七年级数学上册第2章有理数2.6有理数的乘法与除法第2课时有理数的乘法运算律同步练习(新版)苏科版
七年级数学上册 第2章 有理数 2.6 有理数的乘法与除法(课时2)教案 (新版)苏科版-(新版)苏
2.6 有理数的乘法与除法(课时2)【教学目标】知识与技能:(1)掌握有理数的除法法则,并熟练运用除法法则.(2)体会乘法与除法的辨证关系及化归思想.过程与方法:经历除法法则的归纳过程,培养学生的观察、归纳、概括和运算能力.情感态度与价值观:让学生感知数学知识具有普遍联系性、相互转化性.【重难点】重点:(1)理解有理数除法法则,能正确熟练的进行有理数的除法运算.(2)能熟练的进行有理数的乘除混合运算.难点:理解商的符号及其绝对值与被除数和除数的关系.【教学过程】活动一:复习回顾,导入新课1.前面我们学习了有理数的乘法,那么有理数有除法吗?如何进行有理数的除法运算呢?开门见山,直接引出本节知识的核心.投影显示:(-12)÷(-3)=?2.回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间的关系:学生回答:被除数=除数×商所以我们只需找到-12=(-3)×?就能找到商是多少.学生很容易知道-12=(-3)×4. 在学习过程中,一定要抓住被除数=除数×商,从而得到(-12)÷(-3)=4.活动二:实践探究,交流新知【探究1】有理数的除法法则教师提问:怎样计算(-70)÷7呢?学生小组讨论,教师提示:根据除法是乘法的逆运算,即求一个数,与7相乘得-70,因为(-10)×7=-70,所以(-70)÷7=-10.另一方面,()170=107⨯--,所以有()()1707=7010⎛⎫÷⨯ ⎪⎝⎭--- 教师提问:观察上面的式子,你能发现什么?学生思考,讨论交流,师生共同归纳:有理数的除法法则:除以一个数不等于0的数,等于乘这个数的倒数.例1 计算:(1)(-15)÷(-3);(2)12÷(-14);(3)(-0.75)÷(0.25).解:(1)(-15)÷(-3)=+(15÷3)=5;(2)12÷(-14)=-(12÷14)=-48; (3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.处理方式:学生自主完成,老师巡视.请3位学生板书.教师提问:有理数的除法运算中,怎样确定商的符号?学生思考,师生共同总结:注意先确定运算的符号.两数相除,同号得正,异号得负并把绝对值相除.0除以任何不等于0的数,都得0.【探究2】有理数的乘除混合运算例2 计算:(1)-2.5÷58×(-14);(2)(-47)÷(-314)×(-112). 解:(1)原式=-52×85×(-14)=52×85×14=1; (2)原式=(-47)×(-143)×(- 32)=-(47×143×32)=-4. 处理方式:教师板演,并总结:有理数的乘除混合运算,先把除法转化为乘法,再统一计算.【当堂反馈】1.如果,那么a 是().A.正数B.负数 C .非负数 D .非正数2.如果两个非零数互为相反数,那么下列说法中错误的是().A.它们的和一定为零B.它们的差一定是正数C.它们的积一定是负数 D .它们的商一定等于一l3.若0≠mn ,则 nn m m+的值不可能是( ). A.0 B.l C. 2 D .-24.计算:(1)(-12)÷(-3); (2)312 ÷(611-); (3))53(8543-÷÷-; (4)[()()(12787431-+--)] ÷(87-); (5)1(48)8(25)()5-÷÷-⨯-;(6)355(2)514÷-⨯.【课后小结】 本节课我们要注意在运用运算律进行简化计算时,要仔细审题,看看能否用运算律简便而准确地化简式子,可以将式子进行适当变形,也可用逆向分配律,学会运用技巧解决复杂的计算问题.【教学反思】。
2.3有理数的乘除法运算(第2课时)课件 2024-2025学年北师大版数学七年级上册
=− × − × + ×
=(− − + ) ×
= ×
=;
教学过程
典例解析
198
(4)9
199
× (−)
=(
−
)
× (−)
= × (−��) −
× (−)
有理数乘的运算律
可以利用乘法的交换律、结合律和乘法对加法的分配律进行计算:
=
× (−) × (−) ×
× (−) × (−) ×
=(−) × (−)
=
(−) × (− +
)
=(−) × (− ) + (−) ×
= + (−)
× (− ) × (−)
(− ) × × (−) × (− )
教学过程
回顾引入
计算:
(−) × × = −
.
× (− ) × (−) =
.
(−
. ) × × (−) × (− ) = −
想一想:积的符
号与负因数的个数
教学过程
知识点2
有理数乘的运算律
乘法运算律的推广:
(1)应用交换律时,交换因数的位置,要连同符号一起交换;
(2)利用分配律时,若括号外的项是负数,要带上“ − ”号;
七年级数学上册第2章有理数2.6有理数的乘法与除法第2课时有理数的乘法运算律练习苏科版(2021年
七年级数学上册第2章有理数2.6 有理数的乘法与除法第2课时有理数的乘法运算律同步练习(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第2章有理数2.6 有理数的乘法与除法第2课时有理数的乘法运算律同步练习(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第2章有理数2.6 有理数的乘法与除法第2课时有理数的乘法运算律同步练习(新版)苏科版的全部内容。
第2课时有理数乘法运算律知识点 1 有理数乘法运算律1.在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了()A.加法交换律 B.加法结合律C.乘法结合律 D.乘法分配律2.计算-错误!×错误!×错误!的结果是( )A.1 B.-112C.1错误! D.4错误!3.2017·滨湖区期中计算(1-错误!+错误!+错误!)×(-12)时,运用哪种运算律可以避免通分( )A.乘法分配律 B.乘法结合律C.乘法交换律 D.乘法结合律和交换律4.下列计算正确的是( )A。
错误!×错误!=-8+6+1=-1B。
错误!×错误!=12+8+24=44C。
错误!×错误!=9D.-5×2×错误!=-205.在横线上写出下列变化中所运用的运算律:(1)3×(-2)×(-5)=3×[(-2)×(-5)]________;(2)48×(错误!-2错误!)=48×错误!-48×错误!________.6.填空:错误!×错误!=错误!×________+错误!×________=________+________=________.7.计算:(-4。
七年级数学上册 第二章 有理数 2.6 有理数的乘法与除法 运用乘法交换律、结合律简化运算素材 苏
七年级数学上册第二章有理数 2.6 有理数的乘法与除法运用乘法交换律、结合律简化运算素材 (新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数 2.6 有理数的乘法与除法运用乘法交换律、结合律简化运算素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数2.6 有理数的乘法与除法运用乘法交换律、结合律简化运算素材 (新版)苏科版的全部内容。
运用乘法交换律、结合律简化运算难易度:★★关键词:有理数答案:(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
即ab=ba。
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
即(ab)c=a(bc)。
【举一反三】典例:计算思路导引:一般来说,此类问题应仔细观察题目中的数据,找到两两相结合的数据后交换位置。
