湘教版2020届数学中考二模试卷E卷
2020-2021学年湖南省中考数学二模试卷及答案解析
湖南省中考数学二模试卷(解析版)一.选择题1.-4的相反数是()J' ■A. 2B. - 2C. ID. - 42.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费的食物若折合成粮食可养活约360000000人,把350000000用科学记数法可以表示为()A. 3.5X1010 B 3.5X109 n C. 3.5X108 D. 3.5X1073.下列运算正确的是()A. x2衣3=x6B. x6+x5=xC. ( - x2) 4=x6 "D. x2+x3 =x54.下列说法正确的是()A.对角线互相垂直的四边形是菱形MB.矩形的对角线互相垂直C. 一组对边平行的四边形是平行四边形FD.四边相等的四边形是菱形5.某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是s甲2=1.9, s乙2=2.4,则参赛学生身高比较整齐的班级是()A.甲班 B.乙班 C.同样整齐"D.无法确定10.若一次函数y= (k-1) x+3的图象经过第一、二、四象限,则 k 的取值范围是(A. k> 0B. k<0C. k>1D. 圆锥7.如图 AB// DE, /ABC=30°, Z BCD=80°, 则/ CDE=()A. 20°B. 50°C. 60°D. 100°8.已知方程组+ }, =4则x+y 的值为A. 一 1B. 0C. 2D. 3ABC 中,AD, BE 是两条中线,则$ EDC : SAABC=()A. 1: 2B. 1: 4C. 1: 3 "D. 2: 3"D. k< 16.某几何体的三视图如图所示,则这个几何体是(C.球9.如图,在411.关于x 的方程(a- 5) x2 - 4x-1=0有实数根,则a 满足( )A. a> 1B. a>1 且 a*5C. a> 1 且 a*5D. a^512 .遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了 9万千克,种植亩数减少了 20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为 1.5x 万千克,根据题意列方程为().填空题13 .若实数 a 、b 满足 12017a —2018|+b 2=0,贝U a b 的值为. 14 .分式或号的值为0,那么x 的值为.15 .如图是二次函数 了]=“H - 匕,、*[和一次函数y 2=kx+t 的图象,当y 1>y 2时,x 的取值范围是16 .如图,O O 的直径 CD)± EF, / OEG=30 ,则/ DCF=°A 36 —至=20 A. - =20B丁 …=20B. -5 =20C.=20D. +圻9 CC=20D17.在10个外观相同的产品中,有3个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.18.已知:如图,O为坐标原点,四边形OABC为矩形,A (10, 0) , C (0, 4),点D是OA的中点,点P在BC上运动,当^ ODP是腰长为5的等腰三角形时,则P点的坐标为 .三.解答题19.计算:| —2|+2 1— cos60 - ( 1 —)° •20.已知a2-2a- 2=0,求代数式(1-焉)+ .£升]的值四.解答题21.某市为了增强学生体质,全面实施学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.潘马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(2)补全上面的条形统计图1,并计算出喜好菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12 米到达C 处,又测得楼顶E的仰角为60°,求楼EF的高度.( 0=1.732,结果精确到0.1米)DEB五.解答题.23.双十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的g,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?24.如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.B C(1)求证:△ AD-△ FCE(2)若/ BAF=90°, BC=5, EF=3,求CD 的长.六.解答题25.如图,AB是。
湖南省长沙市2019-2020学年中考第二次模拟数学试题含解析
湖南省长沙市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.2.下列实数中,最小的数是()A.3B.π-C.0 D.2-3.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±24.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°5.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)26.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1087.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.8.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 29.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1×10x=31×10﹣570C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1×10x ﹣1x 1=57010.如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .211.如图,在Rt ABC ∆中,90,ABC BA BC ∠=︒=.点D 是AB 的中点,连结CD ,过点B 作BG CD ⊥,分别交CD CA 、于点E F 、,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB =;②点F 是GE 的中点;③23AF AB =;④6ABC BDF S S ∆∆=,其中正确的个数是( )A .4B .3C .2D .112.圆锥的底面半径为2,母线长为4,则它的侧面积为( )A .8πB .16πC .43πD .4π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.15.如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为______米(结果保留根号).16.若一次函数y=-2x+b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是_________.(写出一个即可)17.观察下列一组数:13579,,,,,49162536⋯,它们是按一定规律排列的,那么这一组数的第n 个数是_____. 18.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,一次函数y =kx+b(k≠0)的图象与反比例函数y =n x(n≠0)的图象交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点B 坐标为(m ,﹣1),AD ⊥x 轴,且AD =3,tan ∠AOD =32.求该反比例函数和一次函数的解析式;求△AOB 的面积;点E 是x 轴上一点,且△AOE 是等腰三角形,请直接写出所有符合条件的E 点的坐标.20.(6分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?21.(6分)如图所示,在梯形ABCD 中,AD ∥BC ,AB =AD ,∠BAD 的平分线AE 交BC 于点E ,连接DE .(1)求证:四边形ABED 是菱形;(2)若∠ABC =60°,CE =2BE ,试判断△CDE 的形状,并说明理由.22.(8分)如图,已知△ABC 中,AB=AC=5,cosA=35.求底边BC 的长.23.(8分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?24.(10分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .25.(10分)如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, 2 ≈1.41,3 ≈1.73)26.(12分)某校在一次大课间活动中,采用了四种活动形式:A 、跑步,B 、跳绳,C 、做操,D 、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共 人,a= ,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A 、B 、C 、D 四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.27.(12分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.B【解析】【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】∵π∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.D【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 4.B【解析】【详解】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.5.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.5×1.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.7.C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.8.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.9.A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.10.B【解析】【分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.11.C【解析】【分析】用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【详解】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,BD CD CBDE BD BE==,即12DE BE==∴DE=5,BE=5,在△GAB和△DBC中,DBE DCBAD BCGAB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GAB≌△DBC(ASA) ∴AG=DB=1,BG=CD∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴12AG AF GFCB CF BF===,且有AB=BC,故①正确,∵GBAC=∴AF=AB,故③正确,GFFE=BG﹣GF﹣BE,故②错误,S△ABC=12AB•AC=2,S△BDF=12BF•DE=12×3×5=13,故④正确.故选B . 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键. 12.A 【解析】 【详解】解:底面半径为2,底面周长=4π,侧面积=12×4π×4=8π,故选A . 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.5750 【解析】 【分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答 【详解】∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72-bb=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋, 根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有 W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250, ∵m+n≤100, ∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750; 【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格 14.1. 【解析】试题解析:设俯视图的正方形的边长为a .∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22, ∴()22222a a +=,解得24a =,∴这个长方体的体积为4×3=1. 15.1002. 【解析】解:如图,连接AN ,由题意知,BM ⊥AA',BA=BA',∴AN=A'N ,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB ﹣∠AMB=22.5°=∠AMN ,∴AN=MN=200米,在Rt △ABN 中,∠ANB=45°,∴AB=22AN=1002(米),故答案为1002.点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°. 16.-1 【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k <1,b <1,随便写出一个小于1的b 值即可.∵一次函数y=﹣2x+b (b 为常数)的图象经过第二、三、四象限, ∴k <1,b <1. 考点:一次函数图象与系数的关系17.221(1)n n -+【解析】试题解析:根据题意得,这一组数的第n 个数为:()221.1n n -+故答案为()221.1n n -+点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第n 个数即可.18.【解析】 【分析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 列表得: 第一次第二次 黑白白黑 黑,黑 白,黑 白,黑 白 黑,白 白,白 白,白 白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况, ∴两次都摸到黑球的概率是.故答案为:.【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)y =﹣6x ,y =﹣12x+2;(2)6;(3)当点E (﹣4,0130130)或(﹣134,0)时,△AOE 是等腰三角形. 