信号与系统第2章(2) (1)

合集下载

信号与系统 陈后金 第二版 课后习题答案(完整版)

信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠

2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )

信号与系统 于敏慧(第二版)第二周作业答案

信号与系统 于敏慧(第二版)第二周作业答案

y0(t)
1
t
0
2
4
(6) x(t) = dx0 (t) , h(t) = dh0 (t) 。
dt
dt
x(t) * h(t) = dx0 (t) * dh0 (t) = d 2 y0 (t)
dt dt
dt 2
x(t) ∗ h(t) = 0.5δ(t) − 0.5δ(t − 2)
2.10 求 y[n] = x1[n]* x2[n]* x3[n] 。 其 中 x1[n] = (0.5)n u[n] , x2[n] = u[n + 3] 和
(2)利用(1)的结果,求系统的逆系统的单位样值(脉冲)响应。
(3)利用(2)的结果,结合卷积性质,求一信号 x[n],使之满足
x[n]* h[n] = 2n (u[n] − u[n − 4])
解:(1) h[n] − Ah[n −1] = δ [n],其中 h[n] = (1 )n u[n] , 2
(通项: an = a1q n−1 )
n
∑ 此题: a1 = 1, q = 2 ; x[n]* h[n] = 2nu[n]*u[n] = ( 2k )u[n] = (2n+1 −1)u[n] k =0
2.6 计算图 2-45(b)与(c)所示信号 x(n)与 h(n)的卷积和,注意:N=4。 解:(b)利用脉冲信号δ(n)的卷积性质以及卷积的延时性质计算:
k =−∞
+ 3] =
u[n + 3] 0.5k
k =0

= 2(1 − 0.5n+4 )u[n + 3]
(2) x1[n]* x2[n]* x3[n] = 2(1 − 0.5n+4 )u[n + 3]* (δ [n] − δ [n −1]) ; = 2(1 − 0.5n+4 )u[n + 3] − 2(1 − 0.5n+3 )u[n + 2]

(完整版)信号与系统(吴大正)完整版答案纠错修改后版本

(完整版)信号与系统(吴大正)完整版答案纠错修改后版本

第一章 信号与系统1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为(2)∞<<-∞=-t e t f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

信号系统第二章(第2-4讲)

信号系统第二章(第2-4讲)

第二章 连续时间系统的时域分析§2-1 引 言线性连续时间系统的时域分析,就是一个建立和求解线性微分方程的过程。

一、建立数学模型主要应用《电路分析》课程中建立在KCL 和KVL 基础上的各种方法。

线性时不变系统的微分方程的一般形式可以为:)()(...)()()()(...)()(0111101111t e b t e dtd b te dt d b t e dt d b t r a t r dtd a t r dt d a t r dt d m m m m m m n n n n n ++++=++++------二、求解(时域解)1、时域法将响应分为通解和特解两部分:1) 通解:通过方程左边部分对应的特征方程所得到的特征频率,解得的系统的自然响应(或自由响应);2) 特解:由激励项得到系统的受迫响应;3)代入初始条件,确定通解和特解中的待定系数。

经典解法在激励信号形式简单时求解比较简单,但是激励信号形式比较复杂时求解就不容易,这时候很难确定特解的形式。

2、卷积法(或近代时域法,算子法)这种方法将响应分为两个部分,分别求解:1)零输入响应:系统在没有输入激励的情况下,仅仅由系统的初始状态引起的响应r)(t;zi2)零状态响应: 状态为零(没有初始储能)的条件下,仅仅由输入信号引起的响应r)(t。

zs●系统的零输入响应可以用经典法求解,在其中只有自然响应部分;●系统的零状态响应也可以用经典法求解,但是用卷积积分法更加方便。

借助于计算机数值计算,可以求出任意信号激励下的响应(数值解)。

●卷积法要求激励信号是一个有始信号,否则无法确定初始状态。

● 零输入响应与自然响应、零状态响应与受迫响应之间并不相等,具体对比见§2-9经典法在高等数学中已有详细介绍。

本课程中重点介绍近代时域法。

§2-2 系统微分方程的算子表示一、算子通过微分算子可以简化微分方程的表示。

微分算子:令dt d p =,n n n dtd p =, 积分算子:⎰∞-=t d p τ)()(1● 利用算子可以将电路中的电感和电容的伏安特性记为:L L L i p L dt di L u ⋅⋅== C t C C i pC d i C u ⋅⋅==⎰∞-11τ 即可以将电感和电容记成阻值为p L ⋅和p C ⋅1的电阻,即感抗和容抗。

