江苏省徐州市2019-2020学年高一下学期期中数学试题

合集下载

江苏省徐州市高一数学下学期期末试卷(含解析)-人教版高一全册数学试题

江苏省徐州市高一数学下学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市高一(下)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4=.3.函数f(x)=(sinx﹣cosx)2的最小正周期为.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为.6.根据如图所示的伪代码,可知输出的结果S为.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于.9.已知变量x,y满足,则目标函数z=2x+y的最大值是.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是.11.在△ABC中,若acosB=bcosA,则△ABC的形状为.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是.13.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是.14.已知正实数x,y满足,则xy的取值X围为.二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.2015-2016学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为\frac{1}{2} .【考点】直线的斜率.【分析】直接利用直线的斜率公式可得.【解答】解:∵过M(﹣1,2),N(3,4)两点,∴直线的斜率为: =,故答案为:.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4= 16 .【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式即可得出.【解答】解:由已知可得:S4===16.故答案为:16.3.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n= 60 .【考点】分层抽样方法.【分析】根据分层抽样原理,利用样本容量与频率、频数的关系,即可求出样本容量n.【解答】解:根据分层抽样原理,得;样本中A种型号产品有12件,对应的频率为:=,所以样本容量为:n==60.故答案为:60.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为\frac{1}{12} .【考点】列举法计算基本事件数及事件发生的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为: =.故答案为:.6.根据如图所示的伪代码,可知输出的结果S为56 .【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用,一直求出不满足循环条件时S的值.【解答】解:模拟执行程序,可得S=0,I=0,满足条件I<6,执行循环,I=2,S=4满足条件I<6,执行循环,I=4,S=20满足条件I<6,执行循环,I=6,S=56不满足条件I<6,退出循环,输出S的值为56.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是\frac{8}{5} .【考点】茎叶图.【分析】由已知中的茎叶图,我们可以得到七位评委为某班的小品打出的分数,及去掉一个最高分和一个最低分后的数据,代入平均数公式及方差公式,即可得到所剩数据的平均数和方差.【解答】解:由已知的茎叶图七位评委为某班的小品打出的分数为:79,84,84,84,86,87,93去掉一个最高分93和一个最低分79后,所剩数据的平均数==85方差S2= [(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=,故选:.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于126 .【考点】等比数列的前n项和.【分析】由题意可知,数列{a n}是以2为首项,以2为公比的等比数列,然后直接利用等比数列的前n项和公式得答案.【解答】解:由a n+1﹣2a n=0(n∈N*),得,又a1=2,∴数列{a n}是以2为首项,以2为公比的等比数列,则.9.已知变量x,y满足,则目标函数z=2x+y的最大值是13 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(5,3),代入目标函数z=2x+y得z=2×5+3=13.即目标函数z=2x+y的最大值为13.故答案为:13.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是\frac{4}{9π}.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.【解答】解:如图所示:∵S正=1,S圆=π()2=,∴P==.则油(油滴的大小忽略不计)正好落人孔中的概率是故答案为:.11.在△ABC中,若acosB=bcosA,则△ABC的形状为等腰三角形.【考点】三角形的形状判断.【分析】利用正弦定理,将等式两端的“边”转化为“边所对角的正弦”,再利用两角和与差的正弦即可.【解答】解:在△ABC中,∵acosB=bcosA,∴由正弦定理得:sinAcosB=sinBcosA,∴sin(A﹣B)=0,∴A﹣B=0,∴A=B.∴△ABC的形状为等腰三角形.故答案为:等腰三角形.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1 .【考点】直线的一般式方程与直线的平行关系.【分析】两直线的斜率都存在,由平行条件列出方程,求出a即可.【解答】解:由题意知,两直线的斜率都存在,由l1与l2平行得﹣=∴a=﹣1 a=2,当a=2时,两直线重合.∴a=﹣1故答案为:﹣113.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是(﹣∞,﹣\sqrt{3}]∪[\sqrt{3},+∞).【考点】等差数列的通项公式.【分析】由已知条件利用等差数列前n项和公式得+10a1d+15=0,从而d=﹣﹣a1,由此利用均值定理能求出实数d的取值X围.【解答】解:∵等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,∴+15=0,∴+10a1d+15=0,∴d=﹣﹣a1,当a1>0时,d=﹣﹣a1≤﹣2=﹣,当a1<0时,d=﹣﹣a1≥2=,∴实数d的取值X围是(﹣∞,﹣]∪[,+∞).故答案为:(﹣∞,﹣]∪[,+∞).14.已知正实数x,y满足,则xy的取值X围为[1,\frac{8}{3}].【考点】基本不等式在最值问题中的应用.【分析】设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.【解答】解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值X围是[1,]故答案为:[1,]二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.【考点】直线的倾斜角;两角和与差的余弦函数.【分析】(1)求出tanA,根据二倍角公式,求出tan2A的值即可;(2)根据同角的三角函数的关系分别求出sinA和cosA,代入两角差的余弦公式计算即可.【解答】解:(1)由4x﹣3y+12=0,得:k=,则tanA=,∴tan2A==﹣;(2)由,以及0<A<π,得:sinA=,cosA=,cos(﹣A)=cos cosA+sin sinA=×+×=.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{a n}的公差为d,由a2=4,S5=30,可得,联立解出即可得出.(2)==,利用“裂项求和”方法、数列的单调性即可得出.【解答】(1)解:设等差数列{a n}的公差为d,∵a2=4,S5=30,∴,解得a1=d=2.∴a n=2+2(n﹣1)=2n.(2)证明: ==,∴数列{}的前n项和为T n=+…+=,∴T1≤T n,∴≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.【考点】二次函数的性质;函数零点的判定定理.【分析】(1)由k的值,得到f(x)解析式,由此得到大于0的解集.(2)由f(x)>0恒成立,得到判别式小于0恒成立.(3)由两个不同的零点,得到判别式△>0,由两点均大于,得到对称轴大于,和f()>0.【解答】解:(1)若k=时,f(x)=x2﹣x.由f(x)>0,得x2﹣x>0,即x(x﹣)>0∴不等式f(x)>0的解集为{x|x<0或x>}(2)∵f(x)>0对任意x∈R恒成立,则△=(﹣k)2﹣4(2k﹣3)<0,即k2﹣8k+12<0,解得k的取值X围是2<k<6.(3)若函数f(x)两个不同的零点均大于,则有,解得,∴实数k的取值X围是(6,).19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【分析】(1)求出AN,AM,即可建立函数关系;(i)设AN=x米,先求出AM的长,即可表示出矩形AMPN的面积;(ii)由∠BMC=θ(rad),可以依次表示出AM与AN的长度,即可表示出S关于θ的函数表达式;(2)选择(ii)中的函数关系式,化简,由基本不等式即可求出最值.【解答】解:(1)(i)∵Rt△CDN~Rt△MBC,∴=,∴,∴BM=,由于,则AM=∴S=AN•AM=,(x>2)(ii)在Rt△MBC中,tanθ=,∴MB=,∴AM=3+,在Rt△CDN中,tanθ=,∴DN=3tanθ,∴AN=2+3tanθ,∴S=AM•AN=(3+)•(2+3tanθ),其中0<θ<;(2)选择(ii)中关系式∵S=AM•AN=(3+)•(2+3tanθ),(0<θ<);∴S=12+9tanθ+≥12+2=24,当且仅当9tanθ=,即tanθ=时,取等号,此时AN=4答:当AN的长度为4米时,矩形AMPN的面积最小,最小值为24m2.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.【考点】数列的求和;等差关系的确定.【分析】(1)由a n+1+a n=4n﹣3,n∈N*,可得a2+a1=1,a3+a2=5,相减可得a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,可得2d=4,解得d.(2)由a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,可得a n+2﹣a n=4,a2=4.可得数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.对n分类讨论利用等差数列的求和公式即可得出.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10,求出其最大值即可得出.当n为偶数时,同理可得.【解答】解:(1)∵a n+1+a n=4n﹣3,n∈N*,∴a2+a1=1,a3+a2=5,∴a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,则2d=4,解得d=2.∴2a1+2=1,解得a1=﹣.(2)∵a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,∴a n+2﹣a n=4,a2=4.∴数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.∴a2k﹣1=﹣3+4(k﹣1)=4k﹣7;a2k=4+4(k﹣1)=4k.∴a n=,∴当n为偶数时,S n=(a1+a2)+…+(a n﹣1+a n)=﹣3+9+…+(4n﹣3)==.当n为奇数时,S n=S n+1﹣a n+1=﹣2(n+1)=.∴S n=.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6,当n=1或3时,[f(n)]max=2,∴﹣a1≥2,解得a1≥2或a1≤﹣1.当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1,由≥5成立,a n+1+a n=4n﹣3,可得: +3a1≥﹣4n2+16n﹣12,令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4,当n=2时,[f(n)]max=4,∴+3a1≥4,解得a1≥1或a1≤﹣4.综上所述可得:a1的取值X围是(﹣∞,﹣4]∪[2,+∞).。

江苏省徐州市2023-2024学年高一下学期期中学业水平质量监测数学试题

江苏省徐州市2023-2024学年高一下学期期中学业水平质量监测数学试题

江苏省徐州市2023-2024学年高一下学期期中学业水平质量监测数学试题一、单选题1.cos14cos16cos76sin16︒︒-︒︒=( )A .12B C .12- D .2.已知(1,2),5a a b =⋅=rr r ,若(2)b a b ⊥-r r r ,则向量a r 与向量b r 的夹角为( )A .π6B .π4C .π3D .3π43.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .向量(),p a c b =+r ,(),q b a c a =--r.若//p q r r,则角C 的大小为( )A .π6B .π3C .π2D .2π34.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =u u u r( )A .3144AB AD +u u ur u u u rB .1344AB AD +u u ur u u u rC .12AB AD +u u ur u u u rD .3142AB AD +u u ur u u u r5.函数1()sin 23f x x ⎛⎫=+ ⎪⎝⎭在区间(0,2π)内的零点个数为( )A .2B .3C .4D .56.已知π1cos 63α⎛⎫-=- ⎪⎝⎭,则πsin 26α⎛⎫+= ⎪⎝⎭( )A .79- B .79 C .23-D .237.在ABC V 中,若1cos21cos2cos cos C Bc B b C--=⋅⋅,则ABC V 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,已知正方形ABCD 的边长为2,若动点P 在以AB 为直径的半圆上(正方形ABCD内部,含边界),则PC PD ⋅u u u r u u u r的取值范围为( )A .()0,4B .[]0,4C .()0,2D .[]0,2二、多选题9.下列关于平面向量的说法中正确的是( )A .O 为点A ,B ,C 所在直线外一点,且0.4OC xOA OB =+u u u r u u u r u u u r,则0.6x =B .已知非零向量(1,2),(1,1)a b ==r r,且a r 与a b λ+r r 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .已知向量(1,AB AC ==-u u u r u u u r ,则AB u u u r在AC u u u r 上的投影向量的坐标为D .若点G 为ABC V 中线的交点,则0GA GB GC ++=u u u r u u u r u u u r r10.已知tan 2tan αβ=,则( )A .π,0,2αβ⎛⎫∃∈ ⎪⎝⎭,使得2αβ=B .若2sin cos 5αβ=,则()1sin 5αβ-=C .若2sin cos 5αβ=,则()7cos 2225αβ+=-D .若α,π0,2β⎛⎫∈ ⎪⎝⎭,则()tan αβ-11.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC V 的面积,且2,a AB AC =⋅=u u u r u u u r,下列选项正确的是( )A .π6A =B.若b =ABC V 只有一解C .若ABC V 为锐角三角形,则b的取值范围是 D .若D 为BC 边上的中点,则AD的最大值为2三、填空题12.已知πsin 2sin(π)2αα⎛⎫+=- ⎪⎝⎭,则πtan 4α⎛⎫-= ⎪⎝⎭.13.圣·索菲亚教堂是哈尔滨的标志性建筑,其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美.为了估算圣·索菲亚教堂的高度,某人在教堂的正东方向找到一座建筑物AB ,高约为36m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得建筑物顶A 、教堂顶C 的仰角分别是45︒和60︒,在建筑物顶A 处测得教堂顶C 的仰角为15︒,则可估算圣·索菲亚教堂的高度CD 约为.14.ABC V 中,角A ,B ,C 对边分别为a ,b ,c ,点P 是ABC V 所在平面内的动点,满足(0)||||λλ⎛⎫=++> ⎪ ⎪⎝⎭u u u r u u u ru u u r u u u r u u u r u u u r BC BA OP OB BC BA .射线BP 与边AC 交于点D .若sin sin sin sin a A c C b B a C +-=,2BD =,则角B 的值为 ,ABC V 面积的最小值为 .四、解答题15.如图所示,在ABCD Y 中,已知=3AB ,=2AD ,=120BAD ∠︒. (1)求AC u u u v的模;(2)若13AE AB =u u u v u u u v ,12BF BC =u u u v u u u v ,求AF DE ⋅u u u v u u u v的值.16.已知向量2sin cos sin ,cos ,sin cos 222222x x x x x x m n ⎛⎫⎫⎛⎫=+=-⎪ ⎪ ⎪⎭⎝⎭⎝⎭r r ,且函数()f x m n =⋅r r .(1)若π0,2x ⎡⎤∈⎢⎥⎣⎦,且2()3f x =,求sin x 的值;(2)若将函数()f x 的图像上的点的纵坐标不变,横坐标缩小为原来的12,再将所得图像向左平移π4个单位,得到()g x 的图像,求函数()g x 单调增区间.17.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos b A B =. (1)求A ; (2)求2b ca+的最大值. 18.在直角梯形ABCD 中,已知AB DC P ,AD AB ⊥,1CD =,2AD =,3AB =,动点E 、F 分别在线段BC 和DC 上,AE 和BD 交于点M ,且B E B Cλ=u u u r u u ur ,()1DF DC λ=-u u u r u u u r ,R λ∈.(1)当0AE BC ⋅=u u u r u u u r时,求λ的值; (2)当23λ=时,求DM MB 的值; (3)求12AF AE +u u u r u u u r 的取值范围.19.定义函数()sin cos f x m x n x =+的“源向量”为(),OM m n =u u u u r ,非零向量(),OM m n =u u u u r的“伴随函数”为()sin cos f x m x n x =+,其中O 为坐标原点.(1)若向量(OM =u u u u r的“伴随函数”为()f x ,求()f x 在[]0,πx ∈的值域;(2)若函数()()g x x α=+的“源向量”为OM u u u u r,且以O 为圆心,OM u u u u r 为半径的圆内切于正ABC V (顶点C 恰好在y 轴的正半轴上),求证:222MA MB MC ++u u u r u u u r u u u u r 为定值;(3)在ABC V 中,角,,A B C 的对边分别为,,a b c ,若函数()h x 的“源向量”为()0,1OM =u u u u r,且已知()38,5a h A ==,求AB AC AB AC +-⋅u u u r u u u r u u u r u u u r 的取值范围.。

2023-2024学年江苏省徐州市第一中学高二上学期期中数学试题

2023-2024学年江苏省徐州市第一中学高二上学期期中数学试题

2023-2024学年江苏省徐州市第一中学高二上学期期中数学试题1.直线x+√3y+1=0的倾斜角是A.30∘B.60∘C.120∘D.150∘2.通过椭圆x24+y23=1的焦点且垂直于x轴的直线l被椭圆截得的弦长等于()A.2√3B.3 C.√3D.63.双曲线x24−y2=1的焦点到渐近线的距离为()A. 1 B.√2C. 2 D. 34.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30∘的直线交C于A,B两点,则|AB|=A.√303B.6C.12D.7√35.许多建筑融入了数学元素,更具神韵,数学赋予了建筑活力,数学的美也被建筑表现得淋漓尽致.已知下面左图是单叶双曲面(由双曲线绕虚轴旋转形成立体图形)型建筑,右图是其中截面最细附近处的部分图象.上、下底面与地面平行.现测得下底直径AB=20√10米,上底直径CD=20√2米,AB与CD间的距离为80米,与上下底面等距离的G处的直径等于CD,则最细部分处的直径为()A.10米B.20米C.10√3米D.10√5米6.若圆x2+y2−2x−6y+1=0上恰有三点到直线y=kx的距离为2,则k的值为A.12或2 B.34或43C. 2 D.437.已知⊙M:x2+y2−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作⊙M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为()A.2x−y−1=0B.2x+y−1=0C.2x−y+1=0D.2x+y+1=08.已知F(−c,0)是椭圆x2a2+y2b2=1(a>b>0)的左焦点,直线y=x+c与该椭圆相交于M,N两点,O是坐标原点,P是线段OF的中点,线段MN的中垂线与x轴的交点在线段PF 上.该椭圆离心率的取值范围是()A.[√63,1)B.[√22,1)C.(0,√63]D.[√22,√63]9.已知a为实数,若三条直线ax+2y+8=0,4x+3y−10=0和2x−y−10=0不能围成三角形,则a的值为()A.83B.1 C.−1D.−410.若方程x22−t −y21−t=1所表示的曲线为C,则下列命题正确的是()A.若曲线C为双曲线,则t<1或t>2B.若曲线C为椭圆,则1<t<2C.曲线C可能是圆D.若曲线C为焦点在x轴上的椭圆,则1<t<3211.如图,已知椭圆x24+y22=1的左、右顶点分别是A1,A2,上顶点为B1,在椭圆上任取一点C,连结A1C交直线x=2于点P,连结A2C交OP于点M(O是坐标原点),则下列结论正确的是()A.k CA1k CA2为定值B.k A1P=12k OPC.OP⟂A2C D.MB1的最大值为√612.已知抛物线C:y2=4x,过点P(2,0)的直线l交C于A,B两点,O为坐标原点,则下列说法正确的有()A.若直线l的斜率为2,则ΔOAB的面积为12B.|AB|的最小值为4√2C.1|PA|+1|PB|=√24D.若M(−2,0),则|MA||MB|=|PA||PB|13.已知S n为等差数列{a n}的前n项和,且满足a2=4,S4=22,则S8=_______.14.已知直线y=k(x+1)截圆(x−1)2+(y−1)2=4所得两段圆弧的弧长之比为1:2,则k=__________.15.设双曲线x2a2−y2b2=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过点F作x轴的垂线与双曲线交于B,C两点,若A1B⟂A2C,则该双曲线的渐近线的斜率为______.16.若正方形ABCD的一条边在直线y=2x−17上,另外两个顶点在抛物线y=x2上.则该正方形面积的最小值为________________.17.等差数列{a n}的前n项和为S n,a3+a5=a4+7且a1+a10=20.(1)求{a n}的通项公式;(2)求满足不等式S n <3a n −2的n 的值.18. 已知圆C :x 2+y 2+2x −4y +m =0与y 轴相切,O 为坐标原点,动点P 在圆外,过P作圆C 的切线,切点为M .(1)求圆C 的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P 的轨迹方程. 19. 若椭圆E:x 2a 2+y 2b 2=1(a >b >0)过抛物线x 2=4y 的焦点,且与双曲线x 2−y 2=1有相同的焦点.(1)求椭圆E 的方程;(2)不过原点O 的直线l:y =x +m 与椭圆E 交于A ,B 两点,当ΔOAB 的面积为√32时,求直线l的方程.20. 已知抛物线C : y 2=2px (p >0),过抛物线的焦点F 且垂直于x 轴的直线交抛物线于不同的两点A ,B , 且|AB|=4(1)求抛物线C 的方程;(2)若不经过坐标原点O 的直线l 与抛物线C 相交于不同的两点M ,N , 且满足OM ⃗⃗⃗⃗⃗⃗ ⟂ON⃗⃗⃗⃗⃗⃗ .证明直线l 过x 轴上一定点Q ,并求出点Q 的坐标.21.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的虚轴长为4,直线2x−y=0为双曲线C的一条渐近线.(1)求双曲线C的标准方程;(2)记双曲线C的左、右顶点分别为A,B,过点T(2,0)的直线l交双曲线C于点M,N(点M在第一象限),记直线MA斜率为k1,直线NB斜率为k2,求k1k2的值.22.已知如图椭圆C1:x24+y2=1的左右顶点为A1、A2,上下顶点为B1、B2,记四边形A1B1A2B2的内切圆为C2.(1)求圆C2的标准方程;(2)已知P为椭圆C1上任意一点,过点P作圆C2的切线分别交椭圆C1于M、N两点,试求三角形PMN面积的最小值.。

