七年级数学上册第二章11.有理数的混合运算(典型例题)
临泉县四中七年级数学上册第二章有理数及其运算11有理数的混合运算说课稿新版北师大版1
《有理数的混合运算》说课稿一、说教材教材所处的位置及前后联系:本节课是七年级上册第二章第十一节的内容,是在学生学习并掌握了有理数的加、减、乘、除,乘方运算的基础上提出的,也是为以后学习整式的加减,解方程及解不等式、分式的运算奠定了基础,因此,这节课是学生必须掌握的内容。
学情分析:刚入初中的学生,对从算术数到有理数,从算术数的运算扩充到有理数的混合运算,尤其是负数的引入,使他们进入了抽象领域,因此在学习时应引导学生从具体情境,实际例子出发从直观形象思维向抽象思维过渡。
二、教学目标1.知识目标:①了解有理数的混合运算的意义;②熟练掌握有理数的混合运算的顺序,会进行简单有理数的混合运算;2.能力目标:培养学生运算能力及综合运用知识、解决问题能力。
3.情感与价值目标:①通过学生做题,提高学生的灵活解题的能力;②通过师生共同的活动,培养学生的应用意识,训练学生的思维;③提高学生的学习兴趣,独立思考的能力,在学习中享受成功的喜悦。
教学重点:有理数的运算顺序的确定,根据运算顺序正确地进行有理数的混合运算。
教学难点:熟练掌握有理数运算顺序和运算符号的确定和性质符号的处理。
三、教学方法:根据七年级学生的心理特征及思维能力,我将采取“复习导入,新旧知识的转化,引导发现总结法则,共同训练提高来完成教学任务,学生采用自主探索,共同训练,完成本节课的学习。
四、论教学过程(一)复习回顾,引入新课回忆小学的四则混合运算,并说出顺序及法则,由此引入今天的新课。
这样设计可使学生由熟悉的知识转入新知识,过渡自然,易于接受。
(二)出示例题,归纳总结,得出有理数的混合运算的顺序出示例子,与学生共同来完成,边提示边总结。
使学生熟悉运算顺序应由高级到低级的顺序,这样设计学生会很快总结出法则。
(板书)学生参与了这项活动,培养了他们发现事物规律的能力,及自主学习的能力。
(三)尝试训练、巩固法则出示6道练习题让学生板演,熟悉法则,做完后讲评批改纠错,这样及时纠错,共同提高。
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题将考点与相应习题联系起来考点一、有理数的加减乘除乘方运算1、 (-3)3÷214×(-23)2 – 4-23×(- 232) 2、 -32+(-2)3 –(0.1)2×(-10)33、 -0.5-(-314)+2.75+(-712) 4、(-23)-(-5)+(-64)-(-12)5、如果()()0132122=-+-++c b a ,求333c a abc -+的值.考点二、运用运算律进行简便运算1、-(-5.6)+10.2-8.6+(-4.2)2、(-12+16-34+512)×(-12) 3、(117512918--)×36-6×1.43+3.93×6 4、492425×(-5)考点三、与数轴相关的计算或判断1、已知有理数a,b,c 在数轴上的位置如图所示,下列错误的是( ) A 、b+c<0B 、-a+b+c<0C 、|a+b|<|a+c|D 、|a+b|>|a+c|2、a ,b 在数轴上的位置如图所示,则a ,b ,a +b ,a -b 中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个3、若a .b .c 在数轴上位置如图所示,则必有( )a -2-1A .abc >0B .ab -ac >0C .(a +b )c >0D .(a -c )b >04、有理数a ,b 在数轴上的位置如图所示,则在a +b ,a -b ,ab ,3a ,23a b s 这五个数中,正数的个数是( ) A .2 B .3 C .4 D .55、有理数a 、b 在数轴上的对应的位置如图所示,则( ) A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >06、a 、b 在数轴上的位置如图,化简a = ,b a += ,1+a = 。
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题
期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。
有理数的混合运算计算题七年级
有理数的混合运算计算题七年级一、有理数混合运算的运算顺序1. 先算乘方,再算乘除,最后算加减。
2. 同级运算,按照从左到右的顺序进行。
3. 如果有括号,先算括号里面的(先小括号,再中括号,最后大括号)。
二、典型例题1. 计算:(-2)+3×(-4)-(-5)÷(1)/(2)- 解析:- 按照运算顺序,先算乘除。
- 这里有乘法3×(-4)= - 12,除法(-5)÷(1)/(2)=(-5)×2=-10。
- 然后算加减。
- 原式变为(-2)+(-12)-(-10)。
- 去括号得-2 - 12 + 10。
- 先算-2-12=-14,再算-14 + 10=-4。
2. 计算:2×(-3)^2-4×(-2)+10- 解析:- 先算乘方。
- (-3)^2=(-3)×(-3)=9。
- 再算乘除。
- 原式变为2×9-4×(-2)+10,2×9 = 18,4×(-2)=-8。
- 最后算加减。
- 式子变为18-(-8)+10,去括号得18 + 8+10,先算18+8 = 26,再算26+10 = 36。
3. 计算:[1-(1 - 0.5×(1)/(3))]×[2-(-3)^2]- 解析:- 先算小括号里面的。
- 在小括号1 - 0.5×(1)/(3)中,先算乘法0.5×(1)/(3)=(1)/(2)×(1)/(3)=(1)/(6),再算减法1-(1)/(6)=(5)/(6)。
- 再算中括号里面的。
- 第一个中括号里1-(1 - 0.5×(1)/(3))=1-(5)/(6)=(1)/(6),第二个中括号里2-(-3)^2=2 - 9=-7。
- 最后算两个中括号的乘积。
- (1)/(6)×(-7)=-(7)/(6)。
三、练习题1. 3 - 4×(-2)+(-1)^2023- 解析:- 先算乘方,(-1)^2023=-1。
有理数的加减混合运算典型例题
有理数的加减混合运算典型例题例1计算下列各式:(1) --■(3)二_二;(4)一「「一一二一一「一一厂解:(1)原式[卜7)心)由:5+4)(4)原式_ 「= [{-5 5)+2 5]+(3.2+43)=H) + (0\ 2 (+2——2—(2)原式(3)原式. '(2)= -3+8=5说明:对于有理数的加法或有理数的减法的题目,要先进行全面分析,找岀特点,采用适当的步骤,才能计算正确、简便和迅速,如多个有理数相加、一般按从左到右的顺序,逐个进行计算而得出结果.但根据题目特点,若能应用加法交换律或结合律的一定要先用这些运算律,可以简便运算,而且还能防止岀错•不但另外,加数中若有相反数,也应先把相反数相加.-7-(-8)-<-7 丄)_(+9) +(-10)+11 丄例2计算:分析在进行加减混合运算时运算的顺序是由左向右,所以该题我们可以由左向右依次进行;也可以先利用减法法则把式子中的减法运算都变成加法运算,再考虑运用运算定律进行简算.解方法一:二1_(_吵_(+刃+(_听1耳=1-F71-C+9)+(-10J+11|方法二:-7-(-8)-(-专)-(书)+ (-10)+111=—7+8+7 】+(—9)+〔—1。
