八年级上册勾股定理期末复习题

合集下载

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (26)

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (26)

一、选择题1.如图,把三角形纸片△ABC沿着DE对折,点C恰好与A重合,得到△ABD,其中∠B=90∘,AB=2,△ABD的周长为8,则四边形ABDE的面积是( )A.83B.133C.6D.72.如图,在△ABC中,∠C=90∘,AC=4cm,BC=3cm,点E在AC上,现将△BCE沿BE翻折,使点C落在点Cʹ处连接ACʹ,则ACʹ长度的最小值是( )A.0.5cm B.1cm C.2cm D.2.5cm3.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤134.已知a,b,c是三角形的三边,满足(a−3)2+√b−4+∣c−5∣=0,则三角形的形状是( )A.腰和底不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形5.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,⋯按此规律继续下去,则S2019的值为( )A . (12)2019B . (12)2018C .(√22)2019 D .(√22)20186. 下列长度的三条线段能组成直角三角形的是 ( ) A . 1,2,3B . 2,3,4C . 3,4,5D . 4,5,67. 如图,已知 ∠ABC =90∘,AB =6,BC =8,AD =CD =7,若点 P 到 AC 的距离为 5,则点 P 在四边形 ABCD 边上的个数为 ( )A . 0B . 2C . 3D . 48. 如图,小明(视为小黑点)站在一个高为 10 米的高台 A 上,利用旗杆 OM 顶部的绳索,划过 90∘ 到达与高台 A 水平距离为 17 米,高为 3 米的矮台 B .那么小明在荡绳索的过程中离地面的最低点的高度 MN 是 ( )A . 2 米B . 2.2 米C . 2.5 米D . 2.7 米9. 如图,将一根长 27 厘米的筷子,置于高为 11 厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为 (27−√157) 厘米,则底面半径为 ( ) 厘米.A . 6B . 3C . 2D . 1210. 如图,圆柱形玻璃杯,高为 12 cm ,底面周长为 18 cm ,在杯内离杯底 4 cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4 cm 与蜂蜜相对的 A 处,则蚂蚁到达蜂蜜的最短距离为 ( ) cm .A.15B.√97C.12D.18二、填空题11.如图,在高2米,坡角为30∘的楼梯表面铺地毯,地毯的长至少需米.12.在△ABC中,∠A=90∘,AB=AC,BC=8,则△ABC的面积是.13.如图,在Rt△ABC中,∠C=90∘,AC=6,BC=8.D是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点Bʹ处,线段BʹD交边AB于点F,连接ABʹ.当△ABʹF是直角三角形时,BE的长为.14.等腰三角形ABC的周长为16,底边BC上的高为4,则其底边BC的长为.15.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于、小于或等于)1米.16.如图,圆柱形玻璃杯高为13cm,底面周长为40cm,在杯内壁离底1cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁到内壁B处的最短距离为.17. 小明用三角板测得一个圆锥形漏斗尺寸如下图所示,那么漏斗斜壁 AB 的长度 cm .三、解答题18. 已知:如图,四边形 ABCD 中,∠ACB =90∘,AB =15,BC =9,AD =5,DC =13.试判断△ACD 的形状,并说明理由.19. 已知 AB =2,AC =4√12,BC =25√125,在图所示的网格内画 △ABC ,使它的顶点都在格点上,图中每个小正方形的边长都为 1.(1) 求 △ABC 的面积; (2) 求点 A 到 BC 边的距离.20. 如图,△ABC 中,AD ⊥BC 于点 D ,且 AD =BD ,在 AD 上截取 DE =DC ,延长 BE 交 AC于点 F ,连接 CE .(1) 证明:△BDE≌△ADC.(2) ∠ABF和∠ACE相等吗?说明理由.(3) 若BD=12 cm,CD=5 cm,求线段BF的长度.21.如图,每个小正方形的边长为1.(1) 求四边形ABCD的周长;(2) 求证:∠BCD=90∘.22.回答下列各题:(1) 特例研究:如图①,等边△ABC的边长为8,求等边△ABC的高.(2) 经验提升:如图②,在△ABC中,AB=AC≠BC,点P为线段BC上的任一点,过点P作PD⊥AB,PE⊥AC垂足分别为D,E,过点C作CF⊥AB,垂足为F.补全图形,判断线段PD,PE,CF的数量关系,并说明理由.x+3,l2:y=−3x+3,若线(3) 综合应用:如图③,在平面直角坐标系中有两条直线l1:y=34段BC上有一点M到l1的距离是1,请运用(2)中的结论求出点M的坐标.23.阅读:小明同学在某材料中看到如下问题及部分证明.如图①,已知在△ABC和△A1B1C1中,BD=DC,B1D1=D1C1,AB=A1B1,AC=A1C1,AD=A1D1,求证:∠1=∠2.证明:延长AD到E,使DE=AD,连接CE,延长A1D1到E1,使D1E1=A1D1,连接C1E1,在△ABD和△ECD中,∵AD=DE(已作),∠ADB=∠EDC(对顶角相等),BD=DC(已知),∴△ABD≌△ECD(SAS),∴AB=EC(全等三角形的对应边相等),同理可证,A1B1=E1C1,未完待续⋯⋯(1) 请你补全这个证明.(2) 应用:如图②,在△ABC中,AD是BC边上的中线,若AB=5,AC=3,则AD长的范围是.(3) 拓展:如图③,在△ABC中,AD是BC边上的中线,若AB=√89,AC=5,AD=4,则△ABC的面积是.24.为了绿化环境,某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90∘,CD=6m,AD=8m,AB=26m,BC=24m.(1) 求出空地ABCD的面积.(2) 若每种植1平方米草皮需要200元,问总共需投入多少元?25.请阅读下列材料:问题:如图(1),一圆柱的底面半径为5,高AB为5,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:路线1:侧面展开图中的线段AC.如图(2)所示.设路线1的长度为l1,则l12=AC2=AB2+BC2=52+(5π)2=25+25π2.路线2:高线AB+底面直径BC.如图(1)所示.设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225,∵l12−l22=25+25π2−225=25π2−200=25(π2−8)>0,∴l12>l22,∴l1>l2,∴选择路线2较短.(1) 小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1,高AB为5”继续按前面的路线进行计算.请你帮小明完成下面的计算:路线1:l12=AC2=;路线2:l22=(AB+BC)2=.∵l12l22,∴l1l2(填“>”或“<”),∴应选择路线(填1或2)较短.(2) 请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为ℎ时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.答案一、选择题1. 【答案】B【解析】∵把三角形纸片△ABC沿着DE对折,点C恰好与A重合,得到△ABD,∴AD=CD,∠AED=∠CED=90∘,AE=CE,∵△ABD的周长为8,∴AB+BD+AD=AB+BD+CD=AB+BC=8,∴BC=6,∵AD2=AB2+BD2,∴CD2=4+(6−CD)2,∴CD=103,∴BD=83,∴S△ABD=12×2×83=83,S△ACD=12×2×103=103,∵AE=EC,∴S△AED=53,∴四边形ABDE的面积=133,故选:B.【知识点】勾股定理之折叠问题2. 【答案】C【解析】当Cʹ落在AB上,ACʹ长度的值最小,∵∠C=90∘,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BCʹ=BC=3cm,∴ACʹ=AB−BCʹ=2cm.【知识点】勾股定理之折叠问题、折叠问题3. 【答案】A【解析】a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:√52+122=13.即a的取值范围是12≤a≤13.【知识点】勾股定理的实际应用4. 【答案】D【解析】因为a,b,c为三角形三边,则a,b,c均大于0,又因为满足 (a −3)2+√b −4+∣c −5∣=0, 又因为 (a −3)2≥0,√b −4≥0,∣c −5∣≥0, 所以 (a −3)2=0,√b −4=0,∣c −5∣=0, 所以 a =3,b =4,c =5, 因为 a 2+b 2=32+42=52=c 2, 所以,三角形为直角三角形. 【知识点】勾股逆定理5. 【答案】B【解析】在图中标上字母 E ,如图所示.∵ 正方形 ABCD 的边长为 1,△CDE 为等腰直角三角形, ∴DE 2+CE 2=CD 2,DE =CE , ∴S 2+S 2=S 1.观察,发现规律:S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,⋯, ∴S n =(12)n−1,当 n =2019 时,S 2019=(12)2019−1=(12)2018,故选:B .【知识点】勾股定理、用代数式表示规律6. 【答案】C【解析】A .因为 12+22≠32,所以三条线段不能组成直角三角形; B .因为 22+32≠42,所以三条线段不能组成直角三角形; C .因为 32+42=52,所以三条线段能组成直角三角形; D .因为 42+52≠62,所以三条线段不能组成直角三角形. 【知识点】勾股逆定理7. 【答案】A【解析】如图,过点 B ,D 分别作 BE ⊥AC ,DF ⊥AC ,垂足分别为 E ,F . 在 Rt △ABC 中,由勾股定理,得 AC 2=AB 2+BC 2=62+82=100, 所以 AC =10.再由 12AB ⋅BC =12AC ⋅BE ,可得 BE =4.8.由AD=CD=7且DF⊥AC,得AF=12AC=5,由勾股定理,得DF2=72−52=24,故DF<5.又因为BE<5,所以到直线AC的距离为5的两条平行线与四边形ABCD的边没有交点.故选A.【知识点】勾股定理8. 【答案】A【解析】作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90∘,因为∠AOE+∠BOF=∠BOF+∠OBF=90∘,所以∠AOE=∠OBF.在△AOE和△OBF中,{∠OEA=∠BFO,∠AOE=∠OBF, OA=OB,所以△AOE≌△OBF(AAS),所以OE=BF,AE=OF,所以OE+OF=AE+BF=CD=17(米),因为EF=EM−FM=AC−BD=10−3=7(米),因为OE+OF=2EO+EF=17米,所以2OE=17−7=10(米),所以BF=OE=5米,OF=12米,所以CM=CD−DM=CD−BF=17−5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA=√AE2+OE2=√122+52=13(米),所以MN=OM−OF=15−13=2(米).【知识点】勾股定理的实际应用9. 【答案】B【解析】27−(27−√157)=√157(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,√(√157)2−112=6(厘米),6÷2=3(厘米).故底面半径为3厘米.【知识点】勾股定理的实际应用10. 【答案】A【解析】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点Aʹ,连接AʹC交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=AʹE,AʹP=AP,∴AP+PC=AʹP+PC=AʹC,×18cm=9cm,AʹQ=12cm−4cm+4cm=12cm,∵CQ=12在Rt△AʹQC中,由勾股定理得:AʹC=√122+92=15cm.【知识点】平面展开-最短路径问题二、填空题11. 【答案】(2+2√3)【知识点】勾股定理的实际应用12. 【答案】16【知识点】三角形的面积、勾股定理13. 【答案】2或4017【知识点】勾股定理之折叠问题14. 【答案】6【解析】设底边长为2x.=8−x.∴腰长为16−2x2利用勾股定理:(8−x)2=x2+42,∴x=3,∴其底边BC的长为6,故答案为:6.【知识点】一元二次方程的应用、勾股定理15. 【答案】等于【知识点】勾股定理的实际应用16. 【答案】25cm【解析】如图:将杯子侧面展开,作A关于EF的对称点Aʹ,连接AʹB,则AʹB即为最短距离,AʹB=√AʹD2+BD2=√202+152=25(cm).【知识点】平面展开-最短路径问题17. 【答案】√34【解析】√32+52=√34.【知识点】勾股定理的实际应用三、解答题18. 【答案】∵AB=15,BC=9,∠ACB=90∘,∴AC=√152−92=12,∵52+122=132,∴AD2+AC2=CD2,∴∠DAC=90∘,∴△ACD是直角三角形.【知识点】勾股定理、勾股逆定理19. 【答案】(1) ∵AC=4√12=4×√24=2√2,BC=25√125=25×√25×5=25×5√5=2√5,AB=2,∴△ABC如图所示(长度正确,顶点在格点上即可,画法不唯一).过点C作CD⊥AB,交BA的延长线于点D,则CD=2,∴S△ABC=12AB⋅CD=12×2×2=2.(2) 过点A作AE⊥BC于点E,则S△ABC=12BC⋅AE.∵S△ABC=2,BC=2√5.∴AE=2S△ABCBC =2√5=√5=√5√5×√5=25√5,即点A到BC边的距离为25√5.【知识点】一般三角形面积公式、勾股定理20. 【答案】(1) 在△BDE和△ADC中,∵AD⊥BC,∴∠BDE=∠ADC=90∘,在△BDE和△ADC中,{AD=BD,∠BDE=∠ADC, DE=DC,∴△BDE≌△ADC.(2) ∵△BDE≌△ADC,∴∠EBD=∠CAD,在Rt△ADB中,AD=BD,∴∠ABD=∠BAD=45∘,同理∠DEC=∠DCE=45∘,∵∠ABF=45∘−∠EBD,∠ACE=45∘−∠CAD,∴∠ABF=∠ACE.(3) ∵∠EBD=∠CAD,∠BED=∠AEF,∠EBD+∠BED=90∘,∴∠CAD+∠AEF=90∘,∴BF⊥AC,∵BD=12 cm,∴AD=12 cm,在Rt△ACD中,由勾股定理得,AC=13 cm,S△ABC=12BC⋅AD=12AC⋅BF,∴12×(12+5)×12=12×13×BF,解得BF=20413cm.【知识点】一般三角形面积公式、勾股定理、边角边、等腰三角形的性质、全等形的概念及性质21. 【答案】(1) 根据勾股定理可知AB=3√2,BC=√34,CD=√34,AD=5√2,∴四边形ABCD的周长为8√2+2√34.(2) 连接BD.∵BC=√34,CD=√34,DB=√68,∴BC2+CD2=BD2.∴△BCD是直角三角形,即∠BCD=90∘.【知识点】勾股逆定理、勾股定理22. 【答案】(1) 如图①,过点A作AG⊥BC于G,∵△ABC是等边三角形,∴BG=12BC=4,在Rt△ABG中,AB=8,∴AG=√AB2−BG2=4√3,则等边△ABC的高为4√3.(2) ①当点P在边BC上时,PD+PE=CF,如图②,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=12AB⋅PD,S△ACP=12AC⋅PE,S△ABC=12AB⋅CF,∵S△ABP+S△ACP=S△ABC,∴12AB⋅PD+12AC⋅PE=12AB⋅CF∵AB=AC,∴PD+PE=CF.②当点P在BC的延长线上时,PD−PE=CF,理由:如图③,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=12AB⋅PD,S△ACP=12AC⋅PE,S△ABC=12AB⋅CF∵S△ABP−S△ACP=S△ABC∴12AB⋅PD−12AC⋅PE=12AB⋅CF∵AB=AC,∴PD−PE=CF.(3) 如图④,由题意可求得A(−4,0),B(0,3),C(1,0),∴AB=5,AC=5,BC=√12+32=√10,OB=3,过M分别作MP⊥x轴,MQ⊥AB,垂足分别为P,Q.∵l2上的一点M到l1的距离是1,∴MQ=1.由图②的结论得:MP+MQ=3,∴MP=2,∴M点的纵坐标为2,又∵M在直线y=−3x+3,∴当y=2时,x=13∴M坐标为(13,2).【知识点】一般三角形面积公式、一次函数与三角形的综合、勾股定理23. 【答案】(1) ∵AD=A1D1,∴2AD=2A1D1,即AE=A1E1,在△AEC和△A1E1C1中,{AE=A1E1, AC=A1C1, EC=E1C1,∴△AEC≌△A1E1C1(SSS),∴∠1=∠2.(2) 1<AD<4(3) 20【解析】(2) 延长AD至E,使DA=DE,连接BE,CE,由(1)可知,AB=CE=5,∴5−3<2AD<5+3,∴1<AD<4.(3) 延长AD至E,使DA=DE,连接CE,同理可证,CE=AB=√89,AE=2AD=8,∴AE2+AC2=CE2,∴△AEC是Rt△,∴S△ABC=S△AEC=8×5×12=20.【知识点】勾股逆定理、边角边24. 【答案】(1) 如图所示,连接AC,由题意可知∠ADC=90∘,CD=6m,AD=8m,所以AC=√AD2+CD2=√82+62=10m,又因为AB=26m,BC=24m,且102+242=262,所以△ACB为直角三角形,则空地ABCD面积即为△ACB的面积:12⋅AC⋅BC=12×10×24=120m2.答:空地ABCD的面积为120m2.(2) 由题意得:200×120=24000(元),答:共需投入24000元.【知识点】勾股定理的实际应用25. 【答案】(1) AB2+BC2=52+π2=25+π2;(5+2)2=49;<;<;1(2) l12=AC2=AB2+BC2=ℎ2+(πr)2,l22=(AB+BC)2=(ℎ+2r)2,∴l12−l22=ℎ2+(πr)2−(ℎ+2r)2=r(π2r−4r−4ℎ)=r[(π2−4)r−4ℎ],时,l12=l22;∴当r=4ℎπ2−4时,l12>l22;当r>4ℎπ2−4当r<4ℎ时,l12<l22.π2−4【知识点】勾股定理的实际应用。

