第3章 平面力系的简化 平衡方程
工程力学3—力系的平衡条件和平衡方程
Fyi 0 M O ( Fi ) 0 Fxi 0
即:平面任意力系平衡的解析条件是:力系中所有各 力在其作用面内两个任选的坐标轴上投影的代数和分 别等于零,所有各力对任一点之矩的代数和等于零。 上式称为平面任意力系的平衡方程。
例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
2 平面力偶系的平衡条件
所谓力偶系的平衡,就是合力偶的矩等于零。因此, 平面力偶系平衡的必要和充分条件是:所有各力偶矩 的代数和等于零,即 n
M
i 1
i
0
思考: 从力偶理论知道,一
M
O R
力不能与力偶平衡。图示轮 子上的力 P 为什么能与 M 平 衡呢?
P
[例3] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1 m2 m3 m4 15Nm ,求工件的 总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶矩为
M m1 m2 m3 m4 4( 15) 60Nm
由力偶只能与力偶平衡的性质, 力NA与力NB组成一力偶。
根据平面力偶系平衡方程有: N B 0.2 m1 m2 m3 m4 0
N B
60 300N 0.2
N A N B 300 N
解: ①选碾子为研究对象
②取分离体画受力图 ∵当碾子刚离地面时NA=0,拉力F最大,
这时拉力F和自重及支反力NB构成一平衡力系。
由平衡的几何条件,力多边形封闭,故
F Ptg
NB P cos
r 2 (r h) 2 0.577 又由几何关系: tg r h
所以
F=11.5kN , NB=23.1kN
平面力系的平衡方程
平面力系的平衡方程平面力系是物理学中一个重要的概念,它描述了在平面内作用的多个力之间的关系。
平面力系的平衡方程是研究平面力系平衡状态的基本工具。
本文将从平面力系的定义、平衡条件以及平衡方程的推导和应用等方面进行论述。
一、平面力系的定义平面力系是指在平面内作用的多个力所构成的力系统。
这些力可以是来自不同方向的,也可以是来自同一方向的。
平面力系的特点是力的作用线都在同一平面内。
二、平衡条件平面力系的平衡条件是指力系中所有力的合力为零,力矩也为零。
力的合力为零意味着力系中所有力的矢量和为零,即ΣF=0。
力的合力为零是平衡的必要条件,但不是充分条件。
力矩为零意味着力系中所有力对某一点的力矩的矢量和为零,即ΣM=0。
力矩为零是平衡的充分条件。
三、平衡方程的推导平衡方程的推导基于牛顿第二定律和力矩的定义。
根据牛顿第二定律,物体的加速度与作用在其上的合外力成正比,反向相反。
对于平面力系,可以将合外力分解为水平方向和垂直方向的分力。
设水平方向的合外力为ΣFx,垂直方向的合外力为ΣFy。
根据牛顿第二定律,物体在水平方向和垂直方向的加速度分别为a_x和a_y,则有ΣFx=ma_x,ΣFy=ma_y。
对于力矩的定义,力矩等于力的大小与力臂的乘积。
力臂是指力作用线与某一点的垂直距离。
设力F_i的力臂为r_i,则力F_i对该点的力矩为M_i=F_i*r_i。
根据力矩的定义,平面力系中所有力对该点的力矩的矢量和为零,即ΣM=0。
四、平衡方程的应用平衡方程可以用于解决平面力系的平衡问题。
通过列写平衡方程,可以求解未知力的大小和方向。
在列写平衡方程时,需要选择合适的坐标系,并确定参考点。
参考点的选择应该便于计算力矩,通常选择力系中力的作用点或力的交点作为参考点。
在实际应用中,平衡方程可以用于解决各种平面力系的平衡问题。
例如,可以用平衡方程来分析悬挂物体的平衡状态,计算悬挂绳的张力和物体的重力。
还可以用平衡方程来分析桥梁、建筑物等结构的平衡状态,计算支撑力和应力分布等。
建筑力学第三章 平面力系的平衡方程
③ FR≠' 0,MO =0,即简化为一个作用于简化中心的合力。这时, 简化结果就是合力(这个力系的合力), FR FR'。(此时
与简化中心有关,换个简化中心,主矩不为零)
重庆大学出版社
建筑力学
④ FR' ≠0,MO ≠0,为最任意的情况。此种情况还可以继续
重庆大学出版社
建筑力学
[例] 已知:Q=7.5kN, P=1.2kN , l=2.5m , a=2m , =30o , 求:
BC杆拉力和铰A处的支座反力?