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出

的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:

可化简为

,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航

奥本海姆信号与系统(第二版)复习题参考答案

奥本海姆信号与系统(第二版)复习题参考答案

第一章作业解答1.9解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2; 1.12解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 23 4 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。

1.14解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。

(也可以通过改变顺序求取输入、输出关系,与前面做对比)。

1.17解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。

第二章 时域离散信号和系统(数字信号处理)

第二章  时域离散信号和系统(数字信号处理)

第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4

上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非

令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统

信号与线性系统课件(第5版)管致中 第2章2-3及应用

信号与线性系统课件(第5版)管致中 第2章2-3及应用

得齐次解 (自由响应)为: y(t) =12e−t −11e−2t t ≥0
得全解(全响应)为: y(t) =12e−t −11e−2t +2e−3t
14
t ≥0
(4)零输入响应,特征根为:λ1 = −1, λ2 = −2
∴ yzi (t ) = A1e −t + A2e−2t
代入初始值,得
⎧A1 + ⎩⎨− A1
11

已知系统的转移算子 H ( p)
=
p2
p +2p+1
,初始条件为
r(0) = 1, r′(0) = 2, 试求系统的零输入响应 rzi(t)。并画出草图。
解:令 p2 + 2 p +1 = 0 得:p1 = p2 = −1
∴ rzi (t) = (C1 + C2t)e− t 代入初值得:
⎧r(0) = C1 = ⎩⎨r′(0) = −C1
一.冲激响应的定义
定义:当激励为单位冲激函数δ (t)时,系统的零状态响应称 为单位冲激响应,简称冲激响应,用h(t)表示。
h(t)
δ(t)
(1)
δ(t)
h(t)
LTI
0
t
零状态
0
t
冲激响应的一般形式:
δ (t)
h (t)
22
冲激响应的求法 � 直接求解法 � 间接求解法 � 转移算子法 � 拉普拉斯变换
� 受迫响应(强迫响应)
� 有输入激励时系统的响应。
� 对应于特解(只含外加激励频率项) 。
� 形式由微分方程的自由项或外加激励信号决定。
2
零输入响应与零状态响应
� 一个连续系统的完全响应,可以根据引起响应的不同原 因,将它分解为零输入响应和零状态响应两部分。 � 零输入响应

信号与系统(郑君里)复习要点

信号与系统(郑君里)复习要点

信号与系统复习书中最重要的三大变换几乎都有。

第一章 信号与系统 1、信号的分类 ①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。

③能量信号和功率信号 ④因果信号和反因果信号 2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k )f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0)4、系统的分类与性质?d )()4sin(91=-⎰-t t t δπ)0()()(f k k f k =∑∞-∞=δ4.1连续系统和离散系统4.2 动态系统与即时系统4.3 线性系统与非线性系统①线性性质T[a f (·)] = a T[ f (·)](齐次性)T[ f1(·)+ f2(·)] = T[ f1(·)]+T[ f2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:y(·) = y f(·) + y x(·) = T[{ f(·) }, {0}]+ T[ {0},{x(0)}] (可分解性)T[{a f(·) }, {0}] = a T[{ f(·) }, {0}]T[{f1(t) + f2(t) }, {0}] = T[{ f1(·) }, {0}] + T[{ f2(·) }, {0}](零状态线性) T[{0},{a x1(0) +b x2(0)} ]= aT[{0},{x1(0)}] +bT[{0},{x2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t -t d)] = y f(t -t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

奥本海姆《信号与系统(第二版)》习题参考答案.