,原式标准答案:—3以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The above is the wholecontent of this article, Gorkysaid: "the bookis the ladder of human progress." I hopeyou can make progress with the help of this ladder.Material life is extremel y rich, science and technology are developing rapidly,all of which gradually change the way of people's study andleisure. Many people are no longer eager to pursue a document, b utas long as you still have such a small persistence, you willcontinueto grow and progress. When the complexworld leads us to chaseout, reading an article or doing aproblem makes us calm down andreturn to ourselves. Withlearning, we can activateour imagination and thinking,establish our belief, keep our pure spiritual worldandresist the attack of the external world.。
2.6有理数的乘法与除法(2)教案
2.6有理数的乘法与除法(2)(教案)【教学目标】1、探究有理数乘法的运算律;2、能用乘法运算律简便运算;3、理解倒数的概念. 【教学重点】学会把知识运用于实践,灵活、合理地运用乘法运算律简化运算. 【教学难点】运用有理数乘法分配律计算时对“符号”的理解. 【教学过程】 一、创设情境1、请同学们回顾有理数乘法运算法则;2、请同学们回顾小学里学习的乘法交换律、结合律和分配律,猜想这些运算律对于含有负数的乘法运算中是否同样适用?(引发学生思考,让学生感到验证的必要性,主动投入验证活动.) 二、探索新知1、小组讨论:小学学习的乘法运算律在有理数范围内成立吗?为什么?【学生活动】小组活动列举多个例子(可参考P43“做一做”),从特殊到一般归纳结论.感受引入负数后小学数学中的乘法运算律仍然成立,通过类比的方法验证乘法运算律,体会其在有理数范围的有效性、合理性.2、小组代表回答结论,得出有理数乘法运算律(口述文字表示,板书字母表示) 乘法交换律:两数相乘,交换因数的位置,积不变a b b a ⨯=⨯乘法结合律:先把前两个数相乘,或者先把后两个数相乘,积不变()()a b c a b c ⨯⨯=⨯⨯乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加()a b c a b a c ⨯+=⨯+⨯三、课堂反馈(以下例1—例4的练习可不做或选做) 例1、计算(交换律和结合律的应用) (1)()()4 1.2585⎛⎫-⨯+⨯- ⎪⎝⎭(2)()()()1007.240.01-⨯-⨯-【学生先独立计算,之后交流方法,学生总结示范如何用乘法交换律简化计算】 练习:(1)()280.1253⎛⎫⨯-⨯- ⎪⎝⎭(2)()()()25854-⨯-⨯-例2、计算(正用分配律) (1)()157362612⎛⎫+-⨯- ⎪⎝⎭(2)34100(0.70.03)105-⨯--+【教师可以示范如何用乘法分配律简化计算,并强调不要漏乘,不要弄错符号】 练习:计算 (1)113)(60)234--+⨯-((2))856532(24--⨯-例3、计算(逆用分配律) (1)756071607360⨯+⨯-⨯(2)3243213)32(18⨯-⨯+-⨯【学生先独立计算,之后交流方法,教师示范过程,让学生适时地了解,对于运算律,不仅可以从左到右,还可以从右到左的运用,恰当地运用运算律就可以获得简捷的求解效果,培养学生逆向思维能力】 练习:计算 (1))725()12()725()7()725()5(-⨯---⨯-+-⨯- (2)1551151()2()277227⨯--⨯+-⨯例4、计算(变形后应用分配律) (1)981009999⎛⎫-⨯ ⎪⎝⎭(2))8(161539-⨯【教师和学生一起运用简便方法计算】 练习:计算 (1)2899-⨯(2)2499525⎛⎫-⨯ ⎪⎝⎭例5、计算 (1)188⨯(2)()144⎛⎫-⨯-⎪⎝⎭(3)7887⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭【学生活动】学生独立完成,然后观察以上三个等式,小组首先交流这三个等式中的两个因数及运算结果的特点,其次例举类似的例子,之后思考:(1)这两个因数可能相等吗?(2)若两个因数中有一个为0,则运算结果还有这个特点吗? 归纳:像8与81、-4与41-、78-与78-......乘积为1的两个数互为倒数,其中一个数叫做另一个数的倒数.注意:(1)根据倒数的定义,0没有倒数;(2)根据有理数乘法法则中“同号得正”可知互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数,0没有倒数.(3)互为倒数与互为相反数的区别:互为倒数的两个数的乘积为1,互为相反数的两个数的和为0;(4)倒数等于本身的数是 ;绝对值等于本身的数是 ;相反数等于本身的数是 . 练习:说出下列各数的倒数:()13-()122-()13325()13412-()50.2-()3614【学生活动】学生互相说,并交流归纳求一个数的倒数的方法:(1)一个不为0的整数的倒数,是用这个数作分母,1作分子的数; (2)求一个真分数或假分数的倒数,就是把这个分数的分子分母交换位置; (3)求一个带分数的倒数,要先把带分数化成假分数,再交换分子分母的位置; (4)求一个小数的倒数,要先把小数化成分数,再求其倒数.四、归纳总结 【学生活动】1、回忆所学的乘法运算律有哪几条?2、说说你对倒数的理解..。
苏科版版数学七年级上册说课稿《2-6有理数的乘法与除法》第2课时
苏科版版数学七年级上册说课稿《2-6 有理数的乘法与除法》第2课时一. 教材分析《2-6 有理数的乘法与除法》是苏科版数学七年级上册的一部分,这部分内容主要介绍了有理数的乘法和除法运算。
本节课的重点是有理数的乘法和除法法则,通过这部分的学习,学生能够掌握有理数乘除法的基本运算方法,并能够熟练地进行计算。
在教材中,编排了丰富的例题和练习题,有助于学生巩固所学知识,提高解题能力。
二. 学情分析面对七年级的学生,他们在小学阶段已经学习了整数的乘法和除法,对于乘除法的基本概念和运算方法有一定的了解。
但是,对于有理数的乘法和除法,他们可能还存在着一些认知上的困难,例如理解有理数乘除法的法则,以及如何正确进行计算。
因此,在教学过程中,需要注重引导学生理解有理数乘除法的本质,并通过大量的练习,让学生熟练掌握运算方法。
三. 说教学目标1.知识与技能:学生能够掌握有理数的乘法和除法法则,能够熟练地进行有理数的乘除运算。
2.过程与方法:通过自主学习、合作交流,学生能够培养解决问题的能力,提高数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和自信心,使学生感受到数学在生活中的运用。
四. 说教学重难点1.教学重点:有理数的乘法和除法法则,有理数的乘除运算。
2.教学难点:理解有理数乘除法的本质,熟练掌握运算方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究,提高学生解决问题的能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习pad等现代教育技术手段,为学生提供丰富的学习资源,提高教学效果。
六. 说教学过程1.导入:通过复习小学阶段学习的整数乘除法,引导学生进入有理数乘除法的学习。
2.知识讲解:讲解有理数的乘法和除法法则,通过例题展示运算过程,让学生理解并掌握运算方法。
3.练习巩固:安排大量的练习题,让学生在课堂上进行练习,及时巩固所学知识。
2.2.1有理数的乘法(第2课时乘法运算律)(课件)七年级数学上册(人教版2024)
6.利用乘法的运算律进行计算:
(1)(- 1 +1-5)×(-36)
12 4 6
(2)(-12557)×(-15);
(3)-5×5
1 9
+
11
×
(−5
19)
−
16
×
(−5
19).
(1)原式=(-112)×(-36)+14×(-36)-56×(-36) =3-9-(-30) =24.