解:(1)选AB梁为研究对象。
C
(2)画受力图
FAy
FBC
A
FAx
l/2 P
B Q
a
Байду номын сангаас
l
A
l/2 P
B Q
a
l
重庆大学出版社
建筑力学
(3)列平衡方程,求未知量。
静不定问题在材料力学,结构力学,弹性力学中 用变形协调条件来求解。
重庆大学出版社
建筑力学
物系平衡问题的特点: ①物体系统平衡,物系中每个单体也是平衡的。 ②每个单体可列3个(平面任意力系)平衡方程,整个系统
可列3n个方程(设物系中有n个物体)。
解物系问题的一般方法:
机构问题: 个体 个体
个体
“各个击破”
力系中各力对于同一点之矩的代数和。
重庆大学出版社
建筑力学
3.2平面力系的平衡方程及应用
FR=0, MO =0,力系平衡
FR =0 为力平衡
MO =0 为力偶也平衡 平面力系平衡的充要条件为:
理论力学第3章 力系的平衡条件与平衡方程
10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
第3章力系平衡方程
F F
2 x y
2
38.822 3.82
(kN) 33
主矢FR′的方向为
tan
F F
y
3.8 32.82
0.1158
6 .6
x
主矢FR′在第四象限内,与x轴的夹角为6.6°。
2019/1/5
(2)求主矩MO 力系对点O的主矩为 MO=∑MO(F) =-F1sin20°· b-F2cos30°· b + F2sin30°· a +m =-20×0.342×10- 30×0.866×10+30×0.5×6+100 =-138(kN· m) 顺时针方向。
图3-5
2019/1/5
【例3-2】图
【解】 (1)建立直角坐标系,计算合力在x轴和y轴 上的投影
FRx Fx F1 cos30 F2 cos60 F3 cos45 F4 cos45
=200×0.866-300×0.5-100×0.707+250×0.707 =129.25N
MO(FR)= MO(F1)+ MO(F2)+…+ MO(Fn) =∑MO(F)
(3-6)
2019/1/5
【例3-5】 如图3-9所示,每1m长挡土墙所受土压 力的合力为FR,如FR=200kN,求土压力FR使挡土墙倾覆的 力矩。 【解】土压力FR可使挡土墙绕 A点倾覆,故求土压力FR使墙倾覆 的力矩,就是求FR对A点的力矩。 由已知尺寸求力臂d比较麻烦,但 如果将FR分解为两个力F1和F2,则 两分力的力臂是已知的,故由式 (3-6)可得
图3-16
力的平移定理
2019/1/5
静力学:第三章-平面任意力系(1)详解
合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
第3章力系平衡方程
M M1 M 2 M n M
(2)平面力偶系的平衡 ∑M=0
2016/12/14
【例3-6】如图3-12所示,某物体受三个共面力偶作 用,已知F1=25kN,d1=2m,F2=50kN,d2=1.5m,M3=- 20kN·m,试求其合力偶。
【解】
M1=F1· d1=25×2=50kN· m
(3)求合力的方向
tan FRy FRx 112.35 0.869 129.25
α=40.99º 由于FRx和FRy均为正,故α应在第一象限,合力FR的 作用线通过力系的汇交点O,如图3-5所示。
2016/12/14
3.平面汇交力系的平衡方程
平面汇交力系平衡的必要和充分条件是:该力系的合 力FR等于零。即:
按其作用线所在的位置:平面力系和空间力系。 平面力系:力系中各力的作用线都在同一平面内。 空间力系:力系中各力的作用线不在同一平面内。 平面力系:平面汇交力系、平面平行力系和平面一般力系。 平面汇交力系:在平面力系中,各力的作用线均汇交于一 点的力系。
1.力在直角坐标轴上的投影