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。

滕州市2019-2020年八年级上《勾股定理》期末复习试卷含解析

滕州市2019-2020年八年级上《勾股定理》期末复习试卷含解析

滕州市2019-2020年八年级上《勾股定理》期末复习试卷含解析一、选择题1.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积S为()cm2.A.54 B.108 C.216 D.2702.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.3,4,5 C.2,3,4 D.1,2,33.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm24.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.256.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或77.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定8.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()A.4.8 B.5 C.4 D.9.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AB边和BC边向外作等腰直角三角形AFC和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.4 B.9 C.18 D.3610.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()A.16 B.32 C.34 D.6411.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30 B.50 C.60 D.8012.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A.3.5 B.4 C.4.5 D.5二、填空题13.已知|x﹣12|+|z﹣13|+y2﹣10y+25=0,则以x、y、z为三边的三角形是______三角形.14.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2=______.15.已知直角三角形三边的平方和是32cm2,则其斜边上的中线长为______.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为______.17.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为______.18.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:______.三、解答题19.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.20.如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.21.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE相等,那么点E应该选在距点B多少米处?22.如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了3秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?24.如图将一根15cm长的细木棒放入长宽分别为4cm,3cm和12cm的长方体无盖盒子中,则细木棒露在外面的最短长度是多少?25.如图,学校为美化校园,将形状是直角三角形的﹣园地△ABC,分别以三边AB、BC、CA为直径向外作半圆,开辟为三个花坛甲、乙、丙,现分给201班同学种花.班长准备让人数相等的两个小组同学负责.为了公平分配任务,她安排一个小组负责花坛甲,另一个小组负责花坛乙和丙.你认为班长的安排合理吗?请说明理由.-学年八年级(上)期末数学复习试卷(勾股定理)参考答案与试题解析一、选择题1.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积S为()cm2.A.54 B.108 C.216 D.270【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.3,4,5 C.2,3,4 D.1,2,3【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵32+42=52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵12+22≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选B.3.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】勾股定理;完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选A.4.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;故选A.5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【考点】勾股定理.【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB==5.故选:A.6.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或7【考点】勾股定理.【分析】分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D.7.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定【考点】平面展开-最短路径问题.【分析】先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.【解答】解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.8.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()A.4.8 B.5 C.4 D.【考点】勾股定理;垂线段最短;等腰三角形的性质.【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,过A作等腰三角形底边上的高AD,利用三线合一得到D为BC的中点,在直角三角形ADC中,利用勾股定理求出AD的长,进而利用面积法即可求出此时BP的长.【解答】解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD===4,又∵S△ABC=BC•AD=BP•AC,∴BP===4.8.故选:A.9.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AB边和BC边向外作等腰直角三角形AFC和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.4 B.9 C.18 D.36【考点】勾股定理;等腰直角三角形.【分析】解:由勾股定理求出BC2+AC2=AB2=36,由等腰直角三角形的性质和勾股定理得出BE=CE=BC,AF=FC=AC,得出S1+S2=BE2+AF2=(BC2+AC2),即可得出结果.【解答】解:∵∠ACB=90°,AB=6,∴BC2+AC2=AB2=62=36,∵△BEC和△AFC是等腰直角三角形,∴BE=CE=BC,AF=FC=AC,∴S1+S2=BE2+AF2=×(BC)2+×(AC)2=(BC2+AC2)=×36=9;故选:B.10.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()A.16 B.32 C.34 D.64【考点】勾股定理.【分析】根据已知两正方形的面积分别得出直角三角形两直角边长的平方,利用勾股定理求出斜边长的平方,即可求出正方形A的面积.【解答】解:如图所示:根据题意得:EF2=25,FG2=9,∠EFG=90°,根据勾股定理得:EG2=25+9=34,∴以斜边为边长的正方形A的面积为34.故选:C.11.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30 B.50 C.60 D.80【考点】全等三角形的判定与性质.【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【解答】解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG,AG=EF,GC=DH,BG=CH,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50,故选 B.12.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A.3.5 B.4 C.4.5 D.5【考点】勾股定理的应用.【分析】仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.【解答】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,解得:h=4.5.故选:C.二、填空题13.已知|x﹣12|+|z﹣13|+y2﹣10y+25=0,则以x、y、z为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出x、y、z的值,再根据勾股定理的逆定理进行解答即可.【解答】解:以x,y,z为三边的三角形是直角三角形.∵|x﹣12|+|z﹣13|+y2﹣10y+25=0,∴|x﹣12|+|z﹣13|+(y﹣5)2=0,∴x﹣12=0,z﹣13=0,y﹣5=0,∴x=12,y=5,z=13,∵122+52=132,∴以x,y,z为三边的三角形是直角三角形.故答案为直角.14.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2=8.【考点】勾股定理.【分析】根据勾股定理即可求得该代数式的值.【解答】解:∵AB2=BC2+AC2,AB=2,∴AB2+BC2+AC2=8.故答案为:8.15.已知直角三角形三边的平方和是32cm2,则其斜边上的中线长为2cm.【考点】勾股定理;直角三角形斜边上的中线.【分析】由勾股定理和已知条件得出得出AB2=16cm2,得出AB=4cm,由直角三角形斜边上的中线性质得出CD=AB,即可得出结果.【解答】解:如图所示:∵∠ACB=90°,∴AC2+BC2=AB2,∵直角三角形三边的平方和是32cm2,∴AB2=16cm2,∴AB=4cm,∴斜边AB上的中线长=AB=2cm,故答案为:2cm16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.17.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为1或4.【考点】勾股定理的证明.【分析】分两种情况:①5为斜边时,由勾股定理求出另一直角边长为4,小正方形的边长=4﹣3=1,即可得出小正方形的面积;②3和5为两条直角边长时,求出小正方形的边长=2,即可得出小正方形的面积;即可得出结果.【解答】解:分两种情况:①5为斜边时,由勾股定理得:另一直角边长==4,∴小正方形的边长=4﹣3=1,∴小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5﹣3=2,∴小正方形的面积22=4;综上所述:小正方形的面积为1或4;故答案为:1或4.18.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:13、84、85.【考点】勾股数.【分析】先根据给出的数据找出规律,再根据勾股定理进行求解即可.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,第6组第一个数是13,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:132+x2=(x+1)2,解得x=84.则得第6组数是:13、84、85.故答案为:13、84、85.三、解答题19.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.20.如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.【考点】勾股定理的应用.【分析】在△RtAOB中依据勾股定理可知AB2=40,在Rt△A′OB′中依据勾股定理可求得OB′的长,从而可求得BB′的长.【解答】解:在△RtAOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′,∴A′O2+OB′2=40.∴OB′==.∴BB′=6﹣.21.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE相等,那么点E应该选在距点B多少米处?【考点】勾股定理的应用.【分析】设BE=x米,在Rt△ABE中,由勾股定理得:AE2=52+x2,在Rt△CDE中,由勾股定理得:CE2=32+(8﹣x)2,根据AE=CE∴52+x2=32+(8﹣x)2求得BE的长即可.【解答】解:设BE=x米,在Rt△ABE中,AE2=52+x2在Rt△CDE中,CE2=32+(8﹣x)2,∵AE=CE,∴52+x2=32+(8﹣x)2,解得x=3,答:点E应该选在距B点3米处.22.如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.【考点】全等三角形的判定与性质;勾股定理的证明.【分析】(1)根据全等三角形的判定与性质,可得∠1与∠3的关系,AB与DE的关系,根据余角的性质,可得∠2与∠3的关系;(2)根据面积的不同求法,可得答案.【解答】解:(1)AB=DE,AB⊥DE,如图2,∵AD⊥CA,∴∠DAE=∠ACB=90°.在△ABC和△DEA中,,∴△ABC≌△DEA (SAS),AB=DE,∠3=∠1.∵∠DAE=90°,∴∠1+∠2=90°,∴∠3+∠2=90°,∴∠AFE=90°,∴AB⊥DE;=S△ADE+S△BDE=DE•AF+DE•BF=DE•AB=c2,(2)S四边形ADBE=S△ABE+S△ADE=a2+b2,S四边形ADBE∴a2+b2=c2,∴a2+b2=c2.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了3秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?【考点】勾股定理的应用.【分析】根据题意得出由勾股定理得出BC的长,进而得出小汽车1小时行驶40×20×60=48000(米),进而得出答案.【解答】解:根据题意,得AC=30m,AB=50m,∠C=90°,在Rt△ACB中,根据勾股定理,BC2=AB2﹣AC2=502﹣302=402,所以BC=40,小汽车3秒行驶40米,则1小时行驶40×20×60=48000(米),即小汽车行驶速度为48千米/时,因为 48<70,所以小汽车没有超速行驶.24.如图将一根15cm长的细木棒放入长宽分别为4cm,3cm和12cm的长方体无盖盒子中,则细木棒露在外面的最短长度是多少?【考点】勾股定理的应用.【分析】长方体内体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,这样就是求出盒子的对角线长度即可.【解答】解:由题意知:盒子底面对角长为=5cm,盒子的对角线长: =13cm,细木棒长15cm,故细木棒露在盒外面的最短长度是:15﹣13=2cm.所以细木棒露在外面的最短长度是2厘米.25.如图,学校为美化校园,将形状是直角三角形的﹣园地△ABC,分别以三边AB、BC、CA为直径向外作半圆,开辟为三个花坛甲、乙、丙,现分给201班同学种花.班长准备让人数相等的两个小组同学负责.为了公平分配任务,她安排一个小组负责花坛甲,另一个小组负责花坛乙和丙.你认为班长的安排合理吗?请说明理由.【考点】勾股定理的应用.【分析】根据△ABC 是直角三角形,可得出S 甲=S 乙+S 丙,故班长的安排是合理的.【解答】解:班长的安排合理.理由如下:∵S 甲=π×()2S 乙=π×()2S 丙=π×()2又△ABC 是直角三角形∴=+∴S 甲=S 乙+S 丙答:因为班长分配给两个小组的花坛面积相等,所以她的安排是合理的.年9月20日。