(2)原式=(125+57)×15 =25+1
D.逆用分配律
3.在(-0.125)×(-2)×(-8)×5=[(-0.125)×(-8)]×[(-2)×5]中,运用了
( D)
A.分配律
B.乘法交换律
C.乘法结合律
D.乘法交换律和乘法结合律
4.算式(−3 34)×4可以化为( A) A.-3×4-34×4 B.-2×4+34×4
C.-3×3-3
5.计算:
(1)(-4)×23×(-0.25)×(-32); (2)24×(-96)×0.75×(-418).
(3)原式=14×12-12×12+23×12 =3-6+8 =5.
(3)(1
4
−
1 2
+
2)×12
3
(4)0.583×202.3+2.036×202.3+7.381×202.3
(4)原式=0.583×202.3+2.036×202.3+7.381×202.3 =202.3×(0.583+2.036+7.381) =10×202.3 =2023
知识准备
5.计算: (1) 6×(-9) (2) (-5)×6 (3) (-4)×(-1)
2.2.2 有理数的除法(第2课时 有理数加减乘除混合运算)(课件)七年级数学上册(人教版2024)
除法转化为乘法
=-49× ×(- )
=49× × =9.
计算,勿先算 ×(- )
确定积的符号
典例剖析
例6
计算:
5
(1) (−125 )÷(−5);
7
5 1
解:原式=(125+ )×
7 5
1 5 1
= 125× + ×
5 7 5
1
=25+
7
1
=25 ;
7
5
1
(2)−2.5÷ ×(− ).
5
5
=−3×
6
5
=− .
2
2
8
(4) (− ) × ÷(−0.25)
3
5
2 8
解:原式= × ×4
3 5
64
= .
15
课本练习
2.计算:
(1) 6 (12) (3)
(2) 3×(-4)+(-28)÷7
(3) (48) 8 (25) (6)
(4) 42 ( 2 ) ( 3 ) (0.25)
(4)(-2)÷
9 8 2
9 8 2
原式=-16×-3×-3=-16×3×3=-1;
4 4 1
4 4 1
解:原式=(-81)× -9 ×9×8=81×9×9×8=2;
7 4
(- )× ÷(-5 ).
7
7 4 7
14
)
,其算式是
七年级初一数学2.6有理数的乘法与除法知识点解读有理数的除法
知识点解读:有理数的除法一、关于有理数的除法知识点一:有理数的除法法则(掌握)有理数的除法法则:(1)法则1:除以一个数等于乘以这个数的倒数.用字母表示为:a ÷b =a × 1b(b ≠0). (2)法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不等于0的数都得0 . 温馨提示:对于除法的两个法则,在计算时可根据具体情况选用,一般在不能整除的情况下选用第二法则较简便;而在能整除的情况下则通常选用第一法则.例1 计算:(1)()()644-÷-; (2)37521446⎛⎫⎛⎫⎛⎫÷-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 析解:两个数的除法运算,应先确定商的符号,然后把被除数和除数的绝对值相除;多个有理数的除法运算,应先转化为乘法运算.解:(1)原式=()644+÷=16;(2)原式=14462375⎛⎫⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=14462375⎛⎫-⨯⨯⨯ ⎪⎝⎭=325-.知识点二:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数.一般的,当0a ≠时,a 与1a互为倒数. 对倒数的概念的理解还应注意以下几点:(1)零没有倒数;(2)正数的倒数仍是正数,负数的倒数仍是负数;(3)倒数等于本身的数是1和-1;(4)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可,求一个小数的倒数,要先把小数转化为分数后再求其倒数,求一个带分数的倒数,要先把带分数化为假分数再求.知识点三:有理数的混合运算(拓展)二、关于有理数的混合运算对于乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算,若有括号的应先做括号里面的.例2 计算(-81)÷214×49÷(-15).分析:将除法先统一成乘法,再利用约分来简化计算.解:(-81)÷214×49÷(-15)=81×49×49×115=1115.说明:有理数的乘除混合运算必须按从左到右的顺序依次进行计算,像(-81)÷214×49=-81÷94×49=-81,这样计算是错误的.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,正确的是()A.若ac2<bc2,则a<b B.若ab<c,则a<b cC.若a﹣b>a,则b>0 D.若ab>0,则a>0,b>0 【答案】A【解析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A、若ac2<bc2,则a<b,正确;B、若ab<c,则a<bc,错误;C、若a﹣b>a,则b<0,故错误;D、若ab>0,则a>0,b>0或a<0,b<0,故错误,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.5cm,5cm,11cm D.13cm,12cm,20cm【答案】D【解析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)【答案】B【解析】∵点M(a+3,a+1)在直角坐标系的x轴上,∴a+1=0,解得a=−1,所以,a+3=−1+3=2,点M的坐标为(2,0).故选B.4.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.25【答案】C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.5.港珠澳大桥2018年10月24日正式通车,整个大桥造价超过720亿元人民币,720亿用科学记数法表示为()A.72×109B.7.2×109C.7.2×1010D.0.72×1011【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:720亿用科学记数法表示为7.2×1010故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.3 B.27 C.9 D.1【答案】A【解析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,12×81=27, 第2次,12×27=9, 第3次,12×9=3, 第4次,12×3=1, 第5次,1+2=3,第6次,12×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2019是奇数,∴第2019次输出的结果为3,故选:A .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.7.已知方程组35223x y k x y k +=+⎧⎨+=⎩的解满足x + y = 2 ,则k 的值为( ) A .4B .- 4C .2D .- 2 【答案】A【解析】方程组中两方程相减消去k 得到关于x 与y 的方程,与x+y=2联立求出解,即可确定出k 的值.【详解】35223x y k x y k ++⎧⎨+⎩=①=②, ①-②得:x+2y=2,222x y x y +⎧⎨+⎩== , 解得20x y ⎧⎨⎩==, 则k=2x+3y=4,故选A .【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.下列调查活动中适合使用全面调查的是( )A .某种品牌手机的使用寿命B .全国植树节中栽植树苗的成活率C .了解某班同学课外阅读经典情况D .调查“厉害了,我的国”大型电视记录片的收视率【答案】C【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行一一判断解答.【详解】A. 某种品牌手机的使用寿命,适合抽样调查,故A 选项错误;B.全国植树节中栽植树苗的成活率,适合抽样调查,故B 选项错误;C.了解某班同学的课外阅读经典情况,适合使用全面调查,故C 选项正确;D.调查“厉害了,我的国”大型记录电影在线收视率,适于抽样调查,故D 选项错误.故选C .【点睛】本题考查抽样调查和全面调查的区别,难度不大 9.若关于x 的不等式组030x a x -≥⎧⎨-<⎩有3个整数解,则a 的值可以是( ) A .-2B .-1C .0D .1【答案】C 【解析】试题解析:解不等式组030x a x -≥⎧⎨-<⎩, 得 3x a x ≥⎧⎨<⎩,所以解集为3a x ≤<; 又因为不等式组030x a x -≥⎧⎨-<⎩,有3个整数解,则只能是2,1,0, 故a 的值是0.故选C.10.如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A .体育场离张强家3.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店1.5千米D .