山东省聊城市冠县2016-2017学年七年级(上)期中数学试卷(解析版)

合集下载

2016--2017学年度上期中七年级数学试卷

2016--2017学年度上期中七年级数学试卷

第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。

山东省聊城市冠县2016-2017学年七年级(上)期中数学试卷(含解析)

山东省聊城市冠县2016-2017学年七年级(上)期中数学试卷(含解析)

2016-2017学年山东省聊城市冠县七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.为了了解某县七年级学生的体重情况,从中抽取了200名学生进行体重测试,就这个问题,下面说法正确的是()A.200名学生是总体B.200名学生是一个样本C.每个学生是个体D.全县七年级学生的体重是总体2.今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元3.下列说法错误的是()A.图①中直线l经过点A B.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点4.下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与345.下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC6.下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个B.4个C.5个D.6个7.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|8.如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm9.对某班40同学的一次数学成绩进行统计,适当分组后80~90分这个分数段的划记人数为“”,那么此班在这个分数段的人数占全班人数的百分比是()A.20% B.40% C.8% D.25%10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.11.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.4012.下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个B.2个C.3个D.4个二、填空题(本小题共5小题,每小题4分,共20分)13.莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是.14.比﹣3大而比2小的所有整数的和为.15.已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB C D.(填“>”、“<”或“=”)16.刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因.17.按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为.三、解答题(本题共7题,共64分)18.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|19.如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.21.有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.22.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?23.某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?24.如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.2016-2017学年山东省聊城市冠县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.为了了解某县七年级学生的体重情况,从中抽取了200名学生进行体重测试,就这个问题,下面说法正确的是()A.200名学生是总体B.200名学生是一个样本C.每个学生是个体D.全县七年级学生的体重是总体【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、200名学生进行体重是一个样本,故A不符合题意;B、200名学生进行体重是一个样本,故B不符合题意;C、每个学生的体重是个体,故C不符合题意;D、全县七年级学生的体重是总体,故D符合题意;故选:D.2.今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90万亿=90000000000000=9×1013,故选:D.3.下列说法错误的是()A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【考点】直线、射线、线段.【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【解答】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选C.4.下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34【考点】有理数的乘方.【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、(﹣2)2=4,﹣24=﹣16,不相等;B、﹣25=(﹣2)5=﹣32,相等;C、(﹣1)3=﹣1,(﹣1)4=1,不相等;D、43=64,34=81,不相等,故选B5.下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【考点】比较线段的长短.【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.6.下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个B.4个C.5个D.6个【考点】有理数的乘方;有理数;相反数;绝对值.【分析】先对部分数化简后找出正分数,再计算个数.【解答】解:(﹣)2=,|﹣|=;所以正分数有:(﹣)2,,+1.99,|﹣|,共4个.故选B.7.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|【考点】数轴.【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【解答】解:由图可知,b<0<a,且|b|>|a|.A、b+a<0,此选项错误;B、a﹣b>0,此选项错误;C、ab<0,此选项正确;D、|b|>|a|,此选项错误.故选:C.8.如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm【考点】比较线段的长短.【分析】由已知条件可知,AC=AB﹣BC,又因为C为AD中点,则AD=2AC,故BD=AB﹣AD可求.【解答】解:∵AB=10cm,BC=7cm∴AC=3cm又∵C为AD中点∴AD=6cm∴BD=10﹣6=4cm.故选C.9.对某班40同学的一次数学成绩进行统计,适当分组后80~90分这个分数段的划记人数为“”,那么此班在这个分数段的人数占全班人数的百分比是()A.20% B.40% C.8% D.25%【考点】频数与频率.【分析】根据80~90分这个分数段的频数除以总数×100%=80~90分这个分数段占全班人数的百分比,进而求出即可.