奥本海姆《信号与系统(第二版)》习题参考答案.
故:时移系统是线性系统;(2时不变性:y1 (t = x1 (t − t1令:x 2 (t = x1 (t − t 0 → y 2 (t = x 2 (t − t1 = x1 (t − t 0 − t1而:y1 (t − t 0 = x1 (t − t1 − t 0 y1 (t − t 0 = y 2 (t故时移系统是时不变系统。(3)因果性:由定义可知,当t1 ≥ 0,则系统是因果的;否则为非因果系统;(4)记忆性:由定义可知,时移系统是记忆系统;(5)稳定性:由于信号进行时移后,不影响幅度,故时移系统是稳定的;二反折系统:线性、时变、非因果、记忆、稳定;三尺度系统:线性、时变、非因果、记忆、稳定;(a y (t = x(t − 2 + x(2 − t解:由于该系统由时移与反折系统所组成,故性质由二者决定:线性、时变、非因果、记忆、稳定;(b)y(t = [cos 3t ]x(t线性(略:是线性的时不变性:y1 (t = [cos 3t ]x(t令:x 2 (t = x1 (t − t 0 → y 2 (t = [cos 3t ]x 2 (t = [cos 3t ]x1 (t − t 0而:y1 (t − t 0 = [cos 3(t − t 0 ]x1 (t − t 0 y1 (t − t 0 ≠ y 2 (t故系统时变(总结:若y(t与x(t之间的关系除了x(t的形式外,还包括有关于t的函总结:的形式外,总结与之间的关系除了的形式外则该系统是时变系统数,则该系统是时变系统因果性:输出仅与x(t的当前值有关,故系统因果;(注意,因果性的定义:仅与当前值或以前值有关【二者只要满足一个就注意,注意因果性的定义:仅与当前值或以前值有关【是】记忆性:输出仅与x(t的当前值有关,故为非记忆系统;稳定性:由于cos3t是有界的函数,则x(t有界,y(t有界,故系统稳定;(c)y (t = ∫−∞ x(τ dτ解:线性:该系统是线性的(参考1小题证明);时不变性:2t y1 (t = ∫ x1 (τ dτ −∞ 2t 8

信号与系统 (2)

信号与系统 (2)

0 1
t0 t0
u(t)
t
(
t0 )d
u(t
t0
)
23
2.3 阶跃信号和冲激信号
u(t)与 (t)的关系:
t
( )d u(t)
d u(t) (t)
dt
t
(
t0 )d
u(t
t0 )
d dt
u(t
t0
)
(t
t0
)
(t)
(1)
0
t
u(t)
1
0
t
24
2.3 阶跃信号和冲激信号
即:
0 t 0
vc (t) 1
u(t) t 0
如果开关S在t = t0 时闭合, 则电容上的电压为u(t - t0) 。 u(t - t0)波形如下图所示:
u(t- t0 ) 1
0
t0
t
14
2.3 阶跃信号和冲激信号
u(t)与R(t)的关系:
u(t) dR(t) dt
t
R(t) u( )d
t
波形如图:
9
2.2 常用连续信号
Sat 的性质:
(1)Sat 是偶函数,在 t 正负两方向振幅都逐渐
衰减。
(2)
Sa(t)dt
0
2
Sa(t)dt
10
2.2 常用连续信号
4. 复指数信号 如果指数信号的指数因子为复数,则称为复指数信号,
其表达式为 f (t) Kest Ke( j )t Ket cos t jKet sin t 复指数信号概括了多种情况,可以利用复指数信号来
1
2t 3 1及 2t 3 1
t
1

《信号与系统》第二版_(郑君里)_高等教育出版社课件

《信号与系统》第二版_(郑君里)_高等教育出版社课件

10
2021/4/2
零输入响应与零状态响应(cont.)
例2 7 设有如图所示的RC电路,电容两端有起始电压u( C 0),激 励源为e(t),求t 0时系统响应 电容两端电压u( C t)。 解:列写系统的微分方程为
d dt
uc (t)
1 RC
uc (t)
1 RC
e(t )

据微分方


一般表达式可
t
e RCuc (t) uc (0 )
1 RC
t
e RCe( )d
0-
R
+
+ e(t) uc (0 ) C
-


得:uc
(t
)=e
t RC
uc
(0
)
1 RC
t
e
t RC
e(
)d
0-
零输入响应
零状态响应
+
uc (t)
-
smilegs2001@
11
2021/4/2
零输入响应与零状态响应(cont.)
uR (t) RiL (t) 联立上式得
+
is (t)
-
R
iC (t) +
C
uc (t)
-
iL (t)
+
L uL (t)
-
带入(5)式得iL
(t )
iS
(t )
C
duC (t) dt
代入(3)式得
L
diL (t) dt
uC (t)
RiL (t)........................(1)
KVL:
uL