徐州市2020-2021学年高一下学期期末考试数学试题

徐州市2020-2021学年高一下学期期末考试数学试题

江苏省徐州市2020~2021学年高一下学期期末考试数学试题2021.06注意事项及说明:本卷考试时间为120分钟,全卷满分为150分.一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知i 为虚数单位,则12i2i+-=A .45i 33+B .5i3C .iD .﹣i2.在直角三角形ABC 中,∠C =90°,则向量AB在向量AC 上的投影向量为A .ACB .ABC .CAD .CB3.从一批羽毛球中任取1个羽毛球,如果其质量小于4.8g 的概率是0.3,其质量不小于4.85g的概率是0.32,那么其质量在[4.8,4.85)(单位:g)范围内的概率是A .0.62B .0.68C .0.7D .0.384.近日,2021中国最具幸福感城市调查推选活动正式启动,在100个地级及以上候选城市名单中,徐州市入选.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取20位徐州市居民,他们的幸福感指数见下表,则这组数据的80百分位数是3345566677778888991010A .7.7B .8C .8.5D .95.在△ABC 中,AC =1,AB BC =3,则△ABC 的面积为A .8B .4C .2D .6.将某一等腰直角三角形绕着斜边所在的直线旋转一周,若形成的几何体的表面积为,则该几何体的体积为A .3B .3C .23πD .3π7.已知cos()4πθ+=sin2θ=A .2425-B .1225-C .1225D .24258.在三棱锥A —BCD 中,平面ABD ⊥平面BCD ,BD ⊥CD ,且AB =BD =DA =3,CD =A —BCD 的外接球的表面积为A .154πB .15πC .32πD .6π二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.某市教育局对全市高三年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A ,B ,C ,D ,E 五个层次内,根据抽样结果得到统计图表,则样本中A .女生人数多于男生人数B .D 层次男生人数多于女生人数C .B 层次男生人数为24人D .A 层次人数最少10.设向量a,b 满足1a b == ,且3b a +=A .a ⊥bB .1a b -=C .3a b +=D .a 与b的夹角为60°11.已知复数z 满足(3+4i)z =34i -(其中i 为虚数单位),则A .z 的虚部为45-iB .复数z 在复平面内对应的点位于第一象限C .1z z ⋅=D .当θ∈[0,2π)时,5cos isin z θθ--的最大值为612.在棱长为1的正方体ABCD–A 1B 1C 1D 1,中,E ,F 分别为BC ,CC 1的中点,则A .DD 1⊥AFB .直线AF 与平面ABCD 所成的角的正弦值为13C .平面AEF 截该正方体所得的截面面积为98D .点C 到平面AEF 的距离为13三、填空题(本大题共4小题,每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.某工厂有A ,B ,C 三个车间,A 车间有1000人,B 车间有400人.若用分层抽样的方法得到一个样本容量为44的样本,其中B 车间8人,则样本中C 车间的人数为.14.甲、乙、丙三人独立破译一份密码,已知各人能破译的概率分别是12,13,14,则三人都成功破译的概率是;密码被两人成功破译的概率为.(本题第一空2分,第二空3分)15.如图,等边三角形SAB 为该圆锥的轴截面,点C 为母线SB 的中点,D 为 AB的中点,则异面直线SA 与CD 所成角为.16.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD=λAB AC μ+ ,若AD 4AF =,则λμ-的值为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ,b 为平面向量,且a=(﹣2,1).(1)若a ∥b ,且b =,求向量b 的坐标;(2)若b =(3,2),且ka b - 与2a b +垂直,求实数k 的值.已知1tan 3α=,cos 5β=且02πα<<,322πβπ<<.(1)求tan 2α的值;(2)求αβ+的值.19.(本小题满分12分)如图①,在正方体ABCD —A 1B 1C 1D 1中,E ,F ,G 分别为AB ,BC ,BB 1的中点.(1)求证:平面EFG ⊥平面BB 1D 1D ;(2)将该正方体截去八个与四面体B —EFG 相同的四面体得到一个多面体(如图②),若该多面体的体积是1603,求该正方体的棱长.2021年开始,江苏省推行全新的高考制度,采用“3+1+2”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在物理、历史任选一门参加考试,满分100分,原始分计入总分,在思想政治、地理、化学、生物学4门科目中自选2门参加考试(4选2),每科满分100分,进行等级赋分计入总分.为了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的思想政治、地理、化学、生物学四科成绩总分,以组距40分成8组:[80,120),[120,160),[160,200),[200,240),[240,280),[280,320),[320,360),[360,400],画出频率分布直方图如图所示.(1)求a的值;(2)试估计这100名学生的思想政治、地理、化学、生物学四科成绩总分的中位数;(3)为了进一步了解选科情况,在思想政治,地理、化学、生物学四科成绩总分在[240,280)和[360,400]的两组中,用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.sinC cosA c =;②B C 2sinB sin2a b +=-;③2A 2cos 128)4(π+=+.这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题.在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知.(1)求角A ;(2)已知a =22b c +的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.22.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥PD ,PA =PD ,M ,N 分别为棱AB ,PD 的中点,二面角P —AD —B 的大小为60°,AB =3,BC =4.(1)求证:直线MN ∥平面PBC ;(2)求二面角A —PB —C 的余弦值.江苏省徐州市2020~2021学年高一下学期期末考试数学试题2021.06注意事项及说明:本卷考试时间为120分钟,全卷满分为150分.一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知i 为虚数单位,则12i2i+-=A .45i 33+B .5i3C .iD .﹣i【答案】C【解析】12i (12i)(2i)i 2i (2i)(2i)+++==--+.2.在直角三角形ABC 中,∠C =90°,则向量AB在向量AC 上的投影向量为A .ACB .ABC .CAD .CB【答案】A【解析】根据投影向量的概念,易判断A 选项正确.3.从一批羽毛球中任取1个羽毛球,如果其质量小于4.8g 的概率是0.3,其质量不小于4.85g的概率是0.32,那么其质量在[4.8,4.85)(单位:g)范围内的概率是A .0.62B .0.68C .0.7D .0.38【答案】D【解析】根据互斥事件概率计算公式,可知所求概率=1﹣0.3﹣0.32=0.38,选D .4.近日,2021中国最具幸福感城市调查推选活动正式启动,在100个地级及以上候选城市名单中,徐州市入选.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取20位徐州市居民,他们的幸福感指数见下表,则这组数据的80百分位数是3345566677778888991010A .7.7B .8C .8.5D .9【答案】C【解析】首先可以看到表格中20个数据已经按从小到到顺序排列了,20×80%=16,故是从小到大开始,第16个数与第17个数的平均数,为所求的80百分位数,即为8.5,故选C .5.在△ABC 中,AC =1,AB BC =3,则△ABC 的面积为A .8B .4C .2D .【答案】B【解析】S =2222222114()491(913347)44a b a b c -+-=⨯⨯-+-=,故选B .6.将某一等腰直角三角形绕着斜边所在的直线旋转一周,若形成的几何体的表面积为22π,则该几何体的体积为A .423πB .223πC .23πD .3π【答案】C【解析】该几何体由两个全等的圆锥组合而成,故一个圆锥的侧面积为2π,设该圆锥底面半径为r ,则母线为2r ,故222r r ππ⋅⋅=,解得r =1,易得该圆锥的高h =1,所以一个圆锥体积=211331ππ⨯⨯⨯=,从而旋转体的体积为23π,选C .7.已知72cos()410πθ+=,则sin2θ=A .2425-B .1225-C .1225D .2425【答案】A 【解析】224cos(2)cos 2()2cos ()124425πππθθθ+=+=+-=,sin2θ=﹣cos(2)2πθ+=2425-.8.在三棱锥A —BCD 中,平面ABD ⊥平面BCD ,BD ⊥CD ,且AB =BD =DA =3,CD =3,则三棱锥A —BCD 的外接球的表面积为A .154πB .15πC .32πD .6π【答案】B【解析】已知CD ⊥平面ABD ,根据“汉堡”模型,可得球心.可以取等边三角形ABD 的重心G ,过G 作GH ⊥平面ABD ,且GH =12CD =32,则H 即为球心,GA 即为外接球半径,在Rt △AGH 中,AG =3,GH =32,故HA =152,故外接球的表面积为15π.二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.某市教育局对全市高三年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A ,B ,C ,D ,E 五个层次内,根据抽样结果得到统计图表,则样本中A .女生人数多于男生人数B .D 层次男生人数多于女生人数C .B 层次男生人数为24人D .A 层次人数最少【解析】女生人数=18+48+30+18+6=120人,则男生200﹣120=80人,故A 正确;D 层次男生人数80×0.2=16,D 层次女生人数18,故B 错误;80×(1﹣25%﹣20%﹣10%﹣15%)=24人,故C 正确;A 层次26人,E 层次18人,显然D 错误.综上选AC .10.设向量a ,b 满足1a b == ,且3b a +=A .a ⊥bB .1a b -=C .3a b +=D .a 与b的夹角为60°【答案】BD【解析】因为3b a +=229613b a a b ++⋅= ,12a b ⋅= ,故A 错误,D 正确;1a b -= ,B 正确;a b +== ,故C 错误.综上,选BD .11.已知复数z 满足(3+4i)z =34i -(其中i 为虚数单位),则A .z 的虚部为45-iB .复数z 在复平面内对应的点位于第一象限C .1z z ⋅=D .当θ∈[0,2π)时,5cos isin z θθ--的最大值为6【答案】BCD【解析】(3+4i)z =34i -,即(3+4i)z =5,所以55(34i)34i 34i (34i)(34i)55z -===-++-,故z 的虚部为45-,A 错误;34i 55z =+,在复平面内对应的点坐标是(35,45),B 正确;()3434i ()1i 5555z z ⋅=⋅+=-,C 正确;5cos isin z θθ--表示复平面内点(3,﹣4)与点(cos θ,sin θ)之间的距离,也就是以O 为圆心1为半径的圆上一点与点(3,﹣4)之间的距离,最大值确实为6,故D 正确.综上选BCD .12.在棱长为1的正方体ABCD–A 1B 1C 1D 1,中,E ,F 分别为BC ,CC 1的中点,则A .DD 1⊥AFB .直线AF 与平面ABCD 所成的角的正弦值为13C .平面AEF 截该正方体所得的截面面积为98D .点C 到平面AEF 的距离为13【答案】BCD 【解析】取DD 1中点G ,则AG 是AF 在平面AA 1D 1D 的投影,显然投影AG 与DD 1不垂直,易知∠FAC是直线AF与平面ABCD所成的角,sin∠FAC=CF1AF3=,故B正确;平面AEF截该正方体所得的截面是等腰梯形EFD1A,其中EF=2,AD1,AE=D1FE到AD1,所以S=1(22⨯+⨯=98,故C正确;S△AEF=122⨯=38,点C到平面AEF的距离=11142338ACEAEFS CFS⨯⋅==,故D正确.综上选BCD.三、填空题(本大题共4小题,每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.某工厂有A,B,C三个车间,A车间有1000人,B车间有400人.若用分层抽样的方法得到一个样本容量为44的样本,其中B车间8人,则样本中C车间的人数为.【答案】16【解析】8 441000816400-⨯-=.14.甲、乙、丙三人独立破译一份密码,已知各人能破译的概率分别是12,13,14,则三人都成功破译的概率是;密码被两人成功破译的概率为.(本题第一空2分,第二空3分)【答案】1 24,14【解析】三人都成功破译的概率=12×13×14=124,密码被两人成功破译的概率=12×13×34+12×23×14+12×13×14=14.15.如图,等边三角形SAB为该圆锥的轴截面,点C为母线SB的中点,D为 AB的中点,则异面直线SA与CD所成角为.【答案】4π【解析】取AB中点O,OC∥SA,则∠OCD就是异面直线SA与CD所成角,令圆锥底面半径为r ,则OC =OD =r ,求得CD =r ,故∠OCD =45°,所以异面直线SA 与CD 所成角为4π.16.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD =λAB AC μ+ ,若AD 4AF = ,则λμ-的值为.【答案】47【解析】131********AD AE AB (AC AF)AB (AC AD)AB 44444444444=+=++=+⨯+ ,即313AD AC AD AB 16644=++ ,所以164AD AB AC 2121=+ ,故164421217λμ-=-=.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ,b 为平面向量,且a =(﹣2,1).(1)若a ∥b ,且b = ,求向量b 的坐标;(2)若b =(3,2),且ka b - 与2a b + 垂直,求实数k 的值.【解析】(1)由//b a 可设()2,,b λλ=-所以b ==解得2λ=±,所以向量b 的坐标为()4,2-或()4,2-.(2)因为()()2,1,3,2a b =-=,所以()()23,2,24,5ka b k k a b -=---+=,因为ka b -与2a b +垂直,所以()()20ka b a b -⋅+=即()()423520k k --+-=,解得223k =-.18.(本小题满分12分)已知1tan 3α=,cos 5β=且02πα<<,322πβπ<<.(1)求tan 2α的值;(2)求αβ+的值.【解析】(1)因为1tan 3α=,所以22122tan 33tan21tan 4113ααα⨯===-⎛⎫- ⎪⎝⎭.(2)因为3cos ,252πββπ=<<,所以25sin 5β===-,所以25sin 5tan 2cos βββ-===-,所以()()12tan tan 3tan 111tan tan 123αβαβαβ-++===---⨯-,因为30,222ππαβπ<<<<,所以3522ππαβ<+<,所以74παβ+=.19.(本小题满分12分)如图①,在正方体ABCD —A 1B 1C 1D 1中,E ,F ,G 分别为AB ,BC ,BB 1的中点.(1)求证:平面EFG ⊥平面BB 1D 1D ;(2)将该正方体截去八个与四面体B —EFG 相同的四面体得到一个多面体(如图②),若该多面体的体积是1603,求该正方体的棱长.【解析】(1)在正方体1111ABCD A B C D -中,1BB ⊥平面ABCD ,又因为EF ⊂平面ABCD ,所以1,BB EF ⊥连接AC ,在ABC 中,,E F 分别为,AB BC 的中点,所以//EF AC ,又因为在正方形ABCD 中,AC BD ⊥,所以,EF BD ⊥又因为1,BB BD B BD ⋂=⊂平面111,BB D D BB ⊂平面11BB D D ,所以EF ⊥平面11,BB D D 又因为EF⊂平面EFG ,所以平面EFG ⊥平面11.BB D D (2)设正方体的棱长为a ,由(1)知,四面体B EFG -的体积为311133248BEF a S BG BE BF BG ⋅=⨯⋅⋅= 所以所得多而体的体积为331608483a a -⨯=,解得4a =,即该正方体的棱长为4.20.(本小题满分12分)2021年开始,江苏省推行全新的高考制度,采用“3+1+2”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在物理、历史任选一门参加考试,满分100分,原始分计入总分,在思想政治、地理、化学、生物学4门科目中自选2门参加考试(4选2),每科满分100分,进行等级赋分计入总分.为了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的思想政治、地理、化学、生物学四科成绩总分,以组距40分成8组:[80,120),[120,160),[160,200),[200,240),[240,280),[280,320),[320,360),[360,400],画出频率分布直方图如图所示.(1)求a 的值;(2)试估计这100名学生的思想政治、地理、化学、生物学四科成绩总分的中位数;(3)为了进一步了解选科情况,在思想政治,地理、化学、生物学四科成绩总分在[240,280)和[360,400]的两组中,用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【解析】(1)由()0.00050.00150.003250.004250.004520.001401,a ++++++⨯=解得0.005.a =(2)因为()0.00050.00150.003250.00425400.380.5+++⨯=<,()0.00050.00150.003250.004250.005400.580.5,++++⨯=>所以中位数在[240,280),设中位数为x ,所以()2400.0050.12x -⨯=,解得264,x =所以思想政治、地理、化学、生物四科成贯总分的中位数为264.(3)思想政治、地理、化学、生物四科成贯总分在[240,280)和[360,400]的两组中的人数分别为:0.0054010020⨯⨯=人,0.001401004⨯⨯=人,由分层抽样可知,从成绩在[240,280的组中应抽取2065204⨯=+人,记为,,,,a b c d e ,从成贯在[360,400]的组中应抽取1人,记为f ,以(),a b 表示“抽取的两人为a 和b "(余类推),则样本空间为()()()()()()()()()()()()Ω{,,,,,,,,,,,,,,,,,,,,,,,a b a c a d a e a f b c b d b e b f c d c e c f =()()(),,,,,},d e d f e f 记“抽取的这2名学生来自不同组"为事件A ,则()()()()(){},,,,,,,,,A a f b f c f d f e f =,所以()51153P A ==,答;抽取的这2名学生来自不同组的概率为13.21.(本小题满分12分)sinC cosA c =;②B C 2sinB sin2a b +=-;③2A 2cos 128)(π+=+这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题.在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知.(1)求角A ;(2)已知a =22b c +的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1sin cos C c A=sin sin cos ,A C C A =因为C 为锐角,所以sin 0C ≠,所以cos A A=因为A 为锐角,所以cos 0A ≠,所以3tan ,3A =所以6A π=.若选择②:2sin sin 2B Ca Bb +=由正弦定理知2sin sin sin sin 2B C A B B +=,因为sin 0B ≠,所以2sin sin cos 22B C A A +==,即4sin cos cos 222A A A =,因为A 为锐角,所以cos 02A ≠,则sin ,cos ,2424A A ===所以1sin 2sincos 2,22442A A A +==⨯⨯=因为A 为锐角,所以6A π=.若选择③:2622cos 1284A π⎛⎫+=+ ⎪⎝⎭即cos 44A π⎛⎫+= ⎪⎝⎭又()cos cos cos sin sin cos sin 4442A A A A A πππ⎛⎫+=-=- ⎪⎝⎭所以31cos sin 2A A --=,因为22sin cos 1,A A A +=为锐角,所以1sin ,2A =因为A 为锐角,所以6A π=.(2)由(1)知6A π=,又a =1sin sin sin 2b c a B C A ===,即,b B c C==所以()()222212sin sin 62cos2cos2b c B C B C +=+=--()62cos2cos2B C ⎡⎤=-+⎣⎦562cos 2cos23C C π⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦6223C π⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦因为ABC 为锐角三角形,50,62B C ππ⎛⎫=-∈ ⎪⎝⎭,又0,2C π⎛⎫∈ ⎪⎝⎭所以,32C ππ⎛⎫∈ ⎪⎝⎭,所以22,333C πππ⎛⎫-∈ ⎪⎝⎭,所以sin 2,132C π⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦所以22b c +的取值范围为(12.⎤+⎦22.(本小题满分12分)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥PD ,PA =PD ,M ,N 分别为棱AB ,PD 的中点,二面角P —AD —B 的大小为60°,AB =3,BC =4.(1)求证:直线MN ∥平面PBC ;(2)求二面角A —PB —C 的余弦值.【解析】(1)取PC 的中点E ,连接,NE EB ,又因为N 为PD 的中点,所以在PCD 中,//NE CD ,且1,2NE CD =又M 为棱AB 的中点,12MB AB =,因为底面ABCD 为矩形,所以//,AB CD AB CD =,所以//MB NE ,且MB NE =,则四边形MBEN 为平行四边形所以//,MN EB 又MN ∝平而,PBC EB ⊂平面PBC ,所以直线//MN 平面.PBC (2)取AD 中点,F BC 中点G ,连接,,PF FG PG .在PAD 中,PA PD =,则PF AD ⊥,在矩形ABCD 中,可得FG AD ⊥,所以PFG ∠为二面角P AD B --的平面角,即60.PFG ∠= 又因为,,PF FG F PF FG ⋂=⊂平面PFG ,所以AD ⊥平面PFG ,又因为PG ⊂平面PFG ,所以AD PG ⊥,又因为//BC AD ,所以BC PG ⊥,所以PBC 是等腰三角形,即.PB PC =在PFG 中,12,3,602PF AD FG PFG ∠==== ,由余弦定理可知,PG ==,所以PB PC ==在PAB 中,过点A 作AH PB ⊥于点H ,由余弦定理可知,cosABP ∠==,所以BH =,则AH =,由余弦定理可知,cosCBP ∠==,在PBC 中,过点H 作HK PB ⊥,可知,3,HK BC K BK HK == 于点,则AHK ∠为二面角A PB C --的平面角.在矩形ABCD 中,可求得AK =在AHK 中,由余弦定理可知,63631841111cos 637AHK ∠+-==--,所以二面角A PB C --的余弦值为47-.。

江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

2019-2020学年七年级上学期期中考试数学试卷一.选择题(每小题4分,共32分,每小题只有一个选项是符合题目要求的.)1.下列各数中无理数是()A.…B.C.D.02.下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3| C.(﹣3)2D.(﹣3)33.下列运算,正确的是()A.3a﹣a=2 B.2a+b=2ab;C.﹣x2y+2x2y=x2y D.3a2+2a2=5a44.下列说法中不正确的是()A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是05.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()@A.﹣a>b B.|b|>|a| C.ab>0 D.a<2a6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m >n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定7.当a取一切有理数时,下列代数式的值一定是正数的是()A.a2B.|a| C.a2+2 D.(a﹣3)28.观察下列图形,照此规律,第5个图形中白色三角形的个数是()—A.81 B.121 C.161 D.201二.填空题(本大题有8小题,每小题3分,共24分)9.某水库的水位下降1米,记作﹣1米,那么+米表示.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为.11.多项式3a2+2b3的次数是.12.若m2﹣2m=1,则2019+2m2﹣4m的值是.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)-袋号①②③④⑤质量﹣5《+3+9﹣1﹣6其中,质量最标准的是号(填写序号).15.对单项式“”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是元,请你对“”再赋予一个含义:.16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为."三.解答题(本大题有9小题,共84分,解答时应写出文字说明或演算步骤.)17.计算:(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).18.计算:(1)(﹣+)×(﹣36);(2)﹣12018﹣×[4﹣(﹣3)2].19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列{﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)21.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次)第二次第三次第四次第五次第六次第七次+15﹣8|+6+12﹣4+5﹣10(1)B地在A地哪个方向,与A地相距多少千米(2)巡逻车在巡逻过程中,离开A地最远是多少千米(3)若每km耗油升,问共耗油多少升"23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分'起步价7元+燃油附加费1元超出3km不超出6km的部分元/km超出6km的部分元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为xkm(x>6),则打车费用为元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米&25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在处.A.第3台B.第3台和第4台之间、C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为.参考答案与试题解析一.选择题(共8小题)1.下列各数中无理数是()A.…B.C.D.0(【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、是无理数,故本选项符合题意;D、不是无理数,故本选项不符合题意;故选:C.2.下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3| C.(﹣3)2D.(﹣3)3】【分析】先计算各选择支,再判断结果为负数的选项.【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.下列运算,正确的是()A.3a﹣a=2 B.2a+b=2ab!C.﹣x2y+2x2y=x2y D.3a2+2a2=5a4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式不能合并,不符合题意;C、原式=x2y,符合题意;D、原式=5a2,不符合题意,故选:C.4.下列说法中不正确的是(),A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是0【分析】根据有理数的分类、相反数、绝对值的性质即可一一判断.【解答】解:A、0既不是正数,也不是负数,正确,本选项不符合题意;B、0是整数,故本选项符合题意;C、0的相反数是零,正确,故本选项不符合题意;[D、0的绝对值是0,正确,故本选项不符合题意,故选:B.5.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是()A.﹣a>b B.|b|>|a| C.ab>0 D.a<2a【分析】由数轴可得a<0<b,且|a|>b,根据绝对值的含义易得答案.【解答】解:由数轴可得:a<0<b,且|a|>b∵﹣a=|a|¥∴﹣a>b故选:A.6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m >n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店()A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定【分析】根据题意列出商店在甲批发市场茶叶的利润,以及商店在乙批发市场茶叶的利润,将两利润相加表示出总利润,根据m大于n判断出其结果大于0,可得出这家商店盈利了.【解答】解:根据题意列得:在甲批发市场茶叶的利润为40(﹣m)=20(m+n)﹣40m=20n﹣20m;在乙批发市场茶叶的利润为60(﹣n)=30(m+n)﹣60n=30m﹣30n,;∴该商店的总利润为20n﹣20m+30m﹣30n=10m﹣10n=10(m﹣n),∵m>n,∴m﹣n>0,即10(m﹣n)>0,则这家商店盈利了.故选:A.7.当a取一切有理数时,下列代数式的值一定是正数的是()A.a2B.|a| C.a2+2 D.(a﹣3)2【分析】利用非负数的性质判断即可.【解答】解:A、a2≥0,不符合题意;*B、|a|≥0,不符合题意;C、a2+2≥2>0,符合题意;D、(a﹣3)2≥0,不符合题意,故选:C.8.观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201【分析】由第一个图形中白色三角形的个数是1、第二个图形中白色三角形的个数是1+1×3=4、第三个图形中白色三角形的个数是1+4×3=13,从而得出第四个图形中白色三角形的个数是1+13×3=40、第五个图形中白色三角形的个数是1+40×3=121.【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二.填空题(共8小题)9.某水库的水位下降1米,记作﹣1米,那么+米表示该水库的水位上升米.`【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若某水库的水位下降1米,记作﹣1米,那么+米表示该水库的水位上升米.故答案为:该水库的水位上升米.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为×1012km.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=×1012,—故答案为:×1012km.11.多项式3a2+2b3的次数是3.【分析】根据多项式次数的定义:次数最高次项的次数进行填空即可.【解答】解:多项式3a2+2b3的次数是3,故答案为3.12.若m2﹣2m=1,则2019+2m2﹣4m的值是2021.【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵m2﹣2m=1,∴原式=2019+2(m2﹣2m)=2019+2=2021.故答案为:2021.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是﹣3.【分析】由相反数的含义及两点之间距离的表示方法,设表示点A的数为x,则表示点B 的数为﹣x,由题意得|x﹣(﹣x)|=6,结合A在B的左边,可得答案.【解答】解:∵A,B表示互为相反数的两个点∴设表示点A的数为x,则表示点B的数为﹣x∵这两点的距离为6∴|x﹣(﹣x)|=6(∴2|x|=6∴|x|=3∵A在B的左边∴x<﹣x∴x<0∴x=﹣3,即点A表示的数为﹣3.故答案为:﹣3.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)①②③④⑤《袋号+9﹣1﹣6质量﹣5《+3其中,质量最标准的是④号(填写序号).【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据﹣5,+3,+9,﹣1,﹣6直接得出答案.【解答】解:∵①的质量是100﹣5=95(克),②的质量是100+3=103(克),【③的质量是100+9=109(克),④的质量是100﹣1=99(克),⑤的质量是100﹣6=94(克),∴最接近100克的是④,故答案为:④.15.对单项式“”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是元,请你对“”再赋予一个含义:练习本每本元,小明买了a本,共付款元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本元,小明买了a本,共付款元.、16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三.解答题(共9小题)17.计算:】(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).【分析】(1)原式先计算绝对值,以及乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘法运算,再计算加减运算即可求出值.【解答】解:(1)原式=4+8﹣15=12﹣15=﹣3;(2)原式=﹣﹣=﹣15.18.计算:(1)(﹣+)×(﹣36);@(2)﹣12018﹣×[4﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣18+24﹣16=﹣10;(2)原式=﹣1﹣×(﹣5)=﹣1+1=0.19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.&【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣22<﹣3<﹣|﹣2|<0<﹣(﹣1).20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)【分析】根据合并同类项的法则即可求出答案.【解答】解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5/=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+221.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.$22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣8+6+12﹣4+5﹣10}+15(1)B地在A地哪个方向,与A地相距多少千米,(2)巡逻车在巡逻过程中,离开A地最远是多少千米(3)若每km耗油升,问共耗油多少升【分析】(1)把7次记录相加,根据和的情况判断点B与点A的关系即可;(2)求出每次记录时与点A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再乘以计算即可得解.【解答】解:(1)0+15﹣8+6+12﹣4+5﹣10=16.所以B在A地的东面,与A相距16千米;)(2)0+15=15,15﹣8=7,7+6=13,13+12=25,25﹣4=21,21+5=26,26﹣10=16,∵26最大,∴离开A地最远是26千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60,60×=18(升).答:共耗油18升.23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.~(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.【分析】(1)利用题中的新定义计算即可得到结果;(2)根据数轴得出b<0<a,且|a|<|b|,再计算即可.【解答】解:(1)根据题中的新定义得:2⊙(﹣3)=|2+(﹣3)|+|2﹣(﹣3)|=1+5=6;(2)从a,b在数轴上的位置可得a+b<0,a﹣b>0,¥∴a⊙b=|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣2b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分元/km"超出6km的部分元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为xkm(x>6),则打车费用为(﹣)元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米【分析】(1)利用支付的车费=起步价+燃油附加费+超过3千米的费用,代入数据计算即可;(2)利用支付的车费=起步价+燃油附加费+超出3km不超出6km的部分的费用+超出6km的部分的费用,列出代数式即可;(3)利用(2)中代数式建立方程求得答案即可.【解答】解:(1)支付车费:7+1+(5﹣3)×=(元),故答案为:;(2)7+1+×3+(x﹣6)=8++﹣=﹣(元),故答案为:(﹣);(3)设当打车费用为32元时,行驶路程为x千米,由题意得:﹣=32,解得:x=14,∴当打车费用为32元时,行驶路程为14千米.25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在C处.A.第3台B.第3台和第4台之间C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为2450.【分析】(1)根据阅读材料即可求解;(2)根据(1)中所得结论,可以分两种情况寻找到规律即可求解;(3)根据连续整数的和的计算公式即可求解.【解答】解:(1)根据题意,得直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处,直线上有5台机床A1、A2、A3、A4、A5,供应站P应设在中间一台机床A3处,直线上有7台机床A1、A2、A3…A7供应站P应设在中间一台机床A4处故选C.(2)当n为偶数时,P应设在第台和台之间的任何位置;当n为奇数时,P应设在第台的位置.(3)(1+99)÷2=50,所以当x=50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值(1+49)×49=2450.故答案为50、2450.。