【解答】解:∵80~90分这个分数段的划记人数为“”,则这个分数段的频数为8,∴此班在这个分数段的人数占全班人数的百分比是:8÷40×100%=20%.故选:A.10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.【考点】有理数的混合运算.【分析】按照规定的运算方法改为有理数的混合运算计算即可.【解答】解:2⊗(﹣3)==6.故选:A.11.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.40【考点】直线、射线、线段.【分析】由已知中两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点,我们分析n值变化过程中,交点最多个数的变化趋势,找出规律后,归纳为一般性公式即可得到答案.【解答】解:令n条直线最多交点个数为M:两条相交直线最多有1个交点,即n=2,M=1,三条直线最多有3个交点,即n=3,M=3,四条直线最多有6个交点点,即n=4,M=6,五条直线最多有10个交点,即n=5,M=10,…则n条直线最多交点个数M=1+2+3+4+…+(n﹣1)=,当n=8时,=28,故选:C.12.下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个B.2个C.3个D.4个【考点】相反数;绝对值;倒数;有理数的加法.【分析】本题须根据负数、正数、倒数、绝对值、相反数的有关定义以及表示方法逐个分析每个说法,得出正确的个数.【解答】解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴③对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.两个负有理数的和小于其中每一个加数,∴⑤错误.如果两个数的和为零,那么这两个数可能为0,∴⑥错误.所以正确的说法共有1个.故选A.二、填空题(本小题共5小题,每小题4分,共20分)13.莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是度.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“态”与“定”是相对面,“度”与“一”是相对面,“决”与“切”是相对面.故答案为:度.14.比﹣3大而比2小的所有整数的和为﹣3.【考点】有理数的加法.【分析】首先找出比﹣3大而比2小的所有整数,在进行加法计算即可.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.15.已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB<C D.(填“>”、“<”或“=”)【考点】比较线段的长短.【分析】根据题意画出符合已知条件的图形,根据图形即可比较线段AB和线段CD的大小.【解答】解:如图所示,AB<CD,故答案为:<.16.刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因所取样本不具有代表性.【考点】用样本估计总体.【分析】根据用样本估计总体时所选样本的要求要具有代表性、广泛性、随机性进行解答.【解答】解:由于全市初中生既有农村的、又有城市的,故在选取样本时要既有农村人口,又有城市人口,而刘强同学只对自己所在城区人口和城区初中生人数作了调查,所以此样本不具有代表性.故答案为:所取样本不具有代表性.17.按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为120.【考点】有理数的混合运算.【分析】把x=30代入程序中计算,得到结果小于100,以此类推结果大于100,输出即可.【解答】解:把x=30代入得:30×|﹣|÷[﹣(﹣)2]=15÷(﹣)=﹣60<100,把x=﹣60代入得:(﹣60)×÷(﹣)=﹣30×(﹣4)=120>100,则输出结果为120,故答案为:120三、解答题(本题共7题,共64分)18.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|【考点】有理数的混合运算.【分析】(1)根据加减混合运算的顺序和法则计算即可求解;(2)根据加法交换率和结合律简便计算;(3)运用乘法的分配律计算;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9)=﹣3﹣4﹣11+9=﹣18+9=﹣9;(2)=(﹣0.5﹣7)+(3.25+2.75)=﹣8+6=﹣2;(3)=﹣×36﹣×36+×36=﹣18﹣30+21=﹣27;(4)=﹣1+2﹣8÷|﹣9+1|=﹣1+2﹣8÷8=﹣1+2﹣1=0.19.如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.【考点】直线、射线、线段.【分析】分别根据射线、直线、线段的定义作图即可.【解答】解:如图所示.20.把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.【考点】有理数大小比较;数轴.【分析】把各数表示在数轴上,用“<”将它们连接起来即可.【解答】解:把各数表示在数轴上,如图所示:则用“<”将它们连接起来为:﹣3<﹣1.5<0<2.5<3.21.有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.【考点】代数式求值.【分析】依据题意可求得a+b、cd和e的值,然后代入求解即可.【解答】解:根据题意得:a+b=0,cd=1,e=±3.当e=3时,原式=0﹣1﹣3=﹣4;当e=﹣3时,原式=0﹣1+3=2.22.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?【考点】有理数的加减混合运算;正数和负数.【分析】(1)根据80+15求出成绩最好的即可;(2)求出记录成绩,根据结果的正负即可做出判断;(3)求出最高分与最低分,相减即可得到结果.【解答】解:(1)根据题意得:80+15=95(分),则成绩最好为95分;(2)根据题意得:10﹣2+15+8﹣13﹣7=11(分),则超过11分;(3)根据题意得:最高分为80+15=95(分),最低分为80﹣13=67(分),则最高分与最低分相差为95﹣67=28(分).23.某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图的意义,将各组人数依次相加可得答案;(2)根据表中的数据计算可得答案;(3)用样本估计总体,按比例计算可得.【解答】解:(1)由图1知:4+8+10+18+10=50名,答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人×100%=36%∴最喜欢篮球活动的人数占被调查人数的36%.(3)1﹣(30%+26%+24%)=20%,200÷20%=1000人,×100%×1000=160人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.24.如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.【考点】两点间的距离;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)由偶次方及绝对值的非负性即可得出a﹣10=0、﹣4=0,解之即可得出a、b 的值;(2)由AB、BD的长度即可求出AD的长度,根据M、N分别是线段AC、AD的中点即可求出AM、AN的长度,再根据MN=AM﹣AN即可求出MN的长度.【解答】解:(1)∵(a﹣10)2+|﹣4|=0.∴a﹣10=0,﹣4=0,∴a=10,b=8.(2)∵BD=AC=8cm,∴AD=AB﹣BD=2cm.又∵M、N分别是线段AC、AD的中点,∴AM=4cm,AN=1cm,∴MN=AM﹣AN=3cm.2017年4月7日。