张强从早餐店回家的平均速度是3千米/小时【答案】C 【解析】试题分析:A 、由函数图象可知,体育场离张强家2.5千米,故A 选项正确;B 、由图象可得出张强在体育场锻炼30-15=15(分钟),故B 选项正确;C 、体育场离张强家2.5千米,体育场离早餐店2.5-1.5=1(千米),故C 选项错误;D 、∵张强从早餐店回家所用时间为95-65=30(分钟),距离为1.5km ,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D 选项正确.故选C .考点:函数的图象.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.现有2张大正方形纸片A ,2张小正方形纸片B ,5张小长方形纸片C ,这9张纸片恰好拼成如图所示的大长方形,已知大长方形的周长为42,面积为107,则1张小长方形纸片C 的面积为____________.【答案】9【解析】设小长方形纸片C 的的长为x ,宽为y ,根据大长方形的周长为42,面积为107列方程组求解即可.【详解】设小长方形纸片C 的的长为x ,宽为y ,有题意得()()()2224222107x y x y x y x y ⎧+++=⎪⎨++=⎪⎩, 解之得79x y xy +=⎧⎨=⎩, 故答案为:9.【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.13.观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为_____.【答案】(x+m )(x+n )=x 2+(m+n )x+mn【解析】根据规律乘积中的一次项系数是两因式中常数项的和,乘积中的常数项是常数项的积,即可得出答案,【详解】观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为(x+m )(x+n )=x 2+(m+n )x+mn ,故答案为:(x+m )(x+n )=x 2+(m+n )x+mn【点睛】本题考查多项式乘多项式,熟练掌握计算法则是解题关键.14.已知435x y -=,用x 表示y ,得y _____________. 【答案】453x y -= 【解析】把x 看做已知数求出y 即可. 【详解】 435x y -=453x y -∴= 故答案为453x y -=【点睛】本题考查解一元二次方程,熟练掌握计算法则是解题关键.15.若关于x 的不等式组0721x m x -<⎧⎨-≤-⎩只有4个正整数解,则m 的取值范围为__________. 【答案】78m <≤【解析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m 的不等式组,从而求得m 的范围.【详解】0721x m x -<⎧⎨-≤-⎩①②解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个正整数解为;4、5、6、7∴78m <≤故答案为:78m <≤【点睛】本题主要考查了不等式组的正整数解,正确求解不等式组,并得到关于m 的不等式组是解题的关键. 16.如图所示,把ABC △的三边BA 、CB 和AC 分别向外延长一倍,将得到的点A '、B '、C '顺次连接成A B C ''',若ABC △的面积是5,则A B C '''的面积是________.【答案】1【解析】连接AB '、BC '、CA ',由题意得:AB AA =',BC BB =',AC CC =',由三角形的中线性质得出△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积AAC =∆的面积=△BB C '的面积=△A C C ''的面积5=,即可得出△A B C '''的面积.【详解】解:连接AB '、BC '、CA ',如图所示:由题意得:AB AA =',BC BB =',AC CC =',∴△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积=△AA C '的面积=△BB C ''的面积=△A C C ''的面积5=,∴△A B C '''的面积5735=⨯=;故答案为:1.【点睛】本题考查了三角形的中线性质、三角形的面积;熟记三角形的中线把三角形的面积分成相等的两部分是解题的关键.17.若216x mx ++是一个完全平方式,则m=________【答案】±1 【解析】利用完全平方公式的结构特征可确定出m 的值.【详解】解:∵多项式222164x mx x mx ++=++是一个完全平方式,∴m =±2×1×4,即m =±1, 故答案为:±1. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题18.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5 h 以内的学生占全班人数的8%,根据统计图解答下列问题:(1)九年级(1)班有________名学生.(2)补全频数分布直方图.(3)除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1 h的学生有多少人.【答案】 (1)50;(2)见解析;(3)见解析;(3)246人.【解析】试题分析:(1)根据统计图可知0~0.5小时的人数和百分比,用除法可求解;(2)根据总人数和已知各时间段的人数,求出九年级(1)班学生每天阅读时间在0.5~1 h的人数,画图即可;(3)根据除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,除以总人数得到百分比,即可画扇形图;(4)根据扇形统计图求出其它班符合条件的人数,再加上九年级(1)班符合条件的人数即可.试题解析:(1)4÷8%=50(2)九年级(1)班学生每天阅读时间在0.5~1 h的有50-4-18-8=20(人),补全频数分布直方图如图所示.(3)因为除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5 h的学生有165人,所以1~1.5 h在扇形统计图中所占的百分比为165÷(600-50)×100%=30%,故0.5~1 h在扇形统计图中所占的百分比为1-30%-10%-12%=48%,补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h的学生有(600-50)×(30%+10%)+18+8=246(人).19.进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:甲品种乙品种进价(元/千克) 1.6 1.4售价(元/千克) 2.4 2(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?【答案】(1)300千克,200千克;(2)1.1元/千克.【解析】(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,根据总价=单价×数量结合总利润=每千克的利润×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设乙品种西瓜的售价为m元/千克,根据总利润=每千克的利润×数量结合售完获利不少于560元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,依题意,得:1.6 1.4760(2.4 1.6)(2 1.4)360x yx y+=⎧⎨-+-=⎩,解得:300200 xy=⎧⎨=⎩.答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m﹣1.4)≥560,解得:m≥1.1.答:乙品种西瓜最低售价为1.1元/千克.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.20.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.【答案】(1)详见解析;(2)详见解析.【解析】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【详解】(1)点D 及四边形ABCD 的另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点睛】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移. 21.如图,已知四边形ABCD ,//AD BC ,点P 在直线CD 上运动(点P 和点C ,D 不重合,点P ,A ,B 不在同一条直线上),若记DAP ∠,APB ∠,PBC ∠分别为α∠,β∠,γ∠.图1 图2 图3(1)如图1,当点P 在线段CD 上运动时,写出α∠,β∠,γ∠之间的关系,并说出理由;(2)如图2,如果点P 在线段CD 的延长线上运动,探究α∠,β∠,γ∠之间的关系,并说明理由.(3)如图3,BI 平分PBC ∠,AI 交BI 于点I ,交BP 于点K ,且:5:1PAI DAI ∠∠=,20APB ︒∠=,30I ︒∠=,求PAI ∠的度数.