八年级上册勾股定理

合集下载

八年级上册数学 第一章 勾股定理基本题型总结(经典全面)

八年级上册数学 第一章  勾股定理基本题型总结(经典全面)

CA BDBAC DB专题复习:勾股定理1、勾股定理考点一、勾股定理定义:直角三角形两直角边的平方和等于斜边的平方。

解释:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2(古时候把直角三角形中较短边叫做“勾”,较长的直角边为“股”,斜边称为“弦”)典型例题例题1、(1)在直角三角形ABC中,AC=5,BC=12,求AB的长。

(2)在直角三角形ABC中,AB=25,AC=20,求BC的长。

常见的勾股数:3,4,5;5,12,13;6,8,10等技巧总结:利用勾股定理,在直角三角形中,已知两边可求第三边;一般情况下,用a,b 表示直角边,c表示斜边,则有a2+b2=c2,还可以有其他形式的变式。

例题2、一个零件的的形状如图所示,已知AC=3,AB=4,BD=12,求CD的长.例题3、如图所示,已知三角形ABC中,AB=10,BC=21,AC=17,求BC边上的高。

技巧总结:有时某些线段不可以直接写出来,可以用数学转化的思想,构造直角三角形,再求出答案,也可以用勾股定理建立方程去求。

例题4、如图,台风过后某小学的旗杆在B处断裂,旗杆顶部A落在离旗杆底部点C8米处,已知旗杆长16米,则旗杆是在距底部多少米处断裂?技巧总结:要用勾股定理的变形公式。

例题5、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

技巧总结:分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×21ab +c 2,右边S=(a+b )2,左边和右边面积相等,即4×21ab +c 2=(a+b )2 对应的课堂练习:1. 下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 22. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .c b a =+ B.c b a >+ C.c b a <+ D.222c b a =+ 3.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25C .斜边长为5D .三角形面积为20 4.在R t A B C ∆中, 90=∠C , (1)如果a =3,b =4,则c = ; (2)如果a =6,b =8,则c = ; (3)如果a =5,b =12,则c = ;(4) 如果a =15,b =20,则c = .5.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为_______1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;⑷三边之间的关系: 。

探索勾股定理(19张PPT)数学八年级上册

探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等

数学八年级上册勾股定理

数学八年级上册勾股定理

数学八年级上册勾股定理一、勾股定理的内容1. 定理表述- 在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。

- 例如,一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边c满足3^2+4^2=c^2,即9 + 16=c^2,c^2=25,所以c = 5。

2. 定理的证明- 赵爽弦图证明法- 赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形。

- 设直角三角形的两条直角边分别为a、b(b>a),斜边为c。

大正方形的面积可以表示为c^2,同时它又等于四个直角三角形的面积加上中间小正方形的面积。

- 四个直角三角形的面积为4×(1)/(2)ab = 2ab,中间小正方形的边长为b - a,其面积为(b - a)^2=b^2-2ab+a^2。

- 所以c^2=a^2+b^2。

- 毕达哥拉斯证法(拼图法)- 用四个全等的直角三角形(直角边为a、b,斜边为c)拼成一个以a + b为边长的正方形。

- 这个大正方形的面积为(a + b)^2=a^2+2ab + b^2,同时它又等于四个直角三角形的面积加上中间边长为c的正方形的面积,即4×(1)/(2)ab+c^2=2ab +c^2。

- 所以a^2+b^2=c^2。

二、勾股定理的应用1. 已知直角三角形的两边求第三边- 当已知两条直角边求斜边时,直接使用c=√(a^2)+b^{2}。

例如,直角边a = 6,b = 8,则c=√(6^2)+8^{2}=√(36 + 64)=√(100)=10。

- 当已知一条直角边和斜边求另一条直角边时,使用a=√(c^2)-b^{2}(设c为斜边,b为已知直角边)。

例如,斜边c = 13,一条直角边b = 5,则a=√(13^2)-5^{2}=√(169 - 25)=√(144)=12。

2. 解决实际问题中的直角三角形问题- 例如,在一个长方形中,已知长为8米,宽为6米,求对角线的长度。

八年级上-勾股定理

八年级上-勾股定理

一、理论知识1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理逆定理:如果三角形的三条边a,b,c 满足222a b c +=,那么这个三角形是直角三角形。