)十11 丄2 2二卜了 +刊+㈠切十斟耳+理)= -26+27 = 1.说明:(1)在运用结合律和交换律时,我们首先要根据减法运算法则把式子中的减法都变成加法;(2)在交换数的前后位置时应连同符号一起交换;(3)在我们运算熟练之后,负数相-7 + 8+71 + (-9)+(-10> + ll-加可以省略“ + ”号,但我们可以仍然认为是加法. 如: 2 可以写成:-7-F2+71-9-10-F11-- -•其中的,一9 — 10+ ,可以看成是,+(— 例3计算下列各题:[-39.76)-h -47(1)+ (— 10)-^―-—-1 + 4 —-4.5 + 3 — (3) - 二 - -解:(1)原式 1 1 \ Q -47 — +34—-F :39.7I (5 50 25” 8-47— + 34 — 1血 25(2)原式-3- + -5- + + 2 — + -3 — 1 3丿 1 4J 1 4; 1 了 3 4 4 3< Jr3 订 — ■ 3—-8- + - ■ 5- + 2- +14.5 1 3 L4 4j (3)原式 89 7^)+ [(-腹7伽9.76]+4 (+14.5)=-3-- 5--^ 2--Z-+ 14.5= -12+11 = -161 113=———+ --5 15183 113= ----- ---15 15= _!".说明:计算有理数加减混合运算的题目。
七年级数学有理数的混合运算配套练习及答案
2.7有理数的混合运算(一)一、基础训练1.有理数混合运算顺序,先 ,再 ,最后 ,如果有 先进行 . 2.计算:(1) ()()232-⨯-⎡⎤⎣⎦= (2) ()2232-⨯-= (3) 1155-÷⨯= (4) 223---= 二、典型例题 例1计算: ()()331122416⎛⎫--÷-⨯- ⎪⎝⎭分析:减号把算式分为两段,在这两段上分别先乘方,再乘除,然后把所得结果相加减.例2计算: ()()2232121131131323744⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫-⨯-÷-+⨯--⨯-÷⎢⎥⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭分析:有多重括号的混合运算一般先去小括号,再去中括号,最后去大括号.三、拓展提升1. 计算:666666666666+++++ 分析:合并同类项得666⨯.2. 已知a 与b 互为相反数,c 与d 互为倒数,且()210x +=,试求()()200920083x a b cd ++--的值.分析: a +b =0,cd =1,x =-1四、课后作业 1.计算:(1) ()()230332--÷⨯- (2) ()148121549-÷⨯÷-(3) ()221.25 3.20.5233⎛⎫⨯-÷-÷ ⎪⎝⎭ (4) 724987⎛⎫-÷⨯- ⎪⎝⎭(5) ()1535126-⨯-÷⎡⎤⎣⎦ (6) ()112143223232⎛⎫-⨯--÷ ⎪⎝⎭(7) ()21832845-÷--⨯ (8) ()()()222322323⨯-+-⨯+-+(9)()222234113332322⎡⎤⎛⎫⎛⎫⎛⎫-⨯-÷----⨯-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2.当整数n 为 数时, ()11n-=-; 若n 是正整数时,则()()111nn +-+-=3.已知a =2,b =-3,c =1,则代数式222a ba ac c--+=2.7有理数的混合运算(一) 一、基础训练1.乘方,乘除,加减,括号,括号内的运算 2.(1)36 (2)-36 (3)125- (4)-7 二、典型例题 例1 8 例2114三、拓展提升 1. 76 2. -2 四、课后作业 1.(1)24 (2)1615(3)9 (4)16 (5)6 (6)-7 (7)-64 (8)49 (9)- 7 2.奇,0 3.52.7有理数的混合运算(二)一、基础训练1.计算:(1) ()2255--÷-=(2) ()()23250.06-⨯-⨯=(3) 221122⎡⎤⎛⎫⎛⎫---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.若()2110x y ++-=,则20082009x y +=二、典型例题 例1 7778812⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭分析: 乘法有分配律,而除法没有分配律,通常把除数化成一个数进行计算.例2 7115117115912636369126⎛⎫⎛⎫-+÷-÷-+⎪ ⎪⎝⎭⎝⎭分析:用乘法的分配律,并利用71151912636⎛⎫-+÷ ⎪⎝⎭与17115369126⎛⎫÷-+ ⎪⎝⎭互为倒数简化计算.三、拓展提升1. 若()22210ab b -+-=, 求()()()()()()1111112220082008ab a b a b a b +++⋅⋅⋅+++++++.2. 31x =-则代数式2311n n x x x x x -++++⋅⋅⋅++=四、课后作业 1.计算: (1) 1111321523411⎛⎫⎛⎫⨯-÷-⨯ ⎪ ⎪⎝⎭⎝⎭ (2) ()()()3232320.110-+---⨯-(3) 5255524757123⎛⎫÷-+⨯-÷ ⎪⎝⎭ (4) ()22418222893⎛⎫⎛⎫-⨯--÷ ⎪ ⎪⎝⎭⎝⎭(5) ()233310.110.22334⎡⎤÷+÷----+--⎣⎦(6) 621847255559⎛⎫⎛⎫⎛⎫-÷---- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7) 2222227195777⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (8) ()()()2352121720.25832⎛⎫-⨯--÷-- ⎪⎝⎭⨯+-⨯-2.(1)问题:你能比较20092008和20082009的大小吗?为了解决这个问题,写出它的一般形式,即比较1n n+和()1nn +的大小(n 是正整数),然后我们从分析n =1、2、3…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填“>”“=”或“<”).21 12,32 23,43 34,54 45,65 56,…(2)从第(1)题结果经过归纳,可以猜想出1n n +和()1nn +的大小关系是什么?(3)根据上面的归纳猜想,尝试比较20092008和20082009的大小.2.7有理数的混合运算(二) 一、基础训练1.(1)-1 (2)-30 (3)-1 2. 2 二、典型例题 例1 -3 例2 242425三、拓展提升 1.200920102. n 为奇数时值为0,n 为偶数时值为1 四、课后作业1.(1)225- (2)-7 (3)512- (4)18 (5)995 (6)6245(7)-22 (8)-12.(1)< < > > > (2) 1n n +>()1nn +(3n ≥且n 是正整数) (3)20092008>20082009。
初中七年级数学上册-《有理数的混合运算》典型例题一
典型例题一
例题1某个家庭为了估计自己家6月份的用电量,对月初的一周每天电表的读数进
估计6月份大约用多少度电.