【答案】(1)βαγ∠=∠+∠;(2)见解析;(3)50°.【解析】(1)过点P 作//PE AD ,根据平行线的性质即可求解;(2)根据题意分当点P 运动到直线AB 左侧时和当点P 运动到直线AB 右侧时,根据平行线的性质及外角定理即可求解;(3)根据BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,由//AD BC ,得到2DHP CBP x ∠=∠=,又BKI AKP ∠=∠,得到3020PAI x ︒︒∠=+-10x ︒=+,再根据:5:1PAI DAI ∠∠=,得到11255DAI PAI x ︒∠=∠=+,由DHF ∠是APH ∆的外角,可得DHP PAH APB ∠=∠+∠,即12210205x x x ︒︒︒=++++,故可求出x 即可求解.【详解】(1) βαγ∠=∠+∠.图1理由如下:过点P 作//PE AD ,如图1 ,//PE AD ,APE α∴∠=∠,//AD BC ,//PE BC ∴,BPE γ∴∠=∠,APE BPE βαγ∴∠=∠+∠=∠+∠;(2)当点P 运动到直线AB 右侧时,//AD BC ,1PBC ∴∠=∠,而1PAD APB ∠=∠+∠,APB PBC PAD ∴∠=∠-∠,即βγα∠=∠-∠.当点P 运动到直线AB 左侧时,//AD BC ,2PBC ∴∠=∠,而2PAD APB ∠=∠+∠,APB PAD PBC ∴∠=∠-∠,即βαγ∠=∠-∠.(3)如图,点P 在50PAI ∠=. BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,//AD BC ,2DHP CBP x ∴∠=∠=,20APB ︒∠=,30I ︒∠=,BKI AKP ∠=∠,3020PAI x ︒︒∴∠=+-10x ︒=+,又:5:1PAI DAI ∠∠=, 11255DAI PAI x ︒∴∠=∠=+,DHF ∠是APH ∆的外角,DHP PAH APB ∴∠=∠+∠,即12210205x x x ︒︒︒=++++,解得40x =,401050PAI ︒︒︒∴∠=+=.【点睛】此题主要考查平行线的性质与三角形的角度求解,解题的关键是熟知平行线的性质及三角形的外角定理与内角和定理.22.如图,在ABC ∆中,CD 垂直AB ,垂足为D ,ABC ∠的平分线BP 交CD 于点P .(1)若20BCD ∠=︒,求PBC ∠的度数;(2)若BCD α∠=,求BPD ∠的度数.【答案】(1)35PBC ∠=︒;(2)1452BPD α∠=︒+. 【解析】(1)由CD 垂直AB ,可得直角,由BP 平分ABC ∠,可得PBC PBD ∠∠=,依据三角形内角和定理可求ABC ∠,进而求出PBC ∠;(2)方法同(1),只是角度用α表示,最后由三角形的外角等于与它不相邻的两个内角的和,表示BPD ∠即可.【详解】解:(1)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD 20∠=︒,ABC 902070∠∴=︒-︒=︒,又BP 平分ABC ∠,1PBC PBD ABC 352∠∠∠∴===︒, 答:PBC 35∠=︒;(2)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD α∠=,ABC 90α∠∴=︒-,又BP 平分ABC ∠,()11PBC PBD ABC 90α22∠∠∠∴===︒-, ()11BPD PBC PCB 90αα45α22∠∠∠∴=+=︒-+=︒+,答:1BPD 45α2∠=︒+.【点睛】考查三角形内角和定理、角平分线意义、垂直的意义等知识,三角形的内角和定理的推论,即三角形的任何一个外角等于与它不相邻的两个内角的和,在解决问题时也经常用到,注意掌握.23.某镇道路改造工程,由甲、乙两工程队合作完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程,甲工程队30天完成的工程与甲、乙两工程队10天完成的工程相等.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】(1)甲、乙两工程队单独完成此项工程各需要60天和30天;(2)甲工程队至少单独施工36天.【解析】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天,根据题意即可列出分式方程进行求解;(2)设甲单独施工y 天,根据题意列出不等式进行求解. 【详解】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天, 根据题意得301110()3030x x x =⋅+++, 解得x=30,经检验,x=30是原方程的解,故甲、乙两工程队单独完成此项工程各需要60天和30天;(2)设甲单独施工y 天,根据题意得6011603011 3.564y y -⨯+⨯≤+ 解得y ≥36,故甲工程队至少单独施工36天.【点睛】此题主要考查分式方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系进行求解.24.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩①②并写出它的解集在数轴上表示出来.【答案】-3<x≤2,图见解析【解析】根据不等式的基本性质分别求出两个不等式的解集,然后取公共解集,最后把它的解集在数轴上表示出来即可.【详解】解:解不等式①,得:x>-3,解不等式②,得:x≤2,所以不等式组的解集是-3<x≤2,则不等式组的解集如图所示:【点睛】此题考查的是解一元一次不等式组,掌握一元一次不等式组的解法和公共解集的取法是解决此题的关键.25.已知23x y-=,222413x xy y-+=.求下列各式的值:(1)xy.(2)222x y xy-.【答案】(1)2 (2)6【解析】(1)首先将23x y-=两边平方,即可得22449x y xy+-=,再减去222413x xy y-+=可得xy的值.(2)首先将222x y xy-因式分解,提取xy,则可得(2)xy x y-在进行计算即可.【详解】(1)23x y-=∴22449x y xy+-=22224492413x y xyx xy y⎧+-=∴⎨-+=⎩两式相减可得:2xy =(2)222x y xy -=(2)xy x y -=236⨯=【点睛】本题主要考查因式分解,关键在于凑的思想应用.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°【答案】D【解析】根据三角形内角和定理求出∠3+∠4,根据邻补角的概念计算即可.【详解】如图:∵∠C=78°,∴∠3+∠4=180°﹣78°=102°,∴∠1+∠2=360°﹣(∠3+∠4)=258°,故选D.【点睛】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.2.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各x y=()列及对角线上的三个数之和都相等,则2A .2B .4C .6D .8【答案】B 【解析】根据题意得出方程组,求出方程组的解,代入2x y 计算即可.【详解】由题意得 26022002y y y x y y -++=++⎧⎨-+=++⎩, 解之得82x y =⎧⎨=⎩, ∴x-2y=8-4=4.故选B.【点睛】本题考查了二元一次方程组的应用及求代数式的值,能根据题意列出方程组是解此题的关键. 3.如图,在矩形ABCD 中放入6个全等的小矩形,所标尺寸如图所示,设小矩形的长为a ,宽为b ,则可得方程组( )A .3164a b a b +=⎧⎨-=⎩B .31624a b a b +=⎧⎨-=⎩C .2164a b a b +=⎧⎨-=⎩D .21624a b a b +=⎧⎨-=⎩【答案】A 【解析】设小矩形的长为a ,宽为b ,根据矩形的性质列出方程组即可.【详解】解:设小矩形的长为a ,宽为b ,则可得方程组3164a b a b +=⎧⎨-=⎩故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.如果点P(m﹣1,4﹣2m)在第四象限,那么m的取值范围是()A.m>1 B.m>2 C.2>m>1 D.m<2【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣1,4﹣1m)在第四象限,∴10420mm-⎧⎨-⎩>①<②,解不等式①得,m>1,解不等式②得,m>1,所以不等式组的解集是:m>1,所以m的取值范围是:m>1.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据x轴上的坐标特点求出n,再判断点B所在象限.【详解】∵点A(-2,n)在x轴上,∴n=0,∴B(-1,1),在第二象限,故选B.【点睛】此题主要考查直角坐标系中点的坐标特点,解题的关键是熟知坐标轴上的点的坐标特点.6.若多边形的内角和大于900°,则该多边形的边数最小为()A.9 B.8 C.7 D.6【答案】B【解析】根据多边形的内角和公式(n﹣2)×120°列出不等式,然后求解即可.【详解】解:设这个多边形的边数是n,根据题意得(n﹣2)×120°>900°,解得n>1.