2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

第一章测试1【判断题】(10分)正弦连续函数一定是周期信号A.对B.错2【判断题】(10分)正弦离散函数一定是周期序列。

A.错B.对3【判断题】(10分)余弦连续函数一定是周期信号。

A.错B.对4【判断题】(10分)余弦离散序列一定是周期的A.对B.错5【判断题】(10分)两个离散周期序列的和一定是周期信号。

A.对B.错6【判断题】(10分)两个连续周期函数的和一定是周期信号。

A.对B.错7【判断题】(10分)两个连续正弦函数的和不一定是周期函数。

A.对B.错8【判断题】(10分)取样信号属于功率信号。

A.对B.错9【判断题】(10分)门信号属于能量信号。

A.错B.对10【判断题】(10分)两个连续余弦函数的和不一定是周期函数。

A.错B.对第二章测试1【判断题】(10分)微分方程的齐次解称为自由响应。

A.对B.错2【判断题】(10分)微分方程的特解称为强迫响应。

A.错B.对3【判断题】(10分)微分方程的零状态响应是稳态响应的一部分A.对B.错4【判断题】(10分)微分方程的零输入响应是稳态响应的一部分A.对B.错5【判断题】(10分)微分方程的零状态响应包含齐次解部分和特解两部分。

A.错B.对6【判断题】(10分)微分方程的零状态响应中的特解部分与微分方程的强迫响应相等。

A.错B.对7【判断题】(10分)对LTI连续系统,当输入信号含有冲激信号及其各阶导数,系统的初始值往往会发生跳变。

A.对B.错8【判断题】(10分)对线性时不变连续系统,当输入信号含有阶跃信号,系统的初始值往往会发生跳变A.对B.错9【判断题】(10分)冲激函数匹配法是用于由零负初始值求解零正初始值。

A.对B.错10【判断题】(10分)LTI连续系统的全响应是单位冲激响应与单位阶跃响应的和。

A.对B.错第三章测试1【判断题】(10分)LTI离散系统的响应等于自由响应加上强迫响应。

A.错B.对2【判断题】(10分)LTI离散系统的响应等于齐次解加上零状态响应的和。

(完整版)信号与系统教案

(完整版)信号与系统教案
板书与PPT演示相结合介绍奇异信号包括单位冲激函数、阶跃函数,通过表达式、图形等方式理解及其相互的关系.
通过适当的例子加深巩固奇异信号的计算.
通过评定练习来了解学生所掌握知识的情况。
课堂练习、作业:
4。9 4。11(3) (6) (7)
课后小结:
此部分是该理解的重点内容,讲解速度偏慢,学生吸收效果良好。
教学重点、难点:
掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立.
教学方法及师生互动设计:
先列举部分系统,导入LTI系统,然后列举习题,让学生判别LTI系统。
板书与PPT演示相结合介绍其系统的描述方法和数学模型。
课堂练习、作业:
课后小结:
此部分内容稍易,大多数同学在学习过程中思路清晰,理解较为容易。
第10次课2学时 授课时间
课堂练习、作业:
7.1 (1)
课后小结:
该部分内容讲解学生较容易吸收,讲解效果良好.
第7次课2学时 授课时间
课题(章节)
6 零输入响应的求法
7 零状态响应的求法
教学目的与要求:
掌握零输入响应的概念与求法
掌握零状态响应的概念与求法
教学重点、难点:
几个概念的引入,冲激相应h(t)的求解.
零输入响应和零状态响应的求法。
课堂练习、作业:
7.14 7.16 (2)
课后小结:
该内容是教学重点,通过例举例题讲解系统全响应的计算方法,并通过习题巩固该内容,讲解还是偏快,应进一步降慢讲解速度。
第9次课2学时 授课时间
课题(章节)
第3 章 傅里叶变换
1 周期信号表示为傅里叶级数
2 周期信号的频谱
教学目的与要求:
正确掌握傅立叶级数的三种表示形式;掌握周期信号幅度谱﹑相位谱的特点。