分析通过对一周电度表的读数的记载可以算出这一周各天的用电量,从而算出这一周的平均每天用电量,用这周的平均每天用电量乘以30,就可以估算出6月份大约用多少度电.
解解法一〔(118-115)+(122-118)+(127-1220+(133-127)+(136-133)+(140-136)+(143-140))÷7×30
=(-115+143)÷7×30
=120(度)
解法二(143-115)÷7×30=120.
说明(1)方法二是根据本周日电表的读数减去上周日电表的读数就是一周的用电量,来求出每天的平均用电量的;(2)电表显示的数是累计用电量不是当日用电量,只有减去上一天电表显示的数才能得到当日的用电量;(3)解法一的好处是可以计算出在这一周内每天的用电量,这样可以发现一周内日用电量变化的大小,如果日用电量变化不大,用本周日平均用电量作为本月的日平均用电量去估算本月的用电量误差就小,否则误差就大.。
有理数计算专练62题(含加减乘除混合运算知识点以及运算题) 苏科版七年级上册数学第二章有理数
有理数计算专练62题(含加减乘除混合运算)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。
注意点:(1)任意两个数都可以进行减法运算.(2)几个有理数相减差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值. 2.法则:减去一个数,等于加这个数的相反数,即有:.一、有理数的加减法运算 1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭;(3) (+2)+(-11); (4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9); (6)(-5)+0.有理数加法运算律加法交换律 文字语言 两个数相加,交换加数的位置,和不变 符号语言 a+b =b+a加法结合律文字语言 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c =a+(b+c)(7)113343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭(8)(+10)+(-11);(9)⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭12-1+-23(10)(+2)-(-25).(11)﹣75+(+110);(12)90﹣(﹣3);(13)﹣0.5﹣(﹣314)+2.75﹣(+712);(14)7121 (4)(3)(2)(6)9696----++-.(15)232(1)(1)( 1.75)343-----+-(16)132.1253(5)(3.2)58-+---+(17)21772953323+---(18)231321234243--++-+(19)2312()() 3255 ---+--+-(20)-1+2-3+4-5-6+……-2011+2022要点三、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点四、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b a bb÷=≠.法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二、有理数的乘除法则(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯-⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20);(3)(-5)×(-8.1)×3.14×0.(4)5105(12)6⎛⎫-⨯+ ⎪⎝⎭(5)(-0.25)×0.5×(-100)×4(6)111(5)323(6)3333-⨯+⨯+-⨯(7)(-32)÷(-8) (8)112(1)36÷-(8) 1.25(0.375)-÷- (10)(1) 753796418⎛⎫-+- ⎪⎝⎭×(-36); (11) -56×21220.65⎛⎫-- ⎪⎝⎭; (12) (-0.25)×0.5×247⎛⎫- ⎪⎝⎭×4; (13) 132×57⎛⎫- ⎪⎝⎭-57⎛⎫- ⎪⎝⎭×122-57×12⎛⎫- ⎪⎝⎭; (14) 124×314⎛⎫- ⎪⎝⎭×23⎛⎫- ⎪⎝⎭×87⎛⎫- ⎪⎝⎭; (15) -264927×3;(16)719172×(-36).(17)112⎛⎫-⎪⎝⎭112⎛⎫+⎪⎝⎭113⎛⎫-⎪⎝⎭113⎛⎫+⎪⎝⎭…1110⎛⎫-⎪⎝⎭1110⎛⎫+⎪⎝⎭.(18) (-15)÷(-3);(19) (-12)÷12-⎛⎫⎪⎝⎭÷(-10);(20) (-5)÷725-⎛⎫⎪⎝⎭+(-12)÷725;(21) -0.125÷83;(22) -72×124×49÷335-⎛⎫⎪⎝⎭;(23)1142313245-+⎛⎫⎪⎝⎭÷116-⎛⎫⎪⎝⎭.(24) -24÷131243-+-⎛⎫⎪⎝⎭.(25)142-⎛⎫⎪⎝⎭÷132261437-+-⎛⎫⎪⎝⎭.要点五、有理数的乘方;有理数的混合运算1.乘方的概念:求几个相同因数积的运算,叫做乘方。
华东师大版七年级数学上册第二章 有理数 专题训练试题(含答案)
华东师大版七年级数学上册第二章 有理数 专题训练试题专题(一) 有理数的加减混合运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4) =0+0+1+(-4 =-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3 =(9+8+3)+(-10-2) =20-12 =8.3、计算:(1)-23-35+78-13-25+18;解:原式=(-23-13)+(-35-25)+(78+18)=-1-1+1 =1.(2)-479-(-315)-(+229)+(-615).解:原式=[-479-(+229)]+[-(-315)+(-615)]=-7-3 =-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78.解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3=1+1-3 =-1.5、计算:-156+(-523)+2434+312.解:原式=(-1-56)+(-5-23)+(24+34)+(3+12)=-1-56-5-23+24+34+3+12=(-1)+(-56)+(-5)+(-23)+24+34+3+12=[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12]=21+(-14)=2034.6、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.7、计算:634+313-514-312+123.解:原式=(6+3-5-3+1)+(34+13-14-12+23)=2+1 =3.8、计算(能用简便方法计算的尽量用简便方法): (1)(-7)-(+5)+(-4)-(-10); 解:原式=-7-5-4+10 =-6.(2)-9+6-(+11)-(-15); 解:原式=-9+6-11+15=(-9-11)+(6+15) =-20+21 =1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6) =7+(-7) =0.(4)|-12|-(-2.5)-(-1)-|0-212|;解:原式=12+2.5+1-212=112.(5)34-72+(-16)-(-23)-1; 解:原式=34-72-16+23-1=-134.(6)0.25+112+(-23)-14+(-512);解:原式=14+112+(-23)-14+(-512)=14-14+[112+(-512)+(-23)] =-1.(7)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(8)-212+(+56)+(-0.5)+(+116);解:原式=[-212+(-0.5)]+[(+56)+(+116)]=-1.(9)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412)=-8+1 =-7.(10)-12-16-112-120-130-142-156-172;解:原式=-(12+16+112+120+130+142+156+172)=-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19)=-(1-19)=-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1 =0.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412).