新人教版数学八年级勾股定理练习题及答案(共6套)

新人教版数学八年级勾股定理练习题及答案(共6套)

精品文档新人教版数学八年级第十七章<勾股定理>勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是( A )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为__13_____.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?解:∵5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向“路”4m3m第2题图第5题图第9题图第8题图5m13m第11题东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R ο90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (36)

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (36)

一、选择题1.下列长度的三条线段能组成直角三角形的是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,62.下列各组数中,不能作为直角三角形的三边长的是( )A.1,√3,2B.7,12,15C.3,4,5D.5,12,133.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB=6,△ABF的面积是24,则FC等于( )A.1B.2C.3D.44.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴案,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为( )A.x2+102=(x+1)2B.(x−1)2+52=x2C.x2+52=(x+1)2D.(x−1)2+102=x25.如图,在Rt△ABC中,∠ACB=90∘,D是AB的中点,CE⊥BE,交CD的延长线于点E,若AC=2,BC=2√2,则BE的长为( )A.2√63B.√62C.√3D.√26.下列各组数中,不能作为直角三角形的三边长的是( )A.1,√3,2B.7,12,15C.3,4,5D.5,12,137.【例3】如图,在三个正方形中,其中两个的面积S1=25,S2=144,则另一个正方形的面积S3为( )A.13B.200C.169D.2258.如图,有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )A.254cm B.223cm C.74cm D.53cm9.若△ABC的三条边a,b,c满足(a−8)2+∣15−b∣+√c−17=0,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定10.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5B.6C.8D.10二、填空题11.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),⋯.分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),⋯⋯,分析上面规律,第5个勾股数组为.12.如图,在等腰直角三角形ABC中,∠ABC=90∘,AB=BC=4,P是△ABC所在平面内一点,且满足PA⊥PB,则PC的最大值为.13.在△ABC中,∠C=90∘,AD是∠BAC的平分线,BC=10cm,BD=6cm,则点D到AB的距离是cm.14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则AB的长为.15.如图,Rt△ABC中,AB=9,BC=6,∠B=90∘,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.16.如图,在Rt△ABC中,∠C=90∘,AD平分∠BAC交BC于点D.若BC=8,BD=5,则点D到AB的距离是.17.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=√5,∠BPD=90∘,则点A到BP的距离等于.三、解答题18.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1) 直接写出边AB,AC,BC的长.(2) 判断△ABC的形状,并说明理由.19.如图,在四边形ABCD中,∠B=90∘,AB=9,BC=12,AD=8,CD=17.求:(1) AC的长.(2) 四边形ABCD的面积.20.我们学习了勾股定理后,都知道"勾三、股四、弦五".观察:3、4、5;5、12、13;7、24、25;9、40、41;……,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1) 请你根据上述的规律写出下一组勾股数:;(2) 若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.21.如图,一块三角形的铁皮,边BC的长为40厘米,BC上的高AD为30厘米,要把它加工成一块矩形铁皮,使矩形的一边FG在BC上,其余两个顶点E,H分别在AB,AC上,且矩形的面积是三角形面积的一半,这个矩形的长和宽各是多少?22.葛藤是一种刁钻的植物,它自已腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘旋上升的路线,总是沿着最短路线盘旋前进的.难道植物也懂得数学吗?阅读以上信息,你能设计一种方法解决下列问题吗?(1) 如图,如果树的周长为3cm,从点A绕圈到B点,葛藤升高4cm,则它爬行的路程是多少厘米?(2) 如果树的周长为8cm,绕一圈爬行10cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?23.已知:如图,在△ABC中,∠C=90∘,AD是∠A的平分线,BD=5,CD=3.求AB的长.24.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知该纸片宽AB=3 cm,长BC=5 cm.求EC的长.25.阅读:小明同学在某材料中看到如下问题及部分证明.如图①,已知在△ABC和△A1B1C1中,BD=DC,B1D1=D1C1,AB=A1B1,AC=A1C1,AD=A1D1,求证:∠1=∠2.证明:延长AD到E,使DE=AD,连接CE,延长A1D1到E1,使D1E1=A1D1,连接C1E1,在△ABD和△ECD中,∵AD=DE(已作),∠ADB=∠EDC(对顶角相等),BD=DC(已知),∴△ABD≌△ECD(SAS),∴AB=EC(全等三角形的对应边相等),同理可证,A1B1=E1C1,未完待续⋯⋯(1) 请你补全这个证明.(2) 应用:如图②,在△ABC中,AD是BC边上的中线,若AB=5,AC=3,则AD长的范围是.(3) 拓展:如图③,在△ABC中,AD是BC边上的中线,若AB=√89,AC=5,AD=4,则△ABC的面积是.答案一、选择题1. 【答案】C【解析】∵12+22≠32,∴三条线段不能组成直角三角形;∵22+32≠42,∴三条线段不能组成直角三角形;∵32+42=52,∴三条线段能组成直角三角形;∵42+52≠62,∴三条线段不能组成直角三角形.【知识点】勾股逆定理2. 【答案】B【知识点】勾股逆定理3. 【答案】B【知识点】勾股定理之折叠问题4. 【答案】B【知识点】勾股定理的实际应用5. 【答案】A【解析】方法1:在Rt△ABC中,∠ACB=90∘,AC=2,BC=2√2,由勾股定理得:AB=√AC2+BC2=√22+(2√2)2=2√3,∵D是AB的中点,∴BD=CD=√3,设DE=x,由勾股定理得:(√3)2−x2=(2√2)2−(√3+x)2,解得:x=√3,3∴在Rt△BED中,BE=√BD2−DE2=√(√3)2−(√33) 2=2√63.方法2:三角形ABC的面积=12×AC×BC=12×2×2√2=2√2,∵D是AB中点,∴△BCD的面积=△ABC面积×12=√2,Rt△ABC中,∠ACB=90∘,AC=2,BC=2√2,由勾股定理得:AB=√AC2+BC2=√22+(2√2)2=2√3,∵D是AB的中点,∴CD=√3,∴BE=√2×2÷√3=2√63.【知识点】勾股定理6. 【答案】B【知识点】勾股逆定理7. 【答案】C【解析】由题可知,在直角三角形中两直角边的平方分别为25和144,所以斜边的平方为144+25=169,即面积S3为169.【知识点】勾股定理8. 【答案】C【知识点】勾股定理之折叠问题、图形成轴对称9. 【答案】B【解析】∵(a−8)2+∣15−b∣+√c−17=0,∴a−8=0,15−b=0,c−17=0,∴a=8,b=15,c=17,∴a2+b2=c2.∴△ABC是直角三角形.【知识点】勾股逆定理10. 【答案】C【解析】∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD=√AB2−AD2=4,∴BC=2BD=8,故选C.【知识点】等腰三角形“三线合一”、勾股定理二、填空题11. 【答案】(11,60,61)【解析】在勾股数组:(3,4,5),(5,12,13),(7,24,25),⋯中,4=1×(3+1),12=2×(5+1),24=3×(7+1),⋯⋯,可得第4组勾股数组中间的数为4×(9+1)=40,故对应的勾股数组为(9,40,41);第5组勾股数组中间的数为5×(11+1)=60,故对应的勾股数组为(11,60,61),故答案为(11,60,61).【知识点】勾股数12. 【答案】2√5+2【解析】∵PA⊥PB,∴∠APB=90∘,∴点P在以AB为直径的圆上,取AB的中点,连接CO,如图,则OC=√22+42=2√5,∵点P为CO的延长线于⊙O的交点时,CP最大,∴PC的最大值为2√5+2.【知识点】圆周角定理推论、勾股定理13. 【答案】4【知识点】角平分线的性质、勾股定理14. 【答案】2√10【解析】将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√62+22=2√10.【知识点】平面展开-最短路径问题15. 【答案】 4【解析】设 BN =x ,由折叠的性质可得 DN =AN =9−x , ∵D 是 BC 的中点, ∴BD =3,在 Rt △BND 中,x 2+32=(9−x )2, 解得 x =4.故线段 BN 的长为 4. 【知识点】勾股定理之折叠问题16. 【答案】 3【知识点】勾股定理17. 【答案】3√3+√52或3√3−√52【解析】 ∵ 点 P 满足 PD =√5,∴ 点 P 在以 D 为圆心,√5 为半径的圆上, ∵∠BPD =90∘,∴ 点 P 在以 BD 为直径的圆上, ∴ 如图,点 P 是两圆的交点,若点 P 在 AD 上方,连接 AP ,过点 A 作 AH ⊥BP , ∵CD =4=BC ,∠BCD =90∘, ∴BD =4√2, ∵∠BPD =90∘,∴BP =√BD 2−PD 2=3√3, ∵∠BPD =90∘=∠BAD ,∴ 点 A ,点 B ,点 D ,点 P 四点共圆, ∴∠APB =∠ADB =45∘,且 AH ⊥BP , ∴∠HAP =∠APH =45∘, ∴AH =HP ,在 Rt △AHB 中,AB 2=AH 2+BH 2, ∴16=AH 2+(3√3−AH)2, ∴AH =3√3+√52(不合题意),或 AH =3√3−√52, 若点 P 在 CD 的右侧,同理可得 AH =3√3+√52.综上所述:AH =3√3+√52 或 3√3−√52.【知识点】判断四点共圆的方法、勾股定理三、解答题18. 【答案】(1) AB =√12+22=√5,AC =√22+12=√5,BC =√12+32=√10;(2) △ABC 是等腰直角三角形,∵AB 2+AC 2=5+5=10=BC 2,∵AB =AC ,∴△ABC 是等腰直角三角形.【知识点】等腰直角三角形、勾股定理、勾股逆定理19. 【答案】(1) AC =√AB 2+BC 2=15.(2) ∵AD =8,AC =15,CD =17,∴AD 2+AC 2=CD 2,∴△ADC 是直角三角形,∴∠DAC =90∘,∴四边形ABCD 的面积=S △ABC +S △ADC =12×9×12+12×8×15=114.【知识点】勾股逆定理、勾股定理20. 【答案】(1) 11,60,61(2) 后两个数表示为n 2−12和n 2+12. ∵n 2+(n 2−12)2=n 2+n 4−2n 2+14=n 4+2n 2+14, (n 2+12)2=n 4+2n 2+14, ∴n 2+(n 2−12)2=(n 2+12)2.∵n ≥3,且 n 为奇数,∴ 由 n ,n 2−12,n 2+12 三个数组成的数是勾股数. 【解析】(1) 下一个勾为 11,根据所提供的例子发现股是勾的平方减去 1 的二分之一,弦是勾的平方加 1 的二分之一. 所以勾股数为 11,60,61 .(2) 根据所提供的例子发现股是勾的平方减去 1 的二分之一,弦是勾的平方加 1 的二分之一. 所以后两个数为 n 2−12和n 2+12.【知识点】勾股定理21. 【答案】矩形的长和宽分别为 20 cm 和 15 cm .【知识点】矩形的面积、一般三角形面积公式、勾股定理22. 【答案】(1) 如果树的周长为 3 cm ,绕一圈升高 4 cm ,则葛藤绕树爬行的最短路程为;32+42=52,则爬行的路程是 5 cm .(2) 如果树的周长为 8 cm ,绕一圈爬行 10 cm ,则爬行一圈升高:102−82=62,则升高 6 cm ,如果爬行 10 圈到达树顶,则树干高为:10×6=60(cm ).【知识点】平面展开-最短路径问题23. 【答案】提示:过点 D 作 AB 的垂线,垂足为 E ,则 DE =3,可求出 BE =4,根据 AC 2+BC 2=AB 2,可求出 AC =6,即 AE =6,所以 AB =10.【知识点】勾股定理24. 【答案】 ∵ 折叠,∴AF =AD =BC =5 cm ,∵ 在 Rt △ABF 中,BF 2+AB 2=AF 2,AB =3 cm ,∴BF =4 cm ,∴CF =BC −BF =5−4=1 cm ,设 EC =x cm ,则 EF =ED =CD −CE =(3−x )cm ,∵ 在 Rt △CEF 中,CF 2+CE 2=EF 2,∴12+x 2=(3−x )2,∴x=43,∴CE=43cm.【知识点】勾股定理之折叠问题25. 【答案】(1) ∵AD=A1D1,∴2AD=2A1D1,即AE=A1E1,在△AEC和△A1E1C1中,{AE=A1E1, AC=A1C1, EC=E1C1,∴△AEC≌△A1E1C1(SSS),∴∠1=∠2.(2) 1<AD<4(3) 20【解析】(2) 延长AD至E,使DA=DE,连接BE,CE,由(1)可知,AB=CE=5,∴5−3<2AD<5+3,∴1<AD<4.(3) 延长AD至E,使DA=DE,连接CE,同理可证,CE=AB=√89,AE=2AD=8,∴AE2+AC2=CE2,∴△AEC是Rt△,∴S△ABC=S△AEC=8×5×12=20.【知识点】勾股逆定理、边角边。

