习单元测试第二章函数一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1 .(2013江西理)函数ln (1-x )的定义域为( )A .(0,1) B.[0,1) C.(0,1] D.[0,1]2、【北京市通州区2013届高三上学期期末理】设函数()22,0log ,0,x x f x x x ⎧≤=⎨>⎩则()1f f -=⎡⎤⎣⎦(A )2(B )(C )2-(D )1-3、【贵州省六校联盟2013届高三第一次联考理】设0.53a =,3log 2b =,2cos =c ,则( ) A .c b a << B .c a b << C .a b c << D .b c a << 4、(2013广东理)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .5、(2013天津理)函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 46、设()4x f x e x =+-,则函数()f x 的零点位于区间( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7、【山东省枣庄三中2013届高三上学期1月阶段测试理】已知1()x f x a =,2()a f x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是A B C D9、(2013新课标I 卷理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]10、设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当)02(,-∈x 时,x x f 2)(=,则)2011()2012(f f -的值为( )A.21-B.21C. 2D.2-11.【云南省昆明三中2013届高三高考适应性月考(三)理】定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,则a 的取值范围是 ( )A .)22,0( B .)33,0( C .)55,0( D .)66,0( 12.【云南师大附中2013届高三高考适应性月考卷(四)理】已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-,且在区间[]0,2上是增函数,若方程()(0)f x m m =>,在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234x x x x +++=A .-12B .-8C .-4D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13、(2013年高考(江苏卷))已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ .14、【河北省衡水中学2013届高三第一次调研考试理】已知()f x 在R 上是奇函数,且)()2(x f x f -=+.2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则____ 15.(2013上海理)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,2()9a f x x x=++7,若()1f x a ≥+,对一切x ≥0恒成立,则a 的取值范围为___16.已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2013届长宁、嘉定区二模)设函数)10()1()(≠>--=-a a a k a x f x x 且是定义域为R 的奇函数.(1)求k 的值;(2)(理)若23)1(=f ,且)(2)(22x f m a a xg xx ⋅-+=-在),1[∞+上的最小值为2-,求m 的值.18.(本小题满分12分) (2013届普陀区二模)已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F += (1)求函数)(x F 的定义域D 及其零点;(2)若关于x 的方程0)(=-m x F 在区间)1,0[内仅有一解,求实数m 的取值范围.19.(本小题满分12分) (2013安徽理)设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求长度的最小值。
20、(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度()f x 与时间x (小时)的关系可近似地表示为:620363()1 366x x x f x x x ⎧--≤<⎪⎪+=⎨⎪-≤≤⎪⎩,只有当污染河道水中碱的浓度不低于13时,才能对污染产生有效的抑制作用.(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长? (2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到13时,马上再投放1个单位的固体碱,设第二次投放后......水中碱浓度为()g x ,求()g x 的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加..)21.(本小题满分12分) 【河北省衡水中学2013届高三第一次调研考试理】(本题12分)已知偶函数)(x f y =满足:当2≥x 时,R a x a x x f ∈--=),)(2()(,当)2,0[∈x 时,)2()(x x x f -= (1) 求当2-≤x 时,)(x f 的表达式;(2) 试讨论:当实数m a ,满足什么条件时,函数m x f x g -=)()(有4个零点,且这4个零点从小到大依次构成等差数列.22.(12分) 已知集合{}121212(,)0,0,D x x x x x x k=>>+=.其中k为正常数.(I )设12u x x =,求u 的取值范围.(II )求证:当1k ≥时不等式21212112()()()2k x x x x k--≤-对任意12(,)x x D ∈恒成立;(III )求使不等式21212112()()()2k x x x x k--≥-对任意12(,)x x D ∈恒成立的k 的范围.参考答案一、选择题 1、B 2、【答案】D【解析】11(1)22f --==,所以()2111()log 122f f f -===-⎡⎤⎣⎦,选D. 3、【答案】A【解析】0.531a =>,30log 21<<,cos 2cos 02c π=<=,所以c b a <<,选A.4、C5、6、C7、B【解析】A 中1()x f x a =单调递增,所以1a >,而幂函数2()a f x x =递减,0a <,所以不正确。