2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年人教版初一数学七年级上册期中测试卷及答案2016-2017学年七年级(上)期中数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2B.C.2D.2.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0 D.﹣5﹣2=﹣33.在有理数,(﹣1)2。

A.4B.3C.2D.1,﹣|﹣2|,(﹣2)3中正数有()个.4.下列说法中正确的是()A.没有最小的有理数B.既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2011年,XXX公布了第六次全国人口普查结果,总人口约为人,将用科学记数法表示正确的是()A.0.×1010B.1.3397×109C.13.397×108D.×1056.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.下列各式中与多项式2x﹣3y+4z相等的是()A.2x+(3y﹣4z)B.2x﹣(3y﹣4z)C.2x+(3y+4z)D.2x﹣(3y+4z)8.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.B.1C.﹣1D.﹣29.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.a+b>B.ab<C.b﹣a>D.a>b10.解为x=﹣3的方程是()A.3x﹣2=﹣7B.3x+2=﹣11C.2x+6=0D.x﹣3=0第1页(共17页)二.填空题(请将答案填写在答题卡指定的位置.每小题3分,共15分)11.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作:m.12.5与x的差的比x的2倍大1的方程是:.13.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.14.如果m、n互为相反数,a,b互为倒数,则|m+n﹣ab|等于.15.观察一列数。