该多边形的边数最小为2.故选:B.【点睛】本题考查了多边形的内角和公式,熟记公式并列出不等式是解题的关键.7.如果a>b,那么下列结论一定正确的是()A.ac>bc B.5﹣a<5﹣b C.a﹣5<b﹣5 D.a2>b2【答案】B【解析】根据不等式的性质求解即可.【详解】解:A、当c<0时,ac<bc,故A不符合题意;B、两边都乘﹣1,不等号的方向改变,﹣a<﹣b,两边都加5,不等号的方向不变,5﹣a<5﹣b,故B符合题意;C、两边都减5,不等号的方向不变,故C不符合题意;D、当﹣1>a>b时,a2<b2,故D错误,故选:B.【点睛】本题考查了不等式的性质,不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.下列调查中,最适合采用全面调查(普查)方式的是()A.对华为某型号手机电池待机时间的调查B.对全国中学生观看电影《流浪地球》情况的调查C.对中央电视台2019年春节联欢晚会满意度的调查D.对“长征五号B”运载火箭零部件安全性的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.对华为某型号手机电池待机时间的调查,适合抽样调查;B.对全国中学生观看电影《流浪地球》情况的调查,适合抽样调查;C.对中央电视台2019年春节联欢晚会满意度的调查,适合抽样调查;D.对“长征五号B”运载火箭零部件安全性的调查,需要进行全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A.B.C.D.或1【答案】C【解析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1, 所以或1,故D 选项正确,不符合题意,故选C.【点睛】 本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.10.小亮解方程组2317x y x y +=⎧⎨-=⎩●的解为5*x y =⎧⎨=⎩,则于不小心滴上两滴墨水,刚好遮住了两个数●和*,则这两个数分别为( )A .4和6-B .6和4C .2-和8D .8和2-【答案】D【解析】将5x =代入方程组第二个方程求出y 的值,即可确定出●和*表示的数.【详解】将5x =代入317x y -=中得:2y =-,将5x =,2y =-入得:21028x y +=-=,则●和*分别为8和2-.故选:D .【点睛】此题考查了二元一次方程组的解,解题关键在于方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+ 210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=55°,图中∠2=_____【答案】70°【解析】由两直线平行判断同位角相等和同旁内角互补,由角平分线的定义和对顶角相等,得到结论.【详解】∵AB∥CD,∴∠ABC=∠1=55°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=110°,∴∠BDC=180°-∠ABD=70°,∴∠2=∠BDC=70°.故答案是:70°.【点睛】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数.13.中午12点15分时,钟表上的时针和分针所成的角的度数为_____________【答案】82.5°【解析】根据时钟12时15分时,时针在12与1之间,分针在3上,可以得出分针与时针相隔234个大格,每一大格之间的夹角为30°,可得出结果.【详解】∵钟表上从1到12一共有12格,每个大格30°,∴时钟12时15分时,时针在12与1之间,分针在3上,∴分针与时针的夹角是234×30°=82.5°.故答案为:82.5°.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.14.平面直角坐标系内x轴上有两点A(-3,0),B(2,0),点C在y轴上,如果△ABC的面积为15,则点C的坐标是_______.。
人教版七年级数学上册 2. 2 有理数的乘法与除法(第二章 有理数的运算 自学、复习、上课课件)
一个数与两个数的和相乘,等于把这个
分配律
数分别同这两个数相乘,再把积相加
a(b+c)=ab
+ac
感悟新知
知3-讲
特别提醒
1. 交换乘数位置时,要连同乘数性质符号一起交换.
2.乘法交换律和结合律可以推广到多个数相乘.
3.分配律也可以推广到:a(b+c+…+m)=ab + ac + …
+ am ,应用时不要漏乘括号内的任何加数和弄错符号,
相乘,积最小的是( C )
A.(-4)×(-3)
B.(-3)×5
C.(-4)×5
D.2×(-4)
感悟新知
知1-练
1-2.计算:
(1)(-3)×(-24);
解:(1)原式=3×24=72;
(2)(-1000)×0.1;
(2)原式=-1 000×0.1=-100;
(3)(-12.5)×(-0.8);(3)原式=12.5×0.8=10;
知识点 2 倒数
1. 定义 乘积是1 的两个数互为倒数.
特别解读
1.“ 乘积是1 ”是判断两个数互为倒数的关键.
2.“互为”表示倒数是两个数之间的一种关系,
单独一个数不能称其为倒数.
3.取倒数不改变原数的正负性.
4. 0无倒数,倒数等于它本身的数是±1.
系
并且可以逆用以简化运算.
感悟新知
知3-练
例 4 计算:(-3)× (-
11
1
20
)×(- )×( - ).
5
3
11
解题秘方:运用乘法交换律和结合律,分别将互为
倒数和可约分的乘数相结合,以简化运算.
1
11
20
2
3
(4)1 的倒数是 ;
2.2 有理数的乘法与除法2.2.2有理数的除法课时2七年级上册数学人教版
解:
(3)
−112÷
(−0.75)+(125
−
23)÷
1 15
−|
13×(−1.5)|
=
32÷
3 4
+(75
−
23)
×15
−|
13×(−
3 2
)|
→小数化分数
=
3 2
×
4 3
+
75×15
−
23×15
−|
−
1 2
|
→除法化乘法
=
2+21−10−
1 2
→正用分配律
=13−
1 2
=1212.
新知探究 知识点2 有理数的加减乘除混合运算 例3 某公司去年1月—3月平均每月亏损1.5万元,4月—6月平均 每月盈利32万元,7月—10月平均每月盈利21.7万元,11月—12月 平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
=25+
1 7
=25
1 7
;
(2) −2.5÷58 ×(− 14). (2) −2.5÷58 ×(− 14)
=
5 2
×
8 5
×
1 4
=1.
新知探究 知识点1 有理数的乘除混合运算
跟踪训练 1.计算:
(1)
123
1 27
÷(−3);
解:(1)
123
1 27
÷(−3)
= −(123+217 )×13
= −(123×13 + 217×13)
新知探究 知识点2 有理数的加减乘除混合运算
跟踪训练 2.计算:(1) (− 12)×(−8)+(−6)÷ 32;
有理数乘法的运算律及运用课件第二课时2024年人教版数学七年级上册
能 力 提 升 题
下面这道题的解法有错吗?错在哪里?
(-24)×(
解:
原式= (-24)×
=-8-18 +4-15
=-41+4
=-37.
+
-24×
-
)
+24×
-24×
巩固练习
能 力 提 升 题
正确解法:
(-24)×(
=
-24×
+
-
+
24×
-
-
)
24×
+
24×
____ ____ _____ ____
=-8+18-4+15
=-12+33
=21.
特别提醒:
1.正确确定积的符号.
2.不要漏乘.
当堂检测
1.在计算1.25×(
基 础 巩 固 题
)×(-8)= 1.25×(-8)×(-
= [1.25×(-8)] ×(-
)中,应用了乘法(
C. +
D
)
D. -
典例示范
例2
计算:−
×
分析:本题从题型结构来看,直接计算比较麻烦,又不具备应用分配律的
条件,但观察它的数量特点,使用拆分方法,可以创造应用分配律的条件解
题,即将
拆分成一个整数与一个分数之差,再用分配律计算. Nhomakorabea
苏科版七年级数学上册课件第二章有理数有理数的乘法与除法
3.(1) (2) (3)
4. (1)24+(-1.6)×(-3)×(-5)×2
(2)(-47.65)×2+(-37.15)×(-2)+10.5×(-7) (3)211×(-455)+365×455-211×545+545×365 (4)
总结:
1.有理数乘法运算律:(为了方便运算) 交换律: a×b=b×a 结合律:(a×b)×c=a×(b×c) 分配律:a×(b+c)=a×b+a×c
)
=-1×1
=-1
计算:
1.倒数和相反数是两个重要的概念,你能说出两者的区分
吗?
若a,b互为相反数,则a+b=
,a与b
为0(填
“能”或“不能”)。
若a,b互为倒数, 则a·b=
,a与b
为0(填
“能”或“不能”)。
2.(1)(
1 2
+5
6
-
7 12
)×(-36)
(2)
(3)(-17)×43+(-17)×21-(-17)×164 (4)
2.乘积为1的两个数互为倒数,其中一个数叫做另一个数的倒数。
那么这些运算律在我们有理数的范围内还可以 适用吗?