F在x轴上的投影,以Fx表示;F在y轴上的投影,以Fy表示。
作用在刚体上A点的力F,可以平移到同一刚体上的 任一点O,但必须附加一个力偶,其力偶矩等于原来的力 F对新作用点O之矩。
图3-16
力的平移定理
2016/12/14
【例3-8】如图3-17(a)所示,柱子的A点受到吊 车梁传来的集中力F=120kN。求将该力F平移到柱轴上O 点时应附加的力偶矩,其中e=0.4m。 【解】 M=MO(F)=-Fe =-120×0.4=48kN· m 负号表示该附加力 偶的转向是顺时针的。
arctan
工程力学第3章
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
第3章力系的平衡条件与平衡方程
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
平面力系的平衡条件与平衡方程式
从而所研究的力系必为平衡力系,如图2-16所示。
三矩式平衡方程为
M A 0 M B 0 M C 0
其中,A,B,C三点不得共线。
图 2-16
由 M A 0 , M B 0 知,该力系只可能为作用线过A,B
两点的合力或是平衡力系;
Fy 0
M O 0 (2-22)
图 2-19
对于平面力偶系,由于它简化后为一个合力偶,而力偶在任何 轴上的投影都是零,因此,式(2-18)中的前两式自然满足。 所以,平面力偶系的平衡方程为
MO 0
理论力学
的平衡,也就不会产生附加的平面力偶系,从而只要主矢为零,该力 系就平衡。其平衡方程为
Fx 0
Fy
0
(2-21)
图 2-18
例
对于平面平行力系(各力作用线共面且平行的力系),该力系简化 后其主矢必与各力平行从而方向已知,这时可取两个投影轴分别与 该力系平行和垂直,则与该力系垂直的轴上的投影方程总是自然满 足的,故其平衡方程式为
M A 0
M B 0
Fx 0
(2-19)
式中,AB连线不得与x轴相垂直。
方程式(2-19)也完全表达了力系的平衡条件:由 M A 0 知,
该力系不能与力偶等效,只能简化为一个作用线过矩心A的合力,
或者为平衡力系;
由 M B 0 知,若该力系有合力,则合力必通过A,B连线
最后,由 Fx 0 知,若有合力,则它必垂直于x轴;而据限制条件,
理论力学
平面力系的平衡条件与平衡方程式
平面力系平衡的充分和必要条件是 力系的主矢及作用面内任意一点的主矩同时为零。
证
由主矢为零,即
平面任意力系
P
B
MA A
FAy FAx
P
B
FB
★ 静定和超静定的概念 机 静构 定 不问 定题 问题
思考:指出下列问题属于静定问题还是超静定问题
P
P
(a)
(c)
P
P
(b)
(d)
★ 物体系统的平衡问题
物体系统的独立平衡方程数= 各物体独立平衡方程数之和
★ 物体系统的平衡问题
例3-4 已知:P=6kN ,
l
桁架各杆件均为二力杆
★ 桁架内力的计算
1. 节点法 2. 截面法
* 以节点为研究对象; * 由平面汇交力系平衡 方程求解。 * 用假想截面将桁架截开; * 研究局部桁架的平衡, 直接求得杆件的内力。
例3-8已知铅垂力F1=4
kN,水平力F2= 2kN 。
求杆EF、CE、CD 内力。A
解:法1 节点法
MA
FAy M
FAAyy
+
FBB
sin
60DD
−
2ql
−
F
cos
30DD
=
0
FAx
A
∑MAA(F ) = 0,
l
q
30D
F
C
B 60D D
FB
l
l
l
MAA − M − 2ql × 2l + FBB sin 60DD ×3l − F cos30DD × 4l = 0
解方程得: FAAxx =32. 89 kN, FAAyy =−2. 32 kN, MAA =10. 37 kN⋅m