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (39)

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (39)

一、选择题1.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是( )A.√3B.√5C.3D.√3或√52.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄,如图是兴庆公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC”,是在草坪内走出了一条不该有的“路AC”,已知AB=40米,BC=30米,他们踩坏了_____米的草坪,只为少走_____米路( )A.20,50B.50,20C.20,30D.30,203.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A.9分米B.15分米C.5分米D.8分米4.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )A.5√21B.25C.10√5+5D.355.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是( )(参考数据:√2≈1.41,√3≈1.73,√5≈2.24)A.1B.2C.3D.46.下列各组数据中,不能作为直角三角形三边长的是( )A.5,4,3B.√2,√3,√5C.6,8,10D.8,15,197.如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2,则树高为( )米.A.1+√5B.1+√3C.2√5−1D.38.如图,圆柱形玻璃杯高为7cm,底面周长为20cm在杯内壁离杯底2cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为( )(杯壁厚度不计)A.2√26cm B.√149cm C.2√41cm D.4√29cm9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为( )A.3B.4C.5D.610.在Rt△ABC中,∠B=90∘,BC=1,AC=2,则AB的长是( )A.1B.√3C.2D.√5二、填空题11.在Rt△ABC中,∠C=90∘,∠A=45∘,AC=4, 则AB的长是.12.在△ABC中,∠C=90∘,若AB=6,BC=2√5,则AB边上的高是.13.如图,在四边形ABCD中,∠B=∠D=90∘,AD=CD,AB+BC=8,则四边形ABCD的面积是.14.如图所示,∠ABC=∠BAD=90∘,AC=13,BC=5,AD=16,则BD的长为.15.如图,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为.16.在三角形ABC中,∠C=90∘,AB=7,BC=5,则AC的长为.17.如图,在Rt△ABC中,∠C=90∘,AC=3,AB=5,以点A为圆心,以任意长为半径作弧,MN的长为半径作弧,两弧交分别交AB,AC于点M,N,再分别以M,N为圆心,以大于12于点P,作射线AP交BC于点D,则CD的长是.三、解答题18.在四边形ABCD中,AB=AC,∠ABC=∠ADC=45∘,BD=6,DC=4(1) 当D,B在AC同侧时,求AD的长;(2) 当D,B在AC两侧时,求AD的长.19.如图是一块地,已知AD=8m,CD=6m,∠D=90∘,AB=26m,BC=24m,求这块地的面积.20.在△ABC中,AB=AC=10,BC=12,求△ABC的面积.21.如图,在△ABC中,AB=AC,BC=10,D为AB上一点,CD=8,BD=6.(1) 求证:∠CDB=90∘;(2) 求AC的长.22.如图,在△ABC中,∠C=90∘,M为BC的中点,MN⊥AB,N是垂足.求证:AN2−BN2=AC2.23.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.24.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90∘,AC+AB=10,BC=3,求AC的长.25.小芳在喝易拉罐饮料的时候,发现如果沿着罐内壁BC竖直放置吸管,露在外面部分BD=2厘米;如果尽最大长度往里放置,吸管正好和罐顶持平,已知易拉罐的底部是直径(AC)为8厘米的圆,请你求出吸管的长度.答案一、选择题1. 【答案】A【解析】∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC=√AC2−AB2=√4−1=√3.【知识点】勾股定理2. 【答案】B【解析】在Rt△ABC中,∵AB=40米,BC=30米,∴AC2=302+402=2500,∴AC=50米,30+40−50=20(米),∴他们踩坏了50米的草坪,只为少走20米路.【知识点】勾股定理的实际应用3. 【答案】D【知识点】勾股定理的实际应用4. 【答案】B【解析】将长方体展开,连接A,B,根据两点之间线段最短.(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB=√AD2+BD2=√152+202=√625=25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB=√AC2+BC2=√52+302=√925=5√37.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB=√BD2+AD2=√102+252=5√29.由于25<5√29<5√37,故最短距离为25.【知识点】勾股定理的实际应用、勾股定理5. 【答案】B【解析】∵车宽2米,∴卡车能否通过,只要比较距厂门中线1米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD=√OC2−OD2=√22−12=√3≈1.73(米),CH=CD+DH=1.73+1.6=3.33,∴两辆卡车都能通过此门.【知识点】勾股定理、勾股定理的实际应用6. 【答案】D【知识点】勾股逆定理7. 【答案】A【解析】由勾股定理可知,BC=√AC2+AB2=√12+22=√5,∴AC+BC=1+√5.【知识点】勾股定理的实际应用8. 【答案】C【解析】圆柱展开如图所示,由题意可知蚂蚁从A点爬到ME上某点再爬到B点最短路径,作A关于ME对称点Aʹ连接AʹB,AʹB即作求最短路径,过B作BO⊥MN与O,则四边形OBFN为矩形,∴OB=NF,ON=BF,∵MQ=NP=20,MN=EF=7,BF=2,MA=3,E,F分别MQ,NP中点,NP=10=OB,ON=BF=2,∴NF=12MO=MN−ON=5,∵A,Aʹ关于MN对称,∴AʹM=AM=3,∴AʹO=AʹM+MO=8,∴AʹO=√AʹO2+OB2=√82+102=2√21,∴最短路径为2√21.【知识点】轴对称之最短路径、勾股定理的实际应用9. 【答案】C【解析】如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21−13=8,∴小正方形的面积为13−8=5.【知识点】勾股定理10. 【答案】B【知识点】勾股定理二、填空题11. 【答案】4√2【解析】如图,∵∠C=90∘,∠A=45∘,∴∠B=90∘−45∘=45∘,∴∠A=∠B,∴AC=CB=4,∴AB=√AC2+BC2=√42+42=4√2.【知识点】勾股定理12. 【答案】4√53【知识点】勾股定理13. 【答案】16【解析】如图,连接AC.∵S 四边形ABCD =S △ABC +S △ADC=12BC ⋅AB +12CD ×AD =12BC ⋅AB +12AD 2=12BC ⋅AB +12CD 2,∵AB +BC =8,∴BC 2+AB 2+2BC ×AB =64, ∴4S △ABC +4S △ACD =64,∴S 四边形ABCD =S △ABC +S △ADC =16.【知识点】勾股定理14. 【答案】 20【解析】 ∵∠ABC =90∘,AC =13,BC =5, ∴AB =√AC 2−BC 2=12, 又 ∵∠BAD =90∘,AD =16, ∴BD =√AB 2+AD 2=20. 【知识点】勾股定理15. 【答案】 10【知识点】勾股定理、等腰三角形的性质16. 【答案】 2√6【解析】 ∵∠C =90∘,AB =7,BC =5, ∴AC =√AB 2−BC 2=√72−52=2√6.【知识点】勾股定理17. 【答案】 1.5【解析】如图,作 DH ⊥AB 于 H . ∵DA 平分 ∠BAC , ∴∠DAH =∠DAC ,∵∠AHD=∠C=90∘,AD=AD,∴△ADH≌△ADC(AAS),∴DH=DC,AC=AH=3,在Rt△ABC中,∵AB=5,AC=3,∴BC=√52−32=4,设DC=DH=m,在Rt△BHD中,∵BD2=BH2+DH2,∴(4−m)2=m2+22,∴m=32,∴CD=32.【知识点】角角边、勾股定理三、解答题18. 【答案】(1) 如图1,过点A作AE⊥AD交DC的延长线于E,∵∠ADC=45∘,∴△ADE为等腰直角三角形,∵AB=AC,∠ABC=45∘,∴△ABC为等腰直角三角形,在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,∴△ABD≌△ACE,∴CE=BD=6,DE=10,∴AD=√22DE=5√2.(2) 如图2,过点A作AE⊥AD,使AE=AD,连接CE,在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,∴△ABD≌△ACE,∴BD=EC=6,∠CDE=∠ADC+∠ADE=90∘,在Rt△CDE中,DE=√CE2−CD2=2√5,∴AD=√22DE=√10.【知识点】边角边、勾股定理、等腰直角三角形19. 【答案】如图所示,连接AC.∵∠D=90∘,∴AC2=AD2+CD2,∵AD=8,CD=6,∴AC=10.又AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABCD =S△ABC−S△ACD=12(24×10−6×8)=96.∴这块地的面积为96m2.【知识点】勾股逆定理20. 【答案】48.【知识点】勾股定理21. 【答案】(1) 略(2) 253.【知识点】勾股定理、勾股逆定理22. 【答案】连接AM,AN2−BN2=(AM2−MN2)−(BM2−MN2)=AM2−BM2=AM2−MC2=AC2.【知识点】勾股定理23. 【答案】设旗杆长为x米,则绳长为(x+1)米,则由勾股定理可得:52+x2=(x+1)2.解得x=12.答:旗杆的高度为12米.【知识点】勾股定理的实际应用24. 【答案】设AC=x.∵AC+AB=10,∴AB=10−x.∵在Rt△ABC中,∠ACB=90∘,∴AC2+BC2=AB2,即x2+32=(10−x)2.解得:x=4.55,即AC=4.55.【知识点】勾股定理的实际应用25. 【答案】根据勾股定理得,AB2=BC2+AC2,所以AB2=(AB−2)2+82,解得:AB=17,答:吸管的长度17cm.【知识点】勾股定理的实际应用。

第一章勾股定理 复习测试 2021-2022学年北师大版八年级数学上册(word版含答案)

第一章勾股定理  复习测试  2021-2022学年北师大版八年级数学上册(word版含答案)