解:原式=-531×29×3115×92=-(531×3115)×(29×92)=-13×1=-13.2、计算:(14-16+124)×(-48).解:原式=14×(-48)-16×(-48)+124×(-48)=-12+8-2 =-6.3、计算:4×(-367)-3×(-367)-6×367.解:原式=-367×(4-3+6)=-27.4、计算:(16-27+23)÷(-542).解:原式=(16-27+23)×(-425)=-75+125-285=-235.5、计算:-38÷35×53.解:原式=-38×53×53=-2524.6、计算:-12-(-12)3÷4.解:原式=-1-(-18)÷4=-1+18×14=-1+132=-3132.7、计算:24÷(13-18-16).解:原式=24÷124=24×24 =576.8、计算:(1)(-48)÷8-(-5)×(-6); 解:原式=-6-30=-36.(2)-0.75×(-112)÷(-214);解:原式=-34×(-32)×(-49)=-12.(3)(12-58-14)×(-24);解:原式=12×(-24)-58×(-24)-14×(-24)=-12+15+6 =9.(4)0.7×1949+234×(-14)+0.7×59+14×(-14);解:原式=0.7×(1949+59)-14×(234+14)=0.7×20-14×3 =-28.(5)391314×(-14);解:原式=(40-114)×(-14)=40×(-14)-114×(-14)=-560+1 =-559.(6)(-5)-(-5)÷10×110×(-5);解:原式=(-5)-(-5)×110×110×(-5) =-5-14=-514.(7)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(8)(-58)×(-4)2-0.25×(-5)×(-4)3; 解:原式=(-58)×16-0.25×(-5)×(-64) =-10-80=-90.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(11)(-2)3-16×(38-1)+2÷(12-14-16); 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.(12)(-48)×(-16-116+34)-1.85×6+3.85×6. 解:原式=(-48)×(-16)+(-48)×(-116)+(-48)×34+6×(-1.85+3.85) =8+3-36+12=-13.专题(三) 本章易错专练1.下列说法:①-213是负分数;②3.6不是正数;③非负有理数不包括零;④正整数、负整数统称为整数;⑤0是最小的有理数,其中结论正确的个数有(A )A .1B .2C .3D .42.抗击疫情,众志成城,举国上下,共克时艰.为确定应对疫情影响稳外贸、稳外资的新举措,国务院总理李克强3月10日主持召开国务院常务会议,要求更好发挥专项再贷款、再贴现政策作用,支持疫情防控保供和企业纾困发展.会议指出,近段时间,有关部门按照国务院要求,引导金融机构实施3 000亿元专项再贷款政策,以优惠利率资金有力支持了疫情防控物资保供、农业和企业,特别是小微企业复工复产.要进一步把政策落实到位,加快贷款投放进度,更好保障防疫物资保供、春耕备耕、国际供应链产品生产、劳动密集型产业、中小微企业等资金需求.数据3 000亿用科学记数法表示为3×1011.3.化简:(1)-(-2)=2;_ (2)-|-2|=2;(3)|-(-2)|=2;_ (4)(-1)2=1;(5)-12=-1;_ (6)-(-1)2=-1.4.计算:(1)-143=-164; (2)-324=-94; (3)-(-23)2=-49; (4)-(-2)4=-16; (5)-(-2)2=-4;_ (6)[-(-2)]2=4.5.|-12|的相反数是-12. 6.用四舍五入法将12.897 2精确到0.01的近似数是12.90.7.在数轴上距离表示数1的点是3个单位长度的点表示的数是-2或4.8.计算:(1)-38÷35×53; 解:原式=-38×53×53=-2524.(2)-12-(-12)3÷4; 解:原式=-1-(-18)÷4 =-1+18×14=-1+132=-3132.(3)24÷(13-18-16). 解:原式=24÷124=24×24=576.9.已知|x|=1,|y|=2,且|x -y|=y -x ,求x +y 的值.解:因为|x -y|=y -x ,所以x -y<0,即x<y.因为|x|=1,|y|=2,所以y =2,x =1或-1.当x =1时,x +y =1+2=3;当x =-1时,x +y =-1+2=1.10.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求ab +bc 的值.解:因为0>b>c ,|a|=1,|b|=2,|c|=3,所以b=2,c=-3,a=1或-1.当a=1时,ab+bc=1×(-2)+(-2)×(-3)=4;当a=-1时,ab+bc=-1×(-2)+(-2)×(-3)=8.。
(北师大版)初中数学《有理数的混合运算》典型例题
有理数的混合运算典型例题知识点 考查有理数的混合运算例1 计算下列各式:(1)-33×(-5)+16÷(-2)3-|-4×5|+( 85-0.625)2;(2)(-3)4÷ 49× 94-[ 116×( 31- 21)× 251+ 51].精析与解答 (1)原式=-27×(-5)+16÷(-8)-|-20|+02=135+(-2)-20+0=115-2=113;(2)原式=81×94×94-[116×(-61)×511+51]=81×94×94-[-51+51]=16-0=16.说明:(1)有理数的混合运算,解题时应先审题,看题中有哪几级运算,有几种括号,计算时要先确定运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的.(2)正确选择计算途径,特别是有时利用运算律可使运算简便.例2 计算(1))+-(1836597×18-1.45×6+3.95×6;(2)[47-(18.75-1÷ 158)× 2256]÷0.46;(3))--(1272153×(60× 73-60× 71+60× 75).精析与解答 (1)此题是有理数加、减、乘混合运算,按运算顺序计算比较麻烦,仔细观察可以发现)+-(1836597×18可以运用乘法分配律简化计算,-1.45×6+3.95×6可以逆用乘法分配律简化计算.原式=)+-(1818318651897⨯⨯⨯+(-1.45×6+3.95×6)=(14-15+3)+(-1.45+3.95)×6=2+2.5×6=17(2)=[47-(4318- 187)× 2256]÷0.46 =[47- 8135× 2556]÷ 5023=[47-37 54]÷ 5023= 546× 2350=20 (3)原式=( 53― 21― 127)×[60×( 73- 71+ 75)]=( 53― 21―127)×60=-29说明:上述混合运算中都有分配律的应用,分配律一般有以下两种变式:(1)把乘积形式a (b +c )化成和的形式ab +ac ;(2)把和的形式ab +ac 化成乘积的形式a (b +c )典型例题一例题1 某个家庭为了估计自己家6月份的用电量,对月初的一周每天电表的读数进估计分析 通过对一周电度表的读数的记载可以算出这一周各天的用电量,从而算出这一周的平均每天用电量,用这周的平均每天用电量乘以30,就可以估算出6月份大约用多少度电.解 解法一 〔(118-115)+(122-118)+(127-1220+(133-127)+(136-133)+(140-136)+(143-140))÷7×30=(-115+143)÷7×30=120(度)解法二 (143-115)÷7×30=120.说明 (1)方法二是根据本周日电表的读数减去上周日电表的读数就是一周的用电量,来求出每天的平均用电量的;(2)电表显示的数是累计用电量不是当日用电量,只有减去上一天电表显示的数才能得到当日的用电量;(3)解法一的好处是可以计算出在这一周内每天的用电量,这样可以发现一周内日用电量变化的大小,如果日用电量变化不大,用本周日平均用电量作为本月的日平均用电量去估算本月的用电量误差就小,否则误差就大. 典型例题二例 计算:3211)2.0(5)1(1717-⨯--÷+-.分析:此算式以加、减分段, 应分为三段:17-, 11)1(17-÷, 32)2.0(5-⨯.这三段可以同时进行计算,先算乘方,再算乘除.式中-0.2化为51-参加计算较为方便.解:原式)1251(25)1(1717-⨯--÷+-=)51()17(17---+-=5134+-=5133-= 说明:做有理数混合运算时,如果算式中不含有中括号、大括号,那么计算时一般用“加”、“减”号分段,使每段只含二、三级运算,这样各段可同时进行计算,有利于提高计算的速度和正确率.典型例题三例 计算:32)]52()611[()]941(531[-⨯-÷-⨯. 