2019-2020学年江苏省徐州市八年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年江苏省徐州市八年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年江苏省徐州市八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学2.16的算术平方根是( )A .8B .8-C .4D .4±3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 cm .10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 (只需写一个,不添加辅助线).11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 .12.已知等腰三角形的周长为16cm ,其中一边长为4cm ,则该等腰三角形的腰长是 cm .13.若29a =1=-,则a b -的值是 .14.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 ︒.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 .16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 .三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = ,AD = (直接写出结果).20.已知:如图点O在射线AP上,1215∠=︒.B∠=∠=︒,AB AC=,40(1)求证:ABO ACO∆≅∆;(2)求POC∠的度数.21.已知:如图,90∠=∠=︒,M,N分别是AC,BD的中点.求证:MN BD⊥.ABC ADC22.已知:如图,BE CD=,==,BC DA⊥垂足为E,8BE DE(1)求证:BEC DEA∆≅∆;(2)若MN是边AD的垂直平分线,分别交AD、CD于M、N,且5CE=,求AEN∆的周长.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13=,梯子底端离墙角的距离AB m=.5BO m(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离4BD m =吗?为什么?24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.25.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.2019-2020学年江苏省徐州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学【解答】解:A 、不是轴对称图形,本选项错误;B 、是轴对称图形,本选项正确;C 、不是轴对称图形,本选项错误;D 、不是轴对称图形,本选项错误.故选:B .2.16的算术平方根是( )A .8B .8-C .4D .4±【解答】解:2(4)16±=,16∴的算术平方根是4,故选:C .3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒【解答】解:在等腰ABC ∆中,120A ∠=︒,A ∴∠为等腰三角形的顶角,B C ∴∠=∠,120A ∠=︒,30B C ∴∠=∠=︒;故选:D .4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 【解答】解:三角形的三条垂直平分线的交点到三角形三个顶点的距离相等, ∴凳子应放在ABC ∆的三条垂直平分线的交点最适当.故选:B .5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等()ASA .故选:A .6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±【解答】解:A 、原式5=,不符合题意;B 、原式3=-,不符合题意;C 、原式|4|4=-=,不符合题意;D 、原式0.6=±,符合题意,故选:D .7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>【解答】解:A 、ABC ∆中,A B C ∠=∠-∠,是直角三角形,故此选项不合题意; B 、ABC ∆中,::1:2:3a b c =,设三边长为:x ,2x ,3x ,由222(2)(3)x x x +≠,故此三角形不是直角三角形,符合题意;C 、ABC ∆中,222a c b =-,符合勾股定理逆定理,是直角三角形,故此选项不合题意;D 、ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>,则2222222()(2)()m n mn m n -+=+,是直角三角形,故此选项不合题意; 故选:B .8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 【解答】解:设第二个小的等边三角形的边长为x ,则第三个小的等边三角形的边长为:x a +,第四个小的等边三角形的边长为:2x a +,最大的个小的等边三角形的边长3b x a =+, 又3b x =,33x x a ∴=+,32x a ∴=, 932b x a ∴==, 故选:D .二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 10 cm .【解答】解:直角三角形中斜边上的中线等于斜边的一半,∴斜边长2510cm =⨯=.10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 AB ED = (只需写一个,不添加辅助线).【解答】解:添加AB ED =,BF CE =,BF FC CE FC ∴+=+,即BC EF =,//AB DE ,B E ∴∠=∠,在ABC ∆和DEF ∆中AB ED B E CB EF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆,故答案为:AB ED =.11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 3 .【解答】解:过点D 作DE BC ⊥交BC 于点E ,如图所示:,90A∠=︒,DA AB∴⊥,又BD是ABC∠的平分线,DA DE∴=,又3AD=,3DE∴=,即点D到边BC的距离是3,故答案为3.12.已知等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的腰长是6cm.【解答】解:①4cm是腰长时,底边为:16428cm-⨯=,三角形的三边长分别为4cm、4cm、8cm,448+=,∴不能组成三角形,②4cm是底边长时,腰长为:1(164)62cm ⨯-=,三角形的三边长分别6cm、6cm、4cm,能组成三角形,综上所述,该等腰三角形的腰长是6cm.故答案为:6.13.若29a=1=-,则a b-的值是4或2-.【解答】解:29a=1=-,3a∴=±,1b=-,当3a=时,原式3(1)4=--=,当3a=-时,原式3(1)2=---=-,故答案为:4或2-14.如图,在Rt ABC∆中,90B∠=︒,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知35C∠=︒,则BAE∠的度数为20︒.【解答】解:ED 是AC 的垂直平分线,AE CE ∴=,35EAC C ∴∠=∠=︒,在Rt ABC ∆中,90B ∠=︒,9055BAC C ∴∠=︒-∠=︒,20BAE BAC EAC ∴∠=∠-∠=︒.故答案为:20.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 1 .【解答】解:设1l 、2l 之间的距离为x ,过A 作3AG l ⊥于G ,过C 作3CH l ⊥于H ,由题意得:2AG =,2CH x =+,90ABC ∠=︒,90ABG CBH ∴∠+∠=︒,90ABG GAB ∠+∠=︒,CBH GAB ∴∠=∠,AB BC =,90AGB BHC ∠=∠=︒,()AGB BHC AAS ∴∆≅∆,2BH AG ∴==,2BG HC x ==+,222AB AG BG =+,2134(2)x ∴=++,解得:1x =,5x =(不合题意舍去),1l ∴、2l 之间的距离为1.16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 5.【解答】解:ABC ∆是直角三角形,90C ∴∠=︒,由折叠的性质得:12BDC BDC CDC '∠=∠'=∠,12ADE A DE ADA ''∠=∠=∠,90BCD C ∠=∠=︒,1180902BDE BDC A DE '∴∠=∠+∠'=⨯︒=︒,DC AB '⊥,5()BE cm ∴===,BDE ∆的面积1122BE DC DE BD '=⨯=⨯, 3412()55DE BD DC cm BE ⨯⨯'∴===; 故答案为:125cm . 三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-【解答】解:(1)24121x =,21214x ∴=, 112x ∴=±; (2)3(2)8x -=-,22x ∴-=-,0x ∴=;18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.【解答】解:(1)、(2)如图所示:.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = 6 ,AD = (直接写出结果).【解答】解:(1)如图,点D 即为所求.(2)作DH BC ⊥于H .在Rt ABC ∆中,10BC =,8AB =,6AC ∴===, BD 平分ABC ∠,ABD HBD ∴∠=∠,90A DHB ∠=∠=︒,BD BD =,()ABD HBD AAS ∴∆≅∆,8AB BH ∴==,AD DH =,设AD DH x ==,在Rt CDH ∆中,222CD DH CH =+,222(6)2x x ∴-=+,83x ∴=, 83AD ∴=, 故答案为6,83. 20.已知:如图点O 在射线AP 上,1215∠=∠=︒,AB AC =,40B ∠=︒.(1)求证:ABO ACO ∆≅∆;(2)求POC ∠的度数.【解答】(1)证明:在ABO ∆与ACO ∆中12AB AC AO AO =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆;(2)解:ABO ACO ∆≅∆,40C B ∴∠=∠=︒,2154055POC C ∴∠=∠+∠=︒+︒=︒.21.已知:如图,90ABC ADC ∠=∠=︒,M ,N 分别是AC ,BD 的中点.求证:MN BD ⊥.【解答】证明:如图,连接BM 、DM ,90ABC ADC ∠=∠=︒,M 是AC 的中点,12BM DM AC ∴==, 点N 是BD 的中点,MN BD ∴⊥.22.已知:如图,BE CD ⊥垂足为E ,8BE DE ==,BC DA =,(1)求证:BEC DEA ∆≅∆;(2)若MN 是边AD 的垂直平分线,分别交AD 、CD 于M 、N ,且5CE =,求AEN ∆的周长.【解答】(1)证明:BE CD⊥,90BEC DEA∴∠=∠=︒,在Rt BEC∆与Rt DEA∆中BE DE BC DA=⎧⎨=⎩,Rt BEC Rt DEA(HL)∴∆≅∆;(2)解:Rt BEC Rt DEA∆≅∆,5AE CE∴==,MN是边AD的垂直平分线,AN DN∴=,AEN∴∆的周长5813AN EN AE AE DN EN AE DE=++=++=+=+=.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13AB m=,梯子底端离墙角的距离5BO m=.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离4BD m=吗?为什么?【解答】解:(1)AO DO⊥,AO∴==,12m =,∴梯子顶端距地面12m 高;(2)滑动不等于4m ,4AC m =,8OC AO AC m ∴=-=,OD ∴===,54BD OD OB ∴=-=->,∴滑动不等于4m .24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.【解答】解:(1)根据折叠可知:5AB AF ==,13AD =,12DF =,22212513+=,即222FD AF AD +=,根据勾股定理的逆定理,得ADF ∆是直角三角形.(2)设BE x =,则EF x =,根据折叠可知:90AFE B ∠=∠=︒,90AFD ∠=︒,180DFE ∴∠=︒,D ∴、F 、E 三点在同一条直线上,12DE x ∴=+,13CE x =-,5DC AB ==,在Rt DCE ∆中,根据勾股定理,得222DE DC EC =+,即222(12)5(13)x x +=+-,解得1x =.答:BE 的长为125.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.。

江苏省徐州市2014-2015学年高一上学期期中考试数学试题(扫描版)

江苏省徐州市2014-2015学年高一上学期期中考试数学试题(扫描版)

高一数学期中考试参考答案一、填空题(本大题共14小题,每小题5分,计70分)1. {}4,72. (1,5]3. 2 4.(2,2) 5. 16 6. (]1,0 7. c<b<a 8.129. -3 10. 1m ≤- 11. 4 12. []-3,1 13. 02m m <>或 14. 5m ≥-二、解答题:本大题共6小题共计90分,请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.16.解:(1)作图要规范:每条线上必须标明至少两个点的坐标,不在坐标轴上的点要用虚线标明对应的坐标值(有一条直线没有标明点的坐标扣.1.分.,两条都没标扣.2.分.) …5分(2)①函数)(x f 的单调递增区间为[1,)+∞;……7分函数)(x f 的单调递减区间为(,1]-∞;……9分②函数)(x f 的值域为[0,)+∞ …………11分③方程()2f x =在区间[0,2]上解的个数为1个 …………14分17.解:(1)由题意得G (x )=2.8+x . …………………2分∴()f x =R (x )-G (x )=20.4 3.2 2.8(05)8.2(5)x x x x x ⎧-+-⎨->⎩≤≤. …………………7分(2)当x >5时,∵函数()f x 递减,∴()f x 8.25<-=3.2(万元).……………10分 当0≤x ≤5时,函数()f x = -0.4(x -4)2+3.6,当x =4时,()f x 有最大值为3.6(万元). …………………13分 答:当工厂生产4百台时,可使赢利最大为3. 6万元. …………………14分19. 解:()()()222211,lg lg (2111)1,11 ...............3111, 1 1-1 f x kx kx f x f x x x kx x k x x x kx k k k k ---∴-=-=-------∴=-=----∴==±=∴=因为是奇函数分分而不合题意舍去, (41)01()(1,1)...............................6x x y f x -->-=-分由得函数的定义域为分(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110. ……………8分又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0, ……………14分又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).……………16分20. 解:(1)2; ………………………3分 (2)当3x <-时,()()(3)()(3)()f x f x x a x x a x =-=--+=-++,所以,当3x <-时,()f x 的解析式为()(3)()f x x a x =-++ ………………………6分(3)因为()f x 是偶函数,所以它在区间[]5,5-上的最大值即为它在区间[]0,5上的最大值, ①当3a ≤时,()f x 在30,2⎡⎤⎢⎥⎣⎦上单调递增,在3,2⎡⎫+∞⎪⎢⎣⎭上单调递减,所以39()()24g a f ==②当37a <≤时,()f x 在30,2⎡⎤⎢⎥⎣⎦与33,2a +⎡⎤⎢⎥⎣⎦上单调递增,在3,32⎡⎤⎢⎥⎣⎦与3,52a +⎡⎤⎢⎥⎣⎦上单调递减, 所以此时只需比较39()24f =与23(3)()24a a f +-=的大小. (A) 当36a <≤时, 39()24f =≥23(3)()24a a f +-=,所以39()()24g a f == (B) 当67a <≤时, 39()24f =<23(3)()24a a f +-=,所以23(3)()()24a a g a f +-== ③当7a >时,()f x 在30,2⎡⎤⎢⎥⎣⎦与[]3,5上单调递增,在3,32⎡⎤⎢⎥⎣⎦上单调递减,且39()24f =<(5)2(5)f a =-,所以()(5)2(5)g a f a ==- 综上所述, 29,64(3)(),6742(5),7a a g a a a a ⎧≤⎪⎪-⎪=<≤⎨⎪->⎪⎪⎩……………………… 16分。