北师大版八年级数学上册第一章勾股定理复习测试一.选择题1.下列各组数中,是勾股数的是().A.6,9,12B.﹣9,40,41C.52,122,132D.7,24,25 2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是().A.25B.14,C.7D.7或253.如图由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是().A.16B.25C.144D.1694.同学们都学习过“赵爽弦图”,如图所示,若大正方形的面积为5,小正方形的面积为1,则每个直角三角形的两直角边的乘积为().A.1B.2C.D.5.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为().A.1B.2C.3D.46.如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了().A.2米B.4米C.6米D.8米7.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是().A.26尺B.24尺C.17尺D.15尺8.如图,在△ABD中,△D=90°,CD=6,AD=8,△ACD=2△B,则BD的长是().A.12B.14C.16D.189.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于().A.1.2米B.1.5米C.2.0米D.2.5米10.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是().A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24二.填空题11.一直角三角形的一条直角边长是6,另一条直角边与斜边长的和是18,则直角三角形的面积是12.在正方形网格中,A、B、C、D均为格点,则△BAC﹣△DAE=.13.如图,一株荷叶高出水面1m,一阵风吹过来,荷叶被风吹的贴着水面,这时它偏离原来位置有3m远,则荷叶原来的高度是.14.如图△ABC中,△C=90°,AD平分△BAC,AB=5,AC=3,则BD的长是.15.如图,台阶阶梯每一层高20cm,宽40cm,长50cm.一只蚂蚁从A点爬到B点,最短路程是.16.在Rt△ABC中,△C=90°,AC=9,BC=12,则点C到斜边AB的距离是.17.如图,OP=1,过点P作PP1△OP且PP1=1,得OP1=;再过点P1作P1P2△OP1且P1P2=1,得OP2=;又过点P2作P2P3△OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=A.B.C.D.18.如图,在Rt△ABC中,△C=90°,BE,AF分别是△ABC,△CAB平分线,BE,AF交于点O,OM△AB,AB=10,AC=8,则OM=.三.解答题19.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。

2024八年级数学上册期末复习1勾股定理3常考题型专练习题课件新版北师大版

2024八年级数学上册期末复习1勾股定理3常考题型专练习题课件新版北师大版
AB 的中点, M , N 分别为 AC , BC 上的点,且 DM ⊥
DN . 求证: AB2=2( CM + CN )2.
1
2
3
4
5
证明:如图,连接 CD ,过点 D 作 DE ⊥ BC 于点 E ,则
∠ DEC =∠ DEB =90°.
因为 DM ⊥ DN ,
所以∠ MDC +∠ CDN =90°.
3. 如图,在△ ABC 中, D 为 BC 的中点, AB =5, AD =
6, AC =13.求证: AB ⊥ AD .
1
2
3
4
5
证明:如图,延长 AD 至点 E ,使 DE = AD ,连接 BE .
因为 D 为 BC 的中点, 所以 CD = BD .
又因为 AD = ED ,∠ ADC =∠ EDB ,
所以△ ADC ≌△ EDB (SAS).所以 BE = CA =13.
在△ ABE 中, AE =2 AD =12, AB =5,
所以 AE2+ AB2=122+52=169.
又因为 BE2=132=169,所以 AE2+ AB2= BE2.
所以△ ABE 是直角三角形,且∠ BAE =90°,即 AB ⊥ AD .
设正方形的边长为 a ,则 AD = DC = BC = AB = a ,



BF = a , AF = a , BE = EC = a .



2
2
2
2
在Rt△ DAF 中, DF = AD + AF = a .


在Rt△ CDE 中, DE2= CD2+ CE2= a2.


在Rt△ EFB 中, EF2= FB2+ BE2= a2.

2024八年级数学上册期末复习1勾股定理2易错专项训练习题课件新版北师大版

2024八年级数学上册期末复习1勾股定理2易错专项训练习题课件新版北师大版
最短距离为
10
m.
1
2
3
4
5
易错点4 没有明确直角顶点,考虑不全面出错
4. 同一平面内有 A , B , C 三点, A , B 两点之间的距离为
5 cm,点 C 到直线 AB 的距离为2 cm,且△ ABC 为直角三
角形,则满足上述条件的点 C 有
1
2
3
4
5
8
个.
易错点5 不证明直角直接应用其性质缺少步骤出错
5. 如图,在△ ABC 中, D 是△ ABC 内一点,连接 AD ,
BD ,且 AD ⊥ BD . 已知 AD =4, BD =3, AC =13,
BC =12.求图中阴影部分的面积.
1
2
3
4
5
解:因为 AD ⊥ BD ,
所以 AB2= AD2+ BD2,
因为 AD =4, BD =3,
所以 AB =5.
BD - DC =4. 综上所述, BC 的长为14或4.
1
2
3
4
5
易错点3 求立体图形中两点之间的最短距离时无法找到正确
的展开方式出错
3. 【新考法·展开法】如图是一个长8 m,宽7 m,高5 m的
仓库,在其内的点 A 处有一只壁虎, B 处有一只蚊子,已
知 CA =2 m, PB =4 m,则壁虎沿仓库内爬到蚊子处的
1
2
3
4
5
在Rt△ ABD 中, AB =15, AD =12,由勾股定理得 BD2
= AB2- AD2=81,所以 BD =9.
在Rt△ ADC 中, AC =13, AD =12,由勾股定理得 DC2
= AC2- AD2=25,所以 DC =5.所以 BC = BD + DC =

2022-2023学年北师大版八年级数学上册《第1章勾股定理》期末复习综合练习题(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》期末复习综合练习题(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》期末复习综合练习题(附答案)1.下列线段不能构成直角三角形的是()A.5,12,13B.4,3,5C.4,7,5D.7,24,25 2.下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.3,4,5D.7,8,93.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角∠AOB走“捷径”,在花圃内走出了一条“路”AB.他们踩伤草坪,仅仅少走了()A.4m B.6m C.8m D.10m4.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为()A.B.C.D.5.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为S1,小正方形面积为S2,则(a+b)2可以表示为()A.S1﹣S2B.S1+S2C.2S1﹣S2D.S1+2S26.如图,在Rt△ABC中,分别以三角形的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=9,S2=16,则S3的值为()A.7B.10C.20D.257.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.3B.5C.4D.3.58.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形9.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m10.如图,一圆柱体的底面周长为10cm,高AB为12cm,BC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为()A.17cm B.13cm C.12cm D.14cm11.直角三角形的两直角边是3和4,则斜边是12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.13.如图所示的网格是正方形网格,点A、B、C、D均在格点上,则∠CAB+∠CBA=°.14.如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为.15.直角三角形的两边长分别是3cm、5cm,则第三边平方为.16.在正方形网格中,A、B、C、D均为格点,则∠BAC﹣∠DAE=.17.如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷,若绳子的长度为5.5米,固定点C到帐篷支撑杆底部B的距离是4.5米,现有一根高为3.2米的竿,它能否做帐篷的支撑竿,请说明理由.18.如图,△ABC中,AB2=32,∠ABC=45°,D是BC边上一点,且AD=AC,若BD﹣DC=1.求DC的长.19.如图,已知△ABC中,∠ACB=90°,过点B作BD∥AC,交∠ACB的平分线CD于点D,CD交AB于点E.(1)求证:BC=BD;(2)若AC=3,AB=6,求CD的长.20.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ABC=90°,BC=6m,AB=8m,AD=26m,CD=24m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要100元,问总共需投入多少元?21.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.22.勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=b=c=(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)223.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD2.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.参考答案1.解:A、52+122=169=132,故是直角三角形,不符合题意;B、32+42=52,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、72+242=252,故是直角三角形,不符合题意.故选:C.2.解:A、错误,∵12+22=5≠32=9,∴不是勾股数;B、错误,∵42+52=41≠62=36,∴不是勾股数;C、正确,∵32+42=25=52=25,∴是勾股数;D、错误,∵72+82=113≠92=81,∴不是勾股数.故选:C.3.解:在Rt△AOB中,AB=10m,∴AO+BO﹣AB=6+8﹣10=4m.即少走了4m.故选:A.4.解:设这个直角三角形的两直角边分别为a,b,由题意可得,,∴2ab=(a+b)2﹣(a2+b2)=(m﹣n)2﹣n2=m2﹣2mn,∴这个直角三角形的面积=ab=.故选:A.5.解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C.6.解:在Rt△ABC中,AC2+AB2=BC2,由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∵S1=9,S2=16,∴S3=S1+S2=9+16=25.故选:D.7.解:∵BC=5,AC=5,∴S△ABC=×5×3=×AC×BD,∴BD=3,解法二:过A点做AE⊥BC交于点E,则易证三角形AEC全等三角形BDC,所以BD等于AE=3.故选:A.8.解:A、∠C﹣∠B=∠A,即∠A+∠B=∠C,又∵∠A+∠B+∠C=180°,则∠C=90°,那么△ABC是直角三角形,说法正确;B、c2=b2﹣a2,即a2+c2=b2,那么△ABC是直角三角形且∠B=90,说法正确;C、∠A:∠B:∠C=1:2:3,又∵∠A+∠B+∠C=180°,则∠C=90°,则△ABC是直角三角形,说法正确;D、a=3,b=5,c=4,32+52≠42,但是32+42=52,则△ABC可能是直角三角形,故原来说法错误.故选:D.9.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子底端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.10.解:如图所示:由于圆柱体的底面周长为10cm,则AD=10×=5(cm).又因为CD=AB=12cm,所以AC=13(cm).故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是13cm.故选:B.11.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长=5,故答案为5.12.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3或a﹣b=﹣3(舍去),故答案是:3.13.解:由图可知:AD2=CD2=5,AC2=10,∴∠ADC=90°,∴∠ACD=45°,∴∠BAC+∠BCA=∠ACD=45°,故答案为:45.14.解:延长AB和DC,两线交于O,∵∠C=90°,∠ABC=135°,∴∠OBC=45°,∠BCO=90°,∴∠O=45°,∵∠A=90°,∴∠D=45°,则OB=BC,OD=OA,OA=AD,BC=OC,设BC=OC=x,则BO=x,∵CD=6,AB=2,∴四边形ABCD的面积S=S△OAD﹣S△OBC=×OA×AD﹣=16,故答案为:16.15.解:①当3cm和5cm都是直角边时,第三边为斜边,由勾股定理得:第三边平方为=34;②当3cm为直角边和5cm为斜边时,第三边为直角边,由勾股定理得:第三边平方为=16(cm).故答案为:16或34.16.解:如图所示,把△ADE移到△CFG处,连接AG,此时∠DAE=∠FCG,∵CF∥BD,∴∠BAC=∠FCA,∴∠BAC﹣∠DAE=∠FCA﹣∠FCG=∠ACG,设小正方形的边长是1,由勾股定理得:CG2=12+32=10,AC2=AG2=12+22=5,∴AC2+AG2=CG2,AC=AG,∴∠CAG=90°,即△ACG是等腰直角三角形,∴∠ACG=45°,∴∠BAC﹣∠DAE=45°,故答案为:45°.17.解:∵△ABC中,AC=5.5米,BC=4.5米,AB=3.2米;∴AC2=30.25,BC2=20.25,AB2=10.24;∵30.25≠20.25+10.24,∴不能做帐篷的支撑竿.18.解:过点A作AE⊥BC于点E,如图所示.∵AD=AC,AE⊥BC,∴∠AEB=90°,DE=CE.∵∠ABC=45°,∴∠BAE=45°,∴AE=BE.在Rt△ABE中,AB2=32,∴AE2+BE2=AB2,即BE2+BE2=32,∴BE=4,∴BD+DC=4.又∵BD﹣DC=1,∴DC+1+DC=4,∴DC=2.19.(1)证明:∵∠ACB=90°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×90°=45°,∵BD∥AC,∴∠D=∠ACD=45°,∴∠D=∠BCD,∴BC=BD;(2)解:在Rt△ACB中,BC===3,∴BD=3,∵∠BCD=∠D=45°,∴∠CBD=90°,∴CD===3.20.解:(1)如图,连接AC,在直角三角形ABC中,∵∠ABC=90°,BC=6m,AB=8m,∴AC=10m,∵AC2+CD2=102+242=676=AD2,∴∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=,答:空地ABCD的面积是144m2.(2)144×100=14400(元),答:总共需投入14400元.21.解:(1)△ABC为直角三角形,理由:由图可知,AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,解得,h=2,即AB边上的高为2.22.解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.23.解:(1)证明:∵∠ABC=∠EBD=90°,∴∠ABD+∠CBD=∠ABD+∠ABE,∴∠CBD=∠ABE,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴∠EAB=∠BAC,∴AB平分∠EAC;(2)∵AD=1,CD=3,∴AC=4.∵BA=BC,∠ABC=90°,∴AB=BC,∠C=45°,过点B作BF⊥AC于点F,如图:则△BCF为等腰直角三角形,∴BF=CF=2,∴DF=CD﹣CF=1,在Rt△BFD中,由勾股定理得:BD2=5∴BD的平方等于5.24.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,整理得:a2+b2=c2.。