【解析】 【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=12×4×3=6;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【详解】(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=32ADOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=nx,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣6x,把B(m,﹣1)代入y=﹣6x,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:23 61k bk b-+=⎧⎨+=-⎩,解得:122kb⎧=-⎪⎨⎪=⎩,所以一次函数解析式为:y=﹣12x+2;(2)当y=0时,﹣12x+2=0,解得:x=4,则C(4,0),所以14362AOCS=⨯⨯=V;(3)当OE3=OE2=AO=,即E20),E30);当OA=AE1OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣32x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣134,即E4(﹣134,0),综上,当点E(﹣4,00)或(﹣134,0)时,△AOE是等腰三角形.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.20.(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答. 【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解. (2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根, 所以把2x =代入上面的等式得()3221m +-=- 1m =-所以,原分式方程中“?”代表的数是-1. 【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程; ②把增根代入整式方程即可求得相关字母的值. 21.见解析 【解析】试题分析:(1)先证得四边形ABED 是平行四边形,又AB=AD , 邻边相等的平行四边形是菱形; (2)四边形ABED 是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED ,又EC=2BE ,EC=2DE ,可得△DEC 是直角三角形.试题解析:梯形ABCD 中,AD ∥BC , ∴四边形ABED 是平行四边形, 又AB=AD ,∴四边形ABED 是菱形;(2)∵四边形ABED 是菱形,∠ABC=60°, ∴∠DEC=60°,AB=ED , 又EC=2BE ,∴EC=2DE,∴△DEC是直角三角形,考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定22.25【解析】【分析】过点B作BD⊥AC,在△ABD中由cosA=35可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos ADAAB =,∵3cos5A=,AB=5,∴AD=AB·cosA=5×35=3,∴BD=4,∵AC=5,∴DC=2,∴BC=25【点睛】本题考查了锐角的三角函数和勾股定理的运用.23.(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】【分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率. 【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一) (2)根据频数分布直方图中每一组内的频数总和等于总数据个数; 将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人, 所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°, 故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1. 故答案为160或1; (4)列树状图得:P (一男一女)=1220=35. 24.(1)2,3b b --;(2)图象见解析,6y x =或9y x=-;(32 【解析】 【分析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M ,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式; (3)设出A 的坐标,表示出C,D 的坐标,得到CD 的长度,根据题意找到CD 的最小值,因为AD 的长度不变,所以当CD 最小时,对角线AC 最小,则答案可求. 【详解】解:(1)()2222222323()3y x bx x bx b b x b b =--=-+--=--+Q ,∴抛物线的顶点的坐标为2(,3)b b --.故答案为:2(,3)b b --(2)将(2,1)M --代入抛物线的解析式得:4431b +-=-解得:12b =-, ∴抛物线的解析式为23y x x =+-.抛物线L 的大致图象如图所示:将3y =代入23y x x =+-得:233x x +-=,解得:2x =或3x =-∴抛物线与反比例函数图象的交点坐标为(2,3)或()3,3-.将(2,3)代入ky x=得:6k =, 6y x∴=. 将()3,3-代入ky x=得:9k =-, 9y x=-∴.综上所述,反比例函数的表达式为6y x =或9y x=-. (3)设点A 的坐标为()2,23x x bx --, 则点D 的坐标为()21,23x x bx +--,C 的坐标为21,(22)2)2(x x b x b ++---.()2223(22)22221DC x bx x b x b x b ⎡⎤∴=---+---=-+-⎣⎦DC ∴的长随x 的增大而减小.Q 矩形ABCD 在其对称轴的左侧,抛物线的对称轴为x b =,1x b ∴+≤1x b ∴≤-∴当1x b =-时,DC 的长有最小值,DC 的最小值2(1)211b b =--+-=.ADQ的长度不变,∴当DC最小时,AC有最小值.AC∴的最小值222AD DC=+=故答案为:2.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.25.30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2 ∴AB=AE+BE≈23.1+7.2=30.3米.26.(1)300,10;(2)有800人;(3)16.【解析】试题分析:试题解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.27.每件乙种商品的价格为1元,每件甲种商品的价格为70元【解析】【分析】设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.【详解】解:设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,根据题意得:,解得:x=70,经检验,x=70是原方程的解,∴x﹣10=1.答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.【点睛】本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.。
湘教版2020九年级数学上册期中模拟培优测试卷2(附答案详解)
○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○………… 湘教版2020九年级数学上册期中模拟培优测试卷2(附答案详解) 一、单选题 1.如图,在Rt ABC 中,AB =3,BC =4,ABC ∠=90,过点B 作1BA AC ⊥,过1A 作11A B BC ⊥,得阴影11Rt A B B ;再过1B 作12B A AC ⊥,过2A 作22A B BC ⊥,得阴影221Rt A B B ;…如此下去,请猜测这样得到的所有阴影三角形的面积之和为( )A .1625B .9625C .5114D .9641 2.三角形的面积为15cm 2,这时底边上的高ycm 与底边xcm 间的函数关系的图象大致是( ) A . B . C . D . 3.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的平分线分别交AB 、BD 于点M 、N ,若AD =4,则线段AM 的长为( ) A .2 B .2 C .42 D .8﹣2 4.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则( ) A .2OB = B .2OB > C .2OB ≥ D .2OB < 5.如图,一枚运载火箭从地面L 处发射,当火箭到达A 点时,从位于地面R 处的雷达○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 站观测得知AR 的距离是6 km ,仰角∠ARL =30°,又经过1 s 后火箭到达B 点,此时测得仰角∠BRL =45°,则这枚火箭从A 到B 的平均速度为( ) A .(33-3) km/s B .(33) km/s C .(33+3) km/s D .3 km/s 6.若a ,b ,c ,d 是成比例线段,其中a =3cm ,c =6cm ,d =4cm ,则b 等于( ) A .8 cm B .32cm C .4 cm D .2cm7.下列说法不正确的是( )A .了解重庆市民对重庆自然博物馆的知晓度的情况,适合用抽样调查B .若甲组数据方差S 甲=0.39,乙组数据方差S 乙=0.27,则乙组数据比甲组数据稳定C .数据﹣1、1.5、2、2、4的中位数是2D .数据1.5、2、1.5、4、2的众数是28.如图,在Rt ABC ∆中,90C ∠=︒,点D 是AB 的中点,DE AB ⊥交AC 于点E ,3DE CE ==,则AB 的长为( )A .3B .33C .6D .639.下列方程中,没有实数根的是( ).A .20x x +=B .220x x ++=C .220x x --=D .220x x +-=10.如图,两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高度为( )○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○………… A .a B .atanα C .a(sinα-cosα) D .a(tanβ-tanα) 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 11.如图,在平面直角坐标系中,点A 在反比例函数y =k x (k <0,x <0)的图象上,过点A 作AB ∥y 轴交x 轴于点B ,点C 在y 轴上,连结AC 、BC .若△ABC 的面积是8,则k =___.12.某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________. 13.已知反比例函数5y x =,当2x <-时,y 的取值范围是____. 14.把一元二次方程(1+x)(x+3)=2x 2+1化成一般形式是:__________________;它的二次项系数是_________;一次项系数是________。
2020年湖南师大附中中考数学二模试卷(解析版)
2020年湖南师大附中中考数学二模试卷一.选择题(共12小题)1.2019的倒数是()A.2019B.﹣2019C.D.﹣2.下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a23.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为()A.15×107元B.1.5×108元C.0.15×109元D.1.5×107元4.下列航空公司的标志中,是轴对称图形的是()A.B.C.D.5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6.众所周知,湖南师大附中是“金牌摇篮”.在2019﹣2020学年已经结束的各学科全国决赛中,附中高三学生共获得金牌14枚,银牌12枚,12人入选国家集训队,位列全省第一(全省共27人).在全国决赛中,其中各学科获得的金牌数如表所示:学科数学物理化学生物金牌数3533则这些金牌数的中位数为()A.3B.5C.4D.3.57.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤28.抛物线y=x2﹣2x﹣3的顶点坐标是()A.(﹣1,﹣4)B.(3,0)C.(2,﹣3)D.(1,﹣4)9.如图,P A切⊙O于点A,直线PBC经过点圆心O,若∠P=30°,则∠ACB的度数为()A.30°B.60°C.90°D.120°10.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m 11.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.12.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④二.填空题(共6小题)13.分解因式:4x2﹣16=.14.直线y=﹣2x+1不经过第象限.15.在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.已知关于x的一元二次方程x2﹣4x+m=0有一个根为1,则方程的另一个根为.17.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE =8,则BC=.18.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC 绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′.当α+β=90°时,我们称△AB′C′是△ABC的“双旋三角形”.如果等边△ABC的边长为a,那么它的“双旋三角形”的面积是(用含a的代数式表示).三.解答题(共8小题)19.计算:+()﹣1﹣2cos60°+(2﹣π)0.20.先化简,再求值:,其中x=2020.21.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.22.如图,已知△ABC中,以AB为直径的⊙O交AC于点D,∠CBD=∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=12,sin∠BED=,求BE的长.23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?24.如图,菱形ABCD的对角线AC,BD相交于点O,过点C作CE∥BD,且CE=BD.(1)求证:四边形OCED是矩形;(2)连接AE交CD于点G,若AE⊥CD.