高中数学3.1.1方程的根与函数的零点教案新人教必修1
高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1
3.1.1 方程的根与函数的零点[学习目标] 1.理解函数零点的定义,会求函数的零点.2.掌握函数零点的判定方法.3.了解函数的零点与方程的根的联系.[知识链接]考察下列一元二次方程与对应的二次函数:(1)方程x2-2x-3=0与函数y=x2-2x-3;(2)方程x2-2x+1=0与函数y=x2-2x+1;(3)方程x2-2x+3=0与函数y=x2-2x+3.你能列表表示出方程的根,函数的图象及图象与x轴交点的坐标吗?答案[1.函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系;方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点存在的判定方法如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0.那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.温馨提示 判定函数零点的两个条件缺一不可,否则不一定存在零点;反过来,若函数y =f (x )在区间(a ,b )内有零点,则f (a )·f (b )<0不一定成立.要点一 求函数的零点例1 判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x 2+7x +6; (2)f (x )=1-log 2(x +3); (3)f (x )=2x -1-3;(4)f (x )=x 2+4x -12x -2.解 (1)解方程f (x )=x 2+7x +6=0, 得x =-1或x =-6, 所以函数的零点是-1,-6.(2)解方程f (x )=1-log 2(x +3)=0,得x =-1, 所以函数的零点是-1. (3)解方程f (x )=2x -1-3=0,得x =log 26,所以函数的零点是log 26.(4)解方程f (x )=x 2+4x -12x -2=0,得x =-6,所以函数的零点为-6.规律方法 求函数零点的两种方法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点.跟踪演练1 判断下列说法是否正确: (1)函数f (x )=x 2-2x 的零点为(0,0),(2,0); (2)函数f (x )=x -1(2≤x ≤5)的零点为x =1.解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错. 要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫12,34 答案 C解析 ∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f (12)=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,∴零点在⎝ ⎛⎭⎪⎫14,12上. 规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象. 2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点.跟踪演练2 函数f (x )=e x+x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,∴f (x )在(0,1)内有零点. 要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0,f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点.1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x的零点所在的大致区间是( )A .(6,7)B .(7,8)C .(8,9)D .(9,10) 答案 D解析 因为f (9)=lg 9-1<0,f (10)=lg 10-910=1-910>0,所以f (9)·f (10)<0,所以y =lg x -9x在区间(9,10)上有零点,故选D.4.方程2x -x 2=0的解的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 在同一坐标系画出函数y =2x,及y =x 2的图象,可看出两图象有三个交点,故2x-x 2=0的解的个数为3.5.函数f (x )=x 2-2x +a 有两个不同零点,则实数a 的范围是________. 答案 (-∞,1)解析 由题意可知,方程x 2-2x +a =0有两个不同解, 故Δ=4-4a >0,即a <1.1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.一、基础达标1.下列图象表示的函数中没有零点的是( )答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是( )A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是( )A.(-1,0) B.C.(1,2) D.(2,3)答案 C解析由上表可知f(1)=2.72-3<0,f(2)=7.39-4>0,∴f(1)·f(2)<0,∴f(x)在区间(1,2)上存在零点.4.函数f(x)=ln x+2x-6的零点所在的区间为( )A.(1,2) B.(2,3)C.(3,4) D.(4,5)答案 B解析f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,f(3)=ln 3+6-6=ln 3>0,所以f(2)·f(3)<0,则函数f(x)的零点所在的区间为(2,3).5.方程log3x+x=3的解所在的区间为( )A.(0,2) B.(1,2)C.(2,3) D.(3,4)答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1,a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0,f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点.