2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)

2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)

2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)一.选择题1.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,15 2.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±53.一直角三角形的两边长分别为3和4.则第三边的长为()A.5B.C.D.5或4.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)5.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距()A.35海里B.40海里C.45海里D.50海里6.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE 的长是()A.3B.4C.5D.67.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.28.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤139.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6二.填空题11.在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.13.如图,已知在Rt△ABC中,∠ACB=90°,AB=8,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.15.如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是.16.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为20元,楼梯宽为2m,则购买这种地毯至少需要元.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三.解答题18.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?19.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?20.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为500米,与公路上另一停靠站B的距离为1200米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.23.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为1.5米.(1)求梯子顶端A与地面的距离AC的长;(2)若梯子滑动后停在DE位置上,如图(2)所示,测得BD=0.5米,求梯子顶端A 下滑了多少米?24.如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:(1)判断△ABC的形状,并说明理由;(2)求△ABC中BC边上的高.25.我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?参考答案一.选择题1.解:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选:B.2.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.3.解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.5.解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了20×2=40海里,15×2=30海里,根据勾股定理得:=50(海里).故选:D.6.解:根据翻折的性质得,AE=CE,设BE=x,∵长方形ABCD的长为8,∴AE=CE=8﹣x,在Rt△ABE中,根据勾股定理,AE2=AB2+BE2,即(8﹣x)2=42+x2,解得x=3,所以,BE的长为3.故选:A.7.解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.8.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.9.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.10.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.二.填空题11.解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.12.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.13.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=8π.故答案为:8π.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.16.解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×20=280(元).17.解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题18.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得x2+162=112+(25﹣x)2,解得x=9.8,∴E站应建在离A站9.8 km处.19.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.20.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=1200米,AC=500米,所以,根据勾股定理有AB==1300(米).因为S△ABC=AB•CD=BC•AC所以CD===(米).由于400米<米,故没有危险,因此AB段公路不需要暂时封锁.22.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.23.解:(1)在Rt△ABC中,∠C=90°根据勾股定理,得:AC===2(米)∴梯子顶端A与地面的距离AC为2米;(2)依题意,得:CD=BC+BD=1.5+0.5=2(米)在Rt△CDE中,∠C=90°,根据勾股定理,得:∴AE=AC﹣CE=2﹣1.5=0.5(米)∴梯子顶端A下滑了0.5米.24.解:(1)∵由勾股定理得:AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形;(2)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB=,AC=2,BC=5,设△ABC的边BC上的高为h,则AB×AC=×h,∴×2=5h,h=2,即△ABC中BC边上的高是2.25.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120(千米),则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).。

八年级初二数学 勾股定理复习题及答案

八年级初二数学 勾股定理复习题及答案

一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个B .3个C .4个D .5个3.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .4 4.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .6 5.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( )A .0个B .1个C .2个D .3个6.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+ 8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4B .16C .34D .4或349.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A .B .C .D .10.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠C B .∠A :∠B :∠C=1:3:2 C .a=2,b=3,c=4D .(b+c)(b-c)=a²二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____. 15.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .17.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.18.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则点BD的长为_____.19.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,22),点G的斜坐标为(7,﹣22),连接PG,则线段PG的长度是_____.20.已知,在△ABC中,BC=3,∠A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图1,在等腰直角三角形ABC中,动点D在直线AB(点A与点B重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 23.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5 ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积. 26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ∆的周长.29.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.30.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题. 【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F , 则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长, 即 25cm AF BF A B '+==, 延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=, Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=,∴该圆柱底面周长为:20240cm ⨯=,故选D . 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D 【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案. 【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确; ∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C , ∵∠A+∠B+∠C=180°, ∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确;∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误; ∵222102426+=,则⑥能构成直角三角形,故⑥正确; ∴能构成直角三角形的有5个; 故选择:D. 【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.3.B解析:B 【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD. 【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°, ∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,DE=22112+=,∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE , 又∵AB=AC,∴△BAE ≌△CAD(SAS), ∴CD=BE=3,∠AEB=∠ADC=45°, ∴∠BED=90°,∴在Rt △BED 中, BD=()22223211BE DE +=+=.故选B. 【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.4.D解析:D 【解析】 【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积.【详解】 解:在中 ∵,,∴,∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积.5.C解析:C 【解析】 【分析】根据勾股定理求解即可,注意要确认a 是直角边还是斜边. 【详解】解:当a 是直角三角形的斜边时,22345a =+= ; 当a 为直角三角形的直角边时,22437a -=【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A 的坐标.【详解】2212=5+∴由图可知:点A 所表示的数为: 15-【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.8.D解析:D【解析】试题解析:当3和5都是直角边时,第三边长为:22+=34;35当5是斜边长时,第三边长为:2253-=4.故选D.9.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.10.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题11.210或213或32 【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即55BE =,55DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.12..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP 的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P 的【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54-=22OP OC②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.13.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,π=厘米,矩形的宽BC=12厘米.∴矩形的长是圆柱的底面周长的一半,即AB=39∴蚂蚁需要爬行最短路程2222=+=+=厘米.12915AC BC AB故答案为:15厘米求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.14.125 【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.【详解】解:∵222225,7a b a b +=-=,将两个方程相加得:2232a =,∵a >0,∴a=4代入得:22425b +=,∵b >0,∴b=3,∵a=3,b=4,c=5满足勾股定理逆定理,∴△ABC 是直角三角形,如下图,∠ACB=90°,CD ⊥AB ,1122ABC S AC BC AB CD =⋅⋅=⋅⋅ , 即:1134522CD ⋅⋅=⋅⋅, 解得:CD=125, 故答案为:125. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.15.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.16.5【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长=PQ=2222105PD QD +=+=55(cm ),故答案为:55.【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.18.485 【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 19.25【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P (1,2),G (7.﹣2),∴OA =1,PA =GM =2,OM =7,AM =6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1,∴2222215PN PH NH =+=+=∴PG =2PN =5.故答案为5【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.522,322++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221BC BF-=,∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt△BCF中,221BC BF-=,∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.23.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt△ABC中,AC=4,AB=8,∴2222AB AC=84=45++∵11AB AC=BC AH 22⋅⋅∴85 45∵CA⊥AB,A'M⊥AB,∴CA∥A'M∴∠C=∠A'NH,由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.24.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵AE AP ==90EAP ∠=︒,∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确; ③在Rt AHB 中,由①知:6EH HB == ∴62AH AE EH =+=, 22222256623AB AH BH =+=+=+⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+,∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤<当2a c b +=时,则1c k a=≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即44x =,解得103x =则103ABC S ∆===当2AC AB BC +=时,即28x =,解得65x =则65ABC S ∆===当2BC AB AC +=时,即42x +=,整理得234120x x ++=,此方程没有实数根综上,ABC ∆.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,。

2024八年级数学上册期末复习1勾股定理1考点梳理与达标训练习题课件新版北师大版

2024八年级数学上册期末复习1勾股定理1考点梳理与达标训练习题课件新版北师大版

三角形.在△ ABC 中,∠ A ,
∠ B ,∠ C 所对的边分别为 a , b , c .设最大边为 c ,若 a2
+ b2= c2,则△ ABC 是以
a2+ b2> c2,则△ ABC 是
c2,则△ ABC 是
钝角
c
为斜边的直角三角形;若
锐角
三角形.
三角形;若 a2+ b2<
3. 勾股数:满足 x2+ y2= z2的三个
正整
数,称为勾股
数,显然,以 x , y , z 为三边长的三角形一定是

三角形.


一、选择题(每题4分,共32分)
1. 直角三角形两直角边分别为5 cm和12 cm,则其斜边上的
高为(
D
)
A. 6 cm
B. 8 cm
C. 13 cm
D.
1
2
3
4
5
6
7

cm

8
9
10
11
12
13
14
15
16
期末提分练案
复习1
1
勾股定理
考点梳理与达标训练
CONTENTS


01
考点梳理
02
达标训练
1. 勾股定理:直角三角形两直角边 a , b 的平方和等于
边 c 的平方
.(即 a2+ b2= c2)


2. 如果一个三角形的三边长 a , b , c 满足 a2+ b2= c2,那
么这个三角形是
直角
始缠绕四棱柱,刚好缠绕4周到达 B 点.
(1)请问彩带的长度最短是多少?
1
2
3

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (32)

北师大版八年级数学上册第一章《勾股定理》章末复习题含答案解析 (32)