2020年智慧树知道网课《信号与系统(宁夏大学)》课后章节测试满分答案

2020年智慧树知道网课《信号与系统(宁夏大学)》课后章节测试满分答案

绪论单元测试1【判断题】(1分)信号到的运算中,若a>1,则信号的时间尺度缩小a倍,其结果是将信号的波形沿时间轴放大a倍。

A.错B.对第一章测试1【判断题】(1分)信号到的运算中,若a>1,则信号的时间尺度缩小a倍,其结果是将信号的波形沿时间轴放大a倍。

A.对B.错2【判断题】(1分)如果某连续时间系统同时满足叠加性和齐次性,则称该系统为线性系统。

A.错B.对3【判断题】(1分)直流信号与周期信号都是功率信号。

A.错B.对4【单选题】(1分)将信号变换为()称为对信号的平移或移位。

A.B.C.D.5【单选题】(1分)下列各表达式正确的是()。

A.B.C.D.6【单选题】(1分)积分的结果为()。

A.3B.C.1D.97【单选题】(1分)设输入为、时系统产生的响应分别为、,并设、为任意实常数,若系统具有如下性质:,则系统为()。

A.时不变系统B.因果系统C.非线性系统D.线性系统8【单选题】(1分)()。

A.B.C.D.9【单选题】(1分),该序列是()。

A.非周期序列B.周期C.周期D.周期10【多选题】(1分)连续时间系统系统结构中常用的基本运算有()。

A.微分器B.标量乘法器C.积分器D.加法器11【多选题】(1分)下列等式成立的是()。

A.B.C.D.12【判断题】(1分)一系统,该系统是线性系统。

()A.错B.对第二章测试1【判断题】(1分)强迫响应是零状态响应与部分自由响应之差。

()A.对B.错2【判断题】(1分)连续时间系统的单位阶跃响应是系统在单位阶跃信号作用下的响应。

()A.对B.错3【判断题】(1分)零状态响应是由激励引起的响应。

()A.错B.对4【判断题】(1分)某连续时间系统是二阶的,则其方框图中需要两个积分器。

()A.错B.对5【单选题】(1分)若系统的输入信号为,冲激响应为,则系统的零状态响应是()。

A.B.C.D.6【单选题】(1分)卷积的结果是()。

A.B.C.D.7【单选题】(1分)卷积积分等于()。

电子教案《信号与系统》(第三版)信号系统习题解答.docx

电子教案《信号与系统》(第三版)信号系统习题解答.docx

《信号与系统》(第 3 版)习题解析高等教育出版社目录第 1 章习题解析 (2)第 2 章习题解析 (6)第 3 章习题解析 (16)第 4 章习题解析 (23)第 5 章习题解析 (31)第 6 章习题解析 (41)第 7 章习题解析 (49)第 8 章习题解析 (55)第 1 章习题解析1-1题 1-1 图示信号中, 哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c)(d)题 1-1图解 (a)、(c)、(d)为连续信号; (b)为离散信号; (d)为周期信号;其余为非周期信号; (a)、(b)、(c)为有始(因果)信号。

1-2 给定题 1-2 图示信号 f( t ),试画出下列信号的波形。

[提示: f( 2t )表示将 f( t )波形压缩,f( t)表示将 f( t )波形展宽。

]2(a) 2 f( t 2 )(b) f( 2t ) (c) f(t)2(d) f( t +1 )题1-2图解 以上各函数的波形如图 p1-2 所示。

图 p1-21-3如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统S R、S L、 S C,试写出各系统响应电压与激励电流函数关系的表达式。

S RS LS C题 1-3图解各系统响应与输入的关系可分别表示为u R (t)R i R (t )u L (t)di L (t )L1dttu C (t )i C ( )dC1-4如题1-4图示系统由加法器、积分器和放大量为 a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题 1-4图解 系统为反馈联接形式。

设加法器的输出为 x( t ),由于x(t ) f (t) ( a) y(t)且y(t ) x(t)dt ,x(t) y (t)故有y (t) f (t ) ay (t)即y (t ) ay(t ) f (t)1-5已知某系统的输入 f( t )与输出 y( t )的关系为 y( t ) = | f( t )|,试判定该系统是否为线性时不变系统?解 设 T 为系统的运算子,则可以表示为y(t) T[ f (t )]f (t)不失一般性,设 f( t ) = f 1( t ) + f 2 ( t ),则T[ f 1 (t)]f 1 (t)y 1 (t )T[ f 2 (t)] f 2 (t )y 2 (t )故有T[ f (t)] f 1 (t )f 2 (t ) y(t)显然f 1 (t ) f 2 (t)f 1 (t ) f 2 (t )即不满足可加性,故为非线性时不变系统。