①求sin∠CAG的值;②若菱形ABCD的边长为6cm,点P为线段AE上一动点(不与点A重合),连接DP,一动点Q从点D出发,以1cm/s的速度沿线段DP匀速运动到点P,再以cm/s的速度沿线段P A匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间t.25.已知二次函数y=ax2+bx+c(a≠0).(1)若b=1,a=﹣c,求证:二次函数的图象与x轴一定有两个不同的交点;(2)若a<0,c=0,且对于任意的实数x,都有y≤1,求4a+b2的取值范围;(3)若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.26.如图,直线l:y=x﹣2分别交x,y轴于A、B两点,C、D是直线l上的两个动点,点C在第一象限,点D在第三象限.且始终有∠COD=135°.(1)求证:△OAC∽△DBO;(2)若点C、D都在反比例函数y=的图象上,求k的值;(3)记△OBD的面积为S1,△AOC的面积为S2,且=,二次函数y=ax2+bx+c 满足以下两个条件:①图象过C、D两点;②当S1≤x≤S2时,y有最大值2,求a的值.2020年湖南师大附中中考数学二模试卷参考答案与试题解析一.选择题(共12小题)1.2019的倒数是()A.2019B.﹣2019C.D.﹣【分析】直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:2019的倒数是:.故选:C.2.下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a2【分析】直接利用二次根式的加减运算法则以及合并同类项法则、积的乘方运算法则和同底数幂的除法运算分别计算得出答案.【解答】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.3.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为()A.15×107元B.1.5×108元C.0.15×109元D.1.5×107元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000 000用科学记数法表示为1.5×108.故选:B.4.下列航空公司的标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.6.众所周知,湖南师大附中是“金牌摇篮”.在2019﹣2020学年已经结束的各学科全国决赛中,附中高三学生共获得金牌14枚,银牌12枚,12人入选国家集训队,位列全省第一(全省共27人).在全国决赛中,其中各学科获得的金牌数如表所示:学科数学物理化学生物金牌数3533则这些金牌数的中位数为()A.3B.5C.4D.3.5【分析】先将表格中的数据按照从小到大排列,然后即可得到这组数据的中位数.【解答】解:金牌数按照从小到大排列是3,3,3,5,故这些金牌数的中位数是3,故选:A.7.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤2【分析】由题意分别解出不等式组中的两个不等式,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出不等式的解集.【解答】解:由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选:D.8.抛物线y=x2﹣2x﹣3的顶点坐标是()A.(﹣1,﹣4)B.(3,0)C.(2,﹣3)D.(1,﹣4)【分析】此题利用配方法化简y=x2﹣2x﹣3得到y=(x﹣1)2﹣4,由此即可确定顶点的坐标.【解答】解:∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,故顶点的坐标是(1,﹣4).故选:D.9.如图,P A切⊙O于点A,直线PBC经过点圆心O,若∠P=30°,则∠ACB的度数为()A.30°B.60°C.90°D.120°【分析】如图,连接OA,AC.利用切线的性质推知△ABO是直角三角形,则∠AOP=60°;然后根据圆周角定理求得∠ACB=∠AOB.【解答】解:如图,连接OA,AC.∵P A切⊙O于点A,直线PBC经过点圆心O,∴OA⊥P A,即∠P AO=90°.又∵∠P=30°,∴∠AOP=60°,∴∠ACB=∠AOB=30°.故选:A.10.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m 【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选:B.11.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设该物品的价格是x钱,共同购买该物品的有y人,依题意,得:.故选:A.12.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF ≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【解答】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.二.填空题(共6小题)13.分解因式:4x2﹣16=4(x+2)(x﹣2).【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).14.直线y=﹣2x+1不经过第三象限.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该直线不经过哪个象限,本题得以解决.【解答】解:∵y=﹣2x+1,k=﹣2,b=1,∴该直线经过第一、二、四象限,不经过第三象限,故答案为:三.15.在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(2,1).【分析】根据坐标的平移规律解答即可.【解答】解:将点A(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(﹣2+4,3﹣2),即(2,1),故答案为(2,1).16.已知关于x的一元二次方程x2﹣4x+m=0有一个根为1,则方程的另一个根为3.【分析】设方程的另一个根为x2,根据韦达定理即可得到结论.【解答】解:设方程的另一个根为x2,根据题意得,x2+1=4,解得:x2=3,∴方程的另一个根为3.故答案为:3.17.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE =8,则BC=12.【分析】由DE∥BC则可以得出△ADE∽△ABC,于是可得=,根据已知数据即可求出BC的长.【解答】解:∵DE∥BC∴△ADE∽△ABC∴=而AE=6,EC=3,DE=8则=∴BC=12故答案为12.18.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC 绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′.当α+β=90°时,我们称△AB′C′是△ABC的“双旋三角形”.如果等边△ABC的边长为a,那么它的“双旋三角形”的面积是(用含a的代数式表示).【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B′C′是顶角为150°的等腰三角形,其中AB′=AC′=a.过C′作C′D⊥AB′于D,根据30°角所对的直角边等于斜边的一半得出C′D=AC′=a,然后根据S△AB′C′=AB′•C′D即可求解.【解答】解:∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,∴AB′=AB=a,∠B′AB=α,∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,∴AC′=AC=a,∠CAC′=β,∴∠B′AC′=∠B′AB+∠BAC+∠CAC′=α+60°+β=60°+90°=150°.如图,过C′作C′D⊥AB′于D,则∠D=90°,∠DAC′=30°,∴C′D=AC′=a,∴S△AB′C′=AB′•C′D=a•a=a2.故答案为a2.三.解答题(共8小题)19.计算:+()﹣1﹣2cos60°+(2﹣π)0.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2+2﹣2×+1=4.20.先化简,再求值:,其中x=2020.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=•=x﹣2,当x=2020时,原式=2020﹣2=2018.21.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.【分析】(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)总人数乘以样本中B选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)本次调查的学生人数为6÷20%=30(名);(2)B选项的人数为30﹣3﹣9﹣6=12(名),补全图形如下:(3)估计“了解”的学生约有600×=240(名);(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为=.22.如图,已知△ABC中,以AB为直径的⊙O交AC于点D,∠CBD=∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=12,sin∠BED=,求BE的长.【分析】(1)由圆周角定理和已知条件证出∠CBD+∠ABD=90°.得出∠ABC=90°,即可得出结论.(2)连接AE.由圆周角定理得出∠BAD=∠BED,由三角函数定义求出直径AB=20.证出AE=BE.得出△AEB是等腰直角三角形.得出∠BAE=45°,由三角函数即可得出结果.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∴∠A+∠ABD=90°.又∵∠A=∠CBD,∴∠CBD+∠ABD=90°.∴∠ABC=90°.∴AB⊥BC.又∵AB是⊙O的直径,∴BC为⊙O的切线.(2)解:连接AE.如图所示:∵AB是⊙O的直径,∴∠AEB=∠ADB=90°.∵∠BAD=∠BED,∴sin∠BAD=sin∠BED=.∴在Rt△ABD中,sin∠BAD==,∵BD=12,∴AB=20.∵E为的中点,∴AE=BE.∴△AEB是等腰直角三角形.∴∠BAE=45°.∴BE=AB×sin∠BAE=20×=10.23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B 种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.24.如图,菱形ABCD的对角线AC,BD相交于点O,过点C作CE∥BD,且CE=BD.(1)求证:四边形OCED是矩形;(2)连接AE交CD于点G,若AE⊥CD.①求sin∠CAG的值;②若菱形ABCD的边长为6cm,点P为线段AE上一动点(不与点A重合),连接DP,一动点Q从点D出发,以1cm/s的速度沿线段DP匀速运动到点P,再以cm/s的速度沿线段P A匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间t.【分析】(1)首先证明四边形OCED是平行四边形,再根据∠COD=90°推出是矩形.(2)①由DE∥AC,DE=OC=OA,推出==,设DG=m,则CG=2m,DC =AD=3m,求出AC即可解决问题.②过点P作PT⊥AC于T.由sin∠P AT==,推出PT=P A,由点Q的运动时间t=+=PD+P A=PD+PT,根据垂线段最短可知,当D,P,T共线,且DT ⊥AC时,PD+PT的值最小,最小值=线段OD的长.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵EC=BD,∴EC=OD,∵EC∥OD,∴四边形OCED是平行四边形,∵∠COD=90°,∴四边形OCED是矩形.(2)解:①∵四边形OCED是矩形,∴DE∥AC,DE=OC=OA,∴==,设DG=m,则CG=2m,DC=AD=3m,∵AE⊥CD,∴∠AGD=∠AGC=90°,∴AG===2m,∴AC===2m,∴sin∠CAG===.②过点P作PT⊥AC于T.∵sin∠P AT==,∴PT=P A,∵点Q的运动时间t=+=PD+P A=PD+PT,根据垂线段最短可知,当D,P,T共线,且DT⊥AC时,PD+PT的值最小,最小值=线段OD的长,由(2)可知3m=6,m=2,∴AC=4,OA=2,∵∠AOD=90°,∴OD===2,∵DE∥OA,∴==1,∴OP=PD=,此时AP===3,∴满足条件的P A的值为3,点Q走完全程所需的时间t=2(s).25.已知二次函数y=ax2+bx+c(a≠0).(1)若b=1,a=﹣c,求证:二次函数的图象与x轴一定有两个不同的交点;(2)若a<0,c=0,且对于任意的实数x,都有y≤1,求4a+b2的取值范围;(3)若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论;(2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y1)和(1,y2)分别代入函数解析式,由y1•y2>0,及2a+3b+6c=0,得不等式组,变形即可得出答案.【解答】解:(1)证明:∵y=ax2+bx+c(a≠0),∴令y=0得:ax2+bx+c=0∵b=1,a=﹣c,∴△=b2﹣4ac=1﹣4(﹣c)c=1+2c2,∵2c2≥0,∴1+2c2>0,即△>0,∴二次函数的图象与x轴一定有两个不同的交点;(2)∵a<0,c=0,∴抛物线的解析式为y=ax2+bx,其图象开口向下,又∵对于任意的实数x,都有y≤1,∴顶点纵坐标≤1,∴﹣b2≥4a,∴4a+b2≤0;(3)由2a+3b+6c=0,可得6c=﹣(2a+3b),∵函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,∴c(a+b+c)>0,∴6c(6a+6b+6c)>0,∴将6c=﹣(2a+3b)代入上式得,﹣(2a+3b)(4a+3b)>0,∴(2a+3b)(4a+3b)<0,∵a≠0,则9a2>0,∴两边同除以9a2得,(+)(+)<0,∴或,∴﹣<<﹣,∴二次函数图象对称轴与x轴交点横坐标的取值范围是<﹣<.26.如图,直线l:y=x﹣2分别交x,y轴于A、B两点,C、D是直线l上的两个动点,点C在第一象限,点D在第三象限.且始终有∠COD=135°.(1)求证:△OAC∽△DBO;(2)若点C、D都在反比例函数y=的图象上,求k的值;(3)记△OBD的面积为S1,△AOC的面积为S2,且=,二次函数y=ax2+bx+c 满足以下两个条件:①图象过C、D两点;②当S1≤x≤S2时,y有最大值2,求a的值.【分析】(1)先求出点A,点B坐标,可求∠OAB=∠OBA=45°,由外角的性质可求∠DOB=∠ACO,∠AOC=∠ODB,可证△OAC∽△DBO;(2)由相似三角形的性质可得,设=a>0,用a表示点C,点D坐标,代入反比例函数解析式,可求解.(3)先求出点C,点D坐标,代入解析式,由题意可得当x=2时,y有最大值2,组成方程组,可求a的值.【解答】解:(1)∵直线l:y=x﹣2分别交x,y轴于A、B两点,∴点A(2,0),点B(0,﹣2),∴AO=BO=2,∴∠OAB=∠OBA=45°,∴∠OCA+∠AOC=45°,∠ODB+∠DOB=45°,∵∠COD=135°,∴∠DOB+∠AOB+∠AOC=135°,∴∠DOB+∠AOC=45°,∴∠DOB=∠ACO,∠AOC=∠ODB,∴△OAC∽△DBO;(2)如图,过点C作CF⊥x轴于F,过点D作DE⊥y轴于E,∵△OAC∽△DBO,∴,∴设=a>0,∴BD=,AC=2a,∵∠CAF=∠OAB=45°,∴∠ACF=∠CAF=45°,∴AF=CF==a,∴点C坐标(2+a,a),同理可求点D坐标(﹣,﹣2﹣),∵点C、D都在反比例函数y=的图象上,∴(2+a)•a=•(2+)∴(a2+2a+)(a+1)(a﹣1)=0,∵a>0,∴a2+2a+≠0,a+1≠0,∴a﹣1=0,∴点C(2+,)∴k=(2+)=2+2;(3)∵△OAC∽△DBO,∴=()2=,∴=,∴AC=2,∴AF=CF=2,∴点C(4,2),∵,∴,∴BD=,∴DE=BE=1,∴点D(﹣1,﹣3),∴△OBD的面积为S1=×2×1=1,△AOC的面积为S2,=×2×2=2,∵二次函数y=ax2+bx+c满足以下两个条件:①图象过C、D两点;②当1≤x≤2时,y 有最大值2,∴,解得:,∴a=﹣.。