分析:此题运算顺序是:第一步计算)941(-和)611(-;第二步做乘法;第三步做乘方运算;第四步做除法. 解:原式32)]52(65[]9558[-⨯÷⨯= 32)31()98(-÷= )271(8164-÷= )27(8164-⨯= 364-= 3121-=说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.典型例题四例 计算:1999199719981999)1(199936353-⨯+⨯+-⨯- 分析:要求19993、19983、19973的值,用笔算在短时间内是不可能的,必须另辟途径.观察题目发现,199721999333⨯=,199********⨯=-,逆用乘法分配律,前三项可以凑成含有0的乘法运算,此题即可求出. 解:原式)1(199936335331997199719972-⨯+⨯+⨯⨯-⨯= 1999)6159(31997-+-=1999031997-⨯= 1999-=说明:“0”乘以任何数等于0.因为运用这一结论必能简化数的计算,所以运算中,能够凑成含“0”因数时,一般都凑成含有0的因数进行计算.当算式中的数字很大或很繁杂时,要注意使用这种“凑0法”.典型例题五例 计算433)2(2.01)1.0(12323-----+--- 分析:3)1.0(1-是3)1.0(-的倒数,应当先把它化成分数后再求倒数;右边两项含绝对值号,应当先计算出绝对值的算式的结果再求绝对值.解:原式493804.01001.01-----+---=1311)25(1000-+---= 361013+-= 997-= 说明:对于有理数的混合运算,一定要按运算顺序进行运算,注意不要跳步,每一步的运算结果都应在算式中体现出来,此题(1)要注意区别小括号与绝对值的运算;(2)要熟练掌握乘方运算,注意(-0.1)3,-0.22,(-2)3,-32在意义上的不同.典型例题七例 计算.4111132131512÷⨯⎪⎭⎫ ⎝⎛-⨯ 解:原式.2524511361511-=÷⨯⎪⎭⎫ ⎝⎛-⨯=说明:含有带分数的乘除混合运算,要先把带分数化成假分数.典型例题八例 计算.414)216(⎪⎭⎫ ⎝⎛-⨯÷- 错解:原式=(-216)÷(-1)=216. 正解:原式.211345441)54(==⎪⎭⎫ ⎝⎛-⨯-= 分析:对这种乘除同级混合运算应遵循从左到右的运算顺序,事实上错解就错在这一点.计算:(1)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412; (2)15)3(4)3(23+-⨯--⨯; (3)911321321÷⎪⎭⎫ ⎝⎛-⨯-; (4)[]4)103(412÷-⨯-. 典型例题九例 计算:(1))3()4()2(8102-⨯---+÷-; (2)[]24)3(231)5.01(1--⨯⨯---;(3).324625)7(12133133242⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+---+⎪⎭⎫ ⎝⎛⨯ 解:(1))3()4()2(8102-⨯---+÷- .2012210-=-+-=(2)[]24)3(231)5.01(1--⨯⨯---[].61731211)7(3121192312111=⨯⨯+-=-⨯⨯--=-⨯⨯⎪⎭⎫ ⎝⎛---=(3)324625)7(12133133242⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+---+⎪⎭⎫ ⎝⎛⨯ .98080449324631334493246425714493133=⨯=⎪⎭⎫ ⎝⎛+⨯=⨯⎥⎦⎤⎢⎣⎡++-+⨯= 说明: 在有理数混合运算时,应灵活运用运算律,既可使运算简便又可避免出错.。
北师大版七年级数学上册 2.11 有理数混合运算专题 练习(含答案)
2019-2020有理数混合运算专题(含答案)一、解答题1.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5;(2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24) 2.计算: ()()241110.5123⎡⎤---⨯⨯--⎣⎦3.计算: (1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭; (4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.4.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.5.计算:(1)6(4)(2)-+--- (2)310.1252(8)73⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(3)(-225)-(+4.7)-(-0.4)+ (-3.3) (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)(12-59+712)×(-36) (7)113(5)77(7)12()3322-⨯+⨯--÷-(8)—2391224⨯6.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-.7.计算:()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭.8.计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)313+(-237)+523+(-847); (3)(-103)+(+134)+(-97)+(+100)+(-114); (4)(-212)+(-0.38)+(-12)+(+0.38); (5)(-9512)+1534+(-314)+(-22.5)+(-15712);(6)[(+1317)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+417)].9.计算:(1)8×|-6-1|+2612×653;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8).10.计算:(1)2+(-8)-(-7)-5; (2)312+223+12⎛⎫-⎪⎝⎭-13⎛⎫- ⎪⎝⎭;(3)(-3)×6÷(-2)×12;(4)34⎛⎫-⎪⎝⎭×12⎛⎫-⎪⎝⎭÷124⎛⎫-⎪⎝⎭.11.计算(1)1142()(2)(2)(3)5353++----+(2)(﹣2)3×3﹣(﹣3)+6﹣|﹣5|12.计算:(1)514-(-223)+(-314)-(+423);(2)(-3594812-+)×(-24);(3)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.13.计算:(1)-32-|(-5)3|×22()5--18÷|-(-3)2|; (2)3571()491236--+÷. 14.计算题:(1)(-20)-(+3)-(-5) (2) 51192533812812-+-- (3) |-3|×(-5)÷(-213) (4) 75336964-+-⨯() (5) (1)0572-+÷-⨯ (6)(159916-)×4 (7) 222222792777()()()-⨯-+⨯--⨯- (8) 22018112(1)()663--÷-⨯ 15.计算:(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017 16.计算:()()241110.4263⎡⎤---÷⨯--⎣⎦; 17.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++- 18.观察下列等式111111111,,,12223233434=-=-=-⨯⨯⨯将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. ⑴.猜想并写出:()11n n =+ ;⑴.直接写出下列各式的计算结果: ⑴.111112233420162017++++=⨯⨯⨯⨯ ; ⑴. ()11111223341n n ++++=⨯⨯⨯⨯+ ; ⑴.探究并计算:1111144771020112014++++⨯⨯⨯⨯. 19.阅读下列材料:计算:112÷(13–14+112). 解:原式的倒数为(13–14+112)÷112 =(13–14+112)×12 =13×12–14×12+112×12 =2.故原式=12. 请仿照上述方法计算:(–142)÷(16–314+23–27). 20.计算题(1)32215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭(2)17-8-24-3÷+⨯()()(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭ (4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭参考答案1.