一、选择题1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )√2D.2A.√5B.2.5C.322.在△ABC中,AC=6,BC=8,AB=10,用尺规作图的方法在BC上确定一点P,设PC=x,下列作图方法中,不能求出PC的长的作图是( )A.B.C.D.3.以下列各组数为边长,不能构成直角三角形的是( ).A.1,2,√3B.2,5,6C.3,4,5D.5,12,134.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )B.13C.6D.25 A.60135.在Rt△ABC中,∠B=90∘,BC=1,AC=2,则AB的长是( )A.1B.√3C.2D.√56.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )A.2cm B.3cm C.4cm D.5cm7.把两个同样大小的含45∘角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一条直线上,若AB=√2,则CD的长为( )A.√2−1B.√2+1C.√3−1D.√38.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为( )A.12cm B.14cm C.20cm D.24cm9.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与下图中△ABC相似的是( )A.B.C.D.10.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点出发沿圆锥的侧面爬行一周后回到点A的最短路程是( )A.8B.10√2C.15√2D.20√2二、填空题11.如图,在同一平面内,有相互平行的三条直线a,b,c,且a,b之间的距离为5,b,c之间的距离是7.若等腰Rt△ABC的三个顶点恰好各在这三条平行直线上(任意两个顶点不在同一平行直线上),则△ABC的面积是.12.我们约定:如果一个四边形存在一条对角线,使得这条对角线是四边形某两边的比例中项,那么就称这个四边形为“闪亮四边形”,这条对角线为“闪亮对角线”,相关两边为“闪亮边”.例如:图1中的四边形ABCD中,AB=AC=AD,则AC2=AB⋅AD,所以四边形ABCD是闪亮四边形,AC是闪亮对角线,AB,AD是对应的闪亮边.如图2,已知闪亮四边形ABCD中,AC是闪亮对角线,AD,CD是对应的闪亮边,且∠ABC=90∘,∠D=60∘,AB=4,BC=2,那么线段AD的长为.13.在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为cm2.14.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为.15.如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A,B,C三点,且A,D,E,C四点在同一条直线上,∠C=90∘,已测得AB=260m,BC=100m,AD=20m,EC=10m,则池塘的宽度DE=.16.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△BAC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE.依此类推,则第2019个等腰直角三角形的斜边长是.17.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为尺,根据题意,可列方程为.三、解答题,求AD,BD的长.18.如图,在△ABC中,∠ACB=90∘,CD⊥AB于D,AC=10,sin∠DCB=3519.如图,△ABC中,AC=2AB=6,BC=3√3.AC的垂直平分线分别交AC,BC于点D,E.(1) 求BE的长.(2) 延长DE交AB的延长线于点F,连接CF.若M是DF上一动点,N是CF上一动点,请直接写出CM+MN的最小值为.20.在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90∘得到AE.(1) 连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2) 连接DE,如图②,求证:BD2+CD2=2AD2;(3) 如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45∘,若BD=√13,CD=1,则AD的长为.(直接写出答案)21.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声时,会立即赶过去.如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?22.在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC,求证:AC⊥CD.23.问题探究题.问题背景:如图1,在△ABC中,AB,BC,AC三边的长分别为√13,√10,√17,求△ABC 的面积.(1) 问题解决:小明在计算这个三角形面积的时候,采用了传统的三角形面积计算公式的方法计算,即求出三角形的一条高.如图2,他过点B作BD⊥AC于点D,为了求出高BD的长,他设AD=x,则DC=√17−x,根据勾股定理,可列方程:,该方程解得x=,再根据勾股定理求出高BD的长,从而计算△ABC的面积(注:此小问不用计算BD的长和△ABC的面积).(2) 思维拓展:小辉同学在思考这个问题时,觉得小明的方法在计算上比较复杂,他先建立了一个正方形网格(每个正方形网格的边长是1),再在网格中画出了格点△ABC(即△ABC 的三个顶点都在正方形的网格线的交点处),如图3,这样就不用求△ABC的高,直接借助网格就能计算△ABC的面积为(直接写出△ABC的面积即可).(3) 方法应用:我们将小辉的方法称为“构图法”,若△ABC的三边长分别为2√2a,√13a,√17a(a>0),请在图4的网格中(网格中每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.(4) 探索创新:若△ABC中有两边长为√2,√10,且△ABC的面积为2,请在图5和备用图的正方形网格中画出△ABC所有可能情况(全等三角形视为同一种情况),则△ABC的第三边长为多少?(直接写出所有可能的情况).24.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.(1) 求证:△BC1F∽△AGC1;(2) 若C1是AB的中点,AB=6,BC=9,求AG的长.25.如图,将一根30cm长的细木棒放入长、宽、高分别为8cm,6cm,24cm的长方体无盖盒子中,那么细木棒露在盒外面的最短长度是多少?答案一、选择题1. 【答案】A【解析】连接AC,CF.∵四边形ABCD和四边形CEFG为正方形,∴∠ACD=∠FCD=45∘,AC=√2BC=√2,CF=√2CE=3√2,∴∠ACF=∠ACD+∠FCD=90∘,∴AF=√AC2+CF2=2√5,又∵H为AF中线,∴CH=12AF=√5.【知识点】勾股定理2. 【答案】D【解析】由题意PC=BC−PB=BC−(AB−AC)=8−10−6=4,故A错误;连接PA,由题意PA=PB,设PA=PB=x.∵AC=6,BC=8,AB=10,∴AB2=AC2+BC2,∴∠ACB=90∘,∴PA2=AC2+PC2,∴x2=(8−x)2+62,∴x=254,∴PC=BC−PB=8−254=74,故B错误;作PH⊥AB于H.由题意,PA平分∠BAC,∵PH⊥AB,PC⊥AC,∴PH=PC,设PH=PC=x,∵S△ABC=S△ABP+S△APC,∴12⋅AC⋅BC=12AB⋅PH+12⋅AC⋅PC,∴6×8=10x+6x,∴x=3,∴PC=3.故A,B,C中,PC能确定.【知识点】勾股定理、作线段的垂直平分线3. 【答案】B【知识点】勾股逆定理4. 【答案】A【解析】∵直角三角形的两条直角边的长分别为5,12,∴斜边为√52+122=13,∵S△ABC=12×5×12=12×13ℎ,∴ℎ=6013.故选:A.【知识点】勾股定理5. 【答案】B【解析】在Rt△ABC中,∠B=90∘,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3.故选:B.【知识点】勾股定理6. 【答案】A【解析】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)−8=2cm.【知识点】勾股定理的实际应用7. 【答案】C【解析】如图,过点A作AF⊥BC于F.在Rt△ABC中,∠B=45∘,∴BC=√2AB=2,BF=AF=√22AB=1,∵两个同样大小的含45∘角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF=√AD2−AF2=√3,∴CD=BF+DF−BC=1+√3−2=√3−1.【知识点】勾股定理、等腰直角三角形8. 【答案】D【解析】如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点Aʹ,连接AʹB交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+ BF的长,即AF+BF=AʹB=20cm,延长BG,过Aʹ作AʹD⊥BG于D,∵AE=AʹE=DG=4cm,∴BD=16cm,Rt△AʹDB中,由勾股定理得:AʹD=√202−162=12cm,∴则该圆柱底面周长为24cm.【知识点】平面展开-最短路径问题9. 【答案】B【知识点】相似三角形的判定、勾股定理10. 【答案】D【知识点】圆锥的展开图、勾股定理、平面展开-最短路径问题二、填空题11. 【答案】37或1692或1932【解析】当直角顶点在直线b上时,如图1所示,过点B作BE⊥a,BF⊥c,∵∠ABC=90∘,∴∠ABE+∠CBF=90∘,∵∠ABE+∠BAE=90∘,∴∠BAE=∠CBF,在△ABE与△BCF中,{∠E=∠F,∠BAE=∠CBF, AB=CB,∴△ABE≌△BCF∴AE=BF=7,BE=CF=5,由勾股定理得,AB=BC=√AE2+BE2=√49+25=√74,∴S△ABC=12⋅AB⋅BC=12×√74×√74=37;当直角顶点在直线a上时,如图2所示,同理可得△ABE≌△BCF∴AE=BF=5,BE=CF=12,由勾股定理得,AB=BC=√AE2+BE2=√52+122=13,∴S△ABC=12⋅AB⋅BC=12×13×13=1692;当直角顶点在直线c上时,如图3所示,同理可得,△ABE≌△BCF∴AE=BF=12,BE=CF=7,由勾股定理得,AB=BC=√AE2+BE2=√122+72=√193,∴S△ABC=12⋅AB⋅BC=12×√193×√193=1932.综上所述,△ABC的面积是:37或1692或1932.【知识点】勾股定理12. 【答案】2√5【知识点】勾股定理13. 【答案】252或10或5√6【知识点】勾股定理14. 【答案】90°【解析】设三边长为5x,12x,13x,∵(5x)2+(12x)2=(13x)2,∴三角形为直角三角形,∴最大内角等于90∘.【知识点】勾股逆定理15. 【答案】210m【解析】在Rt△ABC中,AC=√AB2−BC2=√2602−1002=240(m),∴DE=AC−AD−EC=240−20−10=210(m),∴池塘的宽度DE为210米.【知识点】勾股定理的实际应用16. 【答案】(√2)2019【知识点】勾股定理17. 【答案】x−3;(x−3)2+82=x2【解析】x−3;由题意可知AB⊥BC,由勾股定理可得(x−3)2+82=x2.【知识点】勾股定理的实际应用三、解答题.18. 【答案】AD=8,BD=92【知识点】正弦、直角三角形的概念及性质、勾股定理19. 【答案】(1) ∵AC=2AB=6,∴AB=3,∵BC=3√3,∴在△ABC中,AB2+BC2=AC2,∴△ABC为直角三角形,且∠B=90∘,连接AE,设BE=x,∴CE=3√3−x,∵DE是AC的垂直平分线,∴AE=CE=3√3−x,在Rt△ABE中,AB2+BE2=AE2,∴32+x2=(3√3−x)2,∴x=√3即BE=√3.(2) 3√3【解析】(2) 在Rt△ABC中,AC=2AB,∴∠ACB=30∘,∠A=60∘,∵DE所在直线是AC的垂直平分线,∴AD=CD,DF⊥AC,在△ADF和△CDF中{AD=CD,∠ADF=∠CDF, DF=DF,∴△ADF≌△CDF(SAS),∴∠FCD=60∘,∴△ACF是等边三角形,∵∠ABC=90∘,∴BC是AF边的中线,∵DE是AC的垂直平分线,∴AM=CM,∴CM+MN=AM+MN,当且仅当A,M,N三点共线,且AN⊥CF时,CM+MN取得最小值,当AN⊥CF时,AN=BC=3√3,∴CM+MN最小值为3√3.故答案为:3√3.【知识点】有一个角是60°的等腰三角形是等边三角形、勾股逆定理、垂直平分线的性质20. 【答案】(1) 结论:BC=DC+EC,理由:如图①中,∵∠BAC=∠DAE=90∘,∴∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC,∠BAD=∠CAE, AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC.(2) BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=∠ACE+∠ACB=90∘,∴CE2+CD2=ED2,即:BD2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2又AD=AE,∴ED2=2AD2,∴BD2+CD2=2AD2.(3) √6【解析】(3) 作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE=√13,∵∠ADC=45∘,∠EDA=45∘,∴∠EDC=90∘,∴DE2=CE2−CD2=(√13)2−12=12,∴DE=2√3,∵∠DAE=90∘,AD2+AE2=DE2,∴AD=√6.【知识点】边角边、勾股定理21. 【答案】5.2s【知识点】勾股定理的实际应用22. 【答案】在△ABC中,AB⊥BC,根据勾股定理:AC2=AB2+BC2=12+22=5,∵在△ACD中,AC2+CD2=5+4=9,AD2=9,∴AC2+CD2=AD2,∴根据勾股定理的逆定理,△ACD为直角三角形,∴AC⊥CD.【知识点】勾股逆定理、勾股定理23. 【答案】(1) (√13)2−x2=(√10)2−(√17−x)2;10√1717(2) 112(3) 如图,S△ABC=3a×4a−12×a×4a−12×2a×2a−12×2a×3a=5a2.根据(2)问中的方法,√13可以由边长为2,3的直角三角形构成,√17可以由边长为1,4的直角三角形构成,2√2可以由边长为2的等腰直角三角形构成.(4) √2可以由直角边边长分别为1,1的直角三角形的斜边边长构成.√10可以由直角边边长分别为1,3的直角三角形的斜边边长构成.如图所示① AB=√2,AC=√10,当S△ABC=2时,BC=4.② AB=√2,BC=√10,当S△ABC=2时,AC=2√2.故△ABC中两边长为√2,√10,且△ABC面积为2,则△ABC的第三边长为4或2√2.【解析】(1) 由题意得:AD=x,DC=√17−x,根据勾股定理:AB2−AD2=BD2,BC2−CD2=BD2,∴可列出方程(√13)2−x2=(√10)2−(√17−x)2,13−x2=10−(17+x2−2√17x)2√17x=20x=10√1717.(2) S△ABC=3×4−12×2×3−12×1×3−12×1×4=112.【知识点】三角形的面积、勾股定理24. 【答案】(1) 由题意可知∠A=∠B=∠GC1F=90∘,∴∠BFC1+∠BC1F=90∘,∠AC1G+∠BC1F=90∘,∴∠BFC1=∠AC1G,∴△BC1F∽△AGC1.(2) ∵C1是AB的中点,AB=6,∴AC1=BC1=3.∵∠B=90∘,∴BF2+32=(9−BF)2,∴BF=4,由(1)得△AGC1∽△BC1ʹF,∴AGBC1=AC1BF,∴AG3=34,解得AG=94.【知识点】相似三角形的性质与判定、相似三角形的判定、轴对称的性质、勾股定理25. 【答案】4cm.【知识点】勾股定理的实际应用。

浙江省数学八年级上学期期末复习专题8 勾股定理

浙江省数学八年级上学期期末复习专题8 勾股定理

浙江省数学八年级上学期期末复习专题8 勾股定理姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共30分)1. (3分) (2020八下·罗山期末) 如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面距离为7m,现将梯子的底端A向外移到A',使梯子的底端A'到墙根O距离为3m,同时梯子顶端B 下降至B',那么BB' ()A . 等于1mB . 小于1mC . 大于1mD . 以上都不对2. (3分) (2020九上·杭州期中) 如图,在中,均为斜边中线,则以为边构成的三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 无法确定3. (3分) (2020八下·福州期中) 我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾和股的差值为()A . 4B . 1C . 2D . 以上都不对4. (3分) (2017八上·乐清期中) 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A . 49B . 25C . 12D . 105. (3分) (2016八上·宜兴期中) 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组()A . 3,4,5B . 5,12,13C . 12,15,25D . ,,16. (3分) (2020八上·太原期中) 在中,若,,,则下列结论正确的是()A .B .C .D . 不是直角三角形7. (3分) (2015七上·海淀期末) 已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是()A . MB . NC . SD . T8. (3分) (2020七上·龙口期中) 小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后展开得到()A .B .C .D .9. (3分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A .B .C .D .10. (3分) (2015九上·淄博期中) 如图,一圆柱高8 cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()cm.A . 6B . 8C . 10D . 12二、填空题 (共6题;共24分)11. (4分) (2018八下·柳州期末) 满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①;②.12. (4分) (2021八上·青羊月考) 如图,所有四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为.13. (4分)如图,△ABC的三边长分别是6cm、8cm、10cm,现在分别取三边的中点E、F、G,顺次连结E、F、G,则△EFG的面积为14. (4分) (2020八下·韶关期末) 如图,菱形的两条对角线的长分别为与,点是的中点,则.15. (4分)某同还用竹杆扎了一个长80cm、宽60cm的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需cm.16. (4分) (2019八上·重庆期末) 如图,一圆柱形容器(厚度忽略不计),已知底面半径为6cm,高为16cm.现将一根长度为25cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.三、解答题 (共8题;共66分)17. (6分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm.如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.18. (6分) (2020八上·郑州月考) 如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图1中以格点为顶点画一条线段MN,使长MN= .(2)在图2中以格点为顶点画△ABC,使AB= ,AC= ,BC=5.并判断它是否是直角三角形.19. (6分)(2017·盘锦) 如图,码头A,B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A,B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:≈1.4,≈1.7)20. (8分) (2018八上·湖州期中) 阅读下列材料:【材料】如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形我们就能证明勾股定理: .【请回答】如图是任意符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?21. (8分) (2021八下·惠城期末) 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,求当△CDE的周长最小时,点E的坐标和最小周长.22. (10分) (2020八上·福鼎期中) 意大利著名画家达•芬奇用如图所示的方法证明了勾股定理,其中左图的空白部分是由两个正方形和两个直角三角形组成,右图的空白部分由两个直角三角形和一个正方形组成.设左图中空白部分的面积为S1 ,右图中空白部分的面积为S2 .(1)请用含a , b , c的代数式分别表示S1 , S2;(2)请利用达•芬奇的方法证明勾股定理.23. (10分) (2018八上·龙岗期中) 如图,一个零件的形状如图所示,按规定这个零件中∠A与∠DBC都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.24. (12分)(2018·井研模拟)(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.参考答案一、单选题 (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共66分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、答案:24-4、考点:解析:。