(1)3×4=______
(2)4×3=______
(3)(-3)×4=______
(4)4×(-3)=______
(5)3×(-4)=______
(6)(-4)×3=______
(7)(-3)×(-4)=______ (8)(-4)×(-3)=______
2.6 有理数的乘法与除法 (2)
1.有理数乘法法则:两数相乘,同号得正,异号得负,并把 绝对值相乘.任何数同0相乘,都得0.
苏教版七上 有理数2.6有理数的乘法与除法 知识点+例题+练习(非常好)
2.6有理数的乘法与除法【学习目标】1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2.理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培养观察、分析、归纳及运算能力.【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd =d(ac)b .一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad . (3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”. 要点二、有理数的除法1.倒数的意义: 乘积是1的两个数互为倒数.要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是,-2和是互相依存的; (2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数; (4)互为倒数的两个数必定同号(同为正数或同为负数). 2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些.(2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值.要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.12-12-1(0)a b ab b÷=≠要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【典型例题】类型一、有理数的乘法运算例1.算式(﹣1)×(﹣3)×之值为何?( ) A .B .C .D .例2.(1); (2)(-5)×(-8.1)×3.14×0.【基础巩固】1.计算:()111513333⨯--⨯=⨯( )=_______. 2.计算:(-4)×125×(-25)×(-0.08)=_______.3.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积 ( )A .一定为正B .一定为负C .为零D .可能为正,也可能为负4.若a<0,b>0,则a b _______0;若a>0,b>0,则ab _______0; 若a =0,b<0,则a b _______0;若a>0,b<0,则ab _______0.54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭5.若干个不等于0的有理数相乘,积的符号( ) A .由因数的个数决定 B .由正因数的个数决定 C 由负因数的个数决定D .由负因数和正因数个数的差决定 6.下列运算结果为负值的是 ( )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15) 7.利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,正确的方法可以是( ) A .-981009999⎛⎫-+⨯ ⎪⎝⎭ B .-981009999⎛⎫--⨯ ⎪⎝⎭ C .981009999⎛⎫-⨯ ⎪⎝⎭ D .11019999⎛⎫--⨯ ⎪⎝⎭ 8.下列运算错误的是A .(-2)×(-3)=6B .()1632⎛⎫-⨯-= ⎪⎝⎭C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24 9.下列说法错误的是 ( ) A .任何有理数都有倒数 B .互为倒数的两个数的积为1 C .互为倒数的两个数同号 D .1和-1互为负倒数 10.计算下列各题:(1)42575610⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()511.249⎛⎫⨯-⨯- ⎪⎝⎭;(3)3416401373⎛⎫⎛⎫-⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (4)-5×8×(-7)×(-0.25);(5)318772156⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.11.用简便方法计算:(1)(-25)×(-85)×(-4); (2)11116428⎛⎫--⨯ ⎪⎝⎭;(3)315606060777⨯-⨯+⨯; (4)()()()()7.3342.07 2.077.33-⨯+-⨯-;(5) 2415127754⎛⎫⎛⎫-÷-⨯⨯-÷ ⎪ ⎪⎝⎭⎝⎭;(7) 134118432-÷⨯⨯-;【拓展提优】12.倒数等于它本身的有理数是_______.13.算式411010.05810.0454⎛⎫-⨯-+=-+- ⎪⎝⎭.这个运算过程应用了 ( )A .加法结合律B .乘法结合律C .乘法交换律D .乘法分配律 14.一个数的相反数与这个数的倒数的和为0,则这个数的绝对值为 ( ) A .2 B .1 C .0.5 D .0 15.若ab ≠0,则a ba b+的取值不可能是 ( ) A .0 B .1 C .2 D .-2 16.下列说法正确的是 ( ) A .有理数m 的倒数是1mB .任何正数大于它的倒数C .小于1的数的倒数一定大于1D .若两数的商为正,则这两个数同号 17.已知230x y ++-=,求152423x y xy --+的值.18.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,求(a +b)cd -2012m 的值.19.已知a、b互为相反数,c、d互为倒数,x的绝对值等于1,求x2+(a+b)x -(a+b-cd)的值.课后作业一、填空题1.运用运算律填空:(1)5×(-3)=(-3)×_______.(2)[(-3)×2]×5=(-3)×(_______×_______).(3)(-12)×[12+(-13)]=(-12)×_______+(-12)×_______.2.12的倒数是_______.3.计算:19.8×125-12.5×118=_______.4.114的相反数与114的倒数的积是_______.5.绝对值小于2011的所有整数的积是_______.二、选择题6.-13的倒数是( )A.-3 B.3 C.-13D.137.下列运算其中错误的有( )①2×(-4)=-4×2=-8;②3×(-14)=34;③4×3×(-13)=4×(-1)=-4;④10×(15-5)=10×15-10×5=2-50=48.A.1个B.2个C.3个D.4个8.利用运算律计算(-334×4)时,下列运算正确的是( )A.-3×4+34×4 B.-3×34×4 C.-3×4-34×4 D.-3×4-349.下列计算中正确的是( )A.-10÷10=1 B.(-10)÷(-1)=-10 C.1÷(-10)=-10 D.0÷(-10)=0 10.下列运算错误的是( )A.3÷(-13)=3×(-3) B.-5÷(-12)=-5×(-2)C.8÷(-2)=8+2 D.0÷3=011.如果1a a=-,那么a 是 ( )A .正数B .负数C .非负数D .非正数 12.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数 ( )A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数 三、解答题 13.计算:(1)(-4)×(+8.9)×(-0.25); (2)(13-14+25-56)×(-60); (3) (-0.25)×0.5×(-427)×4;(4)(-5)×(-367)+(-7)×(-367)-(-12)×(-367).(5)(-5)÷(217 )×45×(-214)÷7; (6) -8÷[(-38)×38]÷(-1023);预习:2.7有理数的乘方1.计算:234-⎛⎫⎪⎝⎭的值是( )A.一916B.916C.一169D.1692.下列各对数中,数值相等的是( )A.+32与+22B.-23与(-2)3C.-32与(-3)2D.3×22与(3×2)2 3.下列等式成立的是( )A.-3×23=-32×2 B.-32=(-3)2C.-23=(-2)3 D.-32=-23 4.对于式子(-3)6与-36,下列说法中,正确的是( ) A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果也不相等5.下列叙述中:①正数与它的绝对值互为相反数;②非负数与它的绝对值的差为0;③-1的立方与它的平方互为相反数;④±1的倒数与它的平方相等.其中正确的个数有( )A.1 B.2 C.3 D.46.将3×3×3写成乘方的形式是;将-3×3×3写成乘方的形式是;将(-3)×(-3)×(-3)写成乘方的形式是.7.计算:-32+(-2)3的值是.8.在有理数-32,0,20,-1.25,314,-(-2),(-4)2中,正数有个.9.平方等于它本身的数是;立方等于它本身的数是.。
人教七年级数学上册第二章 有理数的加减乘除混合运算
A.45元
B.50元
C.55元
D.60元
同学们,今天我们学习了有理数的混合运算,我们要吸取
错题的教训,在计算前先厘清计算的顺序,再利用法则完
成计算,最后一定不要忘记检查!
教材习题:完成课本47页练习.