2020年中考数学二模试卷(含解析)
2020年中考数学二模试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1.(2分)数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A.6B.﹣6C.3D.﹣32.(2分)如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC3.(2分)如图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.(2分)任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6B.面朝上的点数是偶数C.面朝上的点数大于2D.面朝上的点数小于25.(2分)下列是一组log o设计的图片(不考虑颜色),其中不是中心对称图形的是()A.B.C.D.6.(2分)一个正方形的面积是12,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.(2分)某商场一名业务员12个月的销售额(单位:万元)如下表:月份(月)123456789101112销售额(万元) 6.29.89.87.87.2 6.49.8879.8107.5则这组数据的众数和中位数分别是()A.10,8B.9.8,9.8C.9.8,7.9D.9.8,8.18.(2分)甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢二、填空题(本题共16分,每小题2分)9.(2分)分解因式:x3﹣2x2+x=.10.(2分)若分式的值为0,则x=.11.(2分)已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.12.(2分)某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为.13.(2分)若2x2+3y2﹣5=1,则代数式6x2+9y2﹣5的值为.14.(2分)如图,在平面直角坐标系xOy中,点A、B的坐标分别为(﹣4,1)、(﹣1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,﹣3),则由线段AB得到线段A'B'的过程是:,由线段A'B'得到线段A''B''的过程是:.15.(2分)如图,⊙O的半径为2,切线AB的长为,点P是⊙O上的动点,则AP的长的取值范围是.16.(2分)在平面直角坐标系xOy中,点A(﹣2,m)绕坐标原点O顺时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m的取值范围是.三、解答题(本题共68分,第17-20题,每小题8分;第21-24题,每小题8分).解答应写出文字说明,演算步骤或证明过程.17.(8分)计算:()﹣1+﹣tan60°﹣|﹣2|.18.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.19.(8分)已知关于x的一元二次方程x2+2x+m=0.(1)当m为何非负整数时,方程有两个不相等的实数根;(2)在(1)的条件下,求方程的根.20.(8分)在平面直角坐标系xOy中,直线l1:y=﹣2x+b与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为M(a,3).(1)求反比例函数的表达式;(2)设直线l2:y=﹣2x+m与x轴,y轴分别交于点C,D,且S△OCD=3S△OAB,直接写出m的值.21.(9分)如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:EH=EC;(2)若BC=4,sin A=,求AD的长.22.(9分)在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.23.(9分)在△ABC中,∠ABC=90°,AB=BC=4,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.24.(9分)对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点(a,b1),(a+1,b2),b2﹣b1≥k都成立,则称这个函数是限减函数,在所有满足条件的k中,其最大值称为这个函数的限减系数.例如,函数y=﹣x+2,当x取值a和a+1时,函数值分别为b1=﹣a+2,b2=﹣a+1,故b2﹣b1=﹣1≥k,因此函数y =﹣x+2是限减函数,它的限减系数为﹣1.(1)写出函数y=2x﹣1的限减系数;(2)m>0,已知(﹣1≤x≤m,x≠0)是限减函数,且限减系数k=4,求m的取值范围.(3)已知函数y=﹣x2的图象上一点P,过点P作直线l垂直于y轴,将函数y=﹣x2的图象在点P右侧的部分关于直线l翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数k≥﹣1,直接写出P点横坐标n的取值范围.参考答案一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1.【解答】解:由题意可得:B点对应的数是:a+6,∵点A和点B表示的数恰好互为相反数,∴a+a+6=0,解得:a=﹣3.故选:D.2.【解答】解:根据高的定义,AF为△ABC中BC边上的高.故选:A.3.【解答】解:观察图形可知,这个几何体是四棱锥.故选:B.4.【解答】解:∵抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,∴A、面朝上的点数是6的概率为;B、面朝上的点数是偶数的概率为=;C、面朝上的点数大于2的概率为=;D、面朝上的点数小于2的概率为;故选:C.5.【解答】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.6.【解答】解:设正方形的边长等于a,∵正方形的面积是12,∴a==2,∵9<12<16,∴3<<4,即3<a<4.故选:B.7.【解答】解:从小到大排列此数据为:6.2、6.4、7、7.2、7.5、7.8、8、9.8、9.8、9.8、9.8、10,数据9.8出现了4次最多为众数,处在第6、7位的是7.8、8,中位数为(7.8+8)÷2=7.9.故选:C.8.【解答】解:A、两人从起跑线同时出发,甲先到达终点,错误;B、跑步过程中,两人相遇两次,错误;C、起跑后160秒时,甲、乙两人相距最远,正确;D、乙在跑后200米时,速度最慢,错误;故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.10.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,x+2≠0,当x=﹣2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.11.【解答】解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.12.【解答】解:设到植物园的人数为x人,则到野生动物园的人数为(2x﹣30)人,根据题意得:x+(2x﹣30)=600.故答案为:x+(2x﹣30)=600.13.【解答】解:∵2x2+3y2﹣5=1,∴2x2+3y2=6,把2x2+3y2=6代入6x2+9y2﹣5=18﹣5=13,故答案为:1314.【解答】解:如图所示,点A、B的坐标分别为(﹣4,1)、(﹣1,3),点A''、B''的坐标分别为(1,0)、(3,﹣3),∴由线段AB得到线段A'B'的过程是向右平移4个单位长度;连接A'A“,B'B“,作这两条线段的垂直平分线,交于点O,∠A'OA“=90°,则由线段A'B'得到线段A''B''的过程是:绕原点O顺时针旋转90°;故答案为:向右平移4个单位长度;绕原点顺时针旋转90°.15.【解答】解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.16.【解答】解:如图,将阴影区域绕着点O逆时针旋转90°,与直线x=﹣2交于C,D 两点,则点A(﹣2,m)在线段CD上,又∵点D的纵坐标为2.5,点C的纵坐标为3,∴m的取值范围是2.5≤m≤3,故答案为:2.5≤m≤3.三、解答题(本题共68分,第17-20题,每小题8分;第21-24题,每小题8分).解答应写出文字说明,演算步骤或证明过程.17.【解答】解:原式=2+﹣+﹣2=.18.【解答】解:去分母,得3(x+2)﹣(4x﹣1)≥6,去括号,得3x+6﹣4x+1≥6,移项,合并同类项:﹣x≥﹣1,系数化为1:x≤1,把解集表示在数轴上:19.【解答】解:(1)∵方程有两个不相等的实数根,∴△=4﹣4m>0,解得m<1又m为非负整数,∴m=0;(2)当m=0时,方程变形为x2+2x=0,解得x1=0,x2=﹣2.20.【解答】解:(1)∵一次函数y=﹣2x+b的图象过点,∴.∴解得,b=1.∴一次函数的表达式为y=﹣2x+1.∵一次函数的图象与反比例函数图象交于点M(a,3),∴3=﹣2a+1,解得,a=﹣1.由反比例函数图象过点M(﹣1,3),得k=﹣1×3=﹣3,∴反比例函数的表达式为.(2)由一次函数的表达式为y=﹣2x+1,可得A(0,1),即OA=1,∵直线l2:y=﹣2x+m与直线l1:y=﹣2x+1互相平行,∴△AOB∽△COD,又∵S△OCD=3S△OAB,∴==,即OD=,又∵D(0,m),∴|m|=,∴m的值为.故答案为:.21.【解答】(1)证明:连接OE,∵⊙O与边AC相切,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠OEB=∠CBE∵OB=OE,∴∠OEB=∠OBE,∴∠OBE=∠CBE,又∵EH⊥AB,∠C=90°,∴EH=EC;(2)解:在Rt△ABC中,BC=4,,∴AB=6,∵OE∥BC,∴,即,解得,,∴.22.【解答】解:(1)∵抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2),可得:解得:∴抛物线的表达式为y=﹣2x2+4x+2.∵y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴顶点坐标为(1,4);(2)设点B(0,2)关于x=3的对称点为B’,则点B’(6,2).若直线y=kx+b经过点C(9,4)和B'(6,2),可得b=﹣2.若直线y=kx+b经过点C(9,4)和A(3,﹣4),可得b=﹣8.直线y=kx+b平行x轴时,b=4.综上,﹣8<b<﹣2或b=4.23.【解答】解:(1)①如图1,补全图形②连接AD,如图1.在Rt△ABN中,∵∠B=90°,AB=4,BN=1,∴AN=∵线段AN平移得到线段DM,∴DM=AN=,AD=NM=1,AD∥MC,∴△ADP∽△CMP.∴∴DP=(2)连接NQ,由平移知:AN∥DM,且AN=DM.∵MQ=DP,∴PQ=DM.∴AN∥PQ,且AN=PQ.∴四边形ANQP是平行四边形.∴NQ∥AP.∴∠BQN=∠BAC=45°.又∵∠NBQ=∠ABC=90°,∴BN=BQ.∵AN∥MQ,∴.又∵M是BC的中点,且AB=BC=4,∴.∴(负数舍去).∴.∴24.【解答】解:(1)当x取值a和a+1时,函数值分别为b1=2a﹣1,b2=2a+1,故b2﹣b1=2≥k,因此函数y=2x﹣1是限减函数,它的限减系数为2.(2)若m>1,则m﹣1>0,(m﹣1,)和(m,)是函数图象上两点,,与函数的限减系数k=4不符,且m=1不符合题意,∴m<1.若,(t﹣1,)和(t,)是函数图象上横坐标之差为1的任意两点,则0<t≤m,,∵﹣t(t﹣1)>0,且,∴,与函数的限减系数k=4不符.∴.若≤m<1,(t﹣1,)和(t,)是函数图象上横坐标之差为1的任意两点,则0<t≤m,,∵﹣t(t﹣1)>0,且,∴,当时,等号成立,故函数的限减系数k=4.∴m的取值范围是≤m<1.(3)设P(n,﹣n2),则翻折后的抛物线的解析式为y=x2﹣2n2,对于抛物线y=﹣x2,(m﹣1,﹣(m﹣1)2),(m,﹣m2)是抛物线图象上两点,由题意:﹣m2+m2﹣2m+1≥﹣1,解得m≤1,对于抛物线y=x2﹣2n2,(m,m2﹣2n2),(m+1,(m+1)2﹣2n2)是抛物线图象上两点,由题意:(m+1)2﹣2n2﹣(m2﹣2n2)≥﹣1,解得m≥﹣1,∴满足条件的P点横坐标n的取值范围:﹣1≤n≤1.。
湘教版2020年中考数学试卷E卷