2016-2017学年人教版数学七年级上期中试卷含答案

2016-2017学年人教版数学七年级上期中试卷含答案

期中测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.下列各题中计算正确的个数是( )(1)=-3 (-24)÷(-8)(2)=-4 (+32)÷(-8)(3)=1 (-45)÷(-45)(4)=-3 (-334)÷(-1.25)A.1 B.2 C.3 D.4 2.太阳的半径约为696 000 km,把696 000这个数用科学记数法表示为( )A .6.96×103B .69.6×105C .6.96×105D .6.96×1063.下列各对单项式是同类项的是( ) A.-x 3y 2与3x 3y 2 12B.-x 与y C.3与3a D.3ab 2与a 2b4.在数轴上有两个点A ,B ,点A 表示-3,点B 与点A 相距5.5个单位长度,则点B 表示的数为( ) A.-2.5或8.5 B.2.5或-8.5 C.2.5 D.-8.5 5.一个数的平方和它的倒数相等,则这个数是( )A.1B.-1C.±1D.±1和06.下列各式计算正确的是( )A.6a+a=6a 2B.-2a+5b=3abC.4m 2n-2mn 2=2mnD.3ab 2-5b 2a=-2ab 27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3 km 收费7元).3 km 后每千米1.4元(不足1 km 按1 km 算).小明坐车x (x>3)km,应付车费( ) A.6元B.6x 元C.(1.4x+2.8)元D.1.4x 元8.下列各数:0.01,10,-6.67,-,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为 ( )13A.1 B.2 C.3 D.49.一个多项式加上3x 2y-3xy 2得x 3+3x 2y ,则这个多项式是( )A.x 3+3xy 2B.x 3-3xy 2C.x 3-6x 2y+3xy 2D.x 3-6x 2y-3x 2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a ,b ,c 的大小关系是( ) A.a<c<b B.a<b<c C.c<a<b D.c<b<a 11.已知x 2+3x+5的值是7,则多项式3x 2+9x-2的值是( )A.6B.4C.2D.012.将正偶数按下表排成5列若干行,第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 第4行 32 30 28 26 ………………根据上述规律,2 016应为( ) A.第251行 第1列 B.第251行 第5列 C.第252行 第1列 D.第252行 第4列二、填空题(每小题4分,共20分)13.已知a ,b 互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b= . 14.在式子,3,m ,xy 2+1中,单项式有 个.xy 2,3x ,a +3215.多项式x 3y+2xy 2-y 5-12x 3是 次多项式,它的最高次项是 . 16.若有理数a ,b 满足|a+3|+(b-2)2=0,则a b 的值为 .17.规定一种新的运算:a △b=a×b-a+b+1.如,3△4=3×4-3+4+1=12-3+4+1=14,比较大小:(-3)△4 4△(-3).三、解答题(共64分)18.计算(每小题4分,共24分) (1)-4÷×(-30); 23―(-23)(2)-20+(-14)-(-18)-13; (3)-22+|5-8|+24÷(-3)×; 13(4)÷(-5)-2.5÷; (-12557)58×(-14)(5)-5m 2n+4mn 2-2mn+6m 2n+3mn ; (6)2(2a-3b )-3(2b-3a ).19.(8分)先化简,再求值:3x 2y-,其中x=-1,y=2. [2xy -2(xy -32x 2y +2xy )]20.(8分)下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的时间数)城市东京巴黎纽约芝加哥时差/时+1-7-13-14(1)如果现在时间是北京时间7:00,那么现在的纽约时间是多少?(2)如果现在的北京时间是7:00,小轩现在想给巴黎的姑姑打电话,你认为合适吗?21.(8分)某休闲广场是老百姓休闲娱乐的大型场所,其形状为长方形(如图),现要在广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积.(2)若休闲广场的长为800 m,宽为300 m,圆形花坛的半径为30 m,求广场空地的面积.