2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷【答案版】

2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷【答案版】

2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷一、单选题1.已知集合A ={﹣3,﹣2,0},B ={﹣1,0,1},则A ∩B =( ) A .{0}B .{0,1}C .{﹣1,0}D .{﹣1,1}2.已知命题p :∃x ∈R ,x 2﹣2x +a +6>0,则命题p 的否定是( ) A .∀x ∈R ,x 2﹣2x +a +6<0 B .∀x ∈R ,x 2﹣2x +a +6>0C .∃x ∈R ,x 2﹣2x +a +6≤0D .∀x ∈R ,x 2﹣2x +a +6≤03.设a =lg 2,b =lg 3,则lg 6=( ) A .a +bB .a ﹣bC .abD .b ﹣a4.已知实数a ,b ,c ,若a >b >c 则下列不等式一定成立的是( ) A .a ﹣b >b ﹣cB .ac >b 2C .a 3>b 3D .1a<1b5.设P :﹣2<x <4,q :0<x <2,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.函数f(x)={−x 2+2x +2,x ≤26x ,x >2,则函数f (x )的值域是( )A .(﹣∞,3)B .(﹣∞,3]C .(0,3]D .(0,3)7.设全集U =R ,集合A ={x |4<x ﹣2<8},B ={x |2+a <x <1+2a },若A ∪B =A ,则a 的取值范围是( ) A .(﹣∞,1] B .(−∞,92] C .[4,92]D .(−∞,1]∪[4,92]8.若函数f (x )与g (x )对于任意x 1,x 2∈[c ,d ],都有f (x 1)•g (x 2)≥m ,则称函数f (x )与g (x )是区间[c ,d ]上的“m 阶依附函数”.已知函数f (x )=3x ﹣1与g (x )=x 2﹣ax ﹣a +4是区间[1,2]上的“4阶依附函数”,则实数a 的取值范围是( ) A .(﹣∞,2] B .(−∞,32]C .(−∞,2√3−2]D .(−∞,2√3]二、多选题9.下列命题中,为真命题的是( ) A .若a 2<1,则a <2B .若a ,b ∈R ,且ab +1=a +b 的充要条件是a =b =1C .∃x ∈R ,2x >x 2D .二次函数y =x 2+2x +3的值域是[2,+∞) 10.如图所示的图象表示的函数的解析式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|( 0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2)D .y ={32x ,x ∈[0,1]3−32x ,x ∈(1,2]11.已知关于x 的一元二次不等式ax 2+bx +c ≥0的解集为{x |x ≤﹣3或x ≥2},则下列说法正确的是( ) A .b >0且c <0 B .4a +2b +c =0C .不等式bx +c >0的解集为{x |x <6}D .不等式cx 2﹣bx +a <0的解集为{x|−12<x <13}12.如图所示,四边形ABDC 为梯形,其中AB =a ,CD =b ,O 为对角线的交点.有4条线段(GH 、KL 、EF 、MN )夹在两底之间.GH 表示平行于两底且与他们等距离的线段(即梯形的中位线),KL 表示平行于两底且使梯形ABLK 与梯形KLDC 相似的线段,EF 表示平行于两底且过点O 的线段,MN 表示平行于两底且将梯形ABDC 分为面积相等的两个梯形的线段.下列说法中正确的有( )A .若a =1,b =2,则KL =√2B .∀a ,b ∈R ,a ≠b ,KL <GHC .∀a ,b ∈R ,a ≠b ,MN =2aba+bD .∀a ,b ∈R ,a ≠b ,EF =2aba+b三、填空题13.已知函数f (x )满足f (x +2)=4x ﹣3,则f (4)= . 14.已知a +a ﹣1=1,则a 12+a −12= .15.正实数x ,y 满足1x+3y=2时,则x +y 的最小值为 .16.若关于x 的不等式x 2−(m +52)x +2m <0的解集中恰有2个整数,则实数m 的取值范围为 .四、解答题17.(10分)记函数f(x)=√1+x +√2−x 的定义域为集合M ,函数g(x)=−1x +1,x ∈[13,1]的值域为集合N ,求: (1)M ,N ;(2)M ∪N ,(∁R M )∩N . 18.(12分)计算下列格式的值: (1)(√3−1)0+√(3−π)2+813;(2)2lg4+lg 58+log 23⋅log 34.19.(12分)已知二次函数f (x )=x 2﹣2ax +a 2﹣1(a ∈R ).若函数f (x )的两个零点都在区间(0,+∞)内,求实数a 的取值范围.20.(12分)已知二次函数f (x )=ax 2+bx +c ,当x =2时,函数y =f (x )取得最小值2,且f (0)=6. (1)求函数f (x )的解析式;(2)若函数f (x )在区间[t ,t +2]的最小值为11,求t .21.(12分)如图所示,为宣传2023年杭州亚运会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为450dm 2,为了美观,要求海报上四周空白的宽度为1dm ,两个宣传栏之间的空隙的宽度为2dm ,设海报纸的长和宽分别为xdm ,ydm . (1)求y 关于x 的函数表达式;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少?22.(12分)已知二次函数f (x )=ax 2+bx +c ,其中a ,b ,c ∈R . (1)若a +b +2=0,c =2,解关于x 的不等式f (x )>0; (2)若a <b 且不等式f (x )≥0对一切实数x 恒成立,求a+2b+4c b−a的最小值.2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷参考答案与试题解析一、单选题1.已知集合A={﹣3,﹣2,0},B={﹣1,0,1},则A∩B=()A.{0}B.{0,1}C.{﹣1,0}D.{﹣1,1}解:集合A={﹣3,﹣2,0},B={﹣1,0,1},则A∩B={0}.故选:A.2.已知命题p:∃x∈R,x2﹣2x+a+6>0,则命题p的否定是()A.∀x∈R,x2﹣2x+a+6<0B.∀x∈R,x2﹣2x+a+6>0C.∃x∈R,x2﹣2x+a+6≤0D.∀x∈R,x2﹣2x+a+6≤0解:命题p:∃x∈R,x2﹣2x+a+6>0,则命题p的否定是:∀x∈R,x2﹣2x+a+6≤0.故选:D.3.设a=lg2,b=lg3,则lg6=()A.a+b B.a﹣b C.ab D.b﹣a解:∵a=lg2,b=lg3,∴lg6=lg2+lg3=a+b.故选:A.4.已知实数a,b,c,若a>b>c则下列不等式一定成立的是()A.a﹣b>b﹣c B.ac>b2C.a3>b3D.1a <1b解:因为a>b>c,若a=3,b=2,c=1,则a﹣b=3﹣2=1=2﹣1=b﹣c,A错误;ac=3<22=b2,B错误;由于y=x3为R上的增函数,故a3>b3,C正确;若a=1,b=﹣1,则1a=1>1−1=1b,D错误.故选:C.5.设P:﹣2<x<4,q:0<x<2,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当﹣2<x<4时,可能x=﹣1,不能推出0<x<2;反之,当0<x<2时,可以推出﹣2<x<4.因此,p是q成立的必要不充分条件.故选:B.6.函数f(x)={−x 2+2x +2,x ≤26x,x >2,则函数f (x )的值域是( )A .(﹣∞,3)B .(﹣∞,3]C .(0,3]D .(0,3)解:x ≤2时,f (x )=﹣(x ﹣1)2+3≤3; x >2时,f(x)=6x ∈(0,3), ∴f (x )的值域为:(﹣∞,3]. 故选:B .7.设全集U =R ,集合A ={x |4<x ﹣2<8},B ={x |2+a <x <1+2a },若A ∪B =A ,则a 的取值范围是( ) A .(﹣∞,1] B .(−∞,92] C .[4,92]D .(−∞,1]∪[4,92]解:A ={x |4<x ﹣2<8}={x |6<x <10}, 因为A ∪B =A ,所以B ⊆A ,若B =∅,B ⊆A 此时2+a ≥1+2a ,得a ≤1, 若B ≠∅,由B ⊆A 得{2+a ≥62+a <1+2a 1+2a ≤10,得4≤a ≤92,故a 的取值范围是(−∞,1]∪[4,92]. 故选:D .8.若函数f (x )与g (x )对于任意x 1,x 2∈[c ,d ],都有f (x 1)•g (x 2)≥m ,则称函数f (x )与g (x )是区间[c ,d ]上的“m 阶依附函数”.已知函数f (x )=3x ﹣1与g (x )=x 2﹣ax ﹣a +4是区间[1,2]上的“4阶依附函数”,则实数a 的取值范围是( ) A .(﹣∞,2]B .(−∞,32]C .(−∞,2√3−2]D .(−∞,2√3]解:因为函数f (x )=3x ﹣1在[1,2]上单调递增, 所以当x ∈[1,2]时,2≤f (x )≤5,依题意,对任意x 1,x 2∈[1,2]时,都有f (x 1)•g (x 2)≥4,对任意x 1,x 2∈[1,2]时,都有g(x 2)≥4f(x 1),即g(x)min ≥[4f(x)]max ,因为[4f(x 1)]max =2,所以当a 2<1,即a <2时,g (x )min =g (1)=5﹣2a ≥2,解得a ≤32;当a2>2,即a >4时,g (x )min =g (2)=8﹣3a ≥2,解得a ≤2(舍去);当1≤a 2≤2,即2≤a ≤4时,g(x)min =g(a2)=−a 24−a +4≥2,解得−2−2√3≤a ≤−2+2√3(舍去).综上,实数a 的取值范围为(−∞,32]. 故选:B . 二、多选题9.下列命题中,为真命题的是( ) A .若a 2<1,则a <2B .若a ,b ∈R ,且ab +1=a +b 的充要条件是a =b =1C .∃x ∈R ,2x >x 2D .二次函数y =x 2+2x +3的值域是[2,+∞)解:A 中,由a 2<1,可得﹣1<a <1,所以a <2成立,所以A 正确;B 中,由ab +1=a +b ,可得a (b ﹣1)﹣(b ﹣1)=0,即(a ﹣1)(b ﹣1)=0,解得a =1或b =1,即充要条件为a =1或b =1,所以B 不正确;C 中,因为2x >x 2,解得0<x <2,即存在x ∈(0,2),使不等式成立,所以C 正确;D 中,二次函数y =x 2+2x +3=(x +1)2+2≥2,即函数的值域为[2,+∞).故D 正确. 故选:ACD .10.如图所示的图象表示的函数的解析式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|( 0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2) D .y ={32x ,x ∈[0,1]3−32x ,x ∈(1,2]解:当0≤x ≤1时,设f (x )=kx ,由图象过点(1,32),得k =32,所以此时f (x )=32x ;当1≤x ≤2时,设f (x )=mx +n ,由图象过点(1,32),(2,0),得{32=m +n 0=2m +n ,解得{m =−32n =3,所以f (x )=3−32x ,∴y =f (x )={32x ,x ∈[0,1]3−32x ,x ∈(1,2],D 正确; 对于A ,当0≤x ≤1时,y =32(1﹣x )≠32x ,A 错误;对于B ,当0≤x ≤1时,y =32−32(1﹣x )=32x , 当1<x ≤2时,y =32−32(x ﹣1)=3−32x ,B 正确,C 错误; 故选:BD .11.已知关于x 的一元二次不等式ax 2+bx +c ≥0的解集为{x |x ≤﹣3或x ≥2},则下列说法正确的是( ) A .b >0且c <0 B .4a +2b +c =0C .不等式bx +c >0的解集为{x |x <6}D .不等式cx 2﹣bx +a <0的解集为{x|−12<x <13}解:A 选项,由题意得﹣3,2为一元二次方程ax 2+bx +c =0的两个根, 且a >0,故−3+2=−ba ,−3×2=c a ,即b =a >0,c =﹣6a <0,A 正确; B 选项,2为一元二次方程ax 2+bx +c =0的根,故4a +2b +c =0,B 正确; C 选项,由A 选项可知,bx +c >0⇒ax ﹣6a >0,解得x >6,C 错误; D 选项,cx 2﹣bx +a <0⇒﹣6ax 2﹣ax +a <0,又a >0,故6x 2+x ﹣1>0, 解得x >13或x <−12,D 错误. 故选:AB .12.如图所示,四边形ABDC 为梯形,其中AB =a ,CD =b ,O 为对角线的交点.有4条线段(GH 、KL 、EF 、MN )夹在两底之间.GH 表示平行于两底且与他们等距离的线段(即梯形的中位线),KL 表示平行于两底且使梯形ABLK 与梯形KLDC 相似的线段,EF 表示平行于两底且过点O 的线段,MN 表示平行于两底且将梯形ABDC 分为面积相等的两个梯形的线段.下列说法中正确的有( )A .若a =1,b =2,则KL =√2B .∀a ,b ∈R ,a ≠b ,KL <GHC .∀a ,b ∈R ,a ≠b ,MN =2aba+bD .∀a ,b ∈R ,a ≠b ,EF =2aba+b解:由梯形中位线性质可得GH =a+b 2,因为梯形ABLK 与梯形KLDC 相似, 所以AB KL=KL CD,即KL =√AB ⋅CD =√ab ,当a =1,b =2时,KL =√2,A 正确;由基本不等式可知∀a ,b ∈R ,实为a >0,b >0, a ≠b 时,GH =a+b2>√ab =KL ,B 正确; 设梯形ABNM ,MNDC ,ABDC 的面积分别为S 1,S 2,S , 高分别为h 1,h 2,h ,则2S 1=2S 2=S , 即(a +MN)ℎ1=(b +MN)ℎ2=12(a +b)ℎ, 解得ℎ1=(a+b)ℎ2(a+MN),ℎ2=(a+b)ℎ2(b+MN), 由题意可知ℎ1+ℎ2=(a+b)ℎ2(a+MN)+(a+b)ℎ2(b+MN)=ℎ,解得MN =√a 2+b22,C 错误;因为AB ∥CD ,所以∠ABC =∠DCB ,∠BAD =∠CDA , 所以△OAB ∽△ODC ,所以CO BO=CD BA =ba,易知△COE ~△CBA ,所以OE BA=CO CB=b a+b,得OE =aba+b ,所以EF =2aba+b ,D 正确. 故选:ABD . 三、填空题13.已知函数f (x )满足f (x +2)=4x ﹣3,则f (4)= 5 . 解:根据题意,函数f (x )满足f (x +2)=4x ﹣3, 令x =2可得:f (4)=4×2﹣3=5. 故答案为:5.14.已知a +a ﹣1=1,则a 12+a −12= √3 .解:a +a ﹣1=1,则(a 12+a−12)2=a +a ﹣1+2=3,∵a 12+a−12>0, ∴a 12+a −12=√3. 故答案为:√3. 15.正实数x ,y 满足1x +3y=2时,则x +y 的最小值为 2+√3 .解:因为正实数x ,y 满足1x+3y=2,则x +y =12(x +y )(1x +3y )=12(4+yx +3xy )≥12(4+2√y x ⋅3xy )=2+√3,当且仅当y =√3x ,即x =1+√32,y =3+√32时取等号. 故答案为:2+√3.16.若关于x 的不等式x 2−(m +52)x +2m <0的解集中恰有2个整数,则实数m 的取值范围为 [32−√5,32)∪(32,32+√5].解:关于x 的不等式x 2−(m +52)x +2m <0对应方程为x 2﹣(m +52)x +2m =0,Δ=(m +52)2−8m =m 2﹣3m +254=(m −32)2+4>0恒成立,所以对应方程有两个不等实根,求解得:x 1=m+52−√Δ2,x 2=m+52+√Δ2;所以原不等式的解集为(x 1,x 2).因为不等式的解集中恰有2个整数,则2<x 2﹣x 1≤3, 因为x 2﹣x 1=√Δ=√(m −32)2+4,所以{ √(m −32)2+4>2√(m −32)2+4≤3,化简得{(m −32)2+4>4(m −32)2+4≤9, 解得{m ≠3232−√5≤m ≤32+√5,即32−√5≤m <32,或32<m ≤32+√5;所以m 的取值范围是[32−√5,32)∪(32,32+√5].故答案为:[32−√5,32)∪(32,32+√5].四、解答题17.(10分)记函数f(x)=√1+x +√2−x 的定义域为集合M ,函数g(x)=−1x +1,x ∈[13,1]的值域为集合N ,求: (1)M ,N ;(2)M ∪N ,(∁R M )∩N . 解:(1)由题意得:{1+x ≥02−x ≥0,解得:﹣1≤x ≤2,即M =[﹣1,2], 由题意得:g (x )=−1x +1,x ∈[13,1],得到N =[﹣2,0];(2)∵M =[﹣1,2],N =[﹣2,0], M ∪N =[﹣2,2],∁R M =(﹣∞,﹣1)∪(2,+∞), (∁R M )∩N =[﹣2,﹣1). 18.(12分)计算下列格式的值: (1)(√3−1)0+√(3−π)2+813; (2)2lg4+lg 58+log 23⋅log 34. 解:(1)(√3−1)0+√(3−π)2+813=1+π﹣3+2=π.(2)2lg4+lg 58+log 23⋅log 34=lg 16+lg 58+lg3lg2×lg4lg3=lg 10+2=3.19.(12分)已知二次函数f (x )=x 2﹣2ax +a 2﹣1(a ∈R ).若函数f (x )的两个零点都在区间(0,+∞)内,求实数a 的取值范围.解:因为f (x )=x 2﹣2ax +a 2﹣1,对称轴方程为x =a , 要使函数f (x )的两个零点都在区间(0,+∞),可得{f(0)=a 2−1>0a >0f(a)=a 2−2a 2+a 2−1<0,解得a >1.所以a 的范围为(1,+∞).20.(12分)已知二次函数f (x )=ax 2+bx +c ,当x =2时,函数y =f (x )取得最小值2,且f (0)=6. (1)求函数f (x )的解析式;(2)若函数f (x )在区间[t ,t +2]的最小值为11,求t . 解:(1)由已知可得f (x )=a (x ﹣2)2+2, 则f (0)=4a +2=6,解得a =1,所以f (x )=(x ﹣2)2+2,即为f (x )=x 2﹣4x +6; (2)因为函数f (x )在区间[t ,t +2]的最小值为11, 所以函数的对称轴x =2在区间[t ,t +2]外,当t >2时,f (x )在区间[t ,t +2]上单调递增,所以f (x )min =f (t )=t 2﹣4t +6=11,解得t =5或﹣1(舍去);当t +2<2,即t <0时,函数f (x )在区间[t ,t +2]上单调递减,所以f (x )min =f (t +2)=(t +2﹣2)2+2=11,解得t =﹣3或3(舍去),综上,实数t 的值为5或﹣3.21.(12分)如图所示,为宣传2023年杭州亚运会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为450dm 2,为了美观,要求海报上四周空白的宽度为1dm ,两个宣传栏之间的空隙的宽度为2dm ,设海报纸的长和宽分别为xdm ,ydm .(1)求y 关于x 的函数表达式;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少?解:(1)根据题意可得两个矩形宣传栏的长为x−42,宽为y ﹣2, ∴2⋅x−42⋅(y −2)=45,∴y =450x−4+2,(x >4);(2)由(1)知(x ﹣4)(y ﹣2)=450,∴xy =2x +4y +442,x >4,y >2,∴xy =2x +4y +442≥4√2xy +442,解得√xy ≥17√2,∴xy ≥578,当且仅当{2x =4y xy =578,即x =34,y =17时等号成立, ∴当海报长为34dm ,宽为17dm 时,用纸量最少,最少为578dm 2.22.(12分)已知二次函数f (x )=ax 2+bx +c ,其中a ,b ,c ∈R .(1)若a +b +2=0,c =2,解关于x 的不等式f (x )>0;(2)若a <b 且不等式f (x )≥0对一切实数x 恒成立,求a+2b+4c b−a 的最小值. 解:(1)因为a +b +2=0,所以b =﹣a ﹣2,又c =2,所以不等式ax 2+bx +c >0,所以ax 2﹣(a +2)x +2>0,所以(ax ﹣2)(x ﹣1)>0,当a =0时,原不等式即﹣2(x ﹣1)>0,解得x <1,当a >0时,原不等式即(x −2a )(x −1)>0,若2a=1,即a =2时,解得x ≠1; 若{2a >1a >0,即0<a <2时,解得x >2a 或x <1; 若{2a <1a >0,即a >2时,解得x >1或x <2a ;当a <0时,原不等式即(x −2a )(x −1)<0,解得2a <x <1, 综上,当a =0时,原不等式的解集为(﹣∞,1),当a =2时,不等式的解集为(﹣∞,1)∪(1,+∞), 当0<a <2时,原不等式的解集为(−∞,1)∪(2a ,+∞), 当a >2时,原不等式的解集为(−∞,2a )∪(1,+∞), 当a <0时,不等式的解集为(2a,1).(2)因为对任意x ∈R ,不等式f (x )≥0恒成立,所以{b >a >0b 2−4ac ≤0,所以4c ≥b 2a , 所以a+2b+4c b−a ≥a+2b+b 2a b−a =1+2b a +(b a )2b a −1(当判别式等于0时等号成立), 令b a −1=t ,则b a =t +1,因为b >a >0,所以b a−1=t >0, 所以1+2b a +(b a )2b a −1=1+2(t+1)+(t+1)2t =t 2+4t+4t =t +4t +4≥2√4+4=8,当且仅当t =4t ,即t =2时等号成立,所以当b 2﹣4ac =0且b =3a 时,a+2b+4c b−a 有最小值8.。

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。

江苏省徐州市徐州高级中学2023-2024学年高一上学期期中数学试题

江苏省徐州市徐州高级中学2023-2024学年高一上学期期中数学试题

对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉
斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知 lg 2 0.3010 ,
lg3 0.4771,设 N 45
40
3 ,则 N 所在的区间为(

A. 1010 ,1011
B. 1011,1012
D.3, 4
2.命题“ x R , x2 0 ”的否定是( )
A.不存在 x R , x2 0
B. x0 R , x02 0
C. x R , x2 0
D. x0 R , x02 0
3.已知 A 0,1, 2 ,B 0,1, 2, 2, 4 ,下列对应关系不.能.作为从 A 到 B 的函数的是( )
江苏省徐州市徐州高级中学 2023-2024 学年高一上学期期中 数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设集合 A 1, 2, B 1, 2,3, 4 ,则 ðB A ( )
A.1, 2
B. 2
C.1, 2,3, 4
A. f : x y x
B. f : x y x2
C.
f
:
x
y
1 x
D. f : x y x
4.不等式 x x 2 x 3 x 1 的解集为( )
A.
1 2
,1
C.
,
1 2
1,
B.
1,
1 2
D.
,
1
1 2
,
5.设 f x 为奇函数,且当 x 0 时, f x x3 x ,则当 x 0 时, f x ( )

2020届江苏省徐州市高三上学期第一次质量抽测数学试题(解析版)

2020届江苏省徐州市高三上学期第一次质量抽测数学试题(解析版)
2.已知复数z满足z24,且z的虚部小于0,则
2i
【答案】
【解析】
【分析】
zabia,bR

,可知0,利用复数的乘法法则可得出关于实数a、的方程组,解出即可.
bb
2
zabia,bR
abiab2abi4

【详解】设
,由题意可知z2
2
2
4
a
2
b
2
a
0
2ab0
b0
2
z
i

,解得
b2,因此,
.
2i
故答案为:
求出实数a的值.
【详解】由于函数
yfx
xfx
f
是定义在R上的奇函数,则

1xf1x
又该函数的图象关于直线x
1对称,则
f

f2xf11xfxfx
f
4xfx2fx
所以,
,则

yfx
4
是周期为的周期函数,
所以,函数
a
2020ln2fln2fln2ee
28
a3.
,解得
所以f
ln2
ln2
a
a
3
故答案为:.
【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数
ABAD
uuuruuur
ACAE
利用基底
表示向量
,结合等式
可得出cosADE
的表达式,
2
然后利用基本不等式可求出cosADE的最小值.
uuuruuuruuur
BDDEEC
【详解】由于D、是
上的两个三等分点,则

专题19 立体图形的直观图(解析版)

专题19 立体图形的直观图(解析版)