由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点, 故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3,∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1,∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎪⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1, 结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧-2a 2-16≥0,f=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在定理,得f (1)=5-2a <0,解得a >52.(3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内, 结合二次函数的单调性与零点存在定理,得⎩⎪⎨⎪⎧f =4>0,f =5-2a <0,f =40-12a <0,f=68-16a >0,解得103<a <174.。
高中数学《3.1.1方程的根与函数的零点(一)》教案 新人教A版必修1
模块必修一第三单元第3.1.1节方程的根与函数零点教学案 课时:第一课时 课型:新授 编者: 日期: 年 月 日 三维目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.自主性学习1、旧知识铺垫 复习1:一元二次方程2ax +bx +c =0 (a ≠0)的解法.判别式∆= .当∆ 0,方程有两根,为1,2x = ;当∆ 0,方程有一根,为0x = ;当∆ 0,方程无实根.复习2:方程2ax +bx +c =0 (a ≠0)的根与二次函数y =ax 2+bx +c (a ≠0)的图象之间有什么关2、新知识学习探究任务一:函数零点与方程的根的关系问题:① 方程2230x x --=的解为 ,函数223y x x =--的图象与x 轴有 个交点,坐标为 .② 方程2210x x -+=的解为 ,函数221y x x =-+的图象与x 轴有 个交点,坐标为 .③ 方程2230x x -+=的解为 ,函数223y x x =-+的图象与x 轴有 个交点,坐标为 .根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数20(0)y ax bx c a =++=≠的图象与x 轴交点的 .你能将结论进一步推广到()y f x =吗?总结:零点的定义反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?探究任务二:零点存在性定理问题:① 画出二次函数()223f x x x =--的图像,观察函数在区间[-2,1]上有无零点,计算f(-2)与f(1)的乘积,你能发现他们的乘积有什么特点?在区间[2,4]上是否也有这种特点呢?通过函数的图象和计算发现:()()21f f -⋅__0,()223f x x x =--在(-2,1)有零点_______,它是2230x x --=的根。
3.1.1方程的根与函数的零点教案(优秀教案)
《方程的根与函数的零点》的助学案高一(8)班 授课教师学习目标:1.掌握函数零点的概念;了解函数零点与方程根的关系; 2零点的概念及零点存在性的判定学习难点:探究判断函数的零点个数和所在区间的方法.预习案:先来画出几个具体的一元二次方程对应的二次函数的图象,并观察二次函数与x轴交点个数?○1方程0322=--x x 与函数322--=x x y ;○2方程0122=+-x x 与函数122+-=x x y ;○3方程0322=+-x x 与函数322+-=x x y探究案:探究1:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
注意:①函数零点不是一个点,而是具体的自变量的取值;②存在性一致:方程f(x)=0有实数根⇔函数y =f(x)的图象与x 轴有交点⇔函数y =f(x)有零点. 零点是针对函数而言的,根是针对方程而言的。
练习:求函数x x y 43-=的零点是不是所有的二次函数)0(2≠++=a c bx ax y 都有零点? ac b 42-=∆ 02=++c bx ax 的实根 )0(2≠++=a c bx ax y 图像与x 轴交点 )0(2≠++=a c bx ax y 有几个零点∆>0∆=0∆<0探究2:观察二次函数32)(2--=x x x f 的图象:○1在区间()1,2-上有零点吗?______;=-)2(f _______,=)1(f _______,)2(-f •)1(f _____0 (<或>).○2 在区间()4,2上有零点______;)2(f •)4(f ____0 (<或>).观察下面函数)(x f y =的图象○1 在区间()b a ,上______(有/无)零点;)(a f •)(b f _____0(<或>).○2 在区间()c b ,上______(有/无)零点;)(b f •)(c f _____0(<或>).○3 在区间()d c ,上______(有/无)零点;)(c f •)(d f _____0(<或>).○4()a f •()c f _____0(<或>).在区间()c a ,上______(有/无)零点?○5()()d f a f • 0(<或>)。
高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1
师:提出探究,请一个小组到大屏前进行探究过程,巡视各小组完成情况,帮助学生解决相应问题,参与小组内的讨论,给予恰当及时的评价与鼓励,小组成果展示后教师对每个小组的成果进行点评总结
生:小组合作探究,明确分工,完成小组探究,完成进行展示,出现问题向教师求助
五、教学资源和工具设计
教师制作PPT,设计学案(纸质)
图形计算器或者图形计算器软件,计算机,交互式触摸白板
图形计算器为教师和学生提供了一个研究函数的平台,利用图形计算器可以给学生提供一个高效快捷研究函数的环境,有助于学生的理解和探究。
六、教学重点及难点
教学重点:方程的根与函数的零点的关系
教学难点:函数的零点的判断
生:独立按时完成,能力较弱的只要完成1、2两题即可
分层完成课堂反馈有助于不同的学生得到适于本身的收获
学生回归数学方法,教师检验学生对所学知识的掌握情况
PPT展示
(六)收获小结
要解决函数 的零点问题,我们可以通过什么方法?