(计算结果保留π)22.(8分)观察下列式子: -a+b=-(a-b ), 2-3x=-(3x-2), 5x+30=5(x+6), -x-6=-(x+6).由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解决下列问题:已知a 2+b 2=5,1-b=-2,求-1+a 2+b+b 2的值.23.(8分)我们把符号“n !”读作“n 的阶乘”,规定“其中n 为自然数,当n ≠0时,n !=n ·(n-1)·(n-2)·…·2·1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算: (1)4!; (2); 0!2!(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n )!=m !+n !是否恒成立.参考答案一、选择题 1.B2.C 696000=6.96×105.3.A 根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.B 当点B 在点A 的左侧时,点B 表示的数为-8.5;当点B 在点A 的右侧时,点B 表示的数为2.5.所以点B 表示的数为2.5或-8.5.5.A 0的平方为0但0没有倒数;-1的平方为1,倒数为-1;1的平方和它的倒数相等,都是1.6.D7.C 小明坐车x (x>3)km,应付车费=起步价7元+超过3km 的收费=7+1.4(x-3)=(1.4x+2.8)元. 8.D 非负整数即正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数. 9.A 这个多项式=(x 3+3x 2y )-(3x 2y-3xy 2)=x 3+3x 2y-3x 2y+3xy 2=x 3+3xy 2. 10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,所以c<a<b. 11.B 因为x 2+3x+5=7,所以x 2+3x=2.所以3x 2+9x-2=3(x 2+3x )-2=6-2=4. 12.C 二、填空题 13.014.3 单项式有,3,m 共3个. xy215.五 -y 516.9 因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,所以a+3=0,b-2=0,即a=-3,b=2,所以a b =(-3)2=9.17.> (-3)△4=(-3)×4-(-3)+4+1=-12+3+4+1=-4,4△(-3)=4×(-3)-4+(-3)+1=-12-4-3+1=-18,-4>-18,所以(-3)△4>4△(-3). 三、解答题18.解:(1)-4÷×(-30)23―(-23)=-4××30=-6-20=-26. 32―23(2)-20+(-14)-(-18)-13 =-20-14+18-13 =(-20-14-13)+18 =-47+18=-29. (3)-22+|5-8|+24÷(-3)× 13=-4+3+24× (-13)×13=-1-=-.83113(4)÷(-5)-2.5÷ (-12557)58×(-14)=125× 15+57×15+52×85×14=25++1=26.1717(5)-5m 2n+4mn 2-2mn+6m 2n+3mn =(-5m 2n+6m 2n )+(-2mn+3mn )+4mn 2 =m 2n+mn+4mn 2. (6)2(2a-3b )-3(2b-3a ) =4a-6b-6b+9a=(4a+9a )+(-6b-6b )=13a-12b.19.解:原式=3x 2y-(2xy-2xy+3x 2y-4xy )=3x 2y-2xy+2xy-3x 2y+4xy=4xy.当x=-1,y=2时, 原式=4×(-1)×2=-8. 20.解:(1)纽约时间是18:00.(2)北京是7:00,北京与巴黎的时差是-7,即巴黎要晚7小时,此时巴黎恰好是0:00,正好是深夜,小轩不宜给姑姑打电话.21.解:(1)(ab-πr 2)m 2.(2)(240000-900π)m 2.22.解:四个式子中括号的变化规律其实就是去括号的逆运算.-1+a 2+b+b 2=a 2+b 2-1+b=(a 2+b 2)-(1-b ). 因为a 2+b 2=5,1-b=-2, 所以原式=5-(-2)=7. 23.解:(1)4!=4×3×2×1=24;(2);0!2!=12×1=12(3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96; (4)如当m=3,n=2时, (m+n )!=(3+2)!=120, m !+n !=3!+2!=8,所以(m+n )!≠m !+n !,等式(m+n )!=m !+n !不恒成立.。