专题19 立体图形的直观图一、单选题1.关于斜二测画法画直观图说法不正确的是A .在实物图中取坐标系不同,所得的直观图有可能不同B .平行于坐标轴的线段在直观图中仍然平行于坐标轴C .平行于坐标轴的线段长度在直观图中仍然保持不变D .斜二测坐标系取的角可能是135【试题来源】2021年高考一轮数学(文)单元复习一遍过 【答案】C【分析】根据斜二测画法的规则,平行关系不变,平行于x 、z 轴的线段长度不变,平行于y 轴的线段长度减半,直角变为45或135进行判断,即可得出结论.【解析】对于A 选项,在实物图中取坐标系不同,所得的直观图有可能不同,A 选项正确; 对于B 、C 选项,由平行于x 轴或z 轴的线段长度在直观图中仍然保持不变, 平行于y 轴的线段长度在直观图中是原来的一半,则B 选项正确,C 选项错误; 对于D 选项,在平面直角坐标系中,90xOy ∠=,在斜二测画法中,45x O y '''∠=或135,D 选项正确.故选C . 2.如图,水平放置的三角形的直观图,D 是A B ''边上的一点且13D A A B ''''=,//A B Y '''轴,//C D X '''轴,那么C A ''、C B ''、C D ''三条线段对应原图形中的线段CA 、CB 、CD 中A .最长的是CA ,最短的是CB B .最长的是CB ,最短的是CAC .最长的是CA ,最短的是CDD .最长的是CB ,最短的是CD【试题来源】河北省唐山市第十一中学2020-2021学年高二上学期期中 【答案】D【分析】直接利用斜二测画法求解. 【解析】因为//A B Y '''轴,//C D X '''轴, 所以在原图中,,2,AB CD AB A B CD C D ''''⊥==,所以22222222222,2CB CD BD CD B D CA CD AD CD A D ''''=+=+=+=+, 因为13D A A B ''''=,所以CB CA CD >>,故选D 3.如果一个正方形的边长为4,那么用斜二测画法画出其直观图的面积是A .B .C .8D .16【试题来源】山西省吕梁市汾阳中学、孝义中学、文水中学2020-2021学年高二上学期期中 【答案】B【分析】由斜二测画法的原则:横等纵半,,写出直观图面积即可.【解析】若斜二测画法所得正方形如下图A’B’C’D’,根据横等纵半知4A B C D ''''==,2A D B C ''''==且45A D C '''∠=︒,所以直观图的面积sin 45S A B A D ''''=⋅⋅︒=B .4.已知水平放置的ABC 是按“斜二测画法”得到如图所示的直观图,1B O C O ''''==,12A O ''=,那么原ABC 的面积是AB .12C .1D .2【试题来源】福建省三明市三地三校2020-2021学年高二上学期期中联考 【答案】C【分析】由直观图求出原图三角形的高,即可求解.【解析】由直观图中12A O ''=,2B C ''=知原图中1212AO =⨯=,且AO BC ⊥,2BC =,所以原ABC 的面积是面积为1121122BC OA ⨯⨯=⨯⨯=,故选C5.如图,一个正方形OABC 在斜二测画法下的直观图是个一条边长为1的平行四边形,则正方形OABC 的面积为A .1B .4C .1或4D .不能确定【试题来源】2020-2021学年高一数学单元测试定心卷(人教版必修2) 【答案】C【分析】由题意,111O A =或111O C =,可得正方形OABC 的边长为1或2,即可求出正方形OABC 的面积.【解析】由题意,111O A =或111O C =,所以正方形OABC 的边长为1或2, 所以正方形OABC 的面积为1或4.故选C6.如图直角'''O A B △是一个平面图形的直观图,斜边''4O B =,则原平面图形的面积是A .B .C .4D【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考【答案】A【分析】根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.【解析】由题意可知'''O A B △为等腰直角三角形,''4O B =,则O A ''=,所以原图形中,4OB =,OA =故原平面图形的面积为142⨯⨯=A7.如图是一个水平放置的直观图,它是一个底角为45,腰和上底均为1,1的等腰梯形,那么原平面图形的面积为A .2+B 122C .22+D .1+【试题来源】陕西省西安市阎良区2019-2020学年高一上学期期末 【答案】A【分析】先判断原平面图形为直角梯形,且直角腰长为2,上底边长为1,1,代入梯形的面积公式计算.【解析】平面图形的直观图是一个底角为45︒,腰和上底长均为11的的等腰梯形,∴原平面图形为直角梯形,且直角腰长为2,上底边长为1,梯形的下底边长为1+∴原平面图形的面积22S ==+A .8.如图,A B C '''是ABC 的直观图,其中//,//A B O x A C O y '''''''',且1A B A C ''''==,那么ABC 的面积是A .1B .C .8D 【试题来源】安徽省合肥市第六中学2020-2021学年高二上学期期末(文) 【答案】A【分析】根据斜二测画法的原则,确定原三角形的形状,以及边长,即可求出三角形的面积. 【解析】根据斜二测画法可得,原图形中,//AB Ox ,//AC Oy ,则AB AC ⊥, 又1AB A B ''==,22AB A C ''==,所以ABC 的面积是112ABCS AB AC =⨯=, 故选A .9.如图,正方形O A B C ''''的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长为A .4B .6C .8D .2+【试题来源】陕西省西安中学2020-2021学年高一上学期期末 【答案】C【分析】根据斜二测画法求解. 【解析】直观图如图所示:由图知原图形的周长为13138OA AB BC CO +++=+++=,故选C10.某水平放置的OAB 用斜二测画法得到如图所示的直观图O A B '''△,若O B A B '''=',则OAB 中A .90OBA ∠=︒B .OB BA =C .OB OA =D .OB OA >【试题来源】重庆市2020-2021学年高二上学期期末联合检测数学(康德卷)试题 【答案】D【分析】90OBA ∠≠,所以选项A 错误;OB BA ≠,所以选项B 错误; OB OA >,所以选项C 错误,选项D 正确.【解析】设O B A B x '''='=,所以45B A O '''∠=,所以O A ''=,所以在OAB 中,90,90BOA OBA ∠=∴∠≠,所以选项A 错误;由题得2OB x =,BA ==,所以OB BA ≠,所以选项B 错误;因为2,OB x OA ==,所以OB OA ≠,OB OA >所以选项C 错误,选项D 正确.故选D11.采用斜二测画法作一个五边形的直观图,则其直观图的面积是原来五边形面积的 A .12倍 B .14倍C .2倍 D 倍【试题来源】江苏省徐州市第一中学2020-2021学年高三上学期期末 【答案】D【分析】根据斜二测画法中原图形面积S 与直观图面积S '的关系式S ='即可得出答案.【解析】斜二测画法中原图形面积S 与直观图面积S '的关系式S ='所以S S '==故选D 12.如图,已知等腰三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是A .2B .1CD .【试题来源】江苏省苏州市工业园区园区三中2019-2020学年高一下学期期中 【答案】D【分析】利用斜二测画法,由直观图作出原图三角形,再利用三角形面积公式即可求解.【解析】因为O A B '''△是等腰直角三角形,2O B ''=,所以O A A B ''''==,所以原平面图形为且2OB O B ''==,OA OB ⊥,2OA O A ''==所以原平面图形的面积是122⨯⨯=D 13.在用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,则在直观图中∠A ′等于 A .45° B .135° C .90°D .45°或135°【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册 【答案】D【分析】根据直角在直观图中有的成为45°,有的成为135°即可得答案【解析】因∠A 的两边分别平行于x 轴、y 轴,故∠A =90°,在直观图中,按斜二测画法规则知∠x ′O ′y ′=45°或135°,即∠A ′=45°或135°.故选D . 14.关于斜二测画法所得直观图,以下说法正确的是 A .等腰三角形的直观图仍是等腰三角形 B .正方形的直观图为平行四边形 C .梯形的直观图不是梯形D .正三角形的直观图一定为等腰三角形【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册 【答案】B【分析】根据斜二测画法的方法:平行于y 轴的线段长度减半,水平长度不变即可判断.. 【解析】由于直角在直观图中有的成为45°,有的成为135°; 当线段与x 轴平行时,在直观图中长度不变且仍与x 轴平行, 当线段与x 轴平行时,线段长度减半,直角坐标系变成斜坐标系,而平行关系没有改变.故选B .15.如图,正方形O A B C ''''的边长为2cm ,它是水平放置的一个平面图形用斜二测画法得到的直观图,则原图形的周长是A .16cmB .12cmC .10cmD .18cm【试题来源】江西省吉安市省重点中学2020-2021学年高二年级(10月)联合考试(文) 【答案】A【分析】将直观图还原为平面图形是平行四边形,然后计算. 【解析】将直观图还原为平面图形,如图所示.2OB O B ''==2OA O A ''==,所以6AB ==,所以原图形的周长为16cm ,故选A .【名师点睛】本题考查斜二测画法,掌握斜二测画法的定义是解题关键.根据斜二测画法的定义才能根据直观图中直线的位置关系确定原图形中直线的位置关系,从而解决原图形中的问题.16.一个水平放置的平面图形的直观图是一个底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的面积等于A .1B .2+C .122+D .12+【试题来源】宁夏贺兰县景博中学2020-2021学年高一上学期期末考试 【答案】B【分析】根据斜二测直观图的特点可知原图形为一直角梯形,根据梯形面积公式即可求解. 【解析】如图,恢复后的原图形为一直角梯形,所以1(11)222S =⨯=+B .17.如图,边长为1的正方形''''O A B C 是一个水平放置的平面图形OABC 的直观图,则图形OABC 的面积是A B .2C D .【试题来源】江西省南昌县莲塘第三中学2020-2021学年高二上学期第二次月考 【答案】D【分析】根据直观图画出原图可得答案.【解析】由直观图''''O A B C 画出原图OABC ,如图,因为''O B =OB =,1OA =,则图形OABC 的面积是 故选D18.已知用斜二测画法得到的某水平放置的平面图形的直观图是如图所示的等腰直角O B C ''',其中1O B ''=,则原平面图形中最大边长为A .2B .C .3D .【试题来源】重庆市南开中学2020-2021学年高二上学期期中【答案】D【分析】在斜坐标系中作A C B C ''''⊥交x '轴于A '点有2A C,根据斜二测法的画图原则:纵半横不变,得222AC A C ,1OA =,即可知最长边BC 的长度.【解析】由斜坐标系中作A C B C ''''⊥交x '轴于A '点,由1O B ''=,O B C '''等腰直角三角形,2A C由斜二测法的纵半横不变,可将直观图在直角坐标系中还原成原平面图形如下:所以222AC A C ,1OA =,所以最长边BC =,故选D 19.如图,A O B '''为水平放置的AOB 斜二测画法的直观图,且3,42''''==O A O B ,则AOB 的周长为A .9B .10C .11D .12【试题来源】广西崇左高级中学2020-2021学年高一12月月考【答案】D【分析】由斜二测画法的直观图与原图的关系,运算即可得解.【解析】由直观图可得,在OAB 中,23,4OA O A OB O B '''='===,且OA OB ⊥,所以5AB ==,所以OAB 的周长为34512++=.故选D .20.如图,平行四边形O A B C ''''是四边形OABC 的直观图.若3O A ''=,2O C ''=,则原四边形OABC 的周长为A .10B .12C .14D .16【试题来源】安徽省宿州市十三所重点中学2020-2021学年高二上学期期中联考(文)【答案】C【分析】按直观图画法可知原四边形的边长,进一步可求原四边形的周长.【解析】由直观图与原图形的关系,可知原四边形为矩形,边3OA =,边4OC =, 所以原四边形周长为14.故选C21.如图是水平放置的三角形的直观图,2AB BC ==,AB ,BC 分别与y '轴、x '轴平行,则ABC 在原图中的对应三角形的形状和面积分别为A B .等腰三角形;2C .直角三角形;4D .直角三角形;8【试题来源】浙江省台州市书生中学2020-2021学年高二上学期12月第三次月考【答案】C【分析】利用斜二测画法的定义和过程,可判断三角形的形状,以及利用边长求面积.【解析】根据斜二测的直观图的画法可知,原图中,AB BC ⊥,并且原图中2BC =,4AB =,所以ABC 在原图中的对应三角形的形状是直角三角形,面积12442S =⨯⨯=.故选C 22.已知水平放置的ABC 是按“斜二测画法”得到如图所示的直观图,其中1B O C O ''''==,A O ''=,那么原ABC 的面积是A B .2C .D .4 【试题来源】江西省余干县新时代学校2020-2021学年高一上学期阶段测试(二)【答案】C【分析】由直观图可以推得原三角形底边长及高,从而可得原三角形的面积.【解析】由直观图可知,原三角形BC 边长为2,BC 边上的高为所以ABC 的面积是122⨯⨯= C . 23.若边长为2的正111A B C △是水平放置的一个平面图形的直观图,则原图形的面积是ABC .D .【试题来源】【新东方】418【答案】D【分析】先画出该直观图,由题中条件,根据斜二测画法,求出原图形的高,以及底边长,进而可求出原图形的面积.【解析】因为直观图是由斜二测画法作出的,图中1145A OC ∠=,因为111A B C △是边长为2的正三角形,11120OA C ∠=,在11OA C 中,由正弦定理可得12sin120sin 45OC =,解得1OC =根据斜二测画法的特征,可得原水平放置的三角形的高为12OC =,底边长等于112A B =,所以原图形的面积为122⨯=D . 24.一个三角形用斜二测画法所作的直观图是一个边长为2的正三角形,则原三角形的面积为A BC .D .【试题来源】重庆市万州第三中学2020-2021学年高二上学期期中【答案】C【分析】在直观图中求出三角形的高,利用斜二测画法的规则求出原三角形中三角形的高后,利用面积公式可得结果.=角形的高为=122⨯=C 25.利用斜二测画法得到:①三角形的水平放置的直观图是三角形;②平行四边形的水平放置的直观图是平行四边形;③矩形的水平放置的直观图是矩形;④菱形的水平放置的直观图是菱形.以上结论正确的是A .①B .①②C .③④D .①②③④【试题来源】陕西省西安交大附中2019-2020学年高一上学期12月月考【答案】B【分析】根据斜二测画法的规则,平行关系不变,平行x 轴的线段长度不变,平行y 轴的线段长度减半,直角变为45或135判断.【解析】由斜二测画法的规则可知因为平行关系不变,所以①正确;因为平行关系不变,所以②是正确;因为直角变为45或135,所以矩形的直观图是平行四边形,所以③错误;因为平行于y 轴的线段长度减半,平行于x 轴的线段长度不变,所以④是错误,故选B . 26.一个平面图形的斜二测画法的直观图是一个直角边为a 的等腰直角三角形,则原图形的面积为A 2B .2C 2D 2 【试题来源】安徽省合肥市第十一中学2020-2021学年高二上学期期中(理)【答案】D【分析】先计算出直观图的面积,再根据原图面积S 与直观图的面积S '的关系为S =',即可求解. 【解析】平面图形的斜二测画法的直观图是一个直角边为a 的等腰直角三角形,212S a '∴=,则原图形的面积2212S a ==.故选D . 27.下列命题中正确的是A .正方形的直观图是正方形B .平行四边形的直观图是平行四边形C .有两个面平行,其余各面都是平行四边形的几何体叫棱柱D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【试题来源】2020-2021学年高一数学单元测试定心卷(人教版必修2)【答案】B【分析】选项A ,正方形的直观图是平行四边形;选项B ,由斜二测画法规则知平行性不变知②正确;选项C ,要注意棱柱的每相邻两个四边形的公共边互相平行;选项D ,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.【解析】选项A ,正方形的直观图是平行四边形,故A 错误;选项B ,由斜二测画法规则知平行性不变,即平行四边形的直观图是平行四边形,故②正确;选项C ,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,要注意棱柱的每相邻两个四边形的公共边互相平行,故C 错误;选项D ,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D 错误.故选B .28.若水平放置的四边形AOBC 按“斜二测画法”得到如图所示的直观图,其中//AC O B '''',A C B C ''⊥'',1A C ''=,2O B ''=,则原四边形AOBC 的面积为A .12B .6C .D 【试题来源】江西省景德镇一中2020-2021学年高一上学期期末考试(理)【答案】C【分析】根据图象,由“斜二测画法”可得,四边形AOBC 水平放置的直观图为直角梯形,进而利用相关的面积公式求解即可【解析】根据图象可得,四边形AOBC 水平放置的直观图为直角梯形,作A M O B '⊥'',则211O M '=-=,由'''4A O B π∠=,得''A O =2''AO A O ==,''1AC A C ==,''2OB O B ==,且AO OB ⊥,//AC OB ,所以,原四边形AOBC 的面积为11()(12)22S AC OB AO =+⨯=⨯+⨯=C29.已知水平放置的平面四边形ABCD ,用斜二测画法得到的直观图是边长为1的正方形,如图所示,则ABCD 的周长为A .2B .6C .2D .8【试题来源】河南省洛阳市2020-2021学年高一上学期期末【答案】D【分析】根据斜二测画法可换元原图形,根据原图形计算周长即可.【解析】由直观图可得原图形如图,根据斜二测画法可知,1AB CD ==,AC =在Rt ABC 中, 3BC ===,又AD BC =,所以四边形ABCD 的周长为23218⨯+⨯=,故选D30.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为A .32B .62C .322D .34【试题来源】【新东方】绍兴qw119【答案】A【分析】作出原平面图形,然后求出面积即可.【解析】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,所以2A B OB '''==O C C B ''''⊥,45C O B '''∠=︒,所以1B C ''=,在直角坐标系中作出原图形为梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = 所以其面积为1(21)22322S =+⨯=A 【名师点睛】本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '=. 二、多选题1.利用斜二测画法得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是正方形;④水平放置的菱形的直观图是菱形;以上结论正确的是A .①B .②C .③D .④【试题来源】2021年新高考数学一轮复习学与练【答案】AB【分析】根据斜二测画法的概念选择.【解析】水平放置的n 边形的直观图还是n 边形,故①正确;因为斜二测画法是一种特殊的平行投影画法,所以②正确;因为斜二测画法中平行于纵轴的线段长度减半,所以③④错误,故选AB .【名师点睛】本题考查斜二测画法,属于基础题.2.水平放置的ABC 的直观图如图所示,其中1B O C O ''''==,A O ''=,那么原ABC 是一个A .等边三角形B .直角三角形C .三边互不相等的三角形D 【试题来源】人教A 版(2019) 必修第二册 过关斩将 第八章【答案】AD【分析】根据斜二测画法的规则还原图形的边角关系再求解即可.【解析】由题中图形知,在原ABC 中,AO BC ⊥.2A O ''=,AO ∴=1B O C O ''''==,2BC ∴=,2AB AC ==,ABC ∴为等边三角形.ABC ∴的面积为122⨯=AD . 3.如图所示是斜二测画法画出的水平放置的三角形的直观图,D ′为B ′C ′的中点,且A ′D ′∥y ′轴,B ′C ′∥x ′轴,那么在原平面图形ABC 中A .AB 与AC 相等B .AD 的长度大于AC 的长度C .AB 的长度大于AD 的长度D .BC 的长度大于AD 的长度【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册【答案】AC【分析】首先根据斜二测画法的直观图还原几何图形,根据实际图形的长度关系判断选项.【解析】根据斜二测画法的直观图,还原几何图形,首先建立平面直角坐标系xoy ,//BC x 轴,并且BC B C ''=,点D 是BC 的中点,并且作//AD y 轴,即AD BC ⊥,且2AD A D ''=,连结,AB AC ,所以ABC 是等腰三角形,AB AC =,AB 的长度大于AD 的长度,由图可知BC B C ''=,2AD A D ''=,由图观察,12A DBC ''''>,所以2B C AD ''''<,即BC AD <.故选AC【名师点睛】本题考查由直观图还原实际图形,判断长度关系,重点考查斜二测画法的规则,属于基础题型.三、填空题1.已知水平放置的四边形ABCD ,按照斜二测画法画出它的直观图A ′B ′C ′D ′如图所示,其中A ′D ′=2,B 'C '=4,A ′B ′=1,则DC 的长度是___________.【试题来源】备战2021年新高考数学一轮复习考点微专题【答案】【分析】根据直观图画出原图,并计算出DC 的长.【解析】画出原图如下图所示,由图可知DC ==【名师点睛】本题主要考查斜二测画法的直观图和原图的对应关系,属于基础题. 2.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x轴.已知四边形ABCD 的面积为2,则原平面图形的面积为___________.【试题来源】备战2021年新高考数学一轮复习考点微专题 【答案】28cm【分析】根据平面图形中,原图面积与直观图面积之间的关系即可求解. 【解析】设原图面积为S ,直观图面积1S ,根据直观图面积与原图面积的关系1S =,因为1S =容易解得8S =,故答案为28cm .【名师点睛】本题考查斜二侧画法中直观图与原图面积之间的关系,属基础题.3.如图所示,直观图四边形''''A B C D 是一个底角为45︒,腰和上底均为1的等腰梯形,那么原平面图形的面积是___________.【试题来源】四川省武胜烈面中学校2020-2021学年高二上学期开学考试(文)【答案】2+【分析】根据斜二侧画法可知,原图为直角梯形,上底为1,高为2,下底为1+梯形面积公式求解即可.也可利用原图和直观图的面积关系求解.【解析】根据斜二侧画法可知,原图形为直角梯形,其中上底1AD =,高2''2AB A B ==,下底为1BC =+22=+2+ 【名师点睛】本题考查水平放置的平面图形的直观图斜二测画法,比较基础. 4.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中1O A O B ''''==,2O C ''=,则ABC 面积为___________.【试题来源】安徽省合肥168中学2019-2020学年高二(上)期中数学(文)试卷题【分析】把直观图还原为原图形,再计算对应图形的面积. 【解析】用斜二测画法作出的直观图,还原为原图形,如图所示;ABC 中,1OA O A ''==,1OB O B ''==,2OC O C ''==,且OC AB ⊥,所以ABC 的面积为11·222ABC S AB OC ∆==⨯= 【名师点睛】本题主要考查利用斜二测画法作直观图,考查直观图面积的计算,意在考查学生对这些知识的理解掌握水平.5.如图,梯形''''A B C D 是一平面四边形ABCD 按照斜二测画法画出的直观图,其中''//''A D B C ,''2A D =,''4B C =,''1A B =,则原图形DC 边的长度是___________.【试题来源】备战2021年高考数学(理)一轮复习考点一遍过【答案】.【分析】画出原图,根据斜二测画法,由边的关系,即可得解. 【解析】如图,做DH BC ⊥与H ,由题意可得2AD =,4BC =,2AB =,2,2DH HC ==,由勾股定理可得222228,DC DC =+==【名师点睛】本题考查了直观图和原图的关系,考查了斜二测画法,计算量不大,属于基础题.6.如图,平行四边形O A B C ''''是四边形OABC 的直观图.若3O A ''=,2O C ''=,则原四边形OABC 的周长为___________.【试题来源】安徽省宿州市十三所重点中学2020-2021学年高二上学期期中联考(理) 【答案】14【解析】因为平行四边形O A B C ''''是四边形OABC 的直观图,且'''45AO C ∠=︒,所以四边形OABC 是矩形,且3,4OA OC ==, 所以四边形OABC 的周长为2(34)14⨯+=,故答案为147.水平放置的ABC 的斜二测直观图'''A B C 如图所示,已知''3,''2A C B C ==,则ABC 的面积为___________.【试题来源】安徽省蚌埠市田家炳中学2020-2021学年高二上学期12月月考(文) 【答案】6【解析】由已知直观图根据斜二测化法规则画出原平面图形,如图所示;ABC ∴的面积为132262⨯⨯⨯=.故答案为6.8.利用斜二测画法得到: ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④菱形的直观图是菱形.以上结论中,正确的是___________(填序号).【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册 【答案】①②【分析】根据斜二测画法的特点进行判断即可.【解析】斜二测画法得到的图形与原图形中的线线相交、线线平行关系不会改变,有的边的长度会发生变化,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形. 故答案为①②9.四边形ABCD 的直观图是一个底角为45,腰和上底均为1的等腰梯形A B C D '''',那么四边形ABCD 的面积为___________.【试题来源】贵州省遵义市航天高级中学2020-2021学年高二上学期第一次月考【答案】2+【分析】根据四边形ABCD 的直观图是一个底角为45,腰和上底均为1的等腰梯形,可得原图是上底为1,下底为1+2的直角梯形,即可求出原图四边形ABCD 的面积.【解析】由题意知直观图如图:1A D ''=,1D C ''=,45D A B '''∠=,过点D 作D O A B '''⊥于点O ,所以2A O '=,所以121A B ''=+=,原图如图:1AB =2AD =,1CD =,所以梯形ABCD 面积为11222+⨯=+,故答案为2+【名师点睛】本题主要考查了斜二测画法作图规则,属于逆用题型.10.某水平放置的平面图形的斜二侧直观图是等腰梯形(如图所示),45ABC ∠=,112AD BC ==,则该平面图形的面积为___________.【试题来源】江西省赣州市会昌县会昌中学2020-2021学年高二上学期第一次月考(理)【答案】2【分析】根据题中条件,先求出直观图的高,得出直观图中的AB 的长,再由斜二测画法的特征,得出原图形为直角梯形,根据梯形面积公式,即可求出结果.【解析】在直观图中,过点A 作AE BC ⊥于点E ,过点D 作DF BC ⊥于点F , 因为45ABC ∠=,112AD BC ==,所以1EF AD ==,则12BE CF ==,因此2cos 452BE AB ==, 又根据斜二测画法的特征可得,在原图中,AB BC ⊥,//AD BC ,即原图为直角梯形,且高为直观图中AB 的2倍,所以该平面图形的面积为()11222S =⨯+=.故答案为2.【名师点睛】本题主要考查由直观图求原图的面积,熟记斜二测画法的特征即可,属于基础题型.11.已知ABC 的斜二测直观图如图所示,则ABC 的面积为___________.【试题来源】山西省朔州市怀仁县大地学校2019-2020学年高二上学期第一次月考 【答案】2【分析】求出斜二测直观图的面积,再由斜二测直观图的面积与原图的面积关系即可得解. 【解析】由题意,ABC 的斜二测直观图的面积1212sin 4522S '=⨯⨯⨯=,所以ABC 的面积22S '===.故答案为2. 12.如图,一个水平放置的平面图形的斜二测直观图为直角梯形O A B C '''',且2O A ''=,1O C ''=,A B ''平行于y '轴,则这个平面图形的面积为___________.【试题来源】安徽省马鞍山二中2020-2021学年高二上学期10月阶段考试(文)【答案】【分析】根据斜二测画法的规则原图是水平放置的一个直角梯形,画出图象求解即可. 【解析】根据斜二测画法的规则可知水平放置的图形OABC 为一直角梯形,如图:由题意可知上底为2OA =,高为AB =213BC =+=,所以该图形的面积()1322S =⨯+⨯=;故答案为 13.如图,A B C D ''''是一个平面图形ABCD 的水平放置的斜二测直观图,则这个平面图形ABCD 的面积等于___________.【试题来源】【新东方】杭州新东方高中数学试卷360【答案】。