(1)0;(2)8.【解析】试题分析:(1)先计算乘方,然后再计算乘除,最后计算加减即可;(2)先分别进行乘方、绝对值化简、乘法分配律,然后再按运算顺序进行计算即可.试题解析:(1)原式=16÷(-8)-18×4+2.5=-2-0.5+2.5=-2+2=0;(2)原式=-1+0+12-6+3=8.2.-0.5【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.详解:原式=111[14]23--⨯⨯-=﹣1﹣16×(﹣3)=﹣1+1 2=-0.5.点睛:本题要注意正确掌握运算顺序以及符号的处理.3.(1)-12;(2) 11425;(3) 323;(4)1.【解析】【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=12-; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦=-3-2215252-+⨯() =-3-(-5+1125) =-3+5-1125=2-1125=14125; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭ =(13732-)×(-2)823-⨯-() =53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2=[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.4.(1)7;(2)9【解析】【分析】(1)注意运算顺序,先算乘除再算加减,减去一个数等于加上这个数的相反数,减法变为加法;(2)注意运算顺序,先算乘方再算乘除最后算加减.注意()201811-=,1-的偶次方为1,奇次方为1-.【详解】(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.【点睛】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.(1)-8;(2)-1;(3)-10;(4)-1;(5)-0.2;(6)-19;(7)0;(8)-119.5.【解析】【分析】(1)先去括号,再按照从左到右的顺序计算即可,特别要注意符号的变化; (2)先把小数化为分数,再按照从左到右的顺序计算即可;(3)先去括号,再按照有理数加减法进行计算即可;(4)先去括号和绝对值,再按照有理数加减法进行计算;(5)先确定积的符号,然后把除法转化为乘法,按照有理数乘法法则进行计算; (6)依据乘法分配律进行计算即可;(7)原式逆用乘法分配律计算即可得到结果;(8)把—23924写成1-1024,再依据乘法分配律进行计算即可. 【详解】(1)()()642-+---=-6-4+2=-10+2=-8; (2)()310.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=(-37)×18×(-73)×(-8)=1×(-1)=-1; (3)(-225)-(+4.7)-(-0.4)+ (-3.3)=-2.4-4.7+0.4-3.3=-2.4-4.7-3.3+0.4=-10.4+0.4=-10 (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=35+44-3=2-3=-1 (5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-3471=-75125⨯⨯ (6)(12-59+712)×(-36) =157-36--36+-362912⨯⨯⨯()()()=-18-(-20)-21=-18-21+20=-39+20=-19 (7)()1135777123322⎛⎫⎛⎫-⨯+⨯--÷- ⎪ ⎪⎝⎭⎝⎭=-5×713+7×(-713)-12×(-713)=713×(-5-7+12)=0; (8)—2391224⨯=(1-1024)×12=124×12-10×12=0.5-120=-119.5【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算顺序,此题比较简单,但计算时要特别细心,不然很容易出错. 6.(1)−113(2)−32【解析】(1)()212582433-+-+÷-⨯=−4+3+(−8)×13=−1−83=−113. (2)()20171313224512864⎡⎤⎛⎫-+-⨯÷⨯- ⎪⎢⎥⎝⎭⎣⎦()131312242424128645⎡⎤=-⨯-⨯+⨯⨯⨯-⎢⎥⎣⎦()519418125⎡⎤=--+⨯⨯-⎢⎥⎣⎦ ()515125⎡⎤=+⨯⨯-⎢⎥⎣⎦ ()51151255⎡⎤=⨯+⨯⨯-⎢⎥⎣⎦()1112⎡⎤=+⨯-⎢⎥⎣⎦=32×(−1)=−32.7.1 3 -.【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的即可.【详解】原式=14 1[2274]625 -+⨯+-⨯=14 125625 -+⨯⨯=2 13 -+=13 -.【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.(1)-6.7;(2)-2;(3)-9912;(4)-3;(5)-35;(6)0【解析】【分析】根据有理数的加法运算律进行运算即可.【详解】解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].=1.3-8=-6.7;(2)3+(-2)+5+(-8).=3+5+.=9+(-11).=-2;(3)原式=[(-103)+(-97)]++100.=-200++100=-99;(4)(-2)+(-0.38)+(-)+(+0.38).=+[(-0.38)+(+0.38)].=-3+0.=-3;(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).=-25+12.5+(-22.5).=-25+[12.5+(-22.5)].=-25+(-10)=-35;(6)+[(+2.5)+(+6)+(+)].=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).=+[-3.5+(+2.5)]+[(-6)+(+6)].=1+(-1)+0.=0.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法运算律是解答本题的关键.9.(1)59;(2)-27.【解析】【分析】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算;(2) 先去掉绝对值号,并把小数化为分数,然后利用乘法分配律与有理数的乘法运算法则进行计算.【详解】解:(1)8×|-6-1|+2612×653=8×|-7|+532×653=56+3 =59;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8)= (−14−12+23)×24-54×(-52)×(-8),=-14×24−12×24+23×24-54×52×8=-6-12+16-25,=-43+16,=-27.【点睛】本题考查有理数的混合运算,解题关键是运算顺序和运算法则的运用.10.(1)-4;(2) 6;(3) 92;(4)-16.【解析】【分析】(1)根据有理数加减法法则进行计算即可.(2)根据有理数加法结合律和交换律进行计算即可.(3)、(4)根据有理数乘除法法则进行计算即可【详解】(1)原式=2-8+7-5=9-13=-4.(2)原式=312-12+223+13=3+3=6.(3)原式=3×6×12×12=9 2 .(4)原式=314429⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1 6.【点睛】本题考查了有理数的混合运算,熟练掌握并灵活运用运算法则是解题关键. 11.(1)-3 (2)-20【解析】试题分析:(1)根据有理数的加减法法则进行计算即可;(2)先计算乘方,然后进行乘法运算,最后按运算顺序进行计算即可.试题解析:(1)原式=11422235353-+-=14122235533+--=3-6=-3;(2)原式=-8×3+3+6-5=-24+9-5=-20.12.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=514+223﹣314﹣423=514﹣314+223﹣423=2﹣2 =0;(2)原式=34×24+58×24﹣912×24=18+15﹣18 =15;(3)原式=(﹣3)×43×43×(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.13.