B 中3()log a f x x =单调递增,所以1a >,而幂函数2()a f x x =递增,,所以正确。
C 中1()x f x a =单调递增,所以1a >,而3()log a f x x =递减,01a <<,所以不正确。
D 中1()x f x a =单调递减,所以01a <<,而幂函数2()a f x x =递增,0a >,所以不正确。
所以正确的是B.8、A9、【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax>⎧⎨+≥⎩, 由202x x x ax ≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A,B,当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D. 10、【答案】A【解析】,f(0)=0,f (1)=f (-1)=21,由题可知函数的周期为4 故)2011()2012(f f -=11(0)(1)022f f ---=-=-。
11、【答案】B【解析】因为函数是偶函数,所以(2)()(1)()(1)f x f x f f x f -+=--=-,即(2)(2)f x f x +=-+,所以函数()f x 关于直线2x =对称,又(2)(2)(2)f x f x f x +=-+=-,所以(4)()f x f x +=,即函数的周期是 4.由()log (||1)0a y f x x =-+=得,()log (||1)a f x x =+,令()log (||1)a y g x x ==+,当0x >时,()log (||1)log (1)a a g x x x =+=+,过定点(0,1).由图象可知当1a >时,不成立.所以01a <<.因为(2)2f =-,所以要使函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,则有(2)2g >-,即2(2)log 32log a a g a -=>-=,所以23a -<,即213a <,所以0a <<,即a 的取值范围是,选B,如图.12、【答案】B【解析】因为()f x 是定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,由()f x 为奇函数,所以函数图象关于直线2x =-对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为()f x 在区间[0,2]上是增函数,所以()f x 在区间[−2,0]上也是增函数. 如图2所示,那么方程()f x =m (m >0)在区间[−8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4,由对称性知1262x x +=-,即x 1+x 2 = −12,同理:x 3+x 4 = 4,所以x 1+x 2+x 3+x 4 = −12+4 = −8.选B.二、填空题13、【答案】()()5,05,-+∞【解析】因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞ 14、【答案】-2【解析】由)()2(x f x f -=+,得(4)()f x f x +=,所以函数()f x 的周期是 4.所以(7)(1)(1)2f f f =-=-=-15、8(,]7-∞-16. 【答案】(4,2)--【解析】根据()2201xg x x =-<⇒<,由于题目中第一个条件的限制,导致()f x 在1x ≥是必须是()0f x <,当0m =时,()0f x =,不能做到()f x 在1x ≥时,()0f x <,所以舍去,因此()f x 作为二次函数开口只能向下,故0m <,且此时2个根为122,3x m x m ==--,为保证条件成立,只需121212314x m m x m m ⎧=<<⎧⎪⎪⇒⎨⎨=--<⎪⎪⎩>-⎩,和大前提0m <取交集结果为40m -<<,又由于条件2的限制,可分析得出(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内()g x 有取得正数的可能,即4-应该比12,x x 两个根中较小的来提大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍去.当1m =-时,两个根同为24->-,也舍去,当(4,1)m ∈--时,242m m <-⇒<-,综上所述(4,2)m ∈-- 三、解答题17.解:(1)由题意,对任意R ∈x ,)()(x f x f -=-, 即x x x xa k a a k a---+-=--)1()1(,即0)())(1(=+-+---x x xxa a aa k ,0))(2(=+--x x a a k ,因为x 为任意实数,所以2=k .(2)由(1)xx a a x f --=)(,因为23)1(=f ,所以231=-a a , 解得2=a . 故xxx f --=22)(,)22(222)(22x x x xm x g ----+=,令x x t --=22,则222222+=+-t x x ,由),1[∞+∈x ,得⎪⎭⎫⎢⎣⎡∞+∈,23t , 所以2222)(22)()(m m t mt t t h x g -+-=+-==,⎪⎭⎫⎢⎣⎡∞+∈,23t 当23<m 时,)(t h 在⎪⎭⎫⎢⎣⎡∞+,23上是增函数,则223-=⎪⎭⎫⎝⎛h ,22349-=+-m ,解得1225=m (舍去).当23≥m 时,则2)(-=m f ,222-=-m ,解得2=m ,或2-=m (舍去).