最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx

最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx

2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。

最新人教版2016-2017学年七年级数学(上册)期中测试卷及答案

最新人教版2016-2017学年七年级数学(上册)期中测试卷及答案

2016-2017学年七年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.﹣2015的相反数是( )A.2015 B.C.﹣D.﹣20152.在﹣4,0,0.1,﹣1这四个数中,最大的数是( )A.﹣4 B.0 C.0.1 D.﹣13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10104.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.2y3B.2xy3C.﹣2xy2D.3x25.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( ) A.2013 B.2014 C.2015 D.20166.下列计算正确的是( )A.﹣5﹣5=0 B.﹣1+1=0 C.﹣3÷=﹣1 D.43=127.下列各式正确的是( )A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2 D.b2﹣2b2=﹣b28.下列说法正确的有( )个①0是绝对值最小的数②两个有理数相加,和大于任何一个加数③平方是它本身的数有0和1④最大的负整数是﹣1,最小的正整数是1⑤有理数中不是正有理数就是负有理数.A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)9.如果节约20元钱,记作“+20”元,那么浪费12元钱,记作__________元.10.用四舍五入把有理数2.015精确到百分位是__________.11.若﹣x2y m与3yx n是同类项,则m﹣n=__________.12.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是__________元.13.若|x﹣2|+|y+3|=0,则xy=__________.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有__________个.15.如图是一个程序运算,若输入的x为﹣1,则输出y的结果为__________.16.一列数据、﹣、、﹣…按此排列,那么第5个数据是__________.三、解答题(温馨提示:要有解题过程喔!)17.(18分)计算:(1)(﹣﹣+)×48﹣12(2)(﹣1)2015﹣[2﹣(﹣3)2]÷(﹣)(3)﹣14×3﹣9×(﹣)÷﹣8×(﹣)2.18.若a、b互为相反数,c、d互为倒数,m=﹣2,则代数式a+|m|﹣2015cd+b+m 的值.19.一个整式A加上2xy2﹣xy+5等于4xy2﹣xy﹣3,求:(1)整式A的次数为__________.(2)整式A.20.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2.5℃,小红此时在山脚测得温度是5.5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?21.已知一个数为两位数,个位数字是a,十位数字比个位数字小4.(1)用含a的式子表示这个两位数为__________.(2)当a=5,求这个两位数的倒数.22.有一道题“先化简,再求值:(﹣4x2+2x﹣8y)﹣(x﹣2y)﹣1,其中x=,y=﹣2015,一位同学做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确,请你解释这是怎么回事?23.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:个图形的棋子数为__________.(3)你知道第153个图形需要几颗棋子吗?24.曲昆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16 (1)通过计算确定养护小组最后到达的地方在出发点的哪个方向?(2)养护过程中,养护小组行使了多少千米?(3)若汽车耗油量为每千米0.5升,每升7元,则这次养护共花了多少元钱?2016-2017学年七年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.﹣2015的相反数是( )A.2015 B.C.﹣D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2015的相反数是2015,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.在﹣4,0,0.1,﹣1这四个数中,最大的数是( )A.﹣4 B.0 C.0.1 D.﹣1【考点】有理数大小比较.【分析】先根据有理数的大小比较法则比较所有数的大小,即可得出选项.【解答】解:∵﹣4<﹣1<0<0.1,∴最大的数是0.1,故选C.【点评】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则的内容是解此题的关键.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.2y3B.2xy3C.﹣2xy2D.3x2【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确.故选D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.5.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( ) A.2013 B.2014 C.2015 D.2016【考点】数轴.【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【解答】解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015.故选:C.【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.下列计算正确的是( )A.﹣5﹣5=0 B.﹣1+1=0 C.﹣3÷=﹣1 D.43=12【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣10,错误;B、原式=0,正确;C、原式=﹣3×3=﹣9,错误;D、原式=64,错误,故选B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.下列各式正确的是( )A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2 D.b2﹣2b2=﹣b2【考点】合并同类项.【分析】本题根据同类项的概念与合并同类项法解答即可.【解答】解:解:A、两个单项式所含字母不同,不能合并,故A错误;B、两个单项式合并,字母不变,系数相加,即a+2a=3a,故B错误;C、2a2﹣a2=a2,故C错误;D、两个单项式合并,字母不变,系数相加,则b2﹣2b2=﹣b2,故D正确.故选:D.【点评】本题考查了同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.8.下列说法正确的有( )个①0是绝对值最小的数②两个有理数相加,和大于任何一个加数③平方是它本身的数有0和1④最大的负整数是﹣1,最小的正整数是1⑤有理数中不是正有理数就是负有理数.A.2 B.3 C.4 D.5【考点】有理数.【分析】根据绝对值的定义,有理数的加法法则,有理数平方的意义,负整数、正整数以及有理数定义分别判断即可.【解答】解:①0是绝对值最小的数,故①说法正确;②两个有理数相加,和不一定大于任何一个加数,例如:(﹣1)+(﹣2)=﹣3,故②说法错误;③平方是它本身的数有0和1,故③说法正确;④最大的负整数是﹣1,最小的正整数是1,故④说法正确;⑤有理数包括正有理数、0和负有理数,所以⑤错误.故选B.【点评】本题考查了有理数的定义及分类,绝对值的定义,有理数加法运算法则,是基础知识,需认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点.注意0是有理数.二、填空题(每小题3分,共24分)9.如果节约20元钱,记作“+20”元,那么浪费12元钱,记作﹣12元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵节约20元钱,记作“+20”元,∴浪费12元钱,记作﹣12元.