湘教版2020年中考数学试卷E卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四个数中,在﹣2到0之间的数是()A . ﹣1B . ﹣3C . 1D . 32. (2分)下列计算正确的是()A . 2x2+3x2=5x4B . (﹣x2)3=﹣x6C . (x﹣y)2=x2﹣y23. (2分)下列图案中,是中心对称图形的是()A . ①②B . ②③C . ②④D . ③④4. (2分)如图,已知A(﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,则三角形AOB的面积是()A . 5B . 6C . 7D . 85. (2分)下列结论中,不正确的是()A . 两点确定一条直线B . 两点之间的所有连线中,线段最短C . 对顶角相等D . 过一点有且只有一条直线与已知直线平行6. (2分)将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x的值为().A .B .C .D . 27. (2分)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖)同学A B C D E方差平均成绩得分8179808280那么被遮盖的两个数据依次是()A . 78,2B . 78,C . 80,2D . 80,8. (2分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm ,则原铁皮的边长为()A . 10cmB . 13cmC . 14cmD . 16cm9. (2分)在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A .B .C .D .10. (2分)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()A .B .C .D .二、填空题 (共8题;共11分)11. (1分)将点(0,1)向下平移2个单位,再向左平移4个单位后,所得点的坐标为________ .12. (1分)长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是________.13. (1分)(2014•崇左)若分式的值是0,则x的值为________.14. (2分)如图,在平行四边形ABCD中,AC,BD相交于点0,E,F分别为OB,OD 上的点,且OE=OF,则由OA=________可以得到四边形AECF是平行四边形,理由是________.15. (1分)(2016•济宁)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是________km/h.16. (1分)如果⊙A的半径是4cm,⊙B的半径是10cm,圆心距AB=8cm,那么这两个圆的位置关系是________.17. (1分)(2017•怀化)如图,⊙O的半径为2,点A,B在⊙O上,∠AOB=90°,则阴影部分的面积为________.18. (3分)在代数式2b+bc,3x,m2n,4x2﹣2x﹣7,+3,﹣2,,中,单项式有________ 个,多项式有________ 个,整式有________ 个.三、解答题 (共8题;共80分)19. (5分)如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(精确到0.1米)?20. (5分)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,求AE的值.21. (10分)某校初三(1)班的同学踊跃为“希望工程”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但班长不小心把墨水滴在统计表上,部分数据看不清楚.根据图表中现有信息解决下列问题:捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?22. (5分)如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为39°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高.(结果保留小数后一位)参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si39°≈0.63,cos39°≈0.78,tan39°≈0.81.23. (10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y= 的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.24. (15分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?25. (15分)(2017•毕节市)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.26. (15分)已知:如图1,在平面直角坐标系中,点A,B,C都在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(﹣m,﹣m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?请说明理由;(3)如图2,若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,求∠APQ与∠PBQ的度数和.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共80分) 19-1、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
2020—2021年最新湘教版九年级数学下册中考模拟试题及参考答案.docx
九年级第二次模拟考试数学试题(考试时间:100分钟,总分:120分) 学校班级考号姓名一、选择题:本大题共10小题,每小题3分,共30分. 1.21-的倒数是( )A .B .﹣2C .2D .﹣2.如图,已知点A (﹣8,0),B (2,0),点C 在直线y=443+-x 上,则使△ABC 是直角三角形的点C 的个数为( ) A .1B .2C .3D .43.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣6x+8=0的根,则该三角形的周长为( ) A .8B .10C .8或10D .124.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为( ) A .18 B .20C .24D .285.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DACC .∠BCA=∠DCAD .∠B=∠D=90°6.已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为( )A .外离B .内含C .相交D .外切7.如图所示,是由5个相同的小正方体组合而成的几何体,它的左视图是( ) A . B . C . D .8.下列图形中,既是中心对称,又是轴对称图形的是( )A .B .C .D .9.已知如图,一次函数y=ax+b 和反比例函数y=x k 的图象相交于A 、B 两点,不等式ax+b >x k 的解集为( )A .x <﹣3B .﹣3<x <0或x>1C .x <﹣3或x >1 D .﹣3<x <110.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③二、填空题:本大题共8小题,每小题3分,共24分.11.20140000用科学记数法表示(保留3个有效数字)为 . (第15题图)12.已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为S2甲=1.25,乙组数据的方差为S2乙=3,则较稳定.13.点P(-2,3)关于x轴的对称点为;关于y轴的对称点为. 14.在函数y=中,自变量x的取值范围是.(第16题图)15.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=.16.如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC= .17.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= °.(第17题图)18.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= .三、解答题:(共38分)19.(8分)计算:()﹣2+(π﹣2014)0+sin60°+|﹣2|.20.(8分)解方程:21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.四、解答题(共24分)22.(8分)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y 元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?23.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请计算该市中小学生一天中阳光体育运动的平均时间.24.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)(8分)五、综合题(共18分)25.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.26.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、A B成本(元/瓶)50 35利润(元/瓶)20 15B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x 轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P 的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.(3)点P′不在该抛物线上.九年级第一次月考数学试题答案一、选择题(本大题共10小题,每小题3分,共30分)1.B2.B3.A4.C5.C6.D7.D8.A9.B 10.A二、填空题(共10小题,每小题3分,共30分)11、2.01×107 12、甲13、(2,﹣3)14、x≥15、55°16、17、45 °18、(3,2)三、解答题19、(6分) 12 -20、(6分)解得x=2.检验:把x=2代入(x2﹣4)=0.∴原方程无解.21、(1)略(2)30o23、(1)y=5x+9000;(2)x≥360,∴每天至少获利y=5x+9000=10800.24、(1)本次调查共抽样了500名学生;(2)1.5小时的人数为:500×24%=120(人)(3)根据题意得:25、AE为52米26、(1)(2)则P(两次摸到红球)= = .27、(1)证明:略(2)AC=9.28、(1)解析式为y=﹣x2﹣2x+3,抛物线顶点坐标D为(﹣1,4).(2)S△APE=﹣x2﹣3x(﹣3<x<﹣1)S取最大值。
湘教版2020年中考数学试卷E卷
湘教版2020年中考数学试卷E卷一、单选题 (共10题;共20分)1. (2分)的绝对值是()A .B .C .D .2. (2分)下列计算正确的是()A .B .C .D .3. (2分)如图,△ABC是直角三角形,AB⊥CD,图中与∠CAB互余的角有()A . 1个B . 2个C . 3个D . 4个4. (2分)如果,那么下列等式中不一定成立的是()A .B .C .D . ad=bc5. (2分)分式中,当x=-a时,下列结论正确的是()A . 分式的值为零B . 分式无意义C . 若a≠-时,分式的值为零D . 若a≠时,分式的值为零6. (2分)下列说法不正确的是()A . 数据3、5、4、1、﹣2的中位数是3B . 数据1、1、0、2、4的平均数是2C . 在选举中,人们通常最关心是数据的众数D . 甲乙两人近5次数学考试平均分都是95分,方差分别是2.5和8.5,要选一人参加数学竞赛,选甲比较合适7. (2分)(2015•毕节市)若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A . k≥B . k>C . k<D . k≤8. (2分)正方形ABCD的一条对角线长为8,则这个正方形的面积是()A . 4B . 32C . 64D . 1289. (2分)2sin30°的值等于()A . 1B .C .D . 210. (2分)点P1(0,y1),P2(2,y2),P3(3,y3)均在二次函数y=﹣(x﹣1)2+c 的图象上,则y1 , y2 , y3的大小关系是()A . y3>y2>y1B . y3>y1=y2C . y1>y2>y3D . y1=y2>y3二、填空题 (共8题;共9分)11. (2分)若α是锐角,且sinα=1﹣3m,则m的取值范围是________ ;将cos21°,cos37°,sin41°,cos46°的值,按由小到大的顺序排列是________ .12. (1分)代数式有意义,则m的取值范围是________ .13. (1分)正八边形一个内角的度数为________14. (1分)如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________g.15. (1分)已知:(a+2)2+|b﹣3|=0,则(a+b)2009=________.16. (1分)已知函数y1=x2与函数y2=﹣ x+3的图象交于点A(﹣2,4)和点B(,),若y1<y2 ,则x的取值范围是________.17. (1分)如图,直线y=2mx+4m(m≠0)与x轴,y轴分别交于A,B两点,以OA为边在x轴上方作等边△AOC,则△AOC的面积是________.18. (1分)如图,第1个图案由1颗“★”组成,第2个图案由2颗“★”组成,第3个图案由3颗“★”组成,第4个图案由5颗“★”组成,第5个图案由8颗“★”组成,……,则第6个图案由________颗“★”组成.三、解答题 (共5题;共30分)19. (5分)计算÷(1+ ).20. (10分)如图,等腰三角形ABC中,AB=AC.(1)用尺规作出圆心在直线BC上,且过A、C两点的⊙O;(注:保留作图痕迹,标出点O,并写出作法)(2)若∠B=30°,求证:AB与(1)中所作⊙O相切.21. (5分)某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据4666221011860注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.22. (5分)如图,把两幅完全相同的长方形图片粘贴在一矩形宣传板EFGH上,除D 点外,其他顶点均在矩形EFGH的边上.AB=50cm,BC=40cm,∠BAE=55°,求EF的长.参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.43.23. (5分)日常生活中有许多形式的抽奖游戏,我们可以利用概率的知识计算某些游戏获奖的概率.下面我们就来看这样的例子百盛商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被分成20个相等的扇形).某一顾客购物100元,他获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?四、解答题(二) (共5题;共70分)24. (20分)在阳光大课间活动中,某校开展了立定跳远、实心球、长跑等体育活动,为了了解九年一班学生的立定跳远成绩的情况,对全班学生的立定跳远测试成绩进行统计,并绘制了以下不完整的频数分布直方图和扇形图,根据图中信息解答下列问题.(1)求九年一班学生总人数,并补全频数分布直方图(标注频数);(2)求2.05≤a<2.25成绩段在扇形统计图中对应的圆心角度数;(3)直接写出九年一班学生立定跳远成绩的中位数所在的成绩段;(4)九年一班在2.25≤a<2.45成绩段中有男生3人,女生2人,现要从这5人中随机抽取2人参加学校运动会,请用列表法或树状图法求出恰好抽到一男一女的概率.25. (10分)如图,AB是⊙O的弦,AB=4,点P在上运动,且∠APB=30°.(1)求⊙O的半径;(2)求图中阴影部分的面积.26. (15分)在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).27. (10分)在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ,若∠B=60°,在不添加任何辅助线的情况下,请直接写出图中所有余弦值为的角.28. (15分)如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s= t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+ (t﹣30),v0是加速前的速度).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共5题;共30分) 19-1、20-1、20-2、21-1、22-1、23-1、四、解答题(二) (共5题;共70分)24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、。