师:提出问题
生:进行解决方法说明
对本节课所学知识和解决本节课相关问题的方法于函数 ,把使 的实数 叫做函数 的零点
师:提出问题,根据学生回答板书问题的答案
生:思考分析定义并回答问题
检验学生的自学成果,并且落实教学重点,完成部分教学目标。
PPT展示
函数零点的定义
(三)
合作探究
结合函数的零点的定义,利用图形计算器探究函数 的图象形状与函数的零点个数之间的关系。
15
10
5
0
会应用所学知识解决函数的零点的相关问题
20
15
10
5
过程与方法
高中数学 3.1 函数与方程 1 方程的根与函数的零点(一)教学案新人教A版必修1
§3.1.1 方程的根与函数的零点(一)【教学目标】1.知识与技能理解函数(二次函数)零点的概念;领会函数零点与相应方程的关系;掌握零点存在的判断条件. 2.过程与方法通过观察二次函数的图像,并计算函数在区间端点处的函数值的积的符号,找到图像连续不断的函数在某个区间上存在零点的判断方法.3. 情感、态度、价值观从函数的零点和方程根的内在联系中体验数学中的转化思想的意义和价值;培养学生观察能力和抽象概括能力【预习任务】阅读P86-88页,完成下列任务1.理解一元二次函数y=ax2+bx+c的图象与相应方程ax2+bx+c=0(a≠0)的根之间的关系.设判别式△=b2-4ac(1)当△>0时,一元二次方程有两不等实数根,写出与相应二次函数的图象间的关系(2)当△=0时,一元二次方程有两相等实数根,写出与相应二次函数的图象间的关系(3)当△<0时,一元二次方程没有实数根,写出与相应二次函数的图象间的关系2.理解函数零点概念并记忆①写出函数的零点定义;②函数的零点与相应方程的根、与相应函数的图象与x轴交点的横坐标之间有什么关系?③如果函数y=f(x)在区间[a,b]上是单调函数且图像是连续不断的,零点c (a,b),判断f(a)·f(b)的符号.3.写出零点存在定理并记忆;【自主检测】1.函数f(x)= x 2-2x -3①判断方程x 2-2x -3=0根的个数.②方程x 2-2x -3=0的根与二次函数f(x)= x 2-2x -3的零点有什么关系?③-1是方程x 2-2x -3=0的一个根,介于-2与0之间,判断f(-2)∙f(0)的符号.2.函数f(x)=lnx -2x的零点所在的大致区间是( ) A.(1,2) B.(2,3) C.(1e ,1)和(3,4) D.(e,+∞)【组内互检】1.写出函数的零点定义;2.函数的零点与相应方程的根、与相应函数的图象与x 轴交点的横坐标之间的关系。
高中数学 3.1.1 方程的根与函数的零点教学设计 新人教版必修1
云南省德宏州芒市第一中学高中数学 3.1.1方程的根与函数的零点教学设计 新人教版必修1一、教学目标1.理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.2.通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.教学重点、难点重点: 零点的概念及存在性的判定.难点: 零点的确定.二、预习导学(一)创设情景,揭示课题1、提出问题:一元二次方程 a x 2+bx+c=0 (a ≠0)的根与二次函数y=a x 2+bx+c(a ≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:①方程0322=--x x 与函数322--=x x y②方程0122=+-x x 与函数122+-=x x y③方程0322=+-x x 与函数322+-=x x y引导学生解方程,画函数图象,分析方程的根与图象和x 轴交点坐标的关系,引出零点的概念.上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.函数零点的求法:求函数)(x f y =的零点:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.三、问题引领,知识探究1.根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论. 二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.2.零点存在性的探索:(Ⅰ)观察二次函数32)(2--=x x x f 的图象:① 在区间]1,2[-上有零点______; =-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>=).② 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>=).(Ⅱ)观察下面函数)(x f y =的图象① 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>=).② 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>=).③ 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>=).由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?四、练习内化(讲练结合)例1.求函数f(x)=322+--x x 的零点个数。
3.1.1方程的根与函数的零点(教学设计)