3.勾股数:满足222a b c += 的三个正整数,称为勾股数。

勾股定理的证明:拼图法证明1:我国数学家赵爽的证法:将四个直角三角形按图2那样摆放,构成了一个以直角三角形的斜边c (弦)为边长的正方形(弦图),其面积为2c 。

四个直角三角形的面积和为2ab ,弦图中间是以勾、股之差为边的正方形,面积为2()b a - 。

于是,有222()ab b a c +-=。

整理得222a b c +=。

证明2:如图△ABC 和△CDE 是两个全等的直角三角形,这两个直角三角形拼成了一个梯形。

则ABC CDE ACE ABDE S S S S ++△△△梯形= 即21111()()2222a b a b ab ab c ++=++ 化简得222a b c +=二、典型题型1.求线段长度方程思想的运用,利用面积计算例题1-1:如图,折叠矩形的一边AD ,使点D 落在BC 边上的点F 处,且AB=8cm ,BC=10cm ,求EC 的长。

思路:①折叠全等 ②方程思想-归入到一个三角形,利用勾股定理,待求所在的三角形。

解:由折叠全等知道AF=AD=BC=10cm ,在Rt △ABF 中,226BF AF AB =-=,FC=4cm ,设EC=x ,EF=8-x ,则利用勾股定理可求出EC例题1-2:如图,直角三角形ABC 中,AD ,CE 是三角形的两条中线,其长分别为5和210,那么这个直角三角形的斜边长为( )A.10B. 410C. 13D. 213解:设AB=x ,BC =y ,则在两个Rt △ABD ,Rt △CBE 中,利用中线长度已知和勾股定理,可求出x 和y ,则可求出AC例题1-3:如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A.2mB. 3mC. 6mD.9m解:△ABC 的面积=△AOB 的面积+△BOC 的面积+△AOC 的面积即可求解点O 到三条边的距离相等,所以可设为h 。

八年级上册数学公式法

八年级上册数学公式法

八年级上册数学公式法
1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方。

公式:$a^2 + b^2 = c^2$
其中,$a$ 和 $b$ 是直角三角形的两条直角边,$c$ 是斜边。

2.平方差公式:$(a+b)(a-b) = a^2 - b^2$
用于计算两个数的平方差。

3.完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和$(a-b)^2 = a^2 -
2ab + b^2$
用于计算一个数的平方,加上或减去两倍的该数与另一数的乘积,再加或减另一数的平方。

4.二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (其中$a
\geq 0, b \geq 0$)
用于计算两个非负数的平方根的乘积。

5.二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (其
中 $a \geq 0, b > 0$)
用于计算一个非负数的平方根除以另一个非负数的平方根。

6.分式的乘法法则:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
用于计算两个分式的乘积。

7.分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times
\frac{d}{c} = \frac{ad}{bc}$
用于计算一个分式除以另一个分式。

八年级数学上册 知识点总结

八年级数学上册 知识点总结

八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。

3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。

二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。

2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。

3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和−1.零没有倒数。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算。

三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。

八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n的线段1。

八年级数学上册知识点:勾股定理

八年级数学上册知识点:勾股定理

八年级数学上册知识点:勾股定理八年级数学上册知识点:勾股定理一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

常见考法(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。

沪教版八年级上册-勾股定理及两点间距离公式讲义

沪教版八年级上册-勾股定理及两点间距离公式讲义
2、线段的中点公式
点 , 之间所连线段的中点 坐标为( , )
公式对于 和 两点在平面内任意位置都是成立的
热身练习
1、在 中, 那么AC长等于(B)
A. B. C. D.
2、三角形的三边长是9、15、12,它的最长边上的高是(A)
A。7.2 B.6.5 C.10 D无法求出
3、两船分别从港口向东北、西北方向行驶,速度分别为15海里/小时和10海里/小时,若两船同时开出,2小时后相距(A)
,解得 或 ,所以B的坐标是(0,0)或(6,0);
(2)点B在 轴上,那么可设B的坐标为(0, )
,解得 或 ,所以点B的坐标是(0,0)或(0,8);
(3)点B在第一、三象限的角平分线上,那么可设B的坐标为( )
,解得 或 ,所以点B的坐标是(0,0)或(7,7);
(4)点B与 轴的距离等于1,则点B在与 轴平行且分布在 轴两侧的直线上,那么可设B的坐标为(1, )和(-1, )
证明:利用面积相等有,
整理得c2=a2+b2.
例2、如果一个直角三角形的三边长为三个连续的偶数,求这三角形的三边长。
解:设直角三角形的三边长为 ( 为正整数),显然 最长,则有