江苏省徐州市2023-2024学年高二下学期期中学业水平质量监测数学试题

江苏省徐州市2023-2024学年高二下学期期中学业水平质量监测数学试题

2023-2024学年度第二学期期中学业水平质量监测(本卷满分150分,共4页,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将答题卡交回.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a =−(2,3,1),b =m n (4,,),且a b //,则+=m nA .4B .5C .6D .72.+=C C 101056A .C 117B .C 116C .C 1111D .C 1073.由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是A .36B .72C .480D .6004.已知向量a =(1,3,1),b =(2,1,1),c =t (,5,1)共面,则实数t 的值是A .−1B .0C .1D .25.甲、乙等5人计划去上海、苏州及青岛三个城市调查农民工薪资情况.每个人只能去一个城市,并且每个城市都要有人去,则不同的分配方案共有种数为 A .150B .300C .450D .5406.13520232024202420242024C C C C ++++被3除的余数为A .1B .2C .3D .47.在正三棱锥−A BCD 中,2BE EA =,F 为AD 的中点,⊥BF CE ,则∠BAC 的正弦值为 A .12B .22C .1D .328.若将整个样本空间想象成一个⨯11的正方形,任何事件都对应样本空间的一个子集,且 事件发生的概率对应子集的面积,则如图所示的涂色部分的面积表示 A .事件A 发生的概率B .事件B 发生的概率C .事件C 不发生条件下事件A 发生的概率D .事件A ,B 同时发生的概率二、多项选择题(本大题共3个小题,每小题6分,共18分,在每小题给出的选项中,有多项是符合题目要求的.全选对的得6分,部分选对的得部分分,有选错的得0分)9. 若=−C C m m282838,则m 的取值可能是 A .4 B .5 C .8 D .910.已知A ,B 是两个随机事件,<<P A 0()1,下列命题正确的是A. 若A ,B 相互独立,则=P B A P B (|)()B. 若事件⊆A B ,则=P B A (|)1C. 若A ,B 是对立事件,则=P B A (|)1D. 若A ,B 是互斥事件,则=P B A (|)011.已知正方体−ABCD A B C D 1111的棱长为1,动点M ,N 在对角线AC ,C D 1上移动,且AM AC λ=,DN DC λ=1,∈λ(0,1)则下列结论中正确的是 A .异面直线AC 与C D 1所成的角为60 B .线段MN 的最小值为22C .MN 与平面AAD D 11不平行D .存在∈λ(0,1),使得⊥MN AC三、填空题(本大题共3个小题,每小题5分,共15分)12.已知正方体−ABCD A B C D 1111的棱长为1,则AB 在AC 1上的投影向量的模为 . 13.++x x (32)25展开式中含x 2项的系数是 .14.图为一个开关阵列,每个开关只有“开”和“关”两种状态,按其中一个开关 1 次将导致自身和所有相邻的开关改变状态.例如,按 (2,2) 将导致 (1,2),(2,1),(2.2), (2,3),(3,2)改变状态.如果要求改变(1,1),(2,2),(3,3)的状态,则需按开关的最少次数为_________;如果只要求改变(2,2)的状态,则需按开关的最少次数为_________四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)15.(13分)已知n n n x a a x a x a x +=++++(21)0122,且满足各项的二项式系数之和为256(1)求a 3的值; (2)求2222nna a ++++a a 23123的值.16.(15分)如图,四棱锥−P ABCD 中,底面ABCD 为直角梯形,AD BC //,⊥AB AD ,⊥PA 平面ABCD ,=AD 10,==BC AB 28,M 为PC 的中点.(1)求证:平面⊥PAC 平面PCD ;(2)若⊥AM PC ,求直线BM 与面PCD 所成角的正弦值.17.(15分)在+8的展开式中,前3项的系数成等差数列,且第二项的系数大于1(1)求展开式中含x41的项;(2)求展开式中系数最大的项.18.(17分)设甲袋中有4个白球和2个红球,乙袋中有2个白球和2个红球.(1)现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.求从乙袋中取出的是2个红球的概率;(2)先随机取一只袋,在再从该袋中先后随机取2个球,求第一次取出的是红球的前提下,第二次取出的球是白球的概率.19.(17分)在四棱柱−ABCD A B C D 1111中,已知⊥B C 1底面ABCD ,AD BC //,⊥AB AD ,===AD AB BC 222,=BB 1E 是线段B D 1上的点.(1)点C 1到平面B CD 1的距离;(2)若E 为B D 1的中点,求异面直线DD 1与AE 所成角的余弦值;(3)在线段B D 1上是否存在点E ,使得二面角−−C AE D 若存在,请确定E 点位置;若不存在,试说明理由.。

江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)

江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)
解得 ,且 ;所以函数 的定义域是 .故选:C.
8.(江苏省南京市第十二中学2020-2021学年上学期期中4)下面各组函数中表示同个函数的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】对于A, 的定义域为 ,而 的定义域为 ,两函数的定义域不相同,所以不是同一函数;
对于B,两个函数的定义域都为 ,定义域相同, ,所以这两个函数是同一函数;
A.0B.2
C.4D.-2
【答案】B
【解析】取 ,则 ,
因为函数为奇函数,则 , 即 ,
整理可得 ,即 .故选:B
10.(江苏省南通市西亭高级中学2020-2021学年上学期期中4)已知函数 ,若 =10,则实数a的值为()
A 5B.9C.10D.11
【答案】B
【解析】由 ,令 ,则 .
因为 ,所以a=9.故选:B
A.-4 B.5 C.14 D.23
【答案】C
【解析】由题意可设 ,则当 时, 单调,且 ≥0恒成立,因为 的对称轴方程为 ,则 或 ,解得6≤a≤17或-3≤a≤-2,即 ,则只有14满足题意,故答案选C.
23.(江苏省南通市西亭高级中学2020-2021学年上学期期中6)已知 是偶函数,且其定义域为 ,则 的值是()
【答案】C
【解析】满足条件的函数的定义域为 、 、 、 、 、 、 、 、 ,共 个.故选:C.
18.(江苏省南京市南师附中2020-2021学年上学期期中5)函数 的值域为( )
A. B. C. D.
【答案】D
19.(江苏省南通市西亭高级中学2020-2021学年上学期期中5)已知函数 的值域是()
C.[-4,-1]∪[0,2]D.(-∞,-1]∪[0,2]

2019-2020学年江苏省徐州市高一下学期期中考试语文试题(含答案)

2019-2020学年江苏省徐州市高一下学期期中考试语文试题(含答案)

江苏省徐州市2019-2020学年高一第二学期期中语文试卷(满分150分,时间150分钟)2020.5一、现代文阅读(36分)(一)论述类文本阅读(本题共3个题,9分)阅读下面的文字,完成1~3题。

从陶渊明看现代人的生存困境“樊笼”是陶渊明诗文中的核心意象之一,象征被限制了身心自由的、令人难以忍受的生存处境,如“久在樊笼里,复得返自然”。

人类自己创造的文明,支撑了人类的现实生存,却把人束缚在文明的种种框架之中而不得自由。

卢梭(1712—1778)的《社会契约论》开篇第一句话便是“人是生而自由的,但却无往不在枷锁之中”。

《国际歌》曾唱遍全世界,“让思想冲破牢笼”“把旧世界打个落花流水”。

从后来的无产阶级革命实践看,把“旧世界”打个落花流水倒不是太难,“新世界”要完全冲破牢笼却难办得多,哪怕仅仅是冲破思想的牢笼。

如果说陶渊明生活的农业时代“樊笼”(“樊”字从木)还是由“木头”制作的,那么,到了工业时代,在马克斯·韦伯(1864—1920)《新教伦理与资本主义精神》一书中,“木笼”变成了“铁笼”,“这个铁笼是机器般的非人格化的,它从形式理性那里借来抽象力量将人禁锢其中”,它“冷静超然,逻辑严密,等级森严,庞大无比”“最终要无情地吞噬一切”“一直持续到人类烧光最后一吨煤的时刻”。

人类文明在不断发展,人对自然的控制力在不断加大;但更糟糕的是,人们对自然、对他人的控制力量越是强大,人们自己被囚禁的程度也就越深。

高度发达的现代社会确实有一套自我粉饰的招数,能把牢笼打理得如同五星级宾馆,使囚犯忘记自己还是囚犯,使囚犯们积极踊跃地甘当囚犯。

牢笼固然可恶,对于现代人来说,更可怕的是失去了“走出牢笼”与“回归自然”的自觉意识。

现代人普遍相信“进步论”,相信现在比过去好,未来比现在好。

这种进步论若是以地球生态的尺度来衡量,是不足以证实的。

我们的地球生态不但现在不比过去好,未来更让人担忧。

尽管如此,现代人还是一心“向前进”,没有人愿意“向后退”,哪怕是后退一小步。

江苏省徐州市邳州市运河中学2020-2021学年高一下学期期中考试数学试题及答案(实验班)

江苏省徐州市邳州市运河中学2020-2021学年高一下学期期中考试数学试题及答案(实验班)

2020——2021高一年级第二学期中考试数学试卷(实验班)注意事项:1.本试卷共8页,包括选择题(第1题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)三部分.本试卷满分为150分,考试时间为120分钟.2.答题前,请务必将自己的班级、姓名、考试号写在答题卡上.试题的答案写在答题卡上对应题目的答题空格内.考试结束后,交回答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项符合题目要求.1.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件2.若复数z 满足()12i z i +=+,则复数z 的虚部是()A .-B .C D3.若平面内两条平行线1l :(1)20x a y +-+=,2l :210ax y ++=间的距离为5,则实数a =() A .2-B .2-或1C .1-D .1-或24.吉希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼期圆.已知(0,0)O ,(3,0)A ,圆222:(2)(0)C x y r r -+=>上有且仅有一个点P 满足||2||PA PO =,则r 的取值可以为() A .1B .2C .3D .45.已知点()()1,1P a a >在抛物线()220y px p =>上,过P 作圆()2211x y -+=的两条切线,分别交抛物线于点A ,B ,若直线AB 的斜率为1-,则抛物线的方程为()A .24y x =B .22y x =C .2y x =D .24x y =6.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a ,b 个坛子,一共堆了n 层,则酒坛的总数()()()()()()112211S ab a b a b a n b n =+--+--+⋅⋅⋅+-+-+.现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为() A .55B .165C .220 D .2867.关于函数()sin |||sin |f x x x =+有下述四个结论:①f(x)是偶函数②f(x)在区间(2π,π)单调递增 ③f(x)在[,]-ππ有4个零点④f(x)的最大值为2 其中所有正确结论的编号是() A.①②④B.②④C.①④D.①③8.圣·索菲亚教堂(英语:SAINTSOPHIACATHEDRAL )坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑.1996年经国务院批准,被列为第四批全国重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点,其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美.小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为()15315m -,在它们之间的地面上的点M (,,B M D 三点共线)处测得楼顶A ,教堂顶C 的仰角分别是15︒和60︒,在楼顶A 处测得塔顶C 的仰角为30,则小明估算索菲亚教堂的高度为() A .20mB .30mC .203mD .303m二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多 项符合题目要求.全部选对得5分,部分选对得2分,有项选错得0分. 9.对于复数123,,z z z ,下列命题都成立() A.1212z z z z +≤+ B.2121z z z =,则12=z zC.1212z z z z ⋅=⋅D.若非零复数123,,z z z ,满足1213z z z z =,则23z z =.则对于非零 10.路人甲向正东方向走了xkm 后向右转了150°,然后沿新方向走了3km ,结果离出发点恰好3km ,则x 的值为() A .3B .23C .2D .311.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则()A.12nk +=B .133n n a a +=-C.()2332n a n n =+D .()133234n n S n +=+- 12.已知圆22:4C x y +=,直线():34330l m x y m ++-+=,(R m ∈).则下列四个命题正确的是()A .直线l 恒过定点()3,3-B .当0m =时,圆C 上有且仅有三个点到直线l 的距离都等于1C .圆C 与曲线22680x y x y m +--+=恰有三条公切线,则16m =D .当13m =时,直线l 上一个动点P 向圆C 引两条切线PA ,PB ,其中A ,B 为切点,则直线AB 经过点164,99⎛⎫-- ⎪⎝⎭ 三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上......... 13.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=10相交于A ,B 两点,则直线AB 的方程是________.14.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.15.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____. 16.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______. 四、解答题:本题共6小题,共70分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知向量1sin ,,(cos ,1)2a x b x ⎛⎫==- ⎪⎝⎭. (1)当a b ⊥时,求实数x 的值. (2)求()()f x a b b =+⋅在,02π⎡⎤-⎢⎥⎣⎦上的最大值与最小值. 18.(本小题满分12分)已知等差数列{}n a 和等比数列{}n b 满足12a =,24b =,22log n n a b =,*N n ∈. (1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n a 中不在数列{}n b 中的项按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n S ,求100S . 19.(本小题满分12分)已知设复数z 满足=1z 使得关于x 的方程2220zx zx ++=有实根,其中z 为z 的共轭复数,求满足条件的z 构成的集合。

江苏省徐州市2018-2019学年高二下学期期中考试数学(理)试题(解析版)

江苏省徐州市2018-2019学年高二下学期期中考试数学(理)试题(解析版)

江苏省徐州市2018—2019学年高二下学期期中考试数学(理)试题一、填空题(不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.=______【答案】60【解析】【分析】根据排列数公式计算即可.【详解】5×4×3=60.故答案为:60.【点睛】本题主要考查了排列数公式,属于基础题.2.若i是虚数单位,且复数z满足z=3﹣i,则=______【答案】【解析】【分析】由已知直接代入复数模的计算公式求解.【详解】∵z=3﹣i,∴|z|.故答案为:.【点睛】本题考查复数模的求法,是基础题.3.用反证法证明命题“如果m<n,那么”时,假设的内容应该是______【答案】假设【解析】【分析】由于用反证法证明命题时,应先假设命题的否定成立,由此得出结论.【详解】∵用反证法证明命题时,应先假设命题的否定成立,而“m7<n7”的否定为:“m7≥n7”,故答案为:假设m7≥n7【点睛】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.4.若,则x的值为______.【答案】3或4【解析】【分析】结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.5.已知复数(是虚数单位),则=______【答案】-1 【解析】【分析】把代入ω3﹣2,再由复数代数形式的乘除运算化简得答案.【详解】∵,∴ω3﹣2.故答案为:﹣1.【点睛】本题考查复数代数形式的乘除运算,是基础题.6.用灰、白两种颜色的正六边形瓷砖按如图所示的规律拼成若干个图案,则第6个图案中正六边形瓷砖的个数是______【答案】37【解析】【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【详解】第1个图案中有灰色瓷砖6块,白色瓷砖1块第2个图案中有灰色瓷砖11块,白色瓷砖2块;第3个图案中有灰色瓷砖16块,白色瓷砖3块;…设第n个图案中有瓷砖a n块,用数列{}表示,则=6+1=7,=11+2=13,=16+3=19,可知﹣=﹣=6,…∴数列{}是以7为首项,6为公差的等差数列,∴=7+6(n﹣1)=6n+1,∴=37,故答案为:37.【点睛】本题考查了归纳推理的问题,属于基础题.7.有这样一段“三段论”推理,对于可导函数,大前提:如果,那么是函数的极值点;小前提:因为函数在处的导数值,结论:所以是函数的极值点.以上推理中错误的原因是______错误(“大前提”,“小前提”,“结论”).【答案】大前提【解析】因为导数等于零的点不一定是极值点.如函数y=x3,它在x=0处导数值等于零,但x=0不是函数y=x3的极值点.因为只有此值两侧的导数值异号时才是极值点8.用数学归纳法证明(,n>1)时,第一步应验证的不等式是______.【答案】【解析】试题分析:式子的左边应是分母从1,依次增加1,直到,所以答案为。

2023-2024学年江苏省徐州市高一(上)期中数学试卷【答案版】

2023-2024学年江苏省徐州市高一(上)期中数学试卷【答案版】

2023-2024学年江苏省徐州市高一(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .325.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥276.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+18.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤1011.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a )(b +1b )≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为212.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}三、填空题(本大题共4题,每小题5分,共20分)13.命题p :所有的质数都是奇数,则命题p 的否定是 .14.已知函数f (x )对任意实数x 都有f (x )+2f (﹣x )=2x +1,则f (x )= .15.已知函数f (x )=ax 2﹣2x +1(x ∈R )有两个零点,一个大于1另一个小于1,则实数a 的取值范围为 .16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的 倍;大约经过 天后“进步”的分别是“落后”的10倍.(参考数据:lg 101≈2.004,lg 99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2. 18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围. 19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4. (1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式; (2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.2023-2024学年江苏省徐州市高一(上)期中数学试卷参考答案与试题解析一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}解:由已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B ={0,1}. 故选:A .2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件解:若关于x 的方程x 2+x +a =0有实数根, 则Δ=12﹣4a ≥0,解得a ≤14, 而﹣2∈(−∞,14],所以“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的充分条件, 故选:A .3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 解:y =x +1与y =|x +1|的对应关系不同,不是同一函数; y =2x ,x >0与y =2x ,x <0定义域不同,不是同一函数;y =√x 2的定义域为R ,y =(√x )2的定义域为[0,+∞)不同,不是同一函数; y =x+x 3x 2+1=x 与y =x 的定义域都为R ,对应关系相同,是同一函数. 故选:D .4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .32解:在a +2b =ab 的两边都除以ab ,整理得2a+1b=1,所以a +b =(2a +1b )(a +b)=3+ab +2ba ≥3+2√ab ⋅2ba =3+2√2,当且仅当a b=2b a时,即a =2+√2,b =√2+1时,a +b 的最小值是3+2√2.故选:B .5.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥27解:命题p :“∀x ∈(2,3),3x 2﹣a >0”,命题p 是真命题, 当∀x ∈(2,3)时, 则a <(3x 2)min <3×22, 故a <12. 故选:C .6.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}解:因为不等式ax 2+bx +c >0的解集为{x |2<x <3}, 所以2和3是方程ax 2+bx +c =0的两个实数解,且a <0; 由根与系数的关系知,{2+3=−ba 2×3=c a ,所以b =﹣5a ,c =6a ;所以不等式bx 2+ax +c <0可化为﹣5ax 2+ax +6a <0, 即5x 2﹣x ﹣6<0,解得﹣1<x <65, 所求不等式的解集为{x |﹣1<x <65}. 故选:A .7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+1解:∵a =lg 6=lg 2+lg 3,b =lg 20=1+lg 2, ∴lg 2=b ﹣1,lg 3=a ﹣lg 2=a ﹣(b ﹣1), ∴log 43=lg3lg4=lg32lg2=a−(b−1)2(b−1)=a−b+12(b−1). 故选:C .8.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)解:因为f (x )=ax +b (a >0),满足f (f (x ))=f (ax +b )=a (ax +b )+b =x +2, 所以{a 2=1ab +b =2,解得a =1,b =1或a =﹣1(舍), 故f (x )=x +1,则函数y =x −√f(x)=x −√x +1, 令t =√x +1,则t ≥0,原函数化为y =t 2﹣t ﹣1=(t −12)2−54≥−54. 故选:C .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .解:对于A ,D ,存在一个x 对应两个y 的情况,故不满足函数的定义,故排除A ,D , B ,C 均满足函数定义. 故选:AD .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤10解:当a =1,b =﹣1时,A ,B 显然错误; 若a >b >0,则b+1a+1−b a=a−b a(a+1)>0,则b+1a+1>ba,C 正确;若1≤a ﹣b ≤2,2≤a +b ≤4,则4a ﹣2b =3(a ﹣b )+a +b ∈[5,10],D 正确.故选:CD .11.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a)(b +1b)≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为2解:对于A ,ab =1,可能a =b =﹣1,此时a +b ≥2不成立,故A 不正确; 对于B ,a +b =(1a +1b )(a +b)=2+ba +ab ≥2+2√b a ⋅ab =4, 由于取等号的条件是ba =a b=1,即a =b ,与题设a >b >0矛盾,故a +b 最小值大于4,故B 不正确;对于C ,a >0,b >0,由a +1a ≥2√a ⋅1a =2,b +1b ≥2√b ⋅1b =2,两不等式相乘,得(a +1a )(b +1b)≥4,当且仅当a =1且b =1时,等号成立,故C 正确;对于D ,a >0,b >0且a +b =4,设m =a +2,n =b +2,则m >2,n >2,且m +n =8,a 2a+2+b 2b+2=(m−2)2m+(n−2)2n =m +4m−4+n +4n−4=(m +n)+4m+4n−8=4m+4n,因为4m+4n=4(m+n)mn=32mn≥32(m+n 2)2=2,当且仅当m =n =4时,即a =b =2时,等号成立,所以a 2a+2+b 2b+2的最小值为2,故D 正确.故选:CD .12.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}解:根据题意,可得(x ﹣a )⊗(x +a )>1,即(x ﹣a )[1﹣(x +a )]>1,命题p 可化为:∃x ∈R ,使得(x ﹣a )[1﹣(x +a )]>1,即:∃x ∈R ,使﹣x 2+x +a 2﹣a ﹣1>0成立.化简得:∃x∈R,使x2﹣x﹣a2+a+1<0成立,故Δ=1﹣4(﹣a2+a+1)>0,解得a<−12或a>32.综上所述,命题p成立的充要条件是a<−12或a>32,因此,命题p成立的充分不必要条件,对应的集合是{a|a<−12或a>32}的真子集,对照各个选项,可知C、D两项符合题意.故选:CD.三、填空题(本大题共4题,每小题5分,共20分)13.命题p:所有的质数都是奇数,则命题p的否定是存在某个质数不是奇数.解:命题p:所有的质数都是奇数,则命题p的否定是:存在某个质数不是奇数.故答案为:存在某个质数不是奇数.14.已知函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,则f(x)=﹣2x+13.解:因为函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,所以f(﹣x)+2f(x)=﹣2x+1,解得f(x)=﹣2x+1 3.故答案为:﹣2x+1 3.15.已知函数f(x)=ax2﹣2x+1(x∈R)有两个零点,一个大于1另一个小于1,则实数a的取值范围为(0,1).解:∵函数f(x)=ax2﹣2x+1(x∈R)有两个零点,∴a≠0,而且一个大于1另一个小于1,则{a>0f(1)=a−2+1<0或{a<0f(1)=a−2+1>0,解得:0<a<1.∴实数a的取值范围为(0,1).故答案为:(0,1).16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的832倍;大约经过125天后“进步”的分别是“落后”的10倍.(参考数据:lg101≈2.004,lg99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)解:lg 1.013650.99365lg 1.01365﹣lg 0.99365=365(lg 1.01﹣lg 0.99)=365(lg 101﹣lg 99)≈2.92,故1.013650.99365=102.92≈832,设x 天后“进步”的分别是“落后”的10倍,则1.01x 0.99x=10,即lg 1.01x0.99x =lg1.01x −lg0.99x =x(lg1.01−lg0.99)=x(lg101−lg99)=1, 解得x =1lg101−lg99≈125. 故答案为:832;125.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2.解:(1)原式=32+1+√(√5−1)2+94=32+1+√5−1+94=154+√5; (2)原式=log 3332+2lg 5﹣2+2lg 2=32+2(lg 5+lg 2)﹣2=32+2﹣2=32.18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围.解:(1)∵集合A ={x|x−3x+2<0}={x |﹣2<x <3},B ={x ||x ﹣1|>2}={x |x >3或x <﹣1}, ∴集合A ∪B ={x |x ≠3}.(2)由(1)可得A ∩B ={x |﹣2<x <﹣1},若a <0,则C ={x |x 2﹣4ax +3a 2<0}={x |(x ﹣a )(x ﹣3a )<0}={x |3a <x <a }. 由(A ∩B )⊆C ,可得{3a ≤−2a ≥−1,求得﹣1≤a ≤−23,即实数a 的取值范围为[﹣1,−23].19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 解:(1)由题意可得x 2﹣mx +3≤﹣4,即x 2﹣mx +7≤0,其解集为[2,n ], 所以x 1=2和x 2=n 是方程x 2﹣mx +7=0的两根,由韦达定理可得{2+n =m2n =7,解得n =72,m =112;(2)因为对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立, 即对于∀x ∈[12,+∞),不等式x 2﹣mx +3≥2﹣x 2恒成立, 即m ≤2x +1x 对于∀x ∈[12,+∞)恒成立, 又因为2x +1x≥2√2x ⋅1x=2√2, 当且仅当2x =1x ,即x =√22∈[12,+∞)时,等号成立,所以m ≤2√2,即实数m 的取值范围为(﹣∞,2√2].20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 解:(1)命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题,即不等式x 2﹣x >m 在R 上恒成立, 因为当x =12时,x 2﹣x 的最小值为−14,所以−14>m ,即实数m 的取值集合M =(−∞,−14); (2)若“x ∈N ”是“x ∈M ”的充分条件,则N ⊆M , 而M =(−∞,−14),N ={x |3a <x <a +4},有以下两种情况: ①若3a ≥a +4,则N =∅,符合题意,此时a ≥2; ②若N ≠∅,则a <2且a +4≤−14,解得a ≤−174. 综上所述,实数a 的取值范围是(−∞,−174]∪[2,+∞).21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.解:(1)该产品每件售价为x 元,则[8﹣(x ﹣25)×0.2](x ﹣20)≥(25﹣20)×8,解得25≤x ≤60,故产品每件售价最多为60元;(2)设下个月的总利润为W ,则W =(x −20)[8−0.45(x−25)2(x −25)]−334(x −26)=47.8−(x−254+2.25x−25) ≤47.8−2√x−254⋅2.25x−25=46.3, 当且仅当x−254= 2.25x−25,即x =28时等号成立,故当每件售价为28时,下月的月总利润最大,最大总利润为46.3.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式;(2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.解:(1)当a =2时,不等式f (x )>0的解集不能为{x |﹣3<x <1},且函数f (x )没有最大值,所以a =2不成立,即满足题意的两个条件是②③,由f (x )>0的解集为{x |﹣3<x <1},可令f (x )=a (x +3)(x ﹣1)=ax 2+2ax ﹣3a (a <0), f (x )的最大值为4,所以4a×(−3a)−(2a)24a =4,解得a =﹣1,所以f (x )=﹣x 2﹣2x +3;(2)不等式f (x )≥(m ﹣1)x 2+2可化为mx 2+2x ﹣1≤0,当m =0时,不等式等价于2x ﹣1≤0,解得x ≤12,所以不等式的解集为(−∞,12];当m >0时,对于一元二次方程mx 2+2x ﹣1=0,由于Δ=4+4m >0,方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m , 不等式的解集为[−1−√m+1m ,−1+√m+1m ]; 当m <0时,对于一元二次方程mx 2+2x ﹣1=0,Δ=4+4m ,当m <﹣1时,Δ<0,一元二次方程无实数根,所以不等式的解集为R ;当m =﹣1时,Δ=0,一元二次方程有两个相等的实数根,此时不等式的解集也为R ;当﹣1<m <0时,Δ>0,一元二次方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m,且x 1<x 2,所以不等式的解集为(−∞,−1+√m+1m ]∪[−1−√m+1m,+∞),综上,当m=0时,不等式的解集为(−∞,12 ];当m>0时,不等式的解集为[−1−√m+1m,−1+√m+1m];当m≤﹣1时,不等式的解集为R;当﹣1<m<0时,不等式的解集为(−∞,−1+√m+1m]∪[−1−√m+1m,+∞).。