2020年湖南省中考数学模拟试卷2解析版
2020年湖南省中考数学模拟试卷2一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)|﹣3|等于()A.﹣3B.﹣C.3D.2.(3分)据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1093.(3分)下列计算正确的是()A.3x+2y=5xy B.(x4)3=x12C.(x+y)2=x2+y2D.2x2÷2x2=04.(3分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市5.(3分)下列说法正确的是()A.有两条边和一个角对应相等的两个三角形全等B.矩形的对角线互相垂直平分C.正方形既是轴对称图形又是中心对称图形D.一组对边平行,另一组对边相等的四边形是平行四边形6.(3分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=47.(3分)如图,在⊙O中,CD为⊙O的切线,切点为C,已知∠B=25°,那么∠D为()A.30°B.40°C.50°D.60°8.(3分)下列哪个选项表示的点有可能在反比例函数y=的图象上()A.(﹣1,2)B.(1,﹣2 )C.(2,3)D.(2,﹣3)9.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD =3,那么EF的长是()A.B.C.D.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为()A.1B.1.2C.1.4D.1.6二、填空题(本题共8小题,每小题3分,共24分)11.(3分)二次根式中x的取值范围是.12.(3分)一组数据:3,8,6,7,6,5的中位数是.13.(3分)因式分解:(m2+1)(x﹣y)﹣2m(x﹣y)=.14.(3分)若正多边形的内角和是1260°,则该正多边形的边数是.15.(3分)古代有个数学问题,意思是“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”你的答案是每头牛两.16.(3分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为9,则勒洛三角形的周长为.17.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边于对角线AC重合,点B落在点F处,且EF=3,则AB的长为.18.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的是(填序号).三、解答题(本大题共8小题,共66分)19.(6分)计算:2cos30°+()﹣1﹣+2019020.(6分)先化简,再求值:(1﹣)÷(x+),其中x=2.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图新建的醴陵320国道(用直线l表示),进入株洲城区的AB路段设有区间测速,所有车辆限速60千米/小时(约为16.7米/秒),数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=40米,∠APC=71°,∠BPC=35°.(1)求AB的长;(2)若上午9时测得一汽车从点A到点B用时5.5秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.(8分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.24.(8分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?25.(10分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC 交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:CD2=CE•AC;(2)若AB=4,AC=4,求AE的长.26.(12分)在平面直角坐标系中,抛物线y=﹣x2+x+m﹣1交x轴于A、B两点,交y 轴于点C,若A点坐标为(x1,0),B点坐标为(x2,0)(x1≠x2).(1)求m的取值范围;(2)如图1,若x12+x22=17,求抛物线的解析式;(3)在(2)的条件下,请解答下列两个问题:①如图1,请连接AC,求证:△ACB为直角三角形.②如图2,若D(1,n)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)|﹣3|等于()A.﹣3B.﹣C.3D.【分析】利用绝对值的定义解答即可.【解答】解:|﹣3|=3,故选:C.2.(3分)据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:39000000000=3.9×1010.故选:A.3.(3分)下列计算正确的是()A.3x+2y=5xy B.(x4)3=x12C.(x+y)2=x2+y2D.2x2÷2x2=0【分析】根据同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,完全平方公式的应用,以及合并同类项的方法,逐项判断即可.【解答】解:∵3x+2y≠5xy,∴选项A不符合题意;∵(x4)3=x12,∴选项B符合题意;∵(x+y)2=x2+2xy+y2,∴选项C不符合题意;∵2x2÷2x2=1,∴选项D不符合题意.故选:B.4.(3分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.5.(3分)下列说法正确的是()A.有两条边和一个角对应相等的两个三角形全等B.矩形的对角线互相垂直平分C.正方形既是轴对称图形又是中心对称图形D.一组对边平行,另一组对边相等的四边形是平行四边形【分析】分别根据全等三角形的判定、矩形的性质、正方形的性质以及平行四边形的判定解答即可.【解答】解:A.有两条边和它们的夹角对应相等的两个三角形全等,故本选项不合题意;B.矩形的对角线相等且互相平分,故本选项不合题意;C.正方形既是轴对称图形又是中心对称图形,正确,故本选项符合题意;D.两组对边分别平行(或两组对边分别相等)的四边形是平行四边形,故本选项不合题意.故选:C.6.(3分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=4【分析】分式方程去分母转化为整式方程,即可作出判断.【解答】解:去分母得:1﹣3(x﹣2)=﹣4,故选:B.7.(3分)如图,在⊙O中,CD为⊙O的切线,切点为C,已知∠B=25°,那么∠D为()A.30°B.40°C.50°D.60°【分析】连接OC,根据圆周角定理和三角形的内角和即可得到结论.【解答】解:连接OC,∵∠B=25°,∴∠COD=2∠B=50°,∵CD为⊙O的切线,∴∠DCO=90°,∴∠D=90°﹣50°=40°,故选:B.8.(3分)下列哪个选项表示的点有可能在反比例函数y=的图象上()A.(﹣1,2)B.(1,﹣2 )C.(2,3)D.(2,﹣3)【分析】先计算三个点的横纵坐标的乘积,再根据反比例函数图象上点的坐标特征可判断点C在反比例函数图象上.【解答】解:因为﹣1×2=﹣2<0,1×(﹣2)=﹣2<,2×3=6>0,2×(﹣3)=﹣6<0,而a2+1=x•y>0,所以点C(2,3)可能在反比例函数y=的图象上,故选:C.9.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD =3,那么EF的长是()A.B.C.D.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选:C.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为()A.1B.1.2C.1.4D.1.6【分析】把y=3代入y=2x得到x=1.5,根据已知可得B点应该在直线y=2x的右侧,从而分析出n的取值范围,依此判断即可.【解答】解:当y=3时,x=1.5.若直线y=2x与线段AB有公共点,则B点应该在直线y=2x的右侧,即n≥1.5,∴n的值可以为1.6.故选:D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)二次根式中x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.12.(3分)一组数据:3,8,6,7,6,5的中位数是6.【分析】把给出的此组数据中的数按从小到大(或从大到小)的顺序排列,处于中间的两个数的平均数就是此组数据的中位数;【解答】解:把给出的此组数据中的数按从小到大的顺序排列为:3、5、6、6、7、8,最中间的两个数的平均数是:(6+6)÷2=12÷2=6;故答案为:6.13.(3分)因式分解:(m2+1)(x﹣y)﹣2m(x﹣y)=(x﹣y)(m﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=(x﹣y)(m2+1﹣2m)=(x﹣y)(m﹣1)2,故答案为:(x﹣y)(m﹣1)214.(3分)若正多边形的内角和是1260°,则该正多边形的边数是9.【分析】n边形的内角和可以表示成(n﹣2)•180°,根据题意列方程,解之即可.【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解之,得n=9.∴该正多边形的边数是9.故答案为:915.(3分)古代有个数学问题,意思是“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”你的答案是每头牛两.【分析】设每头牛值金x两,每只羊值金y两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设每头牛值金x两,每只羊值金y两,依题意,得:,解得:.故答案为:.16.(3分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为9,则勒洛三角形的周长为9π.【分析】根据弧长公式计算即可.【解答】解:勒洛三角形的周长=×3=9π,故答案为:9π.17.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边于对角线AC重合,点B落在点F处,且EF=3,则AB的长为6.【分析】先根据矩形的性质求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF==4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故答案为:618.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的是①④(填序号).【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a•5•1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【解答】解:∵二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0),∴抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(4,5a)关于直线x=1的对称点为(﹣2,5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故答案为①④.三、解答题(本大题共8小题,共66分)19.(6分)计算:2cos30°+()﹣1﹣+20190【分析】直接利用特殊角的三角函数值以及负指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2×+2﹣2+1=+1.20.(6分)先化简,再求值:(1﹣)÷(x+),其中x=2.【分析】首先计算括号里面分式的加减法,再计算除法,化简后,再代入x的值即可.【解答】解:原式=(﹣)÷[+],=÷,=•,=,当x=2时,原式==.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图新建的醴陵320国道(用直线l表示),进入株洲城区的AB路段设有区间测速,所有车辆限速60千米/小时(约为16.7米/秒),数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=40米,∠APC=71°,∠BPC=35°.(1)求AB的长;(2)若上午9时测得一汽车从点A到点B用时5.5秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)【分析】(1)由三角函数定义求出AC、BC,即可得出答案;(2)求出该汽车的速度,即可得出结论.【解答】解:(1)在Rt△APC中,∠APC=71°,∵tan∠APC=tan71°=≈2.90,∴AC≈40×2.90=116(米),在Rt△BPC中,∠BPC=35°,∵tan∠BPC=tan35°=≈0.70,∴BC≈40×0.70=28(米)∴AB=AC﹣BC=116﹣28=88 (米);答:AB的长约为88米;(2)该汽车的速度约为:=16m/s<16.7m/s,∴该车没有超速.22.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数﹣其余人数;(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【解答】解:(1)该班团员人数为:3÷25%=12(人);发4条箴言的人数为:12﹣2﹣2﹣3﹣1=4(人);该班团员所发箴言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3(条).补图如下:(2)画树状图如下:发3条箴言条的同学男男女选出的2位同学发4条箴言条的同学男(男,男)(男,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)由上得,所选两位同学恰好是一位男同学和一位女同学的概率P =.23.(8分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)根据AAS证△AFE≌△DBE;(2)利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.24.(8分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.25.(10分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC 交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:CD2=CE•AC;(2)若AB=4,AC=4,求AE的长.