故答案为:﹣12.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.用四舍五入把有理数2.015精确到百分位是2.02.【考点】近似数和有效数字.【分析】把千分位上的数字5进行四舍五入即可.【解答】解:2.015≈2.02(精确到百分位).故答案为2.02.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.11.若﹣x2y m与3yx n是同类项,则m﹣n=﹣1.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,分别求出m,n 的值,然后求出m﹣n即可.【解答】解:∵﹣x2y m与3yx n是同类项,∴m=1,n=2,∴m﹣n=﹣1,故答案为:﹣1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:一是所含字母相同,二是相同字母的指数也相同.12.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是0.8b﹣10元.【考点】列代数式.【专题】应用题.【分析】依题意直接列出代数式即可,注意:八折即原来的80%,还要明白是经过两次降价.【解答】解:根据题意得,第一次降价后的售价是0.8b,第二次降价后的售价是(0.8b﹣10)元.【点评】正确理解文字语言并列出代数式.注意:八折即原来的80%.13.若|x﹣2|+|y+3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质,可求出x、y的值,然后代入值计算.【解答】解:根据题意得:,解得:,则xy=﹣6.故答案是:﹣6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有3个.【考点】数轴.【分析】根据数轴上已知整数,求出墨迹盖住部分的整数个数.【解答】解:根据数轴得:墨迹盖住的整数共有0,1,2共3个.故答案为:3.【点评】本题主要考查了数轴,理解整数的概念,能够首先结合数轴得到被覆盖的范围,进一步根据整数这一条件是解题的关键.15.如图是一个程序运算,若输入的x为﹣1,则输出y的结果为﹣30.【考点】有理数的混合运算.【专题】图表型.【分析】根据图表列出算式,然后把x=﹣1代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣1时,y=[﹣1+4﹣(﹣3)]×(﹣5)=(﹣1+4+3)×(﹣5)=6×(﹣5)=﹣30.故答案为:﹣30.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.一列数据、﹣、、﹣…按此排列,那么第5个数据是.【考点】规律型:数字的变化类.【分析】分析题中数据可知第n个数的分子为n,分母为3n.故可求得第n个数是(n为奇数,为正数,n为偶数,为负数).【解答】解:第一个数的分子为1,分母为31=3,值为正;第二个数的分子为2,分母为32=9,值为负;第三个数的分子为3,分母为33=27,值为正;第n个数的分子为n,分母为3n.所以第5个数是,故答案为:.【点评】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.注意分别得到分子和分母与数序之间的关系.三、解答题(温馨提示:要有解题过程喔!)17.(18分)计算:(1)(﹣﹣+)×48﹣12(2)(﹣1)2015﹣[2﹣(﹣3)2]÷(﹣)(3)﹣14×3﹣9×(﹣)÷﹣8×(﹣)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式第一项利用乘方的意义计算,第二项先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=24﹣12﹣18+10﹣12=﹣8;(2)原式=﹣1﹣(﹣7)×(﹣2)=﹣1﹣14=﹣15;(3)原式=﹣3+6×﹣8×=﹣3+4﹣18=﹣17.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.若a、b互为相反数,c、d互为倒数,m=﹣2,则代数式a+|m|﹣2015cd+b+m 的值.【考点】代数式求值;相反数;倒数.【专题】计算题;实数.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=﹣2,则原式=a+b+|m|+m﹣2015cd=0+2﹣2﹣2015=﹣2015.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握运算法则是解本题的关键.19.一个整式A加上2xy2﹣xy+5等于4xy2﹣xy﹣3,求:(1)整式A的次数为3.(2)整式A.【考点】整式的加减.【分析】(1)根据两式相加后的最高次数与原式相同即可得出结论;(2)根据题意列出两式相减的式子,再合并同类项即可.【解答】解:(1)∵A+(2xy2﹣xy+5)=4xy2﹣xy﹣3,∴整式A的次数为3次.故答案为:3;(2)∵A+(2xy2﹣xy+5)=4xy2﹣xy﹣3,∴A=4xy2﹣xy﹣3﹣(2xy2﹣xy+5)=4xy2﹣xy﹣3﹣2xy2+xy﹣5=2xy2﹣8.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2.5℃,小红此时在山脚测得温度是5.5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?【考点】有理数的混合运算.【专题】应用题.【分析】先求出山脚与山顶温度的差,再根据该地区高度每增加100米,气温大约降低1℃列出代数式,求出代数式的值即可.【解答】解:由题意得:[5.5﹣(﹣2.5)]÷1×100=800米.答:这座山峰的高度大约是800米.【点评】本题考查的是有理数的混合运算,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.21.已知一个数为两位数,个位数字是a,十位数字比个位数字小4.(1)用含a的式子表示这个两位数为11a﹣40.(2)当a=5,求这个两位数的倒数.【考点】列代数式;代数式求值.【分析】(1)根据十位数字比个位数字小4表示出十位数字,进而表示出这个两位数;(2)利用(1)中所求,再结合倒数的定义得出答案.【解答】解:(1)∵个位数字是a,十位数字比个位数字小4,∴十位数字为:a﹣4,∴这个两位数为:10(a﹣4)+a=11a﹣40;故答案为:11a﹣40;(2)当a=5时,11a﹣40=55﹣40=15,故这个两位数的倒数为:.【点评】此题主要考查了列代数式以及代数式求值,正确表示这个两位数是解题关键.22.有一道题“先化简,再求值:(﹣4x2+2x﹣8y)﹣(x﹣2y)﹣1,其中x=,y=﹣2015,一位同学做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确,请你解释这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,由结果与y的取值无关,故做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确.【解答】解:原式=﹣x2+x﹣2y﹣x+2y﹣1=﹣x2﹣1,当x=时,原式=﹣1,结果与x取值无关,故做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:3n+1.(3)你知道第153个图形需要几颗棋子吗?【考点】规律型:图形的变化类.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子3n+1枚.(3)当n=153时,3×153+1=460;【点评】此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.24.曲昆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16 (1)通过计算确定养护小组最后到达的地方在出发点的哪个方向?(2)养护过程中,养护小组行使了多少千米?(3)若汽车耗油量为每千米0.5升,每升7元,则这次养护共花了多少元钱?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,钱数=耗油量乘单价计算即可.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2))17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16=97(千米)(3)97×0.5×7=339.5(元)答:这次养护共花了339.5元钱.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.。