作业本作业:完成
1
3 2 7 14
(5)1÷16-84×7+18÷-27.
解:(1)原式=59.
(4)原式=6.
(2)原式=78.
3
(5)原式= -2.
3
(3)原式= -2.
【题型二】用计算器进行有理数的混合运算
例2:在计算器上依次按键
-11
后,显示的结果为_______.
7 9 5 8
(3)-3×-7+4×-5;
1 1 1 3 1
(4)25×3-2×11÷14.
(1)原式=-156.
(2)原式=-37.
(3)原式=1.2ຫໍສະໝຸດ (4)原式=-25
小组合作完成课本48页习题第10题.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
旧知回顾
我们小学阶段学过的加、减、乘、除混合运算的运算顺序是怎
样的?
先算乘除,后算加减,有括号先算括号里面的
视频导入
请同学们观看一段视频:
问题导入
请同学们先完成填空,再列出综合算式.
−
2
1
−
请同学们思考:有理数乘除混合运算的顺序是什么?
游戏导入
七年级数学上册第二章有理数2.6有理数的乘法与除法做含有带分数和小数的除法运算素材苏科版
做含有带分数和小数的除法运算
难易度:★★
关键词:有理数
答案:
有理数除法的法则只有两点,但在具体运算中有一些含有带分数和假分数的除法,不加以变化,仅运用法则,较难解决
【举一反三】
典例:计算
思路导引:一般来说,此类问题运算过程中一般化为假分数,小数化为分数
标准答案:
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
2.2 2.2.1 有理数的乘法 第2课时 有理数的乘法运算律
【解】-
−
.
× × ×
−
= −
=- ×(-1)= .
1
×
× − ×
返回
2
3
4
5
课堂讲练 夯基础
变式1计算:
(1)6× −
× ×(-5);
【解】6× −
× ×(-5)
× (−)
=6× ×
−
= ×4
=6.
返回
返回
1
2
3
4
5
当堂小练 验成效
(3)用你认为最合适的方法计算:-39
【解】原式=39
×7=
−
×(-7).
×7=40×7-
×7
=280- =279 .
返回
1
2
3
4
5
知识点3 多个有理数相乘的符号法则
3. [母题 教材P42探究] 下列式子中,积的符号为负的是( B
A. −
× +
×(-6)
B. (-9)× × −
C. (-3)×
D.
−
−
×6×
)
×7× −
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 有理数乘法运算律
知识点 1 有理数乘法运算律
1.在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了( )
A .加法交换律
B .加法结合律
C .乘法结合律
D .乘法分配律
2.计算-43×⎝ ⎛⎭⎪⎫-112×34
的结果是( ) A .1 B .-112 C .112 D .412
3.2017·滨湖区期中计算(1-12+13+14
)×(-12)时,运用哪种运算律可以避免通分( )
A .乘法分配律
B .乘法结合律
C .乘法交换律
D .乘法结合律和交换律
4.下列计算正确的是( )
A.()-48×⎝ ⎛⎭
⎪⎫16-18-1=-8+6+1=-1 B.()-24×⎝ ⎛⎭
⎪⎫-12+13-1=12+8+24=44 C.()-18×⎣⎢⎡⎦
⎥⎤-⎝ ⎛⎭⎪⎫-12=9 D .-5×2×||-2=-20
5.在横线上写出下列变化中所运用的运算律:
(1)3×(-2)×(-5)=3×[(-2)×(-5)]________;
(2)48×(524-216)=48×524-48×136
________. 6.填空:13×⎝ ⎛⎭⎪⎫-34-3=13×________+13
×________=________+________=________. 7.计算:(-4.5)×1.25×(-8)=________.
8.2017·苍南县模拟计算:(23-12)×(-6)=________.
9.计算:
(1)(-2)×(-78)×5;
(2)-4×5×(-0.25);
(3)(-37)×(-12)×(-815);
(4)(-8)×(-7.2)×(-2.5)×512;
(5)⎝ ⎛⎭⎪⎫47-19+221×(-63).
知识点 2 倒数的概念
10.2017·贺州-12的倒数是( )
A .-2
B .2 C.12 D .-12
11.下列说法错误的是( )
A .正数的倒数是正数
B .负数的倒数是负数
C .任何一个有理数a 的倒数都等于1a
D .0没有倒数
12.-3与a 互为倒数,则a 等于________.
13.+1的倒数是______,________的倒数是-1,________的倒数等于它本身.
14.写出下列各数的倒数.
(1)-11; (2)0.125; (3)-133.
15.如果规定符号“※”的意义是a ※b =a ·a ·b ,那么[5※(-2)]=________.
16.计算:⎝ ⎛⎭
⎪⎫-14-12+23×24-54×(-2.5)×(-8).
17.教材例2变式有时灵活运用分配律可以简化有理数的运算,使计算又快又准,例如逆用分配律ab +ac =a (b +c ),可使运算大大简便,试逆用分配律计算下列各题:
(1)(-56)×(-32)+51×(-32);
(2)(-6)×⎝ ⎛⎭
⎪⎫-317+()-6×337; (3)112×57-(-57)×212+(-52)×57
.
18.学了有理数的运算后,老师给同学们出了一道题:
计算:191718
×(-9). 下面是两位同学的解法:
小方:原式=-35918×9=-323118=-17912
; 小杨:原式=⎝
⎛⎭⎪⎫19+1718×(-9)=-19×9-1718×9=-17912. (1)两位同学的解法中,谁的解法较好?
(2)请你写出另一种更好的解法.
19.任何一个数都可以拆成两个数的和、差、积、商,通过拆分法你能计算下面这道题吗?
计算:2018×20172017-2017×20182018.
1.D .
2.C 3.A
4.D .
5.(1)乘法结合律 (2)乘法分配律
6.⎝ ⎛⎭⎪⎫-34 (-3) -14 (-1) -54
7.45 8.-1
9.解:(1)原式=2×5×78=780.
(2)原式=()4×0.25×5=5.
(3)原式=-37×⎝ ⎛⎭⎪⎫12×815=-37×415=-435.
(4)原式=-2.5×8×7.2×512=-60.
(5)原式=47×(-63)-19×(-63)+221×
(-63)=-36+7-6=-35.
10.A
11.C .
12.-13
13.1 -1 ±1
14.解:(1)-11的倒数是-111.
(2)0.125的倒数是8.
(3)-133的倒数是-313.
15.-50
16.解:原式=⎝ ⎛⎭⎪⎫-14-12+23×24-54×⎝ ⎛⎭⎪⎫
-52×(-8)
=-14×24-12×24+23×24-54×52×8
=-6-12+16-25
=-43+16
=-27.
17.解:(1)(-56)×(-32)+51×(-32)
=(-32)×(-56+51)
=-32×(-5)
=160.
(2)(-6)×(-317)+(-6)×337
=-6×(-317+337)
=-6×(-317+247)
=-6×(-1)
=6.
(3)112×57-⎝ ⎛⎭⎪⎫-57×212+⎝ ⎛⎭⎪⎫-52×57
=57×⎝ ⎛⎭⎪⎫112+212-52
=57×32
=1514.
18.解:(1)小杨同学的解法较好.
(2)191718×(-9)=⎝ ⎛⎭⎪⎫20-118×(-9)=20×(-9)-118×(-9)=-180+12=-17912.
19.解:原式=2018×2017×(10000+1)-2017×2018×(10000+1)=0.。