【分析】(1)证明△CDE∽△CAD可得结论.(2)理由相似三角形的性质,勾股定理求出AC,CE即可解决问题.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;∴=,∴CD2=CE•AC.(2)解:在Rt△AOC中,∵AB=4,∴OA=2,AC=4,∴OC===6,∴CD=OC﹣OD=6﹣2=4,∵CD2=CE•AC,∴CE=2,∴AE=AC﹣CE=4﹣2=2.26.(12分)在平面直角坐标系中,抛物线y=﹣x2+x+m﹣1交x轴于A、B两点,交y 轴于点C,若A点坐标为(x1,0),B点坐标为(x2,0)(x1≠x2).(1)求m的取值范围;(2)如图1,若x12+x22=17,求抛物线的解析式;(3)在(2)的条件下,请解答下列两个问题:①如图1,请连接AC,求证:△ACB为直角三角形.②如图2,若D(1,n)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.【分析】(1)△=()2﹣4×(﹣)(m﹣1)=+2m﹣2=2m+,即可求解;(2)∵x1+x2=3,x1•x2=﹣2(m﹣1),又x12+x22=17,∴(x1+x2)2﹣2x1•x2=17,即可求解;(3)①AC2=5,BC2=20,AB2=25,即可求解;②分△PBD∽△BAE、△PBD∽△EAB两种情况,分别求解即可.【解答】解:(1)△=()2﹣4×(﹣)(m﹣1)=+2m﹣2=2m+,由题可得2m+>0,∴m>﹣;(2)∵x1+x2=3,x1•x2=﹣2(m﹣1),又x12+x22=17,∴(x1+x2)2﹣2x1•x2=17∴32+4(m﹣1)=17,∴m=3,∴抛物线的解析式为y=﹣x2+x+2;(3)①证明:令y=0,﹣x2+x+2=0,∴x1=﹣1,x2=4,∴A(﹣1,0),B(4,0)令x=0,y=2,∴C(0,2),∴AC2=5,BC2=20,AB2=25∴AC2+BC2=AB2∴△ACB为直角三角形;②根据抛物线的解析式易知:D(1,3),联立直线AE、抛物线解析式:解得或,∴E(6,﹣7),∴tan∠DBO=1,即∠DBO=45°,tan∠EAB=1,即∠EAB=45°,∴∠DBA=∠EAB,若以P、B、D为顶点的三角形与△ABE相似,则有两种情况:①△PBD∽△BAE;②△PBD∽△EAB.易知BD=3,EA=7,AB=5,由①得:,即,即PB=,OP=OB﹣PB=.由②得:,即,即PB=,OP=OB﹣BP=﹣,∴P(,0)或(﹣,0).。
2020中考数学二模试卷(含答案解析)
中考数学二模试卷一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.﹣B.C.﹣3D.32.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.3.已知sin a=,且a是锐角,则a=()A.75°B.60°C.45°D.30°4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2B.4和2C.2和3D.3和25.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°6.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有()A.4种B.6种C.8种D.10种二、填空题(本大题共6个小题,每小题3分,共18分.)7.计算:+2﹣1=.8.我国最长的河流长江全长约为6300千米,用科学记数法表示为千米.9.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.10.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是cm2.11.线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为.12.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC 向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.解方程:14.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.15.先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.16.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.17.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.四、(本大题共4小题,每小题8分,共32分.)18.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.20.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.五、(本大题共1小题,共10分).22.已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.(1)如图①,若AP⊥PQ,BP=2,求CQ的长;(2)如图②,若,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.六、(本大题共1小题,共12分)23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ 是等腰三角形?中考数学二模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.【分析】根据sin60°=得出a的值.【解答】解:∵sin a=sin60°=,a是锐角,∴a=60°.故选:B.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.4.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.5.【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.6.【分析】本题应分两种情况考虑:①当蜜蜂先向右爬行时;②当蜜蜂先向右上爬行时;然后将两种情况中所以可能的爬行路线一一列出,即可求出共有多少种不同的爬法.【解答】解:本题可分两种情况:①蜜蜂先向右爬,则可能的爬法有:一、1⇒2⇒4;二、1⇒3⇒4;三、1⇒3⇒2⇒4;共有3种爬法;②蜜蜂先向右上爬,则可能的爬法有:一、0⇒3⇒4;二、0⇒3⇒2⇒4;三、0⇒1⇒2⇒4;三、0⇒1⇒3⇒4;四、0⇒1⇒3⇒2⇒4;共5种爬法;因此不同的爬法共有3+5=8种.故选:C.【点评】本题应该先确立大致的解题思路,然后将有可能的爬法按序排列,以免造成头绪混乱,少解错解等情况.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣)0+2﹣1=1+=1.故答案为1.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n>0,n=3.【解答】解:6 300=6.3×103.故答案为:6.3×103.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.【分析】根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点E的坐标是(2a,2b).【解答】解:设直线OP与线段CD的交点为E,∵AB∥CD,且O,B,D三点在一条直线上,OB=BD∴OP=PE∴若点P的坐标为(a,b),∴点E的坐标是(2a,2b).故答案为(2a,2b).【点评】正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.12.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.【分析】观察可得方程最简公分母为:(x+1)(1﹣2x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同乘以(x+1)(1﹣2x),得:(x﹣1)(1﹣2x)+2x(x+1)=0,整理,得5x﹣1=0,解得x=,经检验,x=是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【分析】(1)(2)利用数形结合的思想解决问题即可.【解答】解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.【点评】本题考查作图﹣应用与设计,无理数,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.16.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.17.【分析】因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.列举出所有情况,让芳香度之和等于4的情况数除以总情况数即为所求的概率.【解答】解:列表法:012第一次第二次334544565567树状图:(4分)所有可能出现的结果共有9种,芳香度之和等于4的结果有两种.∴所选取两种不同添加剂的芳香度之和等于4的概率为.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题共4小题,每小题8分,共32分.)18.【分析】(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价≤12000;足球门票的费用≤男篮门票的费用.据此列不等式即可求解.【解答】解:(1)设预定男篮门票x张,则乒乓球门票(15﹣x)张,根据题意得1000x+500(15﹣x)=12000解得x=9∴15﹣x=15﹣9=6.答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(15﹣2y)张,根据题意得解得由y为正整数可得y=5,15﹣2y=5.答:预订这三种球类门票各5张.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.19.【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵A(﹣2,1)在反比例函数y=的图象上,∴1=,解得m=﹣2.∴反比例函数解析式为y=,∵B(1,n)在反比例函数h上,∴n=﹣2,∴B的坐标(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得,解得:,∴一次函数的解析式为y=﹣x﹣1;(2)由图象知:当x<﹣2或0<x<1时,一次函数的值大于反比例函数.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有,C组的人数为300﹣20﹣100﹣60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有24000×60%=14400(人);故答案为:(1)120,(2)C,(3)达国家规定体育活动时间的人约有14400人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21.【分析】(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.【解答】解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD.在△ACO和△ODB中,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3).(2)因抛物线过原点,故可设所求抛物线的解析式为y=ax2+bx.将A(﹣3,1),B(1,3)两点代入,得,解得:a=,b=故所求抛物线的解析式为y=x2+x.(3)在抛物线y=x2+x中,对称轴l的方程是x=﹣=﹣点B1是B关于抛物线的对称轴l的对称点,故B1坐标(﹣,3)在△AB1B中,底边B1B=,高的长为2.故S△AB1B=××2=.【点评】本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.五、(本大题共1小题,共10分).22.【分析】(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值;(2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF =S梯形EHGF﹣S△EHP的值.【解答】解:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠CPQ+∠PQC=90°,∵AP⊥PQ,∴∠CPQ+∠APB=90°,∴∠APB=∠PQC,∴△ABP∽△PCQ,∴,即,∴CQ =3;(2)解法一:取BP 的中点H ,连接EH ,由, 设CQ =a ,则BP =2a ,∵E ,F ,G ,H 分别为AP ,PQ ,PC ,BP 的中点,∴EH ∥AB ,FG ∥CD ,又∵AB ∥CD ,∠B =∠C =90°,∴EH ∥FG ,EH ⊥BC ,FG ⊥BC ,∴四边形EHGF 是直角梯形,∴EH =AB =2,FG =CQ =a ,HP =BP =a ,HG =HP +PG =BC =4,∴S 梯形EHGF =(EH +FG )•HG =(2+a )•4=4+a ,S △EHP =HP •EH =a •2=a , ∴S 四边形EPGF =S 梯形EHGF ﹣S △EHP =4+a ﹣a =4;解法二:连接AQ ,由=2,设CQ =a ,则BP =2a ,DQ =4﹣a ,PC =8﹣2a ,S △APQ =S 矩形ABCD ﹣S △ABP ﹣S △PCQ ﹣S △ADQ=4×8﹣•2a •4﹣(8﹣2a )a ﹣×8(4﹣a )=a 2﹣4a +16∵E ,F ,G 分别是AP ,PQ ,PC 的中点∴EF ∥AQ ,EF =AQ .∴△PEF ∽△PAQ∴,S △PEF =S △APQ =(a 2﹣4a +16)同理:S △PFG =S △PCQ =a (8﹣2a )∴S 四边形EPGF =S △PEF +S △PFG=(a 2﹣4a +16)+a (8﹣2a )=4.【点评】本题利用了矩形的性质,相似三角形的判定和性质,三角形和梯形的面积公式求解.六、(本大题共1小题,共12分)23.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC 即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,解得,∴y=﹣x+2+2;当y=0时,x=2+2,∴P2O=2+2.【点评】本题综合考查函数、圆的切线,等边三角形的判定以及垂径定理等知识点.要注意(3)中的等腰三角形要按顶点和腰的不同来分类讨论.。
湘教版中考数学二模试卷E卷