信号与系统第2章信号的复数表示

信号与系统第2章信号的复数表示
π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H4
X x1
H 1 x2 H 2 x3 H 3
x4 H 5
Y
再求其它参数。
G1
G2
G3
第一条前向通路:X x1 x2 x3 x4 Y
G1 H1 H 2 H 3 H 5 ,
由于各环路都与该前向通路都接触,所以
1 1
第二条前向通路:X x1 x4 Y
14
5.7 系统模拟及信号流图
例5.7-1:求下图所示流图的系统函数。 H4
X x1
H 1 x2 H 2 x3 H 3
x4 H 5
Y
解: 求 La
a
G1
G2
G3
x1 x2 x1 环路:L1 G1H1
x2 x3 x2 环路:L2 G2 H 2 x3 x4 x3 环路:L3 G3 H3 x1 x4 x3 x2 x1 环路:L4 G1G2G3 H 4
H1 (s)
x(t )
H k ( s) C H i ( s)
i 1
k
H 2 ( s)

y(t )

H k ( s)
22
5.7 系统模拟及信号流图
2s 4 例5.7-1:已知 H ( s) 3 2 s 3s 5s 3
式、级联形式和并联形式模拟此系统。 试分别用直接形


2 90
360
() 360
3
5.6 全通系统和最小相位系统
2 最小相位系统
5
5.6 全通系统和最小相位系统
零点仅位于左半s平面或 j 轴上的系统函数称为最小相位 函数。对应的系统称为最小相位系统(minimum-phase system)。反之,如果系统函数有一个或多个零点在右半s 平面,则称该系统为非最小相位系统。
转移函数都是
b1 s b0 H (s) s a0
13
5.7 系统模拟及信号流图
(3) 信号流图的梅森公式
梅森公式:
1 H GK K K
b ,c d ,e , f
1 La Lb Lc
a
L L L
d e
f
----- 信号流图的特征行列式
a
x1
x2
b
d
' x3
1
c
'' x3
4.给定系统,信号流图并不惟一。
dy (t ) dx (t ) a0 y (t ) b1 b0 x(t ) dt dt
b1 b1
x(s)
1
s 1
b0
1
y (s) x(s)
1
b0
a0
a0
12
s
1
1
y (s)
5.7 系统模拟及信号流图
5. 流图转置以后,其转移函数保持不变。
第5章 连续时间系统的变换域分析
5.1 系统响应的拉氏变换求解 5.2 系统函数与冲激响应 5.3 零、极点分布与时域响应特性
5.4 零、极点分布与系统频率响应特性的关系 5.5 典型系统的频响特性 5.6 全通系统和最小相位系统 5.7 系统模拟及信号流图
5.8 系统的稳定性
5.9 MATLAB在连续系统变换域分析中的应用
可以证明:非最小相位函数可以表示为最小
相位函数与全通函数的乘积。
6
5.6 全通系统和最小相位系统
7
5.7 系统模拟及信号流图
5.7.1 系统的框图
三种基本单元的方框图及运算功能
x1 (t ) X 1 (s)

y(t ) x1 (t ) x2 (t )
x(t )
X ( s)
a

y(t ) ax(t )
1
5.6 全通系统和最小相位系统
1 全通系统
H(s)的极点位于左半s平面 零、极点对于jΩ 轴互为镜像。 H(s)的零点位于右半s平面
j
N1 N 2 N3 H ( j) K M 1M 2 M 3 e j[(1 2 3 )(1 2 3 )]
H ( j) K
2
5.6 全通系统和最小相位系统
X (s)
s 1
2
s 1
s 1
2
1
2
Y ( s)
24
3
5.7 系统模拟及信号流图
(3)并联形式
2s 4 1 s 1 H ( s) 2 2 ( s 1)( s 2s 3) s 1 s 2s 3 1 s 1 H1 ( s ) , 1 s 1 1 s s 1 s 1 s 2 H 2 ( s) 2 s 2s 3 1 2s 1 3s 2
Y ( s) aX ( s)
Y (s) X 1 (s) X 2 (s)
x2 (t ) X ( s ) 2
x(t )
a
y(t ) ax(t )
(a) 加法器
(b) 数乘器
t
x(t )
1 P
y(t ) x( )d