所以直角三角形的三边为6、8、10
例3、如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE= BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.
解: 联结AC
在Rt 中,因为 ,AB=12,BC=9
所以AC= (勾股定理)
在 中,AC=15,AD=8,CD=17
而 ,即
所以 为直角三角形,且 (勾股定理逆定理)
所以
例5、已知在直角坐标平面内,A、B两点的坐标为A(2,2)、B(-1,-2),点P在X轴上且

八年级上册第一章《勾股定理》复习要点

八年级上册第一章《勾股定理》复习要点

八年级上册第一章《勾股定理》复习要点知识点一:勾股定理要点:⑴•勾股定理:直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边分别为a、b,斜边为c,那么,a2 +b2 =c2,(2).历史文化:勾股定理在西方文献中又称毕达哥拉斯定理。

我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边为弦。

⑶格式:a=8 b=15 解:由勾股定理得c2 =a2 +b2=82+152=64+225=289•/ C>0 ••• C=17【典例精析】1•一架2.5m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m •那么梯子的顶端距墙脚的距离是( )•(A)0.7m (B)0.9m (C)1.5m (D)2.4m2•如图,为了求出湖两岸A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160m, BC长128m ,则AB长________________ m.3•利用四个全等的直角三角形可以拼成如图所示的图形, 这个图形被称为弦图•从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c2= +•化简后即为c2= __________ •知识点二:直角三角形的判别要点;*如果三角形三边长为a、b、c, c为最长边,只要符合a2 +b2 =c2,这个三角形是直角三角形。

(勾股定理逆定理,是直角三角形的判别条件)【典例精析】1、在下列长度的各组线段中,能组成直角三角形的是( )A.5、6、7B.1 、4、9C.5 、12、13D.5、11、122、满足下列条件的厶ABC不是直角三角形的是(A.b2=c2- a2B.a : b : c=3 : 4 : 5C. / C=Z A-Z BD. / A:/ B:/C=12: 13 : 1553、三角形的三边长分别是15, 36, 39,这个三角形是______ 三角形。

4、将直角三角形的三条边同时扩大4倍后,得到的三角形为()A.直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5•有两棵树,一棵高6米,另一棵高2米, 两树相距5米•一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?知识点三:勾股定理的综合应用【典例精析】1、如图1- 1,在钝角VABC 中,CB = 9, AB = 17, AC = 10, AD BC 于D,求AD 的长。

八年级上册数学期末知识点:勾股定理

八年级上册数学期末知识点:勾股定理

八年级上册数学期末知识点:勾股定理第二章
勾股定理
2.1探索勾股定理
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

注意:电视机有多少英寸,指的是电视屏幕对角线的长度。

2.2勾股数
.勾股定理的逆定理:若三角形的三边长a,b,c满足a2+b2=c2,则该三角形是直角三角形。

在&#8710;ABc中,a,b,c为三边长,其中c为最大边, 若a2+b2=c2,则&#8710;ABc为直角三角形;
若a2+b2&gt;c2,则&#8710;ABc为锐角三角形;
若a2+b2&lt;c2,则&#8710;ABc为钝角三角形。

2.勾股数:满足a2+b2=c2的三个正整数,称为勾股数。

规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数,仍能够成直角三角形。

一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。

常用勾股数:3,4,5
9,12,15
5,12,13
8,15,17
6,8,10
7,24,25
勾股数须知:连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,10。

八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版

八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版

第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。

它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。

关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。

之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。

2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。

通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

北师大版八年级上第一章勾股定理(附习题和答案)

北师大版八年级上第一章勾股定理(附习题和答案)

第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBAC A B ED 练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只CABDS 3S 2S 1C B A 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62+,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。

八年级 上 勾股定理全章教案(完成)

八年级  上 勾股定理全章教案(完成)

8.1.0 勾股定理(全章)知识梳理1.勾股定理(重点)❶勾股定理:直角三角形两直角边的平方等于斜边的平方❷符号表示:a²+b²=c²(a、b为Rt△两直角边,c为斜边。