江苏省徐州市2023-2024学年高三上学期11月期中数学试题含解析

江苏省徐州市2023-2024学年高三上学期11月期中数学试题含解析

2023~2024学年度第一学期高三年级期中抽测数学试题(答案在最后)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}1,2,3,4,5,1,3,1,2,5U A B ===,则()U A B =ð()A.{}1,3,4 B.{}1,3 C.{}1,2,5 D.{}1,2,4,5【答案】A 【解析】【分析】利用并集与补集的概念计算即可.【详解】由题意可知{}3,4U B =ð,所以(){}1,3,4U A B ⋃=ð.故选:A 2.若2i 1iz -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的乘法运算求得复数z ,即可得z ,可得其对应的点的坐标,即可得答案.【详解】由题意知2i 1iz -=+,故i(1i)21i z =++=+,故1iz =-则复数z 对应的点为(1,1)-,在第四象限,故选:D3.拋掷一枚质地均匀的骰子,将得到的点数记为a ,则,4,5a 能够构成钝角三角形的概率是()A.23B.12C.13D.16【答案】D 【解析】【分析】先确定a 可能的取值,再结合余弦定理判断三角形为钝角时a 的取值,根据古典概型的概率公式,即可求得答案.【详解】由题意拋掷一枚质地均匀的骰子,将得到的点数记为a ,则a 的取值可能为1,2,3,4,5,6,有6种可能;,4,5a 能够构成三角形时,需满足19a <<,若,4,5a 能够构成钝角三角形,当5所对角为钝角时,有2222450,9a a +-<∴<,此时2a =;当a 所对角为钝角时,需满足2222540,41a a +-<∴>,此时没有符合该条件的a 值,故,4,5a 能够构成钝角三角形的概率是16,故选:D4.已知向量()()0,2,1,a b t =-= ,若向量b 在向量a 上的投影向量为12a - ,则⋅= ab ()A.2-B.52-C.2D.112【答案】A 【解析】【分析】根据投影向量定义及向量的数量积、向量的模计算即可.【详解】因为()()0,2,1,a b t =-=,所以向量b 在向量a上的投影向量为2142||||b a a t a a a a⋅-⋅==-,所以1t =,故2a b ⋅=-故选:A5.已知等比数列{}n a 的首项为3,则“911a a <”是“1114a a <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】结合等比数列的通项公式,由911a a <可得q 的取值范围,说明1q <-时不能推出1114a a <;继而说明1114a a <成立时推出1q >,即可推得911a a <,由此可判断答案.【详解】由题意知等比数列{}n a 的首项为3,设公比为q ,由911a a <,则81033q q <,即21,1q q >∴>或1q <-,当1q <-时,01114133(1)0q a a q -=->,即1114a a >,即“911a a <”不是“1114a a <”的充分条件;当1114a a <时,即1013,1q q q <∴>,则810q q <,即81033q q <,即911a a <,故“911a a <”是“1114a a <”的必要条件,故“911a a <”是“1114a a <”的必要不充分条件,故选:B 6.已知π4ππsin ,3536θθ⎛⎫+=-<< ⎪⎝⎭,则πtan 26θ⎛⎫+= ⎪⎝⎭()A.2425-B.2425C.724D.724-【答案】C 【解析】【分析】根据角的变换及诱导公式,二倍角的正切公式求解即可.【详解】因为ππ36θ-<<,所以ππ032θ<+<,所以3cos 5π3θ⎛⎫= ⎪⎭+⎝,故4tan 3π3θ⎛⎫= ⎪⎭+⎝,πππsin 2cos 232πππ13tan 2tan 2ππ632ππsin 2tan 2cos 23332θθθθθθθ⎡⎤⎛⎫⎛⎫+-+ ⎪⎢ ⎪⎡⎤⎛⎫⎛⎫⎝⎭⎣⎦⎝⎭+=+-==-=-⎪ ⎪⎢⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎣⎦+++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π161tan 17394π2422tan 33θθ⎛⎫-+-⎪⎝⎭=-=-=⎛⎫⨯+ ⎪⎝⎭,故选:C7.已知()1y f x =-为偶函数,当1x ≥-时,()()2ln 23f x x x =++.若()()12f x f x >,则()A.()()121220x x x x -+-< B.()()121220x x x x -+->C.()()121220x x x x -++< D.()()121220x x x x -++>【答案】D 【解析】【分析】利用偶函数的性质及复合函数的单调性计算即可.【详解】由()1y f x =-为偶函数可知()f x 的图象关于=1x -轴对称,又1x ≥-时,()222312u x x x =++=++单调递增,ln y u =单调递增,故()()2ln 23f x x x =++在()1,-+∞上单调递增,(),1-∞-上单调递减,即()()()()()()221212121212111120f x f x x x x x x x x x >⇒+>+⇒+-+=-++>.故选:D8.已知抛物线2:4C y x =的焦点为F ,过点()0,3的直线与C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点D ,若6AF BF +=,则ABD △的面积为()A.2B.C.2D.【答案】C 【解析】【分析】设AB 的中点为H ,A 、B 、H 在准线上的射影分别为A B H '''、、,由题意和抛物线的定义可得3HH '=,即2H x =,设()()1122,,,A x y B x y ,设直线AB 方程,联立抛物线方程,利用韦达定理求出直线AB 的斜率,求得H 的坐标,进而求出其中垂线方程,可得D 的坐标,结合弦长公式和三角形面积公式计算即可求解.【详解】设AB 的中点为H ,抛物线的焦点为(1,0)F ,准线为=1x -,设A 、B 、H 在准线上的射影分别为A B H '''、、,则1()2HH AA BB '''=+,由抛物线的定义可知,,,6AF AA BF BB AF BF ''==+=,所以6AA BB ''+=,得3HH '=,即点H 的横坐标为2,设直线AB :3y kx =+,代入抛物线方程,得22(64)90k x k x +-+=,由22(64)360k k ∆=-->,得13k <且0k ≠.设()()1122,,,A x y B x y ,则122464k x x k -+==,解得2k =-或12(舍去).所以直线AB :23y x =-+,(2,1)H -,所以AB 的中垂线方程为11(2)2y x +=-,令0y =,解得4x =,即(4,0)D ,则DH =又122994x x k==,所以AB =所以1122ABD S AB DH == .故选:C.Q二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为调研某地空气质量,连续10天测得该地PM 2.5(PM 2.5是衡量空气质量的重要指标,单位:3ug /m )的日均值,依次为36,26,17,23,33,106,42,31,30,33,则()A.前4天的极差大于后4天的极差B.前4天的方差小于后4天的方差C.这组数据的中位数为31或33D.这组数据的第60百分位数与众数相同【答案】AD 【解析】【分析】根据方差和极差判断A ,B 选项,根据中位数判断C 选项,根据百分位数和众数判断D 选项.【详解】前4天的极差361719-=,后4天的极差423012-=,A 正确;前4天的平均数25.5,方差222210.50.58.5 2.547.254+++=,后4天的平均数34,方差2222834122.54+++=,前4天的方差大于后4天的方差,B 选项错误;数据从小大排列17,23,26,30,31,33,33,36,42,106,这组数据的中位数为3133322+=,C 选项错误;这组数据的第60百分位数100.66⨯=是第6个数和第7个数的平均数3333332+=与众数33相同,D 选项正确.故选:AD.10.已知函数()()cos (0,0,0π)f x A x A ωϕωϕ=+>><<在5π12x =处取得极小值2-,与此极小值点相邻的()f x 的一个零点为π6,则()A.()2π2sin 23f x x ⎛⎫=+⎪⎝⎭B.π3y f x ⎛⎫=-⎪⎝⎭是奇函数C.()f x 在ππ,63⎛⎫- ⎪⎝⎭上单调递减D.()f x 在π5π,46⎡⎫⎪⎢⎣⎭上的值域为⎡-⎣【答案】ABD 【解析】【分析】对A ,根据极小值可得A ,再根据极值点与零点关系可得周期,进而可得ω,再代入极小值点求解即可;对B ,根据解析式判断即可;对C ,代入ππ,63⎛⎫- ⎪⎝⎭判断是否为减区间即可;对D ,根据正弦函数在区间上的单调性与最值求解即可.【详解】对A ,由题意2A =-,且周期T 满足5πππ12644T -==,故πT =,即2ππω=,2=ω,故()()2cos 2f x x ϕ=+.因为()f x 在5π12x =处取得极小值2-,故()5π2π2π,Z 12k k ϕ⨯+=+∈,即()π2π,Z 6k k ϕ=+∈,又0πϕ<<,故π6ϕ=,则()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭.由诱导公式()2ππππ2sin 22sin 22cos 23626f x x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 正确;对B ,ππππ2cos 22cos 22sin 23362y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对C ,ππ,63x ⎛⎫∈-⎪⎝⎭则ππ5π2,666x ⎛⎫+∈- ⎪⎝⎭,不为余弦函数的单调递减区间,故C 错误;对D ,π5π,46x ⎡⎫∈⎪⎢⎣⎭则1π22π1π,366x ⎡⎫∈⎪⎢⎣⎭+,故,πc 2os 216x ⎡⎫∈-⎪⎢⎪⎛⎫+ ⎪⎝⎣⎭⎭,则π2cos 26x ⎡∈-⎣⎛⎫+ ⎪⎝⎭,故D 正确.故选:ABD11.在棱长为2的正方体1111ABCD A B C D -中,,E F 分别是棱,BC CD 的中点,则()A.11B D 与EF 是异面直线B.存在点P ,使得12A P PF =,且BC //平面1APBC.1A F 与平面1B EB 所成角的余弦值为3D.点1B 到平面1A EF 的距离为45【答案】BC 【解析】【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅=⋅,则1AF 与平面1B EB所成角的余弦值为3=,C 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111117A B n n ⋅==,D 错误.故选:BC12.已知函数()()()11ln ,f x a x x x a =-++∈R ,则下列说法正确的是()A.当1ln8a =时,()122f f ⎛⎫= ⎪⎝⎭B.当0a >时,()22f a a a <-C.若()f x 是增函数,则2a >-D.若()f x 和()f x '的零点总数大于2,则这些零点之和大于5【答案】ABD 【解析】【分析】直接代入即可判断A ,令()()()22a g a f a a =--,利用导数说明函数的单调性,即可判断B ,由()0f x '≥在()0,∞+上恒成立,利用导数求出()min f x ',即可求出a 的取值方程,即可判断C ,首先说明2a <-,得到()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,利用对数均值不等式得到121x x >,即可得到122x x +>,再说明()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x 且431x x =,最后利用基本不等式证明即可.【详解】对于A :当1ln 8a =时()()()11ln 1ln 8f x x x x =-++,则()12ln3ln23ln 23ln 208f =+=-+=,11111331ln 1ln ln 2ln 202282222f ⎛⎫⎛⎫⎛⎫=-++=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()122f f ⎛⎫=⎪⎝⎭,故A 正确;对于B :()()()()211ln 1ln f a a a a a a a a a =-++=-++,令()()()()()()222221ln 21ln a a a a a a a a a g a f a a a --+--=--+==++,则()112ln ln 21a a a a a a ag a '=+-++=-++,令()()1ln 21a a am a g a -+=+'=,则()2222217211214820a m a a a a a a a '⎛⎫--- ⎪--⎝⎭=--==<,所以()g a '在()0,∞+上单调递减,又()10g '=,所以当01a <<时()0g a '>,当1a >时()0g a '<,所以()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 110g a g ==-<,所以当0a >时,()22f a a a <-,故B 正确;对于C :()1ln 0x f x a x x+'=++≥在()0,∞+上恒成立,令()()1ln x h x f x a x x +'==++,则()22111x h x x x x-'=-=,所以当01x <<时()0h x '<,当1x >时()0h x '>,所以()f x '在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 120f x f a ''==+≥,解得2a ≥-,故C 错误;对于D :因为()10f =,即1为()f x 的一个零点,当2a =-时()0f x '≥,()0f x '=有且仅有一个根1,此时()f x 在()0,∞+上单调递增,所以()f x 和()f x '都只有1个零点,不符合题意;当2a >-时()0f x ¢>,则()f x '无零点,()f x 只有一个零点,不符合题意;当2a <-时()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,所以11221ln 101ln 10a x x a x x ⎧+++=⎪⎪⎨⎪+++=⎪⎩,所以211221ln ln x x x x x x -=>-,所以121x x >,所以122x x +>=,且()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,且()10f =,所以()10f x >,()20f x <,所以()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x ,又()()()11111111ln 11ln f a a x x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-++=--++=-⎡⎤⎪ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭,所以431x x =,所以()123412*********x x x x x x x x ⎛⎫++++=++++>++= ⎪⎝⎭,故D 正确.ln ln a ba b-<-的证明如下:ln ln a b a b -<-,只需证ln ln ln aa b b -=⇔=1x =>,只需证12ln x x x <-,1x >,设1()2ln n x x x x=-+,1x >,则()22221(1)10x n x x x x-'=--=-<,可得()n x 在(1,)+∞上单调递减,∴1()(1)02ln n x n x x x<=⇒<-,得证.故选:ABD【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量()25,X N σ~,且(7)0.8P X <=,则(35)P X <<的值为__________.【答案】0.3##310【解析】【分析】根据正态分布的性质求得(7)P X ≥,根据正态分布的对称性求出(3)0.2P X ≤=,继而可求得答案.【详解】由题意知随机变量()25,X N σ~,且(7)0.8P X <=,则(7)10.80.2P X ≥=-=,故(3)0.2P X ≤=,故(35)0.5(3)0.50.20.3P X P X <<=-≤=-=,故答案为:0.314.已知52323a x x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为32,则展开式中的常数项为__________.【答案】270【解析】【分析】利用二项式定理计算即可.【详解】令()5523211332322a x x a a x ⎛⎫=⇒+=+=⇒=- ⎪⎝⎭,则()552233233a x x x x -⎛⎫+=- ⎪⎝⎭,设()5233x x --的通项为()()()5235102355C 3C 31rrrrrr r r r T x x x -----=-=⋅⋅-⋅,当2r =时,()55C 311027270rrr -⋅⋅-=⨯=,即展开式中的常数项为270.故答案为:27015.已知圆锥的母线长为5,侧面积为15π,则该圆锥的内切球的体积为__________.【答案】9π2【解析】【分析】根据圆锥的侧面积求出圆锥的底面半径,即可求得圆锥的高,继而利用圆锥的母线和高之间的夹角的正弦求得内切球半径,即可求得答案.【详解】设圆锥的底面半径为r ,圆锥内切球的半径为R ,则π515π,3r r ⨯⨯=∴=,则圆锥的高为22534h =-=,设圆锥的母线和高之间的夹角为π,(0,)2θθ∈,则33sin ,452R R R θ==∴=-,故该圆锥的内切球的体积为3439ππ(322⨯=,故答案为:9π216.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点P 在C 上,且2PF x ⊥轴,过点2F 作12F PF ∠的平分线的垂线,与直线1PF 交于点A ,若点A 在圆222:O x y a +=上,则C 的离心率为__________.3【解析】【分析】由题意求出22||b PF a =,结合双曲线定义以及角平线性质推出1||2AF a =,从而推出1222cos 2cPF F b a a ∠+=,在1AOF △中,利用余弦定理可求得4224340a a c c -+=,结合齐次式求解离心率,即可得答案.【详解】由题意知2(,0)F c ,2PF x ⊥轴,故将x c =代入22221x ya b-=中,得22221c y a b -=,则2b y a =±,即22||b PF a=,不妨设P 在双曲线右支上,则12||||2PF PF a -=,故21||2b PF a a=+;设PQ 为12F PF ∠的平分线,由题意知2F A PQ ⊥,则2||||PA PF =,即2||b PA a =,而211||||||2b PF PA AF a a=+=+,故1||2AF a =,由点A 在圆222:O x y a +=上,得||OA a =;又1||OF c =,则1221212c ||os 2||F F PF b c PF F a a∠=+=,在1AOF △中,222111112||||||2||||cos OA OF AF OF AF PF F =+-⋅∠,即222224222ca c a c ab a a=+-⋅⋅⋅+,结合222b c a =-,即得4224340a a c c -+=,即42430e e -+=,解得23e =或21e =(舍),故3e =,即C 33【点睛】关键点睛:求解双曲线的离心率,关键是求出,,a b c 之间的数量关系式,因此解答本题时,要结合题中条件以及双曲线定义推出相关线段长,从而在1AOF △中,利用余弦定理求出,,a b c 的关系,化为齐次式,即可求得答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点2⎫⎪⎪⎭.(1)求C 的标准方程;(2)过点()1,0-的直线l 与C 交于,A B 两点,当165AB =时,求直线l 的方程.【答案】(1)22143x y +=(2)y =或y =-【解析】【分析】(1)根据离心率的定义和椭圆经过的点,列出方程组,解之即可求解;(2)易知直线l 的斜率不为0,设:(1)l y k x =+,()()1122,,,A x y B x y ,联立椭圆方程,利用韦达定理表示出1212,x x x x +,根据弦长公式化简可得2212(1)34k AB k +=+,结合165AB =计算求出k 的值即可求解.【小问1详解】由题意,222222212()21c e a a b a b c ⎧==⎪⎪⎪⎨⎪+=⎪⎪=+⎩,解得2243a b ⎧=⎨=⎩,所以椭圆C 的标准方程为22143x y +=.【小问2详解】易知直线l 的斜率不为0,设:(1)l y k x =+,即y kx k =+,()()1122,,,A x y B x y ,22143y kx kx y =+⎧⎪⎨+=⎪⎩,消去y ,得2222(34)84120k x k x k +++-=,22222(8)4(34)(412)990k k k k ∆=-+-=+>,221212228412,3434k k x x x x k k -+=-=++,2212(1)34k AB k+==+,又165AB=,所以2212(1)16534kk+=+,解得k=,所以直线l的方程为yy=-.18.在①()()21212n n nS S a n-+=+≥,②1na=+这两个条件中任选一个,补充在下面问题中,并解答下列问题.已知正项数列{}n a的前n项和为1,1nS a=,且__________,*Nn∈.(1)求{}n a的通项公式;(2)设11,n nn nb Ta a+=为数列{}n b的前n项和,证明:12nT<.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)21na n=-(2)证明见解析【解析】【分析】(1)若选择①,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;若选择②,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;(2)确定11122121nbn n⎛⎫=-⎪-+⎝⎭,再根据裂项求和法计算得到答案.【小问1详解】若选择①:()()21212n n nS S a n-+=+≥,则()21121n n nS S a+++=+,相减得到:()()()1112n n n n n na a a a a a++++=+-,0na>,故12n na a+-=,()122221S S a+=+,解得23a=,212a a-=,故数列{}n a为首项是1,公差为2的等差数列,故21na n=-;若选项②:1na=+,则()241n nS a=+,()21141n nS a++=+,相减得到:()()2211411n n n a a a ++=+-+,整理得到()()1120n n n n a a a a +++--=,0n a >,故120n n a a +--=,故数列{}n a 为首项是1,公差为2的等差数列,故21n a n =-;【小问2详解】()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,故()21111111112335212122211n T n n n ⎛⎫=-+-++-=- ⎪-++⎝<⎭ .19.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos cos 3cos 3b C c B b A c +=-.(1)求cos B ;(2)设角B 的平分线交AC 边于点D,且BD =,若b =ABC 的面积.【答案】(1)13-(2)【解析】【分析】(1)利用正弦定理边化角结合两角和的正弦公式化简已知等式,可得cos B ,即得答案;(2)根据同角三角函数关系求出sin 3B =,设π,(0,)2ABD θθ∠=∈,由二倍角余弦公式求出cos 3θ=,利用等面积法推出()32a c ac +=,结合余弦定理即可求得12ac =,从而利用三角形面积公式求得答案.【小问1详解】由题意cos cos 3cos 3b C c B b A c +=-可得sin cos sin cos 3sin cos 3sin B C C B B A C +=-,即sin()3sin cos 3sin()B C B A A B +=-+,即sin 3sin cos 3(sin cos cos sin )3sin cos A B A A B A B A B =-+=-,而(0,π),sin 0A A ∈∴>,故1cos 3B =-;【小问2详解】由(0,π)B ∈,1cos 3B =-可得sin 3B =,角B 的平分线交AC 边于点D ,设π,(0,)2ABD θθ∠=∈,则213cos 2cos 1cos 33B θθ=-=-∴=,111sin sin sin 2222ABC S c a ac θθθ=⋅+=⋅ ,()32323ac a c ac =⋅∴+=,由b =22212483b a c ac ⎛⎫=+-⋅-= ⎪⎝⎭,即()24483a c ac +-=,则()()224448,129093a c ac ac ac -=∴-+=,则12ac =(负值舍去),故21s in 11232ABC ac B S =⨯⨯== 20.设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的5个球,其中甲箱有3个蓝球和2个黑球,乙箱有4个红球和1个白球,丙箱有2个红球和3个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X 表示最后摸出的2个球的分数之和,求X 的分布列及数学期望.【答案】(1)4495(2)分布列见解析,24475【解析】【分析】(1)求出甲箱中摸出2个球颜色相同的概率,继而求得最后摸出的2个球颜色不同的概率,再求出最后摸出的2个球是从丙箱中摸出的概率,根据条件概率的计算公式即可得答案.(2)确定X 的所有可能取值,求出每个值相应的概率,即可得分布列,根据期望公式即可求得数学期望.【小问1详解】从甲箱中摸出2个球颜色相同的概率为223225C C 2C 5P +==,记事件A 为最后摸出的2个球颜色不同,事件B 为这2个球是从丙箱中摸出的,则()()()|P AB P B A P A =,()111111113342222665661242C C C C C C C C 21433855C 5C 55C 5C 7523P A ⎛⎫⎛⎫=⨯⨯+⨯+⨯+⨯= ⎪⎝⎭⎝⎭,()111143223663C C C C 2148855C 5C 375P AB ⎛⎫=⨯⨯+⨯= ⎪⎝⎭,所以()8844375|389575P B A ==;【小问2详解】X 的所有可能取值为2,3,4,则()222342226662C C C 214333255C 5C 55C 25P X ⎛⎫==⨯⨯+⨯+⨯⨯= ⎪⎝⎭,()38375P X ==,()2222322542226666C C C C 2143228455C 5C 55C 5C 753P X ⎛⎫⎛⎫==⨯⨯+⨯+⨯⨯+= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列如表:X 234P32538752875故()33828181141122442342575757575E X ++=⨯+⨯+⨯==.【点睛】难点点睛:本题解答的难点在于求分布列时,计算每个值相应的概率,要弄清楚每个值对应的情况,分类求解,注意计算量较大,要十分细心.21.如图,在三棱锥-P ABC 中,侧面PAB 是锐角三角形,PA BC ⊥,平面PAB ⊥平面ABC .(1)求证:AB BC ⊥;(2)设2,4PA PB AC ===,点D 在棱BC (异于端点)上,当三棱锥-P ABC 体积最大时,若二面角C PAD --大于30 ,求线段BD 长的取值范围.【答案】(1)证明见解析(2)46(0,9【解析】【分析】(1)过点P 作PE AB ⊥,根据面面垂直的性质定理,证得PE ⊥平面ABC ,进而证得BC ⊥平面PAB ,即可得到BC AB ⊥;(2)设2,2AB a BC b ==,得到22(4)3P ABC V a a -=-,令()22(4)3f a a a =-,利用导数求得函数的单调性,得到233a =时,三棱锥-P ABC 的体积最大,以B 为原点,建立空间直角坐标系,设BD m =,求得平面CPA 与PAD 的法向量分别为12,1)n = 和246(2,1)3n m= ,结合向量的夹角公式和题设条件,列出不等式,求得m 的取值范围即可.【小问1详解】证明:过点P 作PE AB ⊥于点E ,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,且PE ⊂平面PAB ,所以PE ⊥平面ABC ,又因为PA BC ⊥,且PE PA P = ,所以BC ⊥平面PAB ,因为AB ⊂平面PAB ,所以BC AB ⊥.【小问2详解】解:设2,2AB a BC b ==,因为BC AB ⊥,可得222AB BC AC +=,即224416a b +=,所以224a b +=,所以b =,又由PE ==所以2112222(4)3233P ABC V a b a a -=⨯⨯⨯==-,令()22(4)3f a a a =-,可得()22(43)3f a a '=-,令()0f a ¢=,解得233a =,当03a <<时,()0f a '>,()f a 单调递增;当23a <<时,()0f a '<,()f a 单调递减,所以当3a =时,即,33AB BC ==时,三棱锥-P ABC 的体积最大,以B 为原点,,BC BA 所在的直线分别为,x y 轴,以过点B 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,如图所示,设BD m =,可得4643232643(,,0),(0,,(,33333CA PA DA m =-=-=- ,则(,0,0),(,0,0),(0,,(0,,0)3333D m C P A ,设平面CPA 与平面PAD 的法向量分别为11112222(,,),(,,)n x y z n x y z == ,由11114643033033x y y z ⎧-+=⎪⎪⎨⎪-=⎪⎩,令1y =,可得111,1x z ==,所以1n = ,又由2222232603303y z mx y ⎧-=⎪⎪⎨⎪-+=⎪⎩,令1y =,可得22,13x z m ==,所以2()3n m = ,设二面角C PA D --的平面角的大小为θ,所以12123cos cos302n n n n θ⋅===,解得09m <<,所以BD 的长的取值范围为(0,9.22.已知函数()2e 32sin 1,xf x a ax x a =-+-∈R .(1)当01a <<时,求曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值;(2)当0x =时,函数()f x 取得极值,求a 的值.【答案】(1)38(2)2a =或1a =【解析】【分析】(1)求出曲线()y f x =在点()()0,0f 处的切线方程,然后求出与x 轴,y 轴的交点,表示出切线与两坐标轴围成的三角形面积,然后利用导数求最大值即可;(2)令()00f '=求出a 的值,然后验证a 的值使函数()f x 在0x =处取到极值.【小问1详解】由已知()2e 32cos xf x a a x '=-+,01a <<则()2320f a a '=-+,()201f a =-,曲线()y f x =在点()()0,0f 处的切线方程为()22321y a a x a =-++-,01a <<当0x =时,21y a =-,当0y =时,12a x a +=--,设线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积为()h a ,则()()221111112222a a a a a a h a ++=-=-⋅--,01a <<()()()()()()()()()23222321211213112222h a a a a a a a a a a a a +---+-∴-+-=⋅=--'-,令()0h a '>,则102a <<,即()h a 在10,2⎛⎫ ⎪⎝⎭上单调递增,令()0h a '<,则112a <<,即()h a 在1,12⎛⎫ ⎪⎝⎭上单调递减,即()max 111132112481222h a h +⎛⎫=-⋅= ⎪⎛⎫= ⎪-⎝⎝⎭⎭,即曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值为38;【小问2详解】由(1)()2e 32cos x f x a a x '=-+,因为当0x =时,函数()f x 取得极值,得()20032f a a '=-+=,解得2a =或1a =,当2a =时,()4e 62cos x f x x '=-+,设()()4e 62cos xg x f x x '==-+,则()4e 2sin x g x x -'=,令()()4e 2sin xr x g x x =-'=,则()4e 2cos x r x x -'=,明显()4e 2cos x r x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()()02r x r ''∴>=,即()4e 2sin x g x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()4g x '∴>,即()4e 62cos x f x x '=-+在π0,2⎛⎫⎪⎝⎭上单调递增,()4620f x '∴>-+=,即函数()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增又明显()4e 2sin 0x g x x -'=>在π,02⎛⎫- ⎪⎝⎭上恒成立,则()4e 62cos x f x x '=-+在π,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ''∴<=,即函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,所以当0x =时,函数()f x 取得极值,当1a =时,()e 32cos x f x x '=-+,设()()e 2cos 3xt x f x x '=+-=,则()e 2sin xt x x -'=,当π,02x ⎛⎫∈- ⎪⎝⎭时,明显()0t x '>,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,因为e 1,sin x x x x ≥+≥,()()()e 2sin 12sin sin 1sin 0x t x x x x x x x '∴-=≥+=-+-≥-()e 2sin 0x t x x -'∴=≥在ππ,22⎛⎫- ⎪⎝⎭上恒成立,()e 32cos x f x x '∴=-+在ππ,22⎛⎫- ⎪⎝⎭上单调递增,又()00f '=,∴函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,在π0,2⎡⎫⎪⎢⎣⎭上单调递增,所以当0x =时,函数()f x 取得极值,故2a =或1a =.现证明e 1x x ≥+,设()=e 1x m x x --,则()=e 1xm x '-,令()0m x '>,得0x >,()m x 在()0,∞+上单调递增,令()0m x '<,得0x <,()m x 在(),0∞-上单调递减,()()00m x m ∴≥=,即e 1x x ≥+,现证明πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭,设()sin n x x x =-,则()1cos 0n x x ='-≥在π0,2⎡⎫⎪⎢⎣⎭上恒成立即()n x 在π0,2⎡⎫⎪⎢⎣⎭上单调递增,()()00n x n ∴≥=,即πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭.。