1 y (0 ) s
X (s)
(c) 积分器(时域表示)
a3
输出节点(阱点):只 有输入支路的节点。
10
5.7 系统模拟及信号流图
(2) 信号流图的性质
1.信号只能沿支路箭头方向传输,支路的输出是该支路输入与 支路增益的乘积。 如:
X (s)
H(s)
Y ( s)
Y ( s) H ( s) X ( s)
2.当节点有几个输入时,节点将所有输入支路的信号相加,并 将其和传送给与该节点相连的输出节点。
由(2)得:
Y (s) (b2 b1s 1 b0 s 2 )W (s)
b2
(4)
b1
X ( s ) W s 1 a1
s 1s 1Wb0 Nhomakorabeas 2W
b2 b1s 1 b0 s 2 H ( s) 1 2 1 a s a s 1 0 Y ( s)
20
a0
5.7 系统模拟及信号流图
2. 级联形式(串联形式)
x(t )
H ( s) A0 H1 ( s) H 2 ( s) H k (s) A0 H i ( s)
k
A0
i 1
H1 (s)
H 2 ( s)
H k ( s)
y(t )
1 b1i s 1 H i ( s) 1 一阶节 1 a1i s

1 b1i s 1 b2i s 2 H i ( s) 1 2 二阶节 1 a1i s a2i s

a1i

a1i
s 1
(一阶节)
b1i
a2i
s 1 s 1
b1i
b2i
(二阶节)
21
5.7 系统模拟及信号流图
3. 并联形式
H ( s) C H1 ( s) H 2 ( s) C
解:(1)直接形式
2s 2 4s 3 H ( s) 1 3s 1 5s 2 3s 3
2
X (s)
s 1
s 1
s 1
4
3
Y ( s)
5 3
23
5.7 系统模拟及信号流图
(2)级联形式
2s 4 2( s 2) H ( s) 3 2 s 3s 5s 3 ( s 1)(s 2 2s 3) 2 2s 1 H1 ( s) s 1 1 s 1 s2 s 1 2s 2 H 2 ( s) 2 s 2s 3 1 2s 1 3s 2
L1L3 G1G3 H1H3 , 即
L L
b b ,c
c
G1G3 H1H 3
没有三个及三个以上都不接触的 环路,所以,
1 La Lb Lc
a b ,c
1 (G1H1 G2 H 2G3 H 3 G1G2G3 H 4 ) G1G3 H1H 3
16
5.7 系统模拟及信号流图
1 s 积分器(s域表示)
1 1 Y ( s) X ( s) y (0 ) s s
8
5.7 系统模拟及信号流图
5.7.2 信号流图 (1) 信号流图的获得
系统的信号流图,就是用一些点和线段来表示系统。
X (s)
H(s)
Y ( s)
X (s)
H(s)
Y ( s)
Y ( s) H ( s) X ( s)
s 1
1
X (s)
s 1 s 1
1 2
Y ( s)
3
25
5.8 系统的稳定性
5.8.1 稳定系统的定义
对于有界激励信号产生有界响应的系统称为稳定系统。
M x , M y均为有限 即:对于 x(t ) M x , 则 y(t ) M y , 其中,
正数。
5.8.2 系统稳定的条件
18
5.7 系统模拟及信号流图
5.7.3 系统模拟 1. 直接形式

d 2 y (t ) dy(t ) d 2 x(t ) dx(t ) a1 a0 y (t ) b2 b1 b0 x(t ) 2 2 dt dt dt dt
Y (s) b2 s 2 b1s b0 b2 b1s 1 b0 s 2 则系统函数为 H ( s) 2 X (s) s a1s a0 1 a1s 1 a0 s 2
G2 H 4 H 5 ,
由于环路 x2 x3 x2与该前向通路不接触,所以
2 1 La 1 G2 H 2
a
17
5.7 系统模拟及信号流图
相关文档
最新文档