古代称较短直角边为“勾”,较长直角边为“股”,斜边为“弦”)❸注意:①勾股定理只适用于Rt△。

②确定Rt△的斜边很重要,c不一定表示斜边。

❹规律技巧:①Rt△中,利用勾股定理,已知两边可求第三边②一边情况下,用a,b表示直角边,c表示斜边。

a²+b²=c²还可变形为a²=c²-b²,b²=c²-a²③运用勾股定理求Rt△的第三边时,要判断待求边是直角边还是斜边,如果不明确,则需要讨论。

2.勾股定理的验证(难点)❶主要方法:图形的拼补法3.勾股定理的应用❶Rt△已知两边求第三边①勾股定理是Rt△所特有的重要定理之一②应用勾股定理时,分清直角边和斜边很重要③没有Rt△时,可添加辅助线构成Rt△再运用勾股定理。

4.如何判定一个三角形为直角三角形(重点)❶勾股定理的逆定理:如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是直角三角形。

❷注意:①在判定一个三角形是否是直角三角形时,a²+b²是否等于c²需通过计算说明,不能开始就写成a²+b²=c²。

②验证一个三角形是直角三角形的方法是当(较小边长)²+(较大边长)²=(最大边长)²时,此三角形为直角三角形,否则不是。

③确定是直角三角形后,最大边长所对角为直角。

5.勾股数❶勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

❷常见勾股数:①3,4,5;②6,8,10;③8,15,17;④7,24,25;⑤5,12,13。

八年级上册 勾股定理

八年级上册 勾股定理

D'C'B'D CBA D'C'B'DC BA 第一章 勾股定理【一】勾股定理的验证与证明1.如图,是由四个全等的Rt △拼成的图形,你能用它证明勾股定理吗?2.如图,是由四个全等的Rt △拼成的图形,你能用它证明勾股定理吗?3.如图,已知∠A =∠B =90°且△AED ≌△BCE ,A 、E 、B 在同一直线上.根据此图证明勾股定理.4.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法。

如图,火柴盒的一个侧面ABCD 倒下到AB ’C ’D ’的位置,连接CC ’,设AB=a ,BC=b ,AC=c ,请利用四边形BCC ’D ’的面积证明勾股定理。

5.如图,直角三角形斜边长c 的长度为7cm ,则图中所有正方形的面积之和为6.如图,直线l 上有三个正方形a,b,c ,若a,c 的面积分别为5和11,则b 的面积为为 。

8.如图所示,分别以直角三角形的三边为直径做半圆,其中两个半圆的面积===321S 2S 825S π,则π, 9.同学们已清楚美丽的勾股树的作法.现将勾股树一段中的正方形全部换成等边三角形,则得右图,若图中最大的直角三角形的斜边为2cm ,则如图中所有的等边三角形的面积之和为 cm 210.如图,以直角三角形a、b 、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( )11.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法。

如图,火柴盒的一个侧面ABCD 倒下到AB ’C ’D ’的位置,连接CC ’,设AB=a ,BC=b ,AC=c ,请利用四边形BCC ’D ’的面积证明勾股定理。

C cb a cba C Bcba12.如图1是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》由四个全等的直角三角形和一个小正方形的拼成的大正方形.(1)如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a,较长边为b,那么(a+b)2的值是;(2)若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是.13.我国古代数学家得出的赵爽弦图是又是个全等的直角三角形和一个小正方形铺成的大正方形。

八年级勾股定理

八年级勾股定理

勾股定理一、双基回顾1、勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 ;2、勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形;3、勾股定理的应用(1)已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c ,b ,a =(2)知道直角三角形一边,可得另外两边之间的数量关系①在Rt ABC ∆中,若 90=∠C ,4=a ,=b 3,则=c .②在Rt ABC ∆中,若o B 90=∠,9=a ,41=b ,则=c . ③在Rt ABC ∆中,若 90=∠A ,7=a ,5=b ,则=c .4、勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。

勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;④在下列长度的各组线段中,能组成直角三角形的是( )A .12,15,17B .9,16,25C .5a ,12a ,13a (a>0)D .2,3,4二、例题导引例1、在ABC ∆中,90C ∠=︒⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长.例2、⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图中,90C ∠=︒ABC ∆,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长.例4.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?例5.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =.(三)练习提高:一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )A .4B .8C .10D .122.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c= ( )A.5B.7C.5或7D.5或621E DCB A DC B A3.如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形 D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm 6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个 B.3个C.4个 D.5个7.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形8.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15° B.30°C.45° D.60°9.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2 B.4cm2 C.6cm2 D. 12cm210.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里B .30海里C .35海里D .40海里二、填空题11.一个三角形三边长度之比为1∶2∶ ,则这个三角形的最大角为_______度.12.如图,等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 .13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为 m .14.小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走到B 点时,当两人相距为15米,则小红向东走了 米.15.一个三角形三边满足22()2a b c ab +-=,则这个三角形是 三角形.16.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这个桌面 (填”合格”或”不合格”).17.直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为 cm 2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 .3三、解答题19.在Rt ΔABC 中,∠ACB=90°,AB=5,AC=3,CD ⊥AB 于D ,求CD 的长.20.如图,在△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,求AC 的值.21.如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间? A B 小河 东 北 牧童 小屋 A BC D四、课后练习1、写出一组全是偶数的勾股数是 .2、直角三角形一直角边为12 cm ,斜边长为13 cm ,则它的面积为 .3、斜边长为l7 cm ,一条直角边长为l5 cm 的直角三角形的面积是( )A .60 cm 2B .30 cm 2C .90 cm 2D .120 cm 24、已知直角三角形的三边长分别为6、8、x ,则以x 为边的正方形的面积为 .5、若一三角形三边长分别为5、12、13,则这个三角形长是13的边上的高是 .6、若一三角形铁皮余料的三边长为12cm ,16cm ,20cm ,则这块三角形铁皮余料的面积为cm 2.7、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .8、如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.(1)求DC 的长;(2)求AB 的长;(3)求证:△ABC 是直角三角形.A BC A BD 图4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册
勾股定理
1、如图,在四边形ABCD 中,,3,2,90,60===∠=∠=∠CD BC D B A
则=AB ( ) A.4 B.5 C.32 D.
33
8
2、如果一个三角形的一条边是另一边的2倍,并且有一个角是
30,那么这个三角形的形状是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
3、如图,在ABC Rt ∆中,
90=∠BAC ,过顶点A 的直线ACB ABC BC DE ∠∠、,//的平分线分别交DE 于点D E 、,若10,6==BC AC ,则DE 的长为
( ) A.14 B.16 C.18 D.20
4、如图,P 为ABC ∆边BC 上的一点,且PB PC 2=,已知,60,45
=∠=∠APC ABC 则
ACB ∠的度数是_____。

5、如图,四边形ABCD 中,已知AB:BC:CD:DA=2:2:3:1,且
90=∠B ,则______=∠DAB 。

6、如图,四边形ABCD 中,,26,24,8,6cm DA cm CD cm BC cm AB ====且
90=∠ABC ,则四边形ABCD 的面积是2_____cm 。

7、如图,P 是长方形ABCD 内一点,已知5,4,3===PC PB PA ,那么2
PD 等于_____。

8、矩形纸片ABCD 中,3=AB 厘米,4=BC 厘米,现将C A ,重合,
使纸片折叠压平,设折痕为EF ,重叠部分∆AEF 的面积为____。

9、如图,已知B A ∠=∠,111,,PP BB AA 均垂直于11B A ,A
A
B
B C
C P
题图)
第4(D
题图)第5(D A B
C
题图)第6(题图)(第7A
B C
D
P
12
,20,16,1711111====B A BB PP AA
2222AD CD BD =+\则_____=+PB AP 。

10、如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是3,那么另一条直角边的长是______。

11、如图,在ABC ∆中,D AC AB BAC ,,90==∠
是BC 上的点,求证: 12、如图,在ABC ∆中,BE AD CD AE CA BC AB 、,,===相交于P ,AD BQ ⊥于Q ,求证:PQ BP 2=
13、如图,在等腰直角ABC ∆的斜边上取异于C B ,的两点F E ,,
使,45 =∠EAF 求证:以CF BE EF ,,为边的三角形是直角三角
形。

14、如图,在ABC Rt ∆中,
90=∠A ,D 为斜边BC 中点,DF DE ⊥,
求证:2
2
2
CF BE EF +=
A 1
A B
1B 1P P
题图)
第9
(题图)
第14(。

相关文档
最新文档