综上,m 的值是2.18、解:(1))()(2)(x g x f x F +=xx a a -++=11log )1(log 2(0>a 且1≠a )⎩⎨⎧>->+0101x x ,解得11<<-x ,所以函数)(x F 的定义域为)1,1(-令)(x F 0=,则011log )1(log 2=-++xx aa ……(*)方程变为 )1(log )1(log 2x x a a -=+,x x -=+1)1(2,即032=+x x解得01=x ,32-=x ……4分经检验3-=x 是(*)的增根,所以方程(*)的解为0=x 所以函数)(x F 的零点为0. (2)xx m aa -++=11log )1(log 2(10<≤x ) =m )4141(log 112log 2--+-=-++xx x x x a a4141--+-=xx a m 设]1,0(1∈=-t x ,则函数tt y 4+=在区间]1,0(上是减函数 当1=t 时,此时1=x ,5min =y ,所以1≥m a ①若1>a ,则0≥m ,方程有解;②若10<<a ,则0≤m ,方程有解19、【答案】 (Ⅰ) 21aa+. (Ⅱ)21 【解析】 (Ⅰ))1,0(0])1([)(22a a x x a a x x f +∈⇒>+-=.所以区间长度为21a a+. (Ⅱ) 若211111111-1),1,0(2=+≤+=+=+≤≤∈aa aal k a k k 时,且 k a k a l a +≤≤=1-121,1满足,取最小值时且当.21的最小值为l .20、⑴由题意知03612 633x x x ≤<⎧⎪⎨--≥⎪+⎩或3611 63x x ≤≤⎧⎪⎨-≥⎪⎩解得13x ≤<或34x ≤≤,即14x ≤≤能够维持有效的抑制作用的时间:413-=小时⑵由⑴知,4x =时第二次投入1单位固体碱,显然()g x 的定义域为410x ≤≤ 当46x ≤≤时,第一次投放1单位固体碱还有残留,故()g x =1 6x ⎛⎫- ⎪⎝⎭+(4)626(4)3x x ⎡⎤---⎢⎥-+⎣⎦=116331x x ---;当610x <≤时,第一次投放1单位固体碱已无残留,故 当67x <≤时, (4)6()26(4)3x g x x -=---+ =86361x x ---; 当710x <≤时, 45()1636x xg x -=-=- ; 所以1164633186()673615 71036xx x xg x x x xx ⎧--≤≤⎪-⎪⎪=--<≤⎨-⎪⎪-<≤⎪⎩当46x ≤≤时,116()331x g x x =---=101610()3313x x --+≤--=103-当且仅当1631x x -=-时取“=”,即1[4,6]x =+(函数值与自变量值各1分) 当610x <≤时,第一次投放1单位固体碱已无残留,当67x <≤时, 2261(5)(7)()0(1)66(1)x x g x x x +-'=-=>--,所以()g x 为增函数;当710x <≤时,()g x 为减函数;故 max ()g x =1(7)2g =,又101(032--=>,所以当1x =+时,水中碱浓度的最大值为103- 答:第一次投放1单位固体碱能够维持有效的抑制作用的时间为3小时;第一次投放1+小时后,水中碱浓度的达到最大值为103-21、解:(1)设,2-≤x 则2≥-x ,))(2()(x a x x f +--=-∴又 )(x f y =偶函数)()(x f x f -=∴所以,)2)(()(--+=x a x x f(2)m x f =)(零点4321,,,x x x x ,)(x f y =与m y =交点有4个且均匀分布(Ⅰ)2≤a 时, ⎪⎩⎪⎨⎧=++=-=+0223231221x x x x x x x 得23,21,21,23,3432121==-=-==x x x x x x ,所以2≤a 时,43=m (Ⅱ)42<<a 且43=m 时 ,43)12(2<-a , 2323+<<+-a所以 232+<<a 时,43=m(Ⅲ)4=a 时m=1时 符合题意(IV )4>a 时,1>m ,12203)42)(242(,4222243242343+-=+--+=+=⇒⎪⎩⎪⎨⎧-=+=+=+a a a a a m a x xx x x x ax x 4364a x +=,m 1612203)42)(242(,4222243242343+-=+--+=+=⇒⎪⎩⎪⎨⎧-=+=+=+a a a a a m a x x x x x x a x x 此时2)12(1-<<am 所以 3741037410-<+>a or a (舍)4>a 且37410+>a 时,16122032+-=a a m 时存在 综上: ①32+<a 时,43=m ②4=a 时,1=m ③37410+>a 时,16122032+-=a a m 符合题意 22、【答案】(I )221212()24x x k x x +≤=,当且仅当122k x x ==时等号成立, 故u 的取值范围为2(0,]4k . (II ) 变形,得121212121221111()()x x x x x x x x x x x x --=+-- 222212121212121211122x x k k x x x x u x x x x x x u+--=+-=-+=-+. 由204k u <≤,又1k ≥,210k -≥,∴21()2k f u u u -=-+在2(0,]4k 上是增函数, 所以121211()()x x x x --=212k u u --+22222214222()4424k k k k k k k -≤-+=-+=-. 即当1k ≥时不等式21212112()()()2k x x x x k--≤-成立. (III )令121211()()x x x x --=212()k u f u u -++=,则)4()22(22k f k k =-, 即求使2()()4k f u f ≥对2(0,]4k u ∈恒成立的k 的范围. 由(II )知,要使21212112()()()2k x x x x k--≥-对任意12(,)x x D ∈恒成立,必有01k <<,因此210k ->,∴函数21()2k f u u u -=++在上递减,在)+∞上递增,要使函数()f u 在2(0,]4k 上恒有2()()4k f u f ≥,必有24k ≤, 即4216160k k +-≤,解得0k <≤.。