3.1.1方程的根与函数的零点(教学设计)一、教材分析《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书 A 版必修1第三章《函数的应用》第一节的第一课时,主要内容是函数 零点的概念、函数零点与相应方程根的关系,函数零点存在性定理, 是一节概念课.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础.因此本节内容具有承前启后的作用,地位至关重要. 二、教学目标【知识与技能】理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件. 【过程与方法】零点存在性的判定.【情感、态度、价值观】在函数与方程的联系中体验数学中的转化思想的意义和价值. 教学重点难点:重点 零点的概念及存在性的判定. 难点 零点的确定. 三 教学环节设计 【教学过程】(一)创设情境,感知概念 实例引入解下列方程并作出相应的函数图像 2x-4=0;y=2x-4(二)探究1:观察几个具体的一元二次方程的根与二次函数,完成下表: 填空:方程 x 2-2x -3=0 x 2-2x +1=0 x 2-2x +3=0 根 x 1=-1,x 2=3 x 1=x 2=1 无实数根函数 y =x 2-2x -3 y =x 2-2x +1 y =x 2-2x +3图象图象与x 轴的交点两个交点: (-1,0),(3,0)一个交点:(1,0)没有交点问题1:从该表你可以得出什么结论?归纳:判别式Δ Δ>0Δ=0 Δ<042-2-4 3 -1 1 2 Oxy 4 2-2 -43 -1 1 2 Ox y 4 2-23 -1 1 2 Ox y方程ax 2+bx +c =0 (a >0)的根 两个不相等的实数根x 1、x 2有两个相等的实数根x 1 = x 2没有实数根函数y =ax 2+bx +c (a >0)的图象函数的图象与x 轴的交点 两个交点: (x 1,0),(x 2,0) 一个交点:(x 1,0) 无交点问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?学生讨论,得出结论:一元二次方程的根就是函数图象与x 轴交点的横坐标.问题3:其他的函数与方程之间也有类似的关系吗?师生互动:由一元二次方程抽象出一般方程,由二次函数抽象出一般函数,得出一般的结论:方程f (x )=0有几个根,y =f (x )的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.(三)辨析讨论,深化概念概念:对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. 即兴练习:函数f (x )=x (x 2-16)的零点为 ( D ) A .(0,0),(4,0) B .0,4 C .(–4,0),(0,0),(4,0) D .–4,0,4 说明:①函数零点不是一个点,而是具体的自变量的取值.②求函数零点就是求方程f (x )=0的根.问题4:函数的零点与方程的根有什么共同点和区别?(1)联系:①数值上相等:求函数的零点可以转化成求对应方程的根;②存在性一致:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(2)区别:零点对于函数而言,根对于方程而言.探究2:如何求函数的零点?练习1:求下列函数的零点 (1)y=3x- 3 (2)y=log2x小结:求函数零点的步骤:(1)令f(x)=0;(2)解方程f(x)=0;(3)写出零点. 练习2:函数f (x )=x 2-4的零点为( ) A .(2,0) B .2C .(–2,0),(2,0)D .–2,2练习3:求下列函数的零点O xyx 1 x 2Oyxx 1 Ox y(1)f(x)=-x2+3x+4 (2)f(x)=lg(x2+4x-4)小结:(1)求函数的零点可以转化成求对应方程的根;(2)零点对于函数而言,根对于方程而言. (四)实例探究,归纳定理 零点存在性定理的探索.问题5:结合图像,试用恰当的语言表述如何判断函数在某个区间上是否存在零点? 观察函数的图象:①在区间(a ,b )上___(有/无)零点;f (a )·f (b ) ___ 0(“<”或“>”). ②在区间(b ,c )上___(有/无)零点;f (b )·f (c ) ___ 0(“<”或“>”). ③在区间(c ,d )上___(有/无)零点;f (c )·f (d ) ___ 0(“<”或“>”).完成课本87P 的探究,归纳函数零点存在的条件.【零点存在性定理】如果函数y =f (x )在区间[a ,b ]上的图象是连续不断一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点.即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.即兴练习:下列函数在相应区间内是否存在零点?(1)f (x )=log 2x ,x ∈[12,2]; (2)f (x )=e x -1+4x -4,x ∈[0,1].(五)正反例证,熟悉定理 定理辨析与灵活运用例1 判断下列结论是否正确,若不正确,请使用函数图象举出反例:(1)已知函数y=f (x )在区间[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在区间(a ,b )内有且仅有一个零点. ( × )(2)已知函数y=f (x )在区间[a ,b ]上连续,且f (a )·f (b )≥0,则f (x )在区间(a ,b )内没有零点. ( × )(3)已知函数y=f (x )在区间[a ,b ]满足f (a )·f (b )<0,则f (x )在区间(a ,b )内存在零点.( × ) 例题讲解例2:求函数f (x )=ln x +2x -6的零点的个数,并确定零点所在的区间[n ,n +1](n ∈Z ). 解法1(借助计算工具):用计算器或计算机作出x 、f (x )的对应值表和图象.x1 2 3 4 5 6 7 8 9 f (x ) -4.0 -1.3 1.1 3.4 5.6 7.8 9.9 12.1 14.2c bd ax O y由表或图象可知,f (2)<0,f (3)>0,则f (2) f (3)<0,这说明函数f (x )在区间(2,3)内有零点.