八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。

【八年级】初二数学上册第一章勾股定理复习测试题

【八年级】初二数学上册第一章勾股定理复习测试题

【八年级】初二数学上册第一章勾股定理复习测试题第一章勾股定理复习题1.四个全等的直角三角形可以用来构成图中所示的图形。

这个图形被称为弦图。

从图中可以看出,大正方形的面积=小正方形的面积+四个直角三角形的面积因而c2=+.经过简化,它是C2=2、有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.3.如图所示,将直角三角形ABC的斜边ab放在固定线L上,沿顺时针方向a在L上旋转两次,使其旋转到△ a'B'C'。

设BC=1和AC=,当顶点a移动到点a“”的位置时,点a的布线长度为(计算结果不取近似值)4、已知:正方形的边长为1。

(1)如图(a),可以计算出正方形的对角线长为,求两个并排成的矩形的对角线的长。

n个呢?(2)若把(c)(d)两图拼成如下“l”形,过c作直线交de于a,交df于b。

若db=5/3,求da的长度为;5.如图所示,沿倾斜角度为30的斜坡种植树木需要相邻两棵树的水平距离AC为2,因此相邻两棵树的斜坡距离ab约为。

(精确到0.1,可能的数据,)。

6、如图,已知cd是rt△abc的斜边上的高,其中ad=9c,bd=4c,那么cd等于_______c.7.已知:如图(1)所示,在RT中△ 美国广播公司,∠ B=90°,D和E分别为边AB 和AC的中点,de=4和AC=10,然后AB=________8、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()9.如图所示,△ 美国广播公司,∠ B=90°,两个直角边AB=7,BC=24。

如果从三角形中的点P到每边的距离相等,则该距离为()(a)1(b)3(c)4(d)510.在△ ABC,ab=15,AC=13,高度ad=12,那么三角形的周长是()(a)42(b)32(c)42或32(d)37或33.11.给定一个直角三角形木块,三条边的平方和为1800c2,那么斜边的长度为()(a)80c(b)30c(c)90c(d120c.12.如果直角三角形的一条直角边的长度为11,另两条边的长度为自然数,则其周长为()(a)121(b)120(c)132(d)以上答案都不对13.如图5所示,在一次强台风中,一棵大树折断并落在离地面5米的地方。

八年级数学上册14章勾股定理专题复习与训练试题

八年级数学上册14章勾股定理专题复习与训练试题

勾股定理专题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日我国古代把直角三角形较短的直角边称为__________,较长的直角边称为______, 斜边称为____________。

一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:假如直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的适用范围勾股定理提醒了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因此在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBAbacbac cabcab方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c,b =,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 〔直角三角形的断定〕假如三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是断定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描绘时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形①可以构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以进步解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理可以帮助我们解决直角三角形中的边长的计算或者直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,理解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进展计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进展求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在详细推算过程中,应用两短边的平方和与最长边的平方进展比拟,切不可不加考虑的用两边的平方和与第三边的平方比拟而得到错误的结论.勾股定理及其逆定理在解决一些实际问题或者详细的几何问题中,是密不可分的一个整体.通常既要通过逆定理断定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D CB A ADB C题型一:直接考察勾股定理ABC ∆中,90C ∠=︒.⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBARt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积BAC题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD ED CBA题型四:应用勾股定理逆定理,断定一个三角形是否是直角三角形a ,b ,c ,断定ABC ∆是否为Rt ∆① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC = 练习题1、有一块对角线长为1米的长方形木板,测得木板的长为8.0米,那么木板的宽为〔 〕A 、 4.0B 、 5.0C 、 6.0D 、 7.02、假设一个三角形的三边长分别是3,22,17,那么这个三角形为〔 〕 A 、 锐角三角形 B 、 钝角三角形 C 、 直角三角形 D 、 不确定3、CD 是ABC Rt ∆斜边AB 上的高,假如1=AB ,1:4:=BCAC ,那么CD 长〔 〕A 、174 B 、 173 C 、 172 D 、 171 4、假如c b a ,,能组成一个直角三角形,那么222::c b a 可以是〔 〕A 、 4:2:1B 、 5:3:1C 、 7:4:3D 、 13:12:5 5、如图,一架梯子长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地8米,那么梯子的底部在程度方向上应滑动〔 〕A 、 1米B 、 2米C 、 3米D 、 4米 二、填空题:6、在ABC Rt ∆中,90=∠B ,6=a,10=b ,那么c =_________.7、一个正方体的体积是512立方米,那么正方体底面的对角线长是___________.8、假设一个直角三角形的三边长为连续偶数,那么三边长分别是________、_________、________, 其斜边上的高是__________.9、假如ABC ∆的三边长c b a ,,满足关系式()030186022=-+-+-+c b b a ,那么a =________,b =________,c =________,ABC ∆的形状是______________.10、现有两根木棒的长度分别是40 cm 和50 cm ,假设要钉成一个三角形木架,其中有一个角 为直角,那么所需的木棒长度为_____________三、解答题:11、如图,在ABC ∆中,90=∠C ,13=AB ,12=BC ,BCADBC BD 21=〔1〕AD 的长. 〔2〕ABD ∆的面积.14、有一只小鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立即以4米/秒的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?13、一艘帆船由于风向的原因先向正向航行了600千米,然后向正南方向航行了250千米,这时它离出发点有多远?制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

八年级数学勾股定理期末复习

八年级数学勾股定理期末复习

勾股定理单元验收姓名:__________学号:__________成绩:__________一、填空题(每小题2分,共20分)1.在Rt △ABC 中,a=3㎝,b=4㎝,则c= ㎝.2.木工师傅做了一个长方形桌面,量得桌面的长是60m,宽是35m ,对角线是70m ,那么你认为这个桌面 .(填“合格”或“不合格”)3.已知一个直角三角形的两条直角边的长分别是6㎝和8㎝,那么斜边上的高为 ㎝.4.等腰△ABC 的底边BC 为16㎝,底边上的高AD 为6㎝,则腰长AB 的长为______㎝.5.若正方形的面积为16cm 2,则正方形对角线长为__________cm.6.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,则该河流的宽度为 .7.一棵树从离地面3米处断裂,树顶落在离树根部4米处,则树高为 米.8.消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是米.9.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m.10.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 二、单项选择题(每小题3分,共30分)1.已知一直角三角形的斜边比一直角边大2,另一条直角边长为6,那么斜边长为( ) A.4 B.8 C.10 D.122.已知一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积是( )A.5B.13C.5或13D.无法确定3.在水塔O 的东北方向32m 处有一抽水站A ,在水塔东南方向24m 处有一建筑工地B ,在AB 间建一条直水管,则水管长为 ( )A.40mB.45mC. 50mD.56m 4.如图中字母A 所代表的正方形的面积为 ( )A.4B.8C.16D.645.有四个三角形,分别满足下列条件:(1)一个内角等于另外两个内角之和,(2)三个内角之比为3:4:5,(3)三边长分别为7,24,25,(4)三边之比为5:12:13,其中直角三角形有( )A .1个B .2个C .3个D .4个 6.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14C .7D .7或257.若线段a ,b ,c 组成Rt △,则它们的比可以是( )A .2∶3∶4B .3∶4∶6C .5∶12∶13D .4∶6∶78.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为 ( )A .121B .120C .132D .不能确定9 .已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是 )A .24cm 2B .36cm 2C .48cm 2D .60cm 210.等腰三角形底边长10 cm ,腰长为13,则此三角形的面积为( )A .40B .50C .60D .70三、(每小题6分,共12分) 1. 如图,在△ABC 中,AD ⊥BC 于D ,AB =15,AC =41,BD =12,求△ABC 的面积.2.如图,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,CD =5㎝,求AB 的长.3.如图,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分别平移到EF 和EG 的位置.(1)试判定△EFG 的形状;(2)若AB =8㎝,CD =6㎝,求FG 的长.4.某工厂的大门如图所示,其中四边形ABCD 是长方形,上部是以AB 为直径的半圆,已知AD =2.3米,AB =2米,现有一辆装满货物的卡车,高2.5米,宽1.6米,问这辆汽车能否通过大门?请说出你的理由.5.某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km 的A ,B 两站之间E 点修建一个土特产加工基地,如图,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要使C 、D 两村到E 点的距离相等,那么基地E 应建在离A 站多少km 的地方?6.如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF.求△ABE 的面积.7.有一个长方体盒子,长、宽、高分别为4㎝、3㎝、12㎝,你能把一根长为14㎝的铅笔放入这个盒子里面吗?为什么?9.葛藤是一种植物,它自己腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一个绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进的.(1)如果树的周长为3m ,绕一圈升高4cm ,则它爬行路程是多少?(2)如果树的周长为8m ,绕一圈爬行10m ,则爬行一圈升高多少m ?如果爬行10圈到达树顶,则树干多高?10.阅读下面材料,并解决问题:(1) 如图(6),等边△ABC 内有一点P 若点P 到顶点A ,B ,C 的距离分别为3,4,5.则∠APB=__________,由于P A ,PB 不在一个三角形中,为了解决本题我们可以将 △ABP 绕顶点A 旋转到△ACP ′处,此时△ACP ′≌__________这样,就可以利用 全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB 的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(7),△ABC 中,∠CAB=90°,AB=AC ,E 、F 为BC 上的点且∠EAF=45°,求证:EF2=BE2+FC2 .ADEBCFC图(6)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017八(上)第一章勾股定理期末复习(一)
班别小组学号姓名
【知识回顾】
1、探索勾股定理:面积法
__________
2、勾股定理的内容:直角三角形等于___
3、直角三角形的判别条件:如果一个三角形的三边长a,b,c满足:
那么这个三角形是直角三角形。

4、应用:在直角三角形中已知两边长求第三边长;求几何体表面上两点间的最短距离【例题精讲】
1、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距离地面有多高?
(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了多少米?
2.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,
(1)求AB的长;
(2)求CD的长.
3、分别利用下面三个图验证勾股定理
4、勾股定理的逆定理
如图所示,在边长为4的正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.
6、如图长方形的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
7、利用勾股定理列方程求线段长:
如图∠ACB=90°,AD=BD,AB=5cm,AC=3cm ,求BD的长。

【知识巩固】
1、在△ABC 中,∠C =90°,若 a =5,b =12,则c = .
2、如图,64、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是 。

3、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则_______=∆ABC Rt S
4、如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高
度是 。

5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,
其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积
之和为___________cm 2。

6、等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 .
7、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A 、2,3,4
B 、3,4,5
C 、6,8,10
D 、53,5
4,1 8.已知Rt △ABC 中,∠C =90°,若a +b =7cm ,c =5cm ,则Rt △ABC 的面积是
9、 如图,已知线段AB ∥l ,且直线AB 与l 间的距离为6,线段AB 的长为9,若点P 是直线l 上任一点,则PA+PB 的最小值为
10.矩形ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF , 则DE =________.
11.如图,∠ABC 为直角,BC 长为3,AB 长为33,AF 长为8,正方形CDEF 的面积为100,求△
AFC 的面积.
P A B C D E F C 1
12.如图所示是一块地,已知AD=8米,CD=6米,∠D=90°,AB=26米,BC=24米,求
这块地的面积是
13. 如图,墙A处需要维修,A处距离墙脚C处8米,墙下是一条宽BC为6米的小河,现要架一架梯子维修A处的墙体,现有一架12米长的梯子,问这架梯子能否到达墙的A处?
14.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.
15.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s 的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.
(2)若运动2s时,求P、Q两点之间的距离.
(3)P、Q两点运动几秒,AP=CQ.。

相关文档
最新文档