湘教版中考数学二模试卷E卷一、选择题 (共12题;共24分)1. (2分)下列结论中,正确的是()A . ﹣7<﹣8B . 85.5°=85°30′C . ﹣|﹣9|=9D . 2a+a2=3a22. (2分)若点M(a+2,3-2a)在y轴上,则点M的坐标是().A . (-2,7)B . (0,3)C . (0,7)D . (7,0)3. (2分)如图,AB∥CD,点E在BC上,且DE⊥BC,∠D=58°,则∠B的度数为()A . 32°B . 42°C . 52°D . 58°4. (2分)如图几何体的主视图是()A .B .C .D .5. (2分)下列各式中,与2a的同类项的是()A . 3aB . 2abC . ﹣3a2D . a2b6. (2分)世界人口约7000000000人,用科学记数法可表示为()A .B .C .D .7. (2分)估计的值在()A . 1和2之间B . 2和3之间C . 3和4之间D . 4和5之间8. (2分)一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是()A . 80,2B . 80,C . 78,2D . 78,9. (2分)下列命题是假命题的是()A . 若x<y,则x+2008<y+2008B . 单项式-的系数是-4C . 若|x-1|+(y-3)2=0则x=1,y=3D . 平移不改变图形的形状和大小10. (2分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A . 6πB . 8πC . 12πD . 16π11. (2分)在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点。
如图,已知⊙O的半径为5,则抛物线与该圆所围成的阴影部分(不包括边界)的整点个数是()A . 24B . 23C . 22D . 2112. (2分)若点(x1 , y1)、(x2 , y2)、(x3 , y3)都是反比例函数y= 的图象上的点,并且x1<0<x2<x3 ,则下列各式中正确的是()A . y1<y3<y2B . y2<y3<y1C . y3<y2<y1D . y1<y2<y3二、填空题 (共6题;共6分)13. (1分)分解因式:m2﹣2m=________ .14. (1分)一次函数y=﹣3x﹣5的图象在y轴上的截距为________.15. (1分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP 垂直平分RS.其中正确结论的序号是________(请将所有正确结论的序号都填上).16. (1分)如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为________ cm2(结果保留π).17. (1分)如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连结ED并延长交AB于F,交AH于H,如果AB=4AF,EH=8,则DF的长为________ .18. (1分)如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为________.三、解答题 (共8题;共106分)19. (5分)计算:﹣4cos45°+()﹣1+|﹣2|.20. (30分)用加减消元法解方程组.:(1)(2)(3)(4)(5)(6).21. (10分)如图,在等腰△ABC中,AB=BC,点D是AC边的中点,延长BD至点E,使得DE=BD,连结CE.(1)求证:△ABD≌△CED.(2)当BC=5,CD=3时,求△BC E的周长.22. (14分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计m1(1)计算m=________(2)计算m=________(3)在扇形统计图中,“其他”类所占的百分比为________(4)在扇形统计图中,“其他”类所占的百分比为________(5)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.(6)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.23. (15分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).24. (20分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知CD=20米,求建筑物BC的高度;(3)若已知旗杆的高度AB=5米,求建筑物BC的高度.(4)若已知旗杆的高度AB=5米,求建筑物BC的高度.25. (10分)如图,已知AB是⊙O的直径,点P是弦BC上一动点(不与端点重合),过点P作PE⊥AB于点E,延长EP交于点F,交过点C的切线于点D.(1)求证:△DCP是等腰三角形;(2)若OA=6,∠CBA=30°.①当OE=EB时,求DC的长;②当的长为多少时,以点B,O,C,F为顶点的四边形是菱形?26. (2分)对于函数y=xn+xm ,我们定义y'=nxn﹣1+mxm﹣1(m、n为常数).例如y=x4+x2 ,则y'=4x3+2x.已知:y= x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为________;(2)若方程y′=m﹣有两个正数根,则m的取值范围为________.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共106分) 19-1、20-1、20-2、20-3、20-4、20-5、20-6、21-1、21-2、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、。
最新2019-2020年度湘教版九年级上学期第二次联考数学模拟试题及答案解析-精编试题
湘教版最新九年级数学上学期第二次联考试题时间;120分钟 满分;120分题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)1、已知0432≠==c b a ,则c b a +的值为( )A.54B.45C.2D.212、下列结论中正确的是( )A. 两个正方形一定相似B. 两个菱形一定相似C. 两个等腰梯形一定相似D. 两个直角梯形一定相似 3、下列条件不能判定△ABC 与△A′B′C′相似的是( )A.∠C =∠C′=90° ∠B =∠A′=50°B.∠A =∠A′=90° ''''B A C B AB BC = C.∠A=∠A′''''C B BC B A AB = D.''''''B A ACC A BC C B AB == 4、如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是( ) A. 9:16B.3:2 C. 3:4D. 3:75、已知,如图,DE ∥BC ,EF ∥AB ,则下列结论: ①FC BF EC AE = ②BCAB BF AD= ③EF AB DEBC=④CE CF EABF=其中正确的比例式的个数是( ) A. 4个B. 3个C. 2个D. 1个6、在△ABC 与△DEF 中,有下列条件:①AB:DE=BC:EF ②BC:EF=AC:DF ③∠B =∠E ④∠C =∠F.如果从中任取两个条件组成一组,那么能判断△ABC 与△DEF 相似的第5题图共有( )A. 2组B. 3组C. 4组D. 5组7、三角形三边之比3:5:7,与它相似的三角形最长边是21cm ,另两边之和是( )。
A. 15cm B. 18cm C. 21cm D. 24cm8、在平面直角坐标系中,已知A (6,3),B (6,0)两点,以坐标原点O 为位似中心,位似比为31,把线段AB 缩小到线段''A B ,则''A B 的长度等于( ) A.1 B.2 C.3 D.69、在比例尺为1:m 的某市地图上,规划出长a 厘米,宽b 厘米的矩形工业园区,该园区的实际面积是( )米2A. 104m abB. 1042m abC. abm 104D. abm 241010、如图,P 是Rt △ABC 的斜边BC 上间于B ,C 的一点,过P 点作 直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的 直线共有( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版2020届数学中考二模试卷E卷
一、单选题 (共10题;共20分)
1. (2分)的平方根是()
A . 2
B . ±2
C .
D . ±
2. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
3. (2分)甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次第二次第三次第四次第五次第六交甲9867810
乙879788对他们的训练成绩作如下分析,其中说法正确的是()
A . 他们训练成绩的平均数相同
B . 他们训练成绩的中位数不同
C . 他们训练成绩的众数不同
D . 他们训练成绩的方差不同
4. (2分)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()
A .
B .
C .
D .
5. (2分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()
A .
B .
C .
D .
6. (2分)(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD 为()
A . 36
B . 12
D . 3
7. (2分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()
A . 6
B . 7
C . 8
D . 9
8. (2分)如图,在△ABC中,点D , E分别在AB , AC上,DE∥BC , AD=CE .若AB:AC=3:2,BC=10,则DE的长为()
A . 3
B . 4
C . 5
D . 6
9. (2分)某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为()
B . 12
C . 14
D . 17
10. (2分)已知,如图,在平行四边形ABCD中,∠ABC的平分线与AD相交于点P,下列说法中正确的是()
①△APB是等腰三角形②∠ABP+∠BPD=180°③PD+CD=BC④
A . ①②④
B . ①②③
C . ①③④
D . ①②③④
二、填空题 (共10题;共10分)
11. (1分)废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为________立方米.
12. (1分)在函数中,自变量x的取值范围________.
13. (1分)如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为________
14. (1分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是________.
15. (1分)(2013•内江)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是________.
16. (1分)为了鼓励居民节约用水,某自来水公司采取分段计费:每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,则应交水费________元.
17. (1分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠BAC的度数等于________.
18. (1分)若分式方程 = 有增根,则这个增根是x=________.
19. (1分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2
cm,∠BCD=22°30′,则⊙O的半径为________cm.
20. (1分)(2017•潍坊)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为________个.
三、解答题 (共8题;共85分)
21. (5分)化简分式÷ ﹣1,并选取一个你认为合适的整数a代入求值.
22. (10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)①画出△ABC关于x轴对称的△A1B1C1;
②画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(2)在(1)的条件下,求线段BC扫过的面积(结果保留π).
23. (15分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).
(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;
(2)根据图象,写出你发现的一条结论;
(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.
24. (15分)为了解某小区家庭用电情况,小明随机调查了该小区n户家庭2017年4月的用电量(用电量的数据都是整数),并将所得整数绘制成频数分布直方图如图①所示.
(1)求n的值,
(2)小明将所得数据按每户用电量x(度)大小分为三档,①低档:121≤x≤160,②中档:161≤x≤200,③高档:201≤x≤240,并绘制成扇形统计图如图②所示,请帮助他将扇形统计图补充完整.
(3)该地区对居民用电实行“阶梯收费”,规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,根据以上调查结果,估计2017年4月该小区300户家庭仅按第一阶梯电价收费额户数.
25. (10分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.
(1)求直线AB的表达式和点B的坐标;
(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.
①用含n的代数式表示△ABP的面积;
②当S△ABP=8时,求点P的坐标;
③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.
26. (5分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
27. (10分)嘉兴素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)
28. (15分)已知一次函数y=﹣ x+4的图象与x轴、y轴分别相交于点A、B,四边形AOBC(O是原点)的一组对边平行,且AC=5.
(1)求点A、B的坐标;
(2)求点C的坐标;
(3)如果一个一次函数y=kx+b(k、b为常数,且k<0)的图象经过点A、C,求这个一次函数的解析式.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共10题;共10分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共8题;共85分) 21-1、
22-1、
22-2、
23-1、
23-2、
23-3、
24-1、
24-2、
24-3、
25-1、
25-2、
26-1、
27-1、
27-2、
28-1、
28-2、28-3、。