★ 静定和超静定的概念 静定问题 (statically determinate problem) —由静力学平衡方程可解出全部未知数。 超静定问题(statically indeterminate problem) — 仅由平衡方程无法求出全部未知数。
第三章平面力系
(3)若FR‘≠0,MO‘≠0,这时根据力的平移定理的 逆过程,可以进一步简化成一个作用于另一点 的合力。
(4) FR‘=0,MO‘=0,则力系是平衡力系 。 综上所述,平面一般力系简化的最后结果 (即合成结果)可能是一个力偶,或者是一个合 力,或者是平衡。 3-1-3合力矩定理 当FR‘=0,MO‘≠0 时,还可进一步简化为一 M o ( FR ) FR d 合力,合力对点的矩是 / / 而 Mo mo ( F ) FR d M o 所以 Mo (FR ) mO (F )
3-1-2简化结果的分析 平面一般力系向一点简化,一般可得到一 个力和一个力偶,但这并不是最后简化结果。 根据主矢与主矩是否存在,可能出现下列几种 情况: (1)若FR‘=0,MO‘≠0,说明原力系与一个力偶等 效,而这个力偶的力偶矩就是主矩。 (2)若FR‘≠0,MO‘=0 ,则作用于简化中心的主 矢FR'就是原力系FR的合力,作用线通过简化中 心。
228 .9kN m
计算结果为正值表示是逆时针转向。
因为主矢
≠0,主矩 FR
/ Mo ,如图 0 (b)所示,
所以还可进一步合成为一个合力FR。 FR的大小、 方向与FR‘相同,它的作用线与点的距离为
M O 228.9 d 0.375m FR 612.9
因为MO正,故m0(FR)也应为正,即合力FR 应在点O左侧,
X
F F
0
二力矩形式的平衡方程 (简称二矩式)
在力系作用面内任取两点A、B及X轴,平 面一般力系的平衡方程可改写成两个力矩方程 和一个投影方程的形式,即
F m m
X
0 0 0
A
B
式中轴不与A、B两点的连线垂直。
第三章力系的简化
M O M O ( Fi )
力系若有合力,力系合力对任意轴的 矩等于力系各力对同一轴的矩的矢量和;
M x M x ( Fi )
7. 空间任意力系简化为力螺旋
简化后,若FR0,MO0,且FR与MO平行, 此时无法进一步简化。 这样力与力偶作用面垂直的情况称为力螺旋。
FR与MO同向,称右手螺旋;
4.平面任意力系的简化
1) 平面任意力系向一点简化 平面任意力系
力线平移
平面汇交力系+平面力偶系
平面汇交力系+平面力偶系
合成
平面汇交力系合力FR
平面力偶系合力偶MO
简化点O任选,称简化中心 简化后平面汇交力系的合力FR,有:
简化后平面力偶系的合力偶MO,有:
平面任意力系向作用面内一点简化后得到一个 力和一个力偶,该力的主矢等于原力系的主矢,该 力偶的力偶矩等于原力系对简化中心的主矩。 简化后有以下几种情况: 1) 若FR=0,MO0,则力系合成为一个合力偶, 合力偶矩等于原力系对简化中心的主矩。这种情 况下,主矩与简化中心的位置无关; 2) 若FR0,MO=0,则力系合成为一个合力, 主矢FR与原力系主矢FR相等。主矢FR通过简化 中心。合力与简化中心的位置有关,换一个简化 中心,则MO不为零。
3)结论
任意平面汇交力系:
可以简化为一合力,合力的大 小与方向等于各分力的矢量和(几 何和),合力的作用线通过汇交点。 用矢量表示:
平面汇交力系平衡的充要条件是:该力系的 合力等于零。
几何法求解平面汇交力系,一般适合三个 力汇交的情况
例:如图,为汽车制动机 构的一部分。驾驶员蹬踩 力F=212N,方向与水平 面夹角α=45º。平衡时, DA垂直,BC水平,求拉 杆BC所受的力。已知, EA=24cm,DE=6cm,点 在上,机构不计自重,C、 B、D均为光滑铰链。
平面力系的平衡方程
FBy 77.5kN
iy
F
解得
0 FAy FBy 2 P P 1P 2 0
FAy 72.5kN
解:取吊车梁,画受力图.