问题8:如何说明零点的唯一性?又由于函数f (x )在(0,+∞)内单调递增,所以它仅有一个零点.解法2(估算):估计f (x )在各整数处的函数值的正负,可得如下表格:x 1 2 3 4 f (x ) - - + +结合函数的单调性,f (x )在区间(2,3)内有唯一的零点. 解法3(函数交点法):将方程ln x +2x -6=0化为ln x =6-2x ,分别画出g(x )=ln x 与h(x )=6-2x 的草图,从而确定零点个数为1.继而比较g(2)、h(2)、g(3)、h(3)等的大小,确定交点所在的区间,即零点的区间.由图可知f (x )在区间(2,3)内有唯一的零点. 练习:(1)已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表:x 1 2 3 4 5 6 7 f (x ) 23 9 -7 11 -5 -12 -26那么函数在区间[1,6]上的零点至少有 ( ) A .5个 B .4个 C .3个 D .2个(六)课堂小结(学生谈谈本节课学习的收获)(七)布置作业:习题3.1A 组 26O xy 2 1 3 4g (x )h (x )。
3.1.1《方程的根与函数的零点》教案(新人教版必修1)
3.1.1 方程的根与函数的零点一、教学目标:1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数2.让学生了解函数的零点与方程根的联系3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用4.培养学生动手操作的能力二、教学重点、难点重点 零点的概念及存在性的判定. 难点 零点的确定.三、学法与教学用具学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
教学用具:投影仪。
教学过程:(一)创设情景,揭示课题1、提出问题:一元二次方程 a x 2+bx+c=0 (a ≠0)的根与二次函数y=a x 2+bx+c(a ≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程0322=--x x 与函数322--=x x y②方程0122=+-x x 与函数122+-=x x y③方程0322=+-x x 与函数322+-=x x y1.师:引导学生解方程,画函数图象,分析方程的根与图象和x 轴交点坐标的关系. 要求学生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流. 师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知通过上述问题引出函数零点的概念:定义:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).指出函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.想一想,怎样求函数的零点呢?师:引导学生认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法;求方程0)(=x f 的实数根;②几何法.将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。
高中数学3.1.1方程的根与函数的零点教学设计新人教A版必修1
3.1.1方程的根与函数的零点(教学设计)教学目标:知识与技能:理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法:零点存在性的判定.情感、态度、价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值. 教学重点:重点:零点的概念及存在性的判定. 难点:零点的确定. 一、复习回顾,新课导入讨论:一元二次方程)0(02≠=++a c bx ax 的根与二次函数)0(2≠++=a c bx ax y 数的图象有什么关系? 先观察几个具体的一元二次方程及其相应的二次函数,分别选取方程有两个不同的根、重根和无实数根三种类型.方程0322=--x x 与函数322--=x x y ; 方程0122=+-x x 与函数122+-=x x y ; 方程0322=+-x x 与函数322+-=x x y ;再请同学们解方程,并分别画出三个函数的草图.一元二次方程)0(02≠=++a c bx ax 有两不同根就是相应的二次函数02=++=c bx ax y 的图象与x 轴有两个不同交点,且其横坐标就是根;一元二次方程)0(02≠=++a c bx ax 有两个重根就是相应的二次函数02=++=c bx ax y 的图象与x 轴一个交点,且其横坐标就是根;一元二次方程)0(02≠=++a c bx ax 无实数根就是相应的二次函数02=++=c bx ax y 的图象与x 轴没有交点;总之,一元二次方程)0(02≠=++a c bx ax 的根就是相应的二次函数02=++=c bx ax y 的图象与x 轴的交点的横坐标. 二、师生互动,新课讲解: 1、函数的零点对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点(zero point ).显然,函数)(x f y =的零点就是方程0)(=x f 的实数根,也就是函数)(x f y =的图象与x 轴的交点的横坐标.方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.2、函数零点的判定:研究方程的实数根也就是研究相应函数的零点,也就是研究函数的图象与x 轴的交点情况。
3.1《函数与方程-方程的根与函数的零点》教案(新人教必修1)