(1) -31;(2)-26【解析】【分析】(1)根据幂的乘方、有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题.【详解】(1)-32-|(-5)3|×225-()-18÷|-(-3)2|=-9-125×425-18÷9=-9-20-2=-31,故答案为-31; (2)3571491236⎛⎫--+÷ ⎪⎝⎭=(3574912--+)×36=34-×3659-×36712+×36=-27-20+21=-26,故答案为-26.【点睛】本题主要考查了的乘方、有理数的乘除法和减法的基本性质. 14.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-39934;(7)0;(8)40. 【解析】 【分析】根据有理数的运算法则可解答本题. 【详解】解:(1)原式=(-20)+(-3)+5 =-23+5 =-18 (2)原式= 51925133881212--+-+()=-6+1 =-5(3)原式=3×(-5)35⨯-() =3⨯535⨯ =9 (4) =原式=7369-⨯+53363664⨯-⨯ =-28+30-27 =-25(5)()10572-+÷-⨯ =-1+0-14 =-15(6)原式=(-100+1416⨯) =-400+14=-39934(7)原式=227927-⨯-+- =227-⨯0 =0(8) ()201821121663⎛⎫--÷-⨯ ⎪⎝⎭=4-166⨯-⨯() =4+36 =40 【点睛】本题考查了有理数的加、减、乘、除、乘方的运算及它们的混合运算,正确理解运算法则及运算顺序是解题的关键. 15.0【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和积的乘方运算法则分别计算得出答案.【详解】(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017=4+[4×(﹣0.25)]2017×4=4﹣4=0.【点睛】此题主要考查了积的乘方运算、负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.16.2.6【解析】【分析】根据含乘方的有理数混合运算法则计算即可.【详解】原式=10.63(46)--⨯⨯-=1 1.8(2)--⨯-=﹣1+3.6=2.6.【点睛】本题考查了含乘方的有理数混合运算,解答本题的关键是明确含乘方的有理数混合运算的计算方法.17.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+. 【解析】【分析】1.(1)-(3)根据有理数的运算法则进行计算:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,注意灵活运用运算律.2.(4)先去括号,再合并同类项.【详解】(1)原式4204459=--÷=--=-(2)原式()()1113174201174202244=--+--⨯⨯=+--= (3)原式31512121211841510234=⨯-⨯-⨯+=--+= (4)原式2222222313x x x x x x x =-++-+-=--+【点睛】本题考核知识点:有理数运算和整式运算. 解题关键点:掌握有理数运算法则和整式运算法则.18.⑴. 111n n -+;⑴. 20162017,1n n +;⑴.6712014【解析】【分析】(1)观察所给算式,根据观察到的规律写出即可;(2)⑴、⑴都是根据得出的规律展开,再合并,最后求出结果即可;(3)根据观察到的规律展开,然后合并,即可求出结果.【详解】(1)()1n n 1=+ 11n n 1-+, 故答案为:11n n 1-+; (2)⑴原式=11111122334-+-+-+…+1120162017-=1-1201620172017=; ⑴原式=11111122334-+-+-+…+111n n -+=1-111n n n =++, 故答案为:20162017,n n 1+; (3)原式=3×1111111144771020112014⎛⎫-+-+-++- ⎪⎝⎭=3×112014⎛⎫- ⎪⎝⎭=6712014. 【点睛】本题考查了有理数的混合运算,能根据已知算式得出()1n n 1=+ 11n n 1-+这一规律是解题的关键. 19.–114. 【解析】【分析】 根据阅读材料介绍的方法,利用乘法分配律求出原式倒数的值,即可求出原式的值.【详解】(16–314+23–27)÷(–142) =(16–314+23–27)×(–42)=(–42)×16–(–42)×314+(–42)×23–(–42)×27=–7+9–28+12=–14,故原式=–114. 【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)4;(2)9;(3)16(4)4(5)22;(6)25【解析】试题分析:(1)根据有理数的加法法则计算即可;(2)根据有理数的加减乘除运算法则计算即可;(3)根据有理数的混合运算法则和运算律计算即可,解题时注意预算符号的变换(4)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可;(5)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可(6)根据乘法分配律计算即可.试题解析:(1)532215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭=(535+425)+(-523-13) =10-6=4;(2)17-8-24-3÷+⨯()()=17+4-12(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭=60×34+60×56-60×1115-60×712=45+50-44-35=16.(4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦=-9÷(-94) =9×49=4;(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭ =43×(-24)+18×(-24)-2.75×(-24)-1-23 =-32-3+66-1-8=22;(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭ =25×34+25×12-25×14=25×(34+12-14) =25×1。
七年级数学上册二单元有理数的混合运算测验题附答案
七年级数学上册二单元有理数的混合运算测验题附答案七年级数学上册二单元有理数的混合运算测验题附答案有理数可以用大写黑正体符号Q代表。
小编为大家准备了这篇七年级数学上册二单元有理数的混合运算测验题。
1.形如a cb d的式子叫做二阶行列式,它的运算法则用公式表示为a cb d=ad-bc,依此法则计算2 -1-3 4的结果为(C)A.11B.-11C.5D.-22.计算13÷(-3)×-13×33的结果为(A)A.1B.9C.27D.-33.下列各组数中最大的数是(D)A.3×32-2×22B.(3×3)2-2×22C.(32)2-(22)2D.(33)2-(22)24.计算16-12-13×24的结果为__-16__.5.若(a-4)2+|2-b|=0,则ab=__16__,a+b2a-b=__1__.6.计算:(1)(23-3)×45=__4__;(2)(-4)÷(-3)×13=__49__.7.若n为正整数,则(-1)n+(-1)n+12=__0__.8.计算:(1)-0.752÷-1123+(-1)12×12-132;(2)(-3)2-(-5)2÷(-2);(3)(-6)÷65-(-3)3-1-0.25÷12×18.【解】 (1)原式=-342÷-323+(-1)12×162=-916÷-278+1×136 =916×827+136=16+136=736.(2)原式=(9-25)÷(-2)=(-16)÷(-2)=16×12=8.(3)原式=-6×56--27-1-12×18=-5+495=490.9.对于任意有理数a,b,规定一种新的运算:a*b=a2+b2-a-b+1,则(-3)*5=__33__.【解】 (-3)*5=(-3)2+52-(-3)-5+1=9+25+3-5+1=33.10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水(C)A.3瓶B.4瓶C.5瓶D.6瓶【解】 16个矿泉水瓶换4瓶矿泉水,再把喝完的4个空瓶再换一瓶水,共5瓶,故选C.11.已知2a-b=4,则2(b-2a)2-3(b-2a)+1=__45__.【解】∵2a-b=4,∴b-2a=-4.原式=2×(-4)2-3×(-4)+1=45.12.