M
解得
D
0
8FE' 4P 1 2P 2 0
FE' 12.5kN
取右边刚架,画受力图. M C 0 6FBy 10FBx 4P FE 0 解得
M
A
0 MA M F 1 l F cos 60 l F sin 60 3l 0
解得: FAx 316.4kN FAy 300kN
MA 1188kN m
已知: P kN, P2 200kN, 尺寸如图; 1 700 求:(1)起重机满载和空载时不翻倒,平衡载重P3;
解得
FDB
3 2 ( 拉) P 8
求:
力偶矩M 的大小,轴承O处 的约束力,连杆AB受力,冲 头给导轨的侧压力。 取冲头B,画受力图. Fiy 0 F FB cos 0
解:
F
ix
0 FN FB sin 0
FN F tan FR l 2 R2
F Fl 解得: FB cos l 2 R2
三矩式
A, B, C
三个取矩点,不得共线
§3-2
平面平行力系的平衡方程
0 0 0 0 Fx 0 反例力偶 F F F 0 F 0 1 2 3 y Fx 0 F1 cos F2 cos F3 cos 0
取轮,画受力图:
F
ix
0
Fox FA sin 0
Fox
理论力学第三章 任意力系的简化与平衡条件
例3-2 已知:涡轮发动机叶片轴向力F=2kN,力偶矩
M=1kN.M, 斜齿的压力角=20 ,螺旋角 。 =10 ,齿轮节圆半径 r=10cm。不计发动 机自重。 O1O2=L1=50cm, O2A=L2=10cm. 求: FN, O1,O2处的约束力。
。
第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
3
F2 F3
1
F'
F1
1 O 200 1
x
2
1 3 1 FRy F1 F2 F3 = -161.6(N) 2 10 5
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
解:(1)先将力系向O点简化,求主矢和主矩。 FRx FRy =466.5(N) 2 2 FR
Xi 0 F x F2x Fr 0 1
F y F2y F 0 1
Zi 0
F z Fa F 0 1
第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
例3-2 解: 3、列平衡方程
Mx (F) 0
F2 y L1 F (L1 L2 ) 0
y
100 1
F
80
3
Байду номын сангаас
F2 F3
1
F'
F1
1 O 200 1
x
2
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
例3-1 (1)先将力系向O点简 解: 化,求主矢和主矩。 1 1 F2 FRx F1 10 2 2 F3 5 = -437 .6(N)
y
100 1
F
第03章 平面任意力系
第三章平面任意力系3.1 平面任意力系的简化·主矢与主矩3.2 平面任意力系的平衡条件与平衡方程3.3 物体系统的平衡·静定与静不定问题3.4 平面简单桁架的内力计算3.1 平面任意力系的简化·主矢与主矩所谓平面任意力系是指力系中各力的作用线在同一平面内且任意分布的力系,简称平面力系。
在实际工程中经常会遇到平面任意力系的情形,例如,下图所示的曲柄连杆机构,受力F ,矩为M 1,M 2的力偶以及支座反力F Ax ,F Ay 和F N 的作用,这些力及力偶构成平面任意力系。
3、固定端(或插入端)约束FAxFAyM AA4、平面任意力系的简化结果分析(1)简化为一个力偶当F R = 0,M O ≠0则原力系合成为合力偶,其矩为∑=)(i O O M M F 此时主矩与简化中心选择无关,主矩变为原力系合力偶。
由此很容易证得平面任意力系的合力矩定理:平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和。
即∑=)()(R i O O M M F F 当F R ’= 0,M O = 0则原力系平衡。
(3)平面力系平衡例题3-3考虑一小型砌石坝的1m长坝段,受重力和的静水压力作用。