课题:§ 3.1.1 方程的根与函数的零点教课目的:知识与技术理解函数(联合二次函数)零点的观点,领悟函数零点与相应方程要的关系,掌握零点存在的判断条件.过程与方法零点存在性的判断.感情、态度、价值观在函数与方程的联系中体验数学中的转变思想的意义和价值.教课要点:要点零点的观点及存在性的判断.难点零点确实定.教课程序与环节设计:创建情境联合二次函数引入课题.组织研究二次函数的零点及零点存在性的.试试练习零点存在性为练习要点.研究研究进一步研究函数零点存在性的判断.作业回馈要点放在零点的存在性判断及零点确实定上.课外活动研究二次函数在零点、零点以内及零点外的函数值符号,并试试进行系统的总结.教课过程与操作设计:环节教课内容设置先来察看几个详细的一元二次方程的根及其相应的二次函数的图象:122x30 与函数 y x22x3○方程 x创22 2 x10 与函数 y x22x1○方程 x设322x30与函数 y x22x3○方程 x情境师生双边互动师:指引学生解方程,画函数图象,剖析方程的根与图象和x 轴交点坐标的关系,引出零点的观点.生:独立思虑达成解答,察看、思虑、总结、归纳得出结论,并进行沟通.师:上述结论推行到一般的一元二次方程和二次函数又如何?函数零点的观点:关于函数 y f ( x)( x D ) ,把使 f ( x)0 成立的实数 x 叫做函数 y f (x)( x D ) 的零点.函数零点的意义:师:指引学生认真领会左侧的这段文字,感悟此中的思想方法.函数 y f ( x)的零点就是方程 f ( x)0 实数根,亦即函数y f ( x) 的图象与x 轴交点的横坐组标.生:认真谛解函数零点即:的意义,并依据函数零方程 f (x) 0有实数根函数 y f ( x)的点的意义研究其求法:织图象与 x 轴有交点函数 y f ( x) 有零点.1代数法;○○几何法.2探函数零点的求法:求函数 y f ( x) 的零点:0 的实数根;○(代数法)求方程 f (x)1究○ (几何法)关于不可以用求根公式的方程,2能够将它与函数y f ( x) 的图象联系起来,并利用函数的性质找出零点.二次函数的零点:师:指引学生运用函数零点的意义研究二次二次函数函数零点的状况.y ax 2bx c(a0) .1)△>0,方程ax2bx c0 有两不等环节组织探究教课内容设置实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.2)△=0,方程 ax 2bx c有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程 ax 2 bx c 0 无实根,二次函数的图象与 x 轴无交点,二次函数无零点.零点存在性的研究:(Ⅰ)察看二次函数 f ( x)x22x 3 的图象:2,1] 上有零点______;○在区间[1f (2)_______ ,f (1)_______,f (2) · f (1) _____0(<或>).○在区间 [2,4] 上有零点______;2f (2) · f (4) ____0(<或>).(Ⅱ)察看下边函数y f ( x) 的图象师生双边互动生:依据函数零点的意义研究研究二次函数的零点状况,并进行交流,总结归纳形成结论.生:剖析函数,按提示研究,达成解答,并认真思虑.师:指引学生联合函数图象,剖析函数在区间端点上的函数值的符号状况,与函数零点能否存在之间的关系.生:联合函数图象,思虑、议论、总结归纳得出函数零点存在的条件,并进行沟通、评析.○1在区间 [a,b] 上______(有/无)零点;f (a) · f (b) _____0(<或>).○2在区间 [b,c] 上______(有/无)零点;f (b) · f (c) _____0(<或>).○3在区间 [c, d ] 上______(有/无)零点;f (c) · f (d ) _____0(<或>).由以上两步研究,你能够得出什么样的结论?如何利用函数零点存在性定理,判定函数在某给定区间上能否存在零点.师:指引学生理解函数零点存在定理,剖析此中各条件的作用.环节教课内容设置例 1.求函数f ( x)ln x2x 6 的零点个数.问题:例1 )你能够想到什么方法来判断函数零点个数?题2 )判断函数的单一性,由单一性你能得该函研数的单一性拥有什么特征?究例 2.求函数y x32x 2x 2 ,并画出它的大概图象.1.利用函数图象判断以下方程有没有根,有几个根:( 1)x23x50;( 2)2x(x2) 3 ;尝( 3)x24x 4 ;试( 4)5x22x3x2 5 .练 2 .利用函数的图象,指出以下函数零点所在师生互动设计师:指引学生研究判断函数零点的方法,指出能够借助计算机或计算器来画函数的图象,联合图象对函数有一个零点形成直观的认识.生:借助计算机或计算器画出函数的图象,联合图象确立零点所在的区间,而后利用函数单一性判断零点的个数.师:联合图象观察零点所在的大概区间与个数,联合函数的单一性说明零点的个数;让学生认识到函数的图象及基天性质(特别是单一性)在确立函数零点习的大概区间:( 1)f ( x)( 2)f ( x)( 3)f ( x)( 4)f ( x)x 33x 5 ;2x ln( x2) 3 ;e x 14x 4 ;3(x2)( x3)( x 4) x .中的重要作用.1.已知f ( x)2x47 x317 x258 x 24 ,请研究方程 f (x)0 的根.假如方程有根,指出每探个根所在的区间(区间长度不超出1).究2.设函数f (x) 2x ax1.与( 1 )利用计算机研究a 2 和 a 3 时函数发现f ( x) 的零点个数;(2)当a R时,函数f ( x)的零点是如何分布的?环节作业回馈课外活动教课内容设置1.教材 P108习题 3. 1( A 组)第 1、 2 题;2.求以下函数的零点:( 1)y x25x 4 ;( 2)y x2x20 ;( 3)y(x1)(x2 3 1)xf ( x) ( x 22)( x23x 2) .3.