十进制的自然数可以写成2的乘方的降幂的式子,如:19(10)=16+2+1=1×24+0×23+0×22+1×21+1×20=10011(2),即十进制的数19对应二进制的'数10011.按照上述规则,十进制的数413对应二进制的数是__110011101__.【解】413(10)=256+128+16+8+4+1=1×28+1×27+0×26+0×25+1×24 +1×23+1×22+0×21+1×20=110011101(2).13.如图,一个盖着瓶盖的瓶子里面装着一些水,根据图中标明的数据,瓶子的容积是__70__cm3.(第13题)14.(1)计算:23÷-122-9×-133+(-1)16;(2)已知c,d互为相反数,a,b互为倒数,|k|=2,求(c+d)5a-7b9a+8b+5ab-k2的值.【解】 (1)原式=8×4-9×-127+1=32+13+1=3313.(2)由题意,得c+d=0,ab=1,k=±2,∴原式=0+5-4=1.15.计算:11×2×3+12×3×4+13×4×5+…+111×12×13.【解】原式=1211×2-12×3+1212×3-13×4+1213×4-14×5+…+12111×12-112×13=1211×2-12×3+12×3-13×4+13×4-14×5+…+111×12-112×13=1211×2-112×13=77312.16.阅读材料,思考后请试着完成计算:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…n=12n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4).将这三个等式的两边相加,可以得到1×2+2×3+3×4=13×3×4×5=20.读完这段材料,请计算:(1)1×2+2×3+…+100×101;(2)1×2+2×3+…+2015×2016.【解】(1)1×2+2×3+…+100×101=13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+…+13(100×101×102-99×100×101)=13(100×101×102-0×1×2)=343400.(2)同理于(1),原式=13(2015×2016×2017-0×1×2)=2731179360.七年级数学上册二单元有理数的混合运算测验题到这里就结束了,希望同学们的成绩能够更上一层楼。
初中数学专题:有理数混合运算
专题:有理数混合运算一、知识要点本章的重点是有理数的混合运算,难点是提高运算的速度、准确率,关键是正确地运用各种运算法则,同时掌握运算顺序,并能适当地利用运算定律简化运算。
有理数混合运算顺序:1、先算乘方,再算乘除,最后算加减;2、同级运算,按照从左到右的顺序进行;3、如果有括号,就先算小括号里的,再算中括号里的。
特别提醒:有理数除法没有对加法的分配率 1(5)(1)2-÷+不能写成1(5)(5)12-÷+-÷二、知识运用典型例题例1 计算:(1))3(12-÷- ; (2))611(312-÷例2 计算(1)3)411()213()53(÷-÷-⨯- (2))1051()]51()31()71[(-÷+---+例3 计算:(1))16(94412)81(-÷-÷- ;(2))]}7.0(431[)9.3()651()1111{(1-+-÷---⨯-÷ .例4 计算下列各式:(1))81()681()8()136(+⨯-⨯+⨯+ ; (2)]71)51()31[()105(+-+-⨯- ;例5 计算下列各题:(1))]5()3()11[()1155(-⨯+⨯-÷- ; (2))25()25()16()170000(-÷-÷-÷- ;(3)3)]273()576()1236[(÷-+++- ; (4)3)187(3)62(3)125(÷++÷-+÷- .例6 计算下列各题:(1))9(812414-⨯÷- ; (2))05.0(43143211-÷⨯÷- ;三、知识运用课堂训练1、下列说法正确的是( )A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数2、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 53、比-7.1大,而比1小的整数的个数是( )A 6B 7C 8D 94、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A 0B -1C 1D 0或15、我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A 63×102千米B 6.3×102千米C 6.3×104千米D 6.3×103千米6、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。
[精编]北师大版七年级数学上册《有理数混合运算》典型例题
《有理数混合运算》典型例题例1 计算.4116531211-++- 解法一:原式.1271121912151041845653123-=-=-++-=-++-= 解法二:原式.127112521231046114116531211-=+-=-++-+--=--++--= 说明:加减混合运算时,带分数可以化为假分数,也可把带分数的整数部分与分数部分分别加减,这是因为带分数是一个整数和一个分数的和. 例如:.211211;411411--=---=- 例2 计算.414)216(⎪⎭⎫ ⎝⎛-⨯÷- 错解:原式=(-216)÷(-1)=216. 正解:原式.211345441)54(==⎪⎭⎫ ⎝⎛-⨯-= 分析:对这种乘除同级混合运算应遵循从左到右的运算顺序,事实上错解就错在这一点.计算:(1)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412; (2)15)3(4)3(23+-⨯--⨯; (3)911321321÷⎪⎭⎫ ⎝⎛-⨯-; (4)[]4)103(412÷-⨯-. 例3 计算:(1)333)1(3)2(4-÷---;(2))311()131(23422-÷-⨯⨯--. 解 (1)333)1(3)2(4-÷---)1(27)8(4-÷---=.392712=+=(2)方法一:)311()131(23422-÷-⨯⨯--)34()32(1216-÷-⨯--= )43(816-⨯+-= .22616-=--= 方法二:)311()131(23422-÷-⨯⨯-- )43()131(1216-⨯-⨯--= )43()124(16-⨯---= .22)93(16-=-+-=说明:在进行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意在运用运算性质时不要出现错误.例4 计算:])54(17)511781851[()5(2--⨯---⨯- 分析 该题有双重括号看起来比较复杂,但只要我们按运算顺序去做都可以求出结果.在计算时我们还应考虑灵活运用运算性质来简化计算.解 ])54(17)511781851[()5(2--⨯---⨯- ]251617)511725851[()5(-⨯---⨯-= ]251651725)51[()5(----⨯-= 516171251+++= 51146=. 说明: 有理数混合运算的步骤,初学者应写得详细一些,这是避免出现错误的好办法.例5 计算:32)]52()611[()]941(531[-⨯-÷-⨯. 分析:此题运算顺序是:第一步计算)941(-和)611(-;第二步做乘法;第三步做乘方运算;第四步做除法. 解:原式32)]52(65[]9558[-⨯÷⨯=32)31()98(-÷= )271(8164-÷= )27(8164-⨯= 364-= 3121-= 说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题
例1计算
解法一:原式
解法二:原式
说明:加减混合运算时,带分数可以化为假分数,也可把带分数的整数部分与分数部分分别加减,这是因为带分数是一个整数和一个分数的和.
例如:
例2计算
错解:原式=(-216)÷(-1)=216.
正解:原式
分析:对这种乘除同级混合运算应遵循从左到右的运算顺序,事实上错解就错在这一点.
计算:
(1);(2);
(3);(4).
例3计算:
(1);(2).
解(1)
(2)方法一:
方法二:
说明:在进行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意在运用运算性质时不要出现错误.
例4计算:
分析该题有双重括号看起来比较复杂,但只要我们按运算顺序去做都可以求出结果.在计算时我们还应考虑灵活运用运算性质来简化计算.
解
.
说明:有理数混合运算的步骤,初学者应写得详细一些,这是避免出现错误的好办法.
例5 计算:.
分析:此题运算顺序是:第一步计算和;第二步做乘法;第三步做乘方运算;第四步做除法.
解:原式
说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.。