已知h = 8 m,a= 1.5 m,b= 1 m,P1=600 kN,P2=300 kN,单位体积的水重γ = 9.8 kN/m3。
求(1)将重力和水压力向O点简化的结果,(2)合力与基线OA的交点到点O的距离x,以及合力作用线方程。
解:(1)以点O 为简化中心,求主矢∑=′x RxF F ()()kNF F yxR1.95322=+=′∑∑F 329.0cos =′=∑RxF F θ944.0cos −=′=∑RyF F β°±=79.70θ°±°=21.19180β故主矢在第四象限内,与x 轴的夹角为°−79.70F R ’M O θβkN 6.313=22121h qh γ==kN P P F F y Ry 90021−=−−==′∑(2)以点O 为简化中心,求主矩F R ’M O θβ()()()q M P M P M M O O O O ++=21bP a P hh 212321−+×−=γmkN ⋅−= 27.236表明主矩的方向与假设方向相反,及主矩的方向为顺时针。
第3章 平面任意力系
,i
FRx FR
0.614,
FR , i 52.1
A
cosFR
,
j
FRy FR
0.789,
2. 求主矩MO
FR , j 37.9
MO O
FRF R
MO MO F
2F2 cos 60 2F3 3F4 sin 30 0.5 kN m
由于主矢和主矩都不为零,所以最后合
成结果是一个合力FR。如右图所示。
M
F
q
45
B
A
l
24
例题3-6
A
y
FAx
A
MA FAy
解: 取梁为研究对象,受力分析如图
由平衡方程
M
F
Fx 0, FAx F cos 45 0
q
45
B
Fy 0, FAy ql F sin 45 0
l
M AF 0,
MA
ql 2 2
Fl cos
45
M
0
解方程得
q
M 45 F FAx F cos 45 0.707 F
FR FR
合力FR到O点的距离
d MO 0.51 m FR
B x
C
12
例题3-2
水平梁AB受三角形分布的载荷作用,如图所示。
载荷的最大集度为q, 梁长l。试求合力作用线的位置。
A l
解:
q
在梁上距A端为x的微段dx
B x 上,作用力的大小为q'dx,其
中q'为该处的载荷集度 ,由相
似三角形关系可知
F
A
B
C
D
20
例题3-4
A
工程力学(李卓球) 第3章 力系的简化和平衡
∑X =0 ∑Y = 0 ∑M = 0
O
3.2
力系的平衡条件和平衡方程 ∑X =0
∑Y = 0 ∑F = 0
z
y
F1 F2
4 5 3
F3
∑M
x
=0
y
O
x
∑M ∑M
平面汇交力系
=0
=0
z
∑ ∑
X = 0
Y = 0
Y = 0
M
O
平面平行力系
∑ ∑
( Fi ) = 0
3.2
力系的平衡条件和平衡方程
四、平面任意力系平衡方程的其他形式 (1)二力矩式 二力矩式
3.2
力系的平衡条件和平衡方程
平面平行力系的平衡方程
∑ ∑ ∑
Fx = 0
∑ M ∑ M
A B
(F i ) = 0 (Fi ) = 0
Fy = 0
M
O
(Fi ) = 0
∑
Fx = 0
A
B
∑Y ∑M
= 0
O
∑ M
(F i ) = 0
(Fi ) = 0
∑
M
(Fi ) = 0
AB连线与力不平行 连线与力不平行 只有两个独立方程,只能求解两个独立的未知数。 只有两个独立方程,只能求解两个独立的未知数。
h h
γy (1 × dy )
dy
= γy
1 2 γh 2
由合力矩定理, 由合力矩定理,有
1 Qd = ∫ yqdy = ∫ γy dy = γh 3 0 0 3
h h 2
d=
2 h 3
3.1
力系向一点简化
y A
2m
在长方形平板的O 例题 3-2 在长方形平板的 、A、 B、C 点上分别作用着有四个力: 点上分别作用着有四个力: F1=1kN,F2=2kN,F3=F4=3kN , , 如图), ),试求以上四个力构成 (如图),试求以上四个力构成 的力系对点O 的简化结果, 的力系对点 的简化结果,以及 该力系的最后的合成结果。 该力系的最后的合成结果。 取坐标系Oxy。 解:取坐标系 。 1、求向 点简化结果: 点简化结果: 、求向O点简化结果 求主矢R′ ①求主矢 ′:
理论力学第3章力系平衡方程及应用
a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3-6 多跨静定梁受力如图所示,求支座A、B、C处的反力 。
解 (1)首先取BC段为研究对象。
M B (F ) 0
1 FCy 2 q 2 2 0 2
FCy 2kN
Y 0
FBy FCy q 2 0
FBy 2kN
X 0
FBx FCx 0
M O ( FR ) M O ( F )
第二节 平面任意力系的平衡方程及应用
物体在力系作用下,保持平衡的充分必要条件是:力系 的主矢与对任一点的主矩均为零 ,即:
X 0 , Y 0 , M O
F 0
上式称为平衡方程一矩式,二矩式和三矩式分别为: M A F 0 X 0 或 Y 0 M A F 0 M B F 0 M F 0 M B F 0 C 条件是:AB两点的连线不能 与 x 轴或 y 轴垂直 条件是:ABC三点不 能共线
三、平面汇交力系的平衡方程 平面汇交力系平衡的充要条件是:
FR 0 FR FRx FR y 0
2 2
FR x X 0 FR y Y 0
注意:对力的方向判定不准的,一般用解析法。利用 平衡方程通过解析法解题时,力的方向可以任意假设, 如果求出负值,说明力的方向与假设相反。
2 2
F Ry tan tan1 F Rx
1
Y X
二、简化结果分析与合力矩定理
平面力系总可以简化为一个主矢和一个主矩,可能有以下几种情况:
(1) (2) (3) (4) ' FR 0 , LO 0 ' FR 0 , LO 0 ' FR 0 , LO 0 ' FR 0 , LO 0
第二章 平面力系的简化 平衡方程
第一节 平面一般力系向一点简化 主失 主矩 第二节 平面一般力系的平衡方程 第三节 平面汇交力系的平衡方程 第四节 平面平行力系的平衡方程 第五节 物体系的平衡问题
第一节
平面任意力系的简化
一、力系向平面内任意一点的简化 平面任意力系的简化主要依据是力线平移定理,简化的 实质是将一个平面任意力系分解为一个平面汇交力系和 一个平面力偶系,然后将这两个力系进行合成 。
Y 0
P FAC sin 45 FBC sin 45 0
(4)解平衡方程,得
FAC FBC P 15 2 kN 0 2 sin 45 2
第四节 平面平行力系的平衡方程
见课本p40-42例题讲解 例3-4 例3-5
第五节 物体系的平衡问题
物体系——两个或两个以上的物体通过一定的联结(约束)
Y A AC (72) 1.6 SB 160kN 4 BCsin 0.9 5
例3-2 简支梁受力如图所示,已知:均布荷载q=1kN/m,集中力 F=5kN,力偶M=4kN· m,求支座反力。
解: (1)以AB梁为研究对象。 (2)画出受力图。 (3)选坐标列方程。
由 得 由 得
主矢
主矩
FR ' F1 F2 F3 F
M 0 ( F1 ) M 0 ( F2 ) M 0 ( F3 ) M 0 ( F ) L0 M 1 M 2 M 3
由合力投影定理,将上式写成解析形式,得:
FR' F R x F R' y ( X ) 2 (Y )2
例3-1 如图所示的体系,已知P=150kN,AC=1.6m,BC=0.9m, CD=CE=1.2m ,AD=2m且AB水平,ED铅垂,BD垂直于斜面, 求FB和A支座反力。 解 (1)以体系整体为研究对象。 (2)画出受力图。 (3)选坐标列方程。
X
'
0, X A sin YA cos P sin 0
结论:FR F F F F 1 2 3 n
即 FR F
先作力多边形
c
b a d e
再将R 平移 至A点
平面汇交力系的合力等 于各分力的矢量和,合力 的作用线通过各力的汇交 点。
二、平面汇交力系平衡的几何条件
平面汇交力系平衡的充要条件是:
FR F 0
本章小结
(3)平面任意力系的平衡方程三种形式
X 0 , Y 0 , M O
X 0 或 Y 0 MA F 0 MB F 0