求以下函数的零点,图象极点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:( 1)y 1 x2 2 x 1;3( 2)y2x24x 1.4.已知f (x)2(m 1) x24mx2m 1 :( 1 )m为什么值时,函数的图象与x 轴有两个零点;(2)假如函数起码有一个零点在原点右边,求 m 的值.5.求以下函数的定义域:( 1)y x29;( 2)234;y x x( 3)y x24x12研究 y ax2bx c , ax2bx c 0 ,ax 2bx c0 , ax2bx c0 的互相关系,以零点作为研究出发点,并将研究结果试试用一种系统的、简短的方式总结表达.师生互动设计考虑列表,建议画出图象帮助剖析.收获谈谈方程的根与函数的零点的关系,并给出判与定方程在某个区产存在根的基本步骤.体会。
高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A版必修1
高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A 版必修1四、教学过程【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。
用屏幕显示判断下列方程是否有实根,有几个实根?(1)2230x x --=;(2)062ln =-+x x .学生活动:回答,思考解法。
教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。
对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。
教师活动:用屏幕显示函数223y x x =--的图象。
学生活动:观察图像,思考作答。
教师活动:我们来认真地对比一下。
用屏幕显示表格,让学生填写2230x x --=的实数根和函数图象与x 轴的交点。
学生活动:得到方程的实数根应该是函数图象与x 轴交点的横坐标的结论。
教师活动:我们就把使方程成立的实数x 称做函数的零点.【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。
板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x 叫做函数y=f(x)的零点)。
教师活动:我可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答。
教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。
教师活动:这是我们本节课的第二个知识点。
板书(方程的根与函数零点的等价关系)。
教师活动:检验一下看大家是否真正理解了这种关系。
如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答。
高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1
“方程的根与函数的零点”【教学过程设计】 (一)设问激疑,引出新知方程解法史话:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.对于方程的求解问题,古今中外的数学家已经作了大量的工作,取得辉煌的成果,比如花拉子米公元825年左右编辑著成了《代数学》,比较完整地讨论了一次、二次方程的一般原理;我国南宋数学家秦九绍在《数书九章》中提出了“正负开方术”,此法可以求出任意次代数方程的正根;1824年,挪威数学家阿贝尔成功地证明了五次以上一般方程没有根式解。
随着计算机技术的发展,方程的数值解法得到了广泛的运用,如二分法,牛顿法、弦截法等,今天我们将沿着前人走过的足迹一起探索对于一般方程的求解方法. 【设计意图:了解数学史,激发学生学习兴趣。
】 问题1 求下列方程的根.(1)023=+x ; (2)0652=+-x x ; (3)062ln =-+x x .问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标。
方 程 0322=--x x 0122=+-x x 0322=+-x x函 数 322--=x x y 122+-=x x y 322+-=x x y函 数 图 象 (简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与x 轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与x 轴交点的横坐标。
问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x轴交点的关系,上述结论是否仍然成立?)0(02>=++a c bx ax方 程 的 根函数的图象(简图)图象与x 轴 的交点0>∆0=∆0<∆【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。
高中数学 3.1.1 方程的根与函数的零点教案 新人教版必修1
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1
二、方程的根与函数的零点的关系 四、播种小结
十、帮助与总结
本节课探求式的教学和图形计算器的运用是本节课的最大特点,先生经过对于图形计算器软件的运用,获得更多的信息,进行分析,总结归纳相关定义,并经过运用图形计算器软件提取出数学学习的相应方法,进而解决今后的成绩。本节整合课提供了一个数学图形世界,培养了先生观察归纳能力,先生的自在发挥空间大,便于师生的交流,信息技术比较巧妙的融进了课堂,帮助先生解决了感性认知,使感性上升到理性变得更加容易。
PPT展现
板书
(七)作业
1.