江苏省徐州市2019-2020学年中考数学一模考试卷含解析

江苏省徐州市2019-2020学年中考数学一模考试卷含解析

江苏省徐州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF2.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=43.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是()A.119 B.289 C.77或119 D.119或2894.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=13C.a=1 D.a=25.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣86.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.7.下列计算中,正确的是()A.a•3a=4a2B.2a+3a=5a2C.(ab)3=a3b3D.7a3÷14a2=2a8.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是A.t≥–2 B.–2≤t<7C.–2≤t<2D.2<t<79.下列各数:1.4142,﹣13,0,其中是无理数的为()A.1.414 B. 2C.﹣13D.010.下列计算结果为a6的是()A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)311.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩ 12.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2C .﹣2D .2 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元.14.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=1.若(x+1)※(x ﹣2)=6,则x 的值为_____.15.已知点A (x 1, y 1)、B(x 2, y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为________.16.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm 1.17.若向北走5km 记作﹣5km ,则+10km 的含义是_____.18.正方形EFGH 的顶点在边长为3的正方形ABCD 边上,若AE=x ,正方形EFGH 的面积为y ,则y 与x 的函数关系式为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.20.(6分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.21.(6分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,2,求EB的长.22.(8分)如图,梯形ABCD 中,AD ∥BC ,AE ⊥BC 于E ,∠ADC 的平分线交AE 于点O ,以点O 为圆心,OA 为半径的圆经过点B ,交BC 于另一点F .(1)求证:CD 与⊙O 相切;(2)若BF=24,OE=5,求tan ∠ABC 的值.23.(8分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求:①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)25.(10分)为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?26.(12分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x =>的图象的两个交点分别为A (1,5),B .(1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.27.(12分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵BE=DF ,∴OE=OF ,∴四边形AECF 是平行四边形,故不符合题意;B 、如图所示,AE=CF ,不能得到四边形AECF 是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.2.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 3.D【解析】【分析】分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:①当弦AB 和CD 在圆心同侧时,如图1,∵AB=24cm ,CD=10cm ,∴AE=12cm ,CF=5cm ,∴OA=OC=13cm ,∴EO=5cm ,OF=12cm ,∴EF=12-5=7cm ;∴四边形ACDB 的面积()124107=1192+⨯ ②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm ,CD=10cm ,∴.AE=12cm ,CF=5cm ,∵OA=OC=13cm ,∴EO=5cm ,OF=12cm ,∴EF=OF+OE=17cm.∴四边形ACDB 的面积()1241017=2892+⨯ ∴四边形ACDB 的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.4.A【解析】【分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断.【详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ;(2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当a =?a a =-=a a >-,∴当a =“对于任意实数a ,a a >- ”是假命题,故不能D ;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 5.A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .考点:一次函数图象上点的坐标特征.6.C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C . 考点:中心对称图形的概念.7.C【解析】【分析】根据同底数幂的运算法则进行判断即可.【详解】解:A 、a•3a=3a 2,故原选项计算错误;B 、2a+3a=5a ,故原选项计算错误;C 、(ab )3=a 3b 3,故原选项计算正确;D 、7a 3÷14a 2=12a ,故原选项计算错误; 故选C .【点睛】本题考点:同底数幂的混合运算.8.B【解析】【分析】利用对称性方程求出b 得到抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x <4时对应的函数值的范围为﹣2≤y <7,由于关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,然后利用函数图象可得到t 的范围.【详解】抛物线的对称轴为直线x=﹣2b =1,解得b=﹣2, ∴抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),当x=﹣1时,y=x 2﹣2x ﹣1=2;当x=4时,y=x 2﹣2x ﹣1=7,当﹣1<x <4时,﹣2≤y <7,而关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,∴﹣2≤t <7,故选B .【点睛】本题考查了二次函数的性质、抛物线与x 轴的交点、二次函数与一元二次方程,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解题的关键. 9.B【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.10.C【解析】【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【详解】A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.11.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩f,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.12.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值,进而求解即可.【详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【点睛】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.14.2【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.15.y1>y1【解析】分析:直接利用一次函数的性质分析得出答案.详解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x1,∴y1与y1的大小关系为:y1>y1.故答案为:>.点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.16.253【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=12×5×tan30°×5=2536.17.向南走10km【解析】【分析】【详解】分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.详解:∵向北走5km记作﹣5km,∴ +10km表示向南走10km.故答案是:向南走10km.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.18.y=2x2﹣6x+2【解析】【分析】由AAS证明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y 与x之间的函数关系式.【详解】如图所示:∵四边形ABCD是边长为1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四边形EFGH 为正方形,∴∠HEF=20°,EH=EF .∴∠1+∠1=20°,∴∠2=∠1,在△AHE 与△BEF 中23D A EH EF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DHE ≌△AEF (AAS ),∴DE=AF=x ,DH=AE=1-x ,在Rt △AHE 中,由勾股定理得:EH 2=DE 2+DH 2=x 2+(1-x )2=2x 2-6x+2;即y=2x 2-6x+2(0<x <1),故答案为y=2x 2-6x+2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y 与x 之间的函数关系式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1)或(1,1)或(,2)或(1,2).【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P 点坐标即可.试题解析:(1)∵抛物线经过点C (0,4),A (4,0),∴416840c a a =⎧⎨-+=⎩,解得124a c ⎧=-⎪⎨⎪=⎩ ,∴抛物线解析式为y=﹣12x1+x+4;(1)由(1)可求得抛物线顶点为N(1,92),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得924k bb⎧+=⎪⎨⎪=-⎩,解得1724kb⎧=⎪⎨⎪=-⎩,∴直线C′N的解析式为y=172x-4 ,令y=0,解得x=817,∴点K的坐标为(817,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣12x1+x+4=0,得x1=﹣1,x1=4,∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴EG BQCO BA=,即246EG m+=,解得EG=243m+;∴S△CQE=S△CBQ﹣S△EBQ=12(CO-EG)·BQ=12(m+1)(4-243m+)=2128-333m m++=-13(m-1)1+2 .又∵﹣1≤m≤4,∴当m=1时,S△CQE有最大值2,此时Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F的坐标为(1,1).由﹣12x1+x+4=1,得x1=1+5,x1=1﹣5.此时,点P的坐标为:P1(1+5,1)或P1(1﹣5,1);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=12OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣12x1+x+4=2,得x13x1=13.此时,点P的坐标为:P2(32)或P4(13,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴2.∴点O到AC的距离为2.而OF=OD=1<22矛盾.∴在AC上不存在点使得OF=OD=1.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+5,1)或(1﹣5,1)或(1+3,2)或(1﹣3,2).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.20.(1)(2)(0,)【解析】【分析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.【详解】(1)∵反比例函数y= =(k>0)的图象过点A,过 A 点作x 轴的垂线,垂足为M,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=;(2)作点A 关于y 轴的对称点A′,连接A′B,交y 轴于点P,则PA+PB 最小.由,解得,或,∴A (1,2),B (4,),∴A′(﹣1,2),最小值 A′B= =,设直线 A′B 的解析式为 y=mx+n , 则 ,解得,∴直线 A′B 的解析式为 y= ,∴x=0 时,y= ,∴P 点坐标为(0,).【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB 最小时,点P 的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键. 21.(1)证明见解析;(253;【解析】【分析】(1)根据正方形的性质得到∠GAD=∠EAB ,证明△GAD ≌△EAB ,根据全等三角形的性质证明;(2)根据正方形的性质得到BD ⊥AC ,2,根据勾股定理计算即可.【详解】(1)在△GAD 和△EAB 中,∠GAD=90°+∠EAD ,∠EAB=90°+∠EAD , ∴∠GAD=∠EAB ,在△GAD 和△EAB 中,GAD EAB AD AB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAD ≌△EAB ,∴EB=GD ;(2)∵四边形ABCD 是正方形,AB=5,∴BD ⊥AC ,2∴∠DOG=90°,OA=OD=12BD=522,∵AG=22,∴OG=OA+AG=922,由勾股定理得,GD=22OD OG+=53,∴EB=53.【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.22.(1)证明见解析;(2)32【解析】试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;(2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.试题解析:(1)证明:过点O作OG⊥DC,垂足为G.∵AD∥BC,AE⊥BC于E,∴OA⊥AD.∴∠OAD=∠OGD=90°.在△ADO和△GDO中OAD OGDADO GDOOD OD∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADO≌△GDO.∴OA=OG.∴DC是⊙O的切线.(2)如图所示:连接OF.∵OA⊥BC,∴BE=EF=12BF=1.在Rt△OEF中,OE=5,EF=1,∴2213OE EF+=,∴AE=OA+OE=13+5=2.∴tan∠ABC=32 AEBE=.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.23.(122a+b22+2ab4a b+;(2)3+2475.【解析】【分析】(1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;(2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得△ACD′的面积即可.【详解】(1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD22a+b②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=12AD⋅CD≤14(AD2+CD2)=14(a2+b2),所以四边形ABCD的最大面积=14(a2+b2)+12ab=22+2ab4a b+;(2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =2AC =19=3819S △ACD’=12AC ⋅D’F =19(38192475,所以S max =S △ABC +S △ACD =32+475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.24.(1)袋子中白球有2个;(2)见解析,59 . 【解析】【分析】(1)首先设袋子中白球有x 个,利用概率公式求即可得方程:213x x =+,解此方程即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+, 解得:x =2,经检验,x =2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.25.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.26.(1)11k =-,25k =;(2)0<n <1或者n >1.【解析】【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x=>的图象上, ∴25k =.(2)观察图象可知,满足条件的n 的值为:0<n <1或者n >1.【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解. 27.2.【解析】【分析】将原式化简整理,整体代入即可解题.【详解】解:(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)=x 1﹣1x+1+x 1﹣4x+x 1﹣4=3x 1﹣2x ﹣3,∵x 1﹣1x ﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是平行四边形或梯形
上的点,当
平面
时,下面结论正确的是( )
12. 在
中,

A. C.
,下列各式正确的是( ) B. D.
三、填空题
13. 已知α为第二象限的角,sinα ,则tan2α=_____.
14. 如图所示,正方体ABCD﹣A1B1C1D1中,E,F分别是棱BC,CC1的中点,则异面直线EF与B1D1所成的角为_____.
的麦田里成为守望者,如图所示,
为了分割麦田,他将 连接,设
中边 所对的角为 ,
中边 所对的角为 ,经测量已知

.
(1)霍尔顿发现无论 多长,
为一个定值,请你验证霍尔顿的结论,并求出这个定值;
(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记

的面积分别为 和 ,为了更好地规划麦田,请你帮助霍尔顿求
19. 如图,在三棱柱ABC﹣A1B1C1中,E,F分别为A1C1和BC的中点,M,N分别为A1B和A1C的中点.求证:
(1)MN∥平面ABC; (2)EF∥平面AA1B1B.
20. 已知α,β∈(0,π),且tanα=2,cosβ
.
(1)求tan(α+β)的值; (2)求2α﹣β的值.
21. 如图,在四边形ABCD中,AD⊥AB,∠CAB=60°,∠BCD=120°,AC=2.
C.3
D.2
B.
C.1﹣2sin215°
D.
10. 根据下列条件解三角形,有两解的有( )
A.已知a
,b=2,B=45°C.已b=3,c,C=60°
B.已知a=2,b
,A=45°
D.已知a=2 ,c=4,A=45°
11. 在空间四边形
中,
分别是
A.
一定是各边的中点
B.
一定是
的中点
C.
,且
D.四边形
15.
中,a,b,c分别是
的对边,
,则 _________.
16. 已知:
,cos(α ) ,则cos(α )=_____.
四、解答题
17. △ABC三个内角A,B,C对应的三条边长分别是a,b,c,且满足
(1)求角C的大小;
(2)若b
,c
,求a.
csinA=acosC.
18. 已知函数f(x)=cos2x+sinxcosx . (1)求函数f(x)的最小正周期; (2)若x∈[ , ],求函数f(x)的取值范围.
(1)若∠ABC=30°,求DC; (2)记∠ABC=θ,当θ为何值时,△BCD的面积有最小值?求出最小值.
22. “我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的
守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形
江苏省徐州市2019-2020学年高一下学期期中数学试题
一、单选题
1. sin45°cos15°+cos45°sin15°的值为( )
A.
B.
C.
D.
2. 在正方体
中, 与 是( )
A.相交直线 C.异面直线
B.平行直线 D.相交且垂直的直线
3. 已知:α,β均为锐角,tanα ,tanβ ,则α+β=( )

的最大值.
C.等腰直角三角形
D.直角三角形
7. 若tanα=2,则2cos2α+sin2α=( )
A.
B.
C.
D.
8. 如图,已知四棱锥P﹣ABCD的底面是平行四边形,点F在棱PA上,PF=λAF,若PC∥平面BDF,则λ的值为( )
A.1
B.
二、多选题
9. 下列各式中,值为 的是( ) A.2sin15°cos15°
A.
B.
C.
D.
4. 在△ABC中,已知a=6,b=8,C=60°,则△ABC的面积为( )
A.24
B.12
C.6
D.12
5. 若


,则
()
A.
B.
C.
D.
6. 已知△ABC的内角A、B、C所对的边分别是a,b,c,若bcosC+ccosB=b,则△ABC一定是( )
A.等腰三角形
B.等边三角形
相关文档
最新文档