F 0
M A F 0 M B F 0 M F 0 C
(2)再取CDE段为研究对象 。
X 0
FCx 0
ห้องสมุดไป่ตู้
FBx 0
M
D
(F ) 0
FCy 2 FE 2 M 0
FE 5.5kN
Y 0
FCy FD FE q 4 0
FD 4.5kN
(3) 取AB段为研究对象。
X 0
FAx FBx 0
例3-3 如图所示机构,已知:力P=15kN, 杆件BC=AC=1m,AC 与BC相互垂直且铰接于C。求:在力P的作用下杆件AC与BC所 受力的大小。
解法一:几何法 (1)选铰C为研究对象,进行分析。 (2)画出力多边形 ,通过测 量得:
FAC FBC 10.61kN
解法二:平衡方程法
(1)选铰C为研究对象; (2)取分离体画受力图,如图所示; (3)列平衡方程为 X 0 FAC cos 45 FBC cos 45 0
(4)静定与静不定问题 静定问题:未知力数目等于对应的独立平衡方程的数目。 静不定问题:未知力的数目多于平衡方程的数目。
方式组合在一起的系统称为物系或物体系。
物系内部物体之间作用的力称为内力;物体外部作用于整个
物系的力称为外力。
一般情况下,研究物系的受力时不考虑内力,但当研究物系
中个别物体时必须考虑内力。
当物系处于平衡状态时,物系内的每个物体也处于平衡状态,
因此在研究物系平衡时,选取研究对象,既可以选个别物体, 也可以选几个物体的组合甚至整个物系 。
(2)平面力系总可以简化为一个主矢和一个主矩,可能有 以下几种情况:
(1) (2) (3)
(4)
' FR 0 , LO 0 ' FR 0 , LO 0 ' FR 0 , LO 0
' FR 0 , LO 0
称该力系平衡
该力系等效一个合力偶
该力系等效一个合力 仍然可以继续简化为一个合力
M B (F ) 0,YA 2.5 P 1.2 0
而sin AC 1.6 4 CD 1.2 3 ; cos AD 2 5 AD 2 5
解得 : X A 96 KN; YA 72 KN
(4)再研究 AB杆。
由 M C 0,
FB sinCB Y A AC 0
一、平面汇交力系的合成
1)两个共点力的合成
由余弦定理:
FR F1 F2 2F1F2 cos 180o ) (
2 2
由力的平行四边形法则合成, 也可用力的三角形法则合成。
合力方向由正弦定理:
F1 FR sin sin(180 )
2)任意个共点力的合成 ( 力多边形法) 推广至 n 个力
在上面几何法求力系的合力中,合力为 零意味着力多边形自行封闭。所以平面 汇交力系平衡的必要与充分的几何条件 是: 力多边形自行封闭或力系中各力的矢量 和等于零。
2.解析法 利用合力投影定理,有下式求出合力的大小,确定合力的方向。
FR FR x FR y
2 2
X Y
2
2
tan
FR y FR x
Y X
二、平面汇交力系平衡的几何条件 平面汇交力系平衡的充要条件是:
FR F 0
在上面几何法求力系的合力中,合力为 零意味着力多边形自行封闭。所以平面 汇交力系平衡的必要与充分的几何条件 是: 力多边形自行封闭或力系中各力的矢量 和等于零。
称该力系平衡
该力系等效一个合力偶 该力系等效一个合力 仍然可以继续简化为一个合力,方法如下: FR FR d O O FR d
FR
O
MO
FR
O’
O’
只要满足:
L FR FR , d O FR
合力矩定理——平面任意力系的合力对作用面内任一点 之矩等于力系中各力对于同一点之矩的代数和。
FAx FBx 0
Y 0
M
A
FAy FBy q 4 0
FAy 10kN
(F ) 0
FBy 4 q 4 2 M A 0
M A 24kN m
本章小结
(1)力线平移定理:作用在刚体上的力F可以平行移动到刚体内 任意一点,但必须同时附加一个力偶,其力偶矩等于原力F对 平移点之矩。
M
A
(F ) 0
RB 8 M P 5 q 4 2 0
R B 4.63kN
结果为正值,说明与假设方向一致。
R A RB P q 4 0
Y 0
R A 4.37kN
结果为正值,说明与假设方向一致。
第二节
1.几何法
平面汇交力系的合成与平衡