2.
3.
4.
各有几个零点?并指出零点的大致区间。
1、2、3全班作业
4作为能力提升作业
分层作业使不同先生获得不同播种
巩固本节课程所学内容
PPT展现
八、教学评价设计
课下完成评价量表
评价
项目
评价标准
等级(分)
自我评价
小组评价
教师评价
优秀
良好
普通
差
知识与技能
理解函数零点的意义,了解方程的根与函数的零点的关系
成绩设置:系数选择,相应解析式,函数的大致图象,函数的零点的个数。
师:提出探求,请一个小组到大屏前进行探求过程,巡查各小组完成情况,帮助先生解决相应成绩,参与小组内的讨论,给予恰当及时的评价与鼓励,小组成果展现后教师对每个小组的成果进行点评总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零点存在性的探索:
(Ⅰ)观察二次函数 的图象:
在区间 上有零点______;
_______, _______,
· _____0(<或>).
在区间 上有零点______;
· ____0(<或>).
(Ⅱ)观察下面函数 的图象
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.
尝
试
练
习
1.利用函数图象判断下列方程有没有根,有几个根:
(1) ;
(2) ;
(3) ;
(4) .
2.利用函数的图象,指出下列函数零点所在的大致区间:
(1) ;
(2) ;
(3) ;
(4) .
师:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用.
师:上述结论推广到一般的一元二次方程和二次函数又怎样?
组
织
探
究
函数零点的概念:
对于函数 ,把使 成立的实数 叫做函数 的零点.
函数零点的意义:
函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标.
即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
函数零点的求法:
求函数 的零点:
生:分析函数,按提示探索,完成解答,并认真思考.
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.
生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.
师:引导学生理解函数零点存在定理,分析其中各条件的作用.
环节
教学内容设置
师生互动设计
(2) ;
(3)
课
外
活
动
研究 , ,
, 的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达.
考虑列表,建议画出图象帮助分析.
收
获
与
体
会
说说方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤.
探
究
与
发
现
1.已知 ,请探究方程 的根.如果方程有根,指出每个根所在的区间(区间长度不超过1).
2.设函数 .
(1)利用计算机探求 和 时函数 的零点个数;
(2)当 时,函数 的零点是怎样分布的?
环节
教学内容设置
师生互动设计
作
业
回
馈
1.教材P108习题3.1(A组)第1、2题;
2.求下列函数的零点:
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
由以上两步探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.
课题:§3.1.1方程的根与函数的零点
教学目标:
知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.
过程与方法零点存在性的判定.
情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.
教学重点:
重点零点的概念及存在性的判定.
难点零点的确定.
教学程序与环节设计:
教学过程与操作设计:
环节
教学内容设置
师生双边互动
创
设
情
境
先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:
方程 与函数
方程 与函数
方程 与函数
师:引导学生解方程,画函数图象,分析方程的根与图象和 轴交点坐标的关系,引出零点的概念.
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
(代数法)求方程 的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.
生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:
代数法;
几何法.
二次函数的零点:
二次函数
.
1)△>0,方程 有两不等
(1) ;
(2) ;
(3);
(4) .
3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:
(1) ;
(2) .
4.已知 :
(1) 为何值时,函数的图象与 轴有两个零点;
(2)如果函数至少有一个零点在原点右侧,求 的值.
5.求下列函数的定义域:
(1) ;
例
题
研
究
例1.求函数 的零点个数.
问题:
1)你可以想到什么方法来判断函数零点个数?
2)判断函数的单.求函数 ,并画出它的大致图象.
师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.
师:引导学生运用函数零点的意义探索二次函数零点的情况.
环节
教学内容设置
师生双边互动
组
织
探
究
实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.