人教版2016-2017学年七年级上册期中数学试卷及答案

人教版2016-2017学年七年级上册期中数学试卷及答案

2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项的字母代号填在题后的括号内)1.﹣(﹣9)的相反数是( )A.9 B.﹣9 C.D.﹣2.绝对值小于5的非负数有( )A.9个B.4个C.5个D.2个3.一个数在数轴上的点与﹣2相距3个单位长度,则这个数是( )A.1 B.﹣1 C.﹣5 D.1或﹣54.2的相反数与0.5的绝对值的和是( )A.2.5 B.1.5 C.﹣1.5D.﹣2.55.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有( )A.4个B.3个C.2个D.1个6.百位数字是a,十位数字是b,个位数字是c,这个三位数是( )A.abc B.a+b+c C.100a+10b+c D.100c+10b+a7.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?( )A.3a+2b B.2a+3b C.3a+2a D.3b+2b8.将多项式﹣2x﹣x3+2x2+5按降幂排列,正确的是( )A.x3﹣2x+2x2+5 B.5﹣2x+2x2﹣x3C.﹣x3+2x2+2x+5 D.﹣x3+2x2﹣2x+59.若a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为( )A.6 B.﹣6 C.12 D.﹣2a+2b+1210.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为( )A.B.C.D.二、细心填一填(本大题共有6题,每题3分,共18分.请把结果直接填在题中的横线上,相信自己一定会填对的!)11.﹣(+3)的倒数是__________.12.下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有__________.13.若x为正,y为负,则+=__________.14.7000万用科学记数法表示为__________.15.已知m=﹣3,n=﹣2,则(m﹣n)5=__________.16.规定a⊗b=a+b﹣1,a⊙b=ab﹣a2,则(﹣2)⊙[7⊗(﹣3)]=__________.三、认真答一答(本大题共6题,满分72分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!Believeinyourself!)17.(30分)(1)﹣(﹣3)2×2(2)+(﹣)++(﹣)+(﹣)(3)﹣82+72÷(﹣36)(4)8+(﹣)﹣2.5﹣(+1)(5)2×÷(﹣2)(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008.18.(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列.②当x=2,y=﹣1时,求该代数式的值(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.19.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?20.探索规律将连续的偶2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数;如不能,说明理由.21.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2015年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2015年10月份用电113度,则他应交电费多少元?22.阅读与应用计算:+++…+解:因为:=1﹣,=﹣,=﹣,…=﹣所以:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣…+﹣=1﹣=计算:①+++…+②.2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项的字母代号填在题后的括号内)1.﹣(﹣9)的相反数是( )A.9 B.﹣9 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣9)的相反数是﹣9,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.绝对值小于5的非负数有( )A.9个B.4个C.5个D.2个【考点】绝对值.【分析】利用绝对值的定义判定即可.【解答】解:绝对值小于5的非负数有0,1,2,3,4共5个,故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.3.一个数在数轴上的点与﹣2相距3个单位长度,则这个数是( )A.1 B.﹣1 C.﹣5 D.1或﹣5【考点】数轴.【分析】考虑两种情况:可以向左移或向右移动3个单位得出答案即可.【解答】解:以表示﹣2的点为起点,向左移3个单位,即﹣2﹣3=﹣5;向右移3个单位,即﹣2+3=1.故选:D.【点评】此题考查数轴,掌握数的大小变化和平移之间的规律:左减右加解决问题.4.2的相反数与0.5的绝对值的和是( )A.2.5 B.1.5 C.﹣1.5 D.﹣2.5【考点】有理数的加法;相反数;绝对值.【分析】根据相反数的定义、绝对值的性质,利用有理数的加法,即可解答.【解答】解:2的相反数为﹣2,0.5的绝对值为0.5,﹣2+0.5=﹣1.5.故选:C.【点评】本题考查了相反数、绝对值、有理数的加法,解决本题的关键是熟记相反数、绝对值、有理数的加法法则.5.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有( )A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解:a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.【点评】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.6.百位数字是a,十位数字是b,个位数字是c,这个三位数是( )A.abc B.a+b+c C.100a+10b+c D.100c+10b+a【考点】列代数式.【分析】三位数的表示方法为:百位数字×100+十位数字×10+个位数字.【解答】解:依题意得:这个三位数是100a+10b+c.故选C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?( )A.3a+2b B.2a+3b C.3a+2a D.3b+2b【考点】列代数式.【分析】知道每支圆珠和每支钢笔的价格,故能计算出买2支钢笔,3支圆珠笔所需的钱,再相加即可解得.【解答】解:依题意得:2b+3a.故选:A.【点评】本题考查了根据数字列代数式,把问题中有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.8.将多项式﹣2x﹣x3+2x2+5按降幂排列,正确的是( )A.x3﹣2x+2x2+5 B.5﹣2x+2x2﹣x3C.﹣x3+2x2+2x+5 D.﹣x3+2x2﹣2x+5【考点】多项式.【分析】先分清各项,然后按降幂排列的定义解答.【解答】解:将多项式﹣2x﹣x3+2x2+5按降幂排列为﹣x3+2x2﹣2x+5.故选:D.【点评】考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.9.若a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为( )A.6 B.﹣6 C.12 D.﹣2a+2b+12【考点】绝对值;整式的加减.【专题】计算题.【分析】根据所给题意,可判断出a,b的正负性,然后再根据绝对值的定义,去掉绝对值,化简求解.【解答】解:∵a<0,ab<0,∴a<0,b>0,∴b﹣a>0,a﹣b<0∴b﹣a+3>0,a﹣b﹣9<0,∴|b﹣a+3|﹣|a﹣b﹣9|=b﹣a+3+(a﹣b﹣9)=﹣6.故本题的答案选B.【点评】主要考查绝对值性质的运用.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.10.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为( )A.B.C.D.【考点】列代数式(分式).【专题】工程问题.【分析】设工作总量为1,一人一天的效率是,增加c人后的天数是1÷=,提前的天数可以求出.【解答】解:设工作总量为1,一人一天的效率是,增加c人后的天数是1÷=,故提前天数为b﹣1÷=b﹣.故选C.【点评】解决本题的难点在于得到一人一天的效率,关键是读懂题意,找到所求的量的等量关系.二、细心填一填(本大题共有6题,每题3分,共18分.请把结果直接填在题中的横线上,相信自己一定会填对的!)11.﹣(+3)的倒数是﹣.【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:﹣(+3)=﹣3=﹣,﹣的倒数为﹣,故答案为:﹣.【点评】本题考查了倒数,解决本题的关键是熟记倒数的定义.12.下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有3x2、﹣y、π、0.【考点】单项式.【分析】根据单项式的定义对各式进行判断即可.【解答】解:下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有:3x2、﹣y、π、0,故答案为:3x2、﹣y、π、0.【点评】本题主要考查了单项式,解题的关键是熟记单项式的定义.13.若x为正,y为负,则+=0.【考点】有理数的除法;绝对值.【分析】根据绝对值的性质进行化简,然后依据除法法则计算即可.【解答】解:∵x为正,y为负,∴|x|=x,|y|=﹣y.∴原式=.故答案为:0.【点评】本题主要考查的是有理数的除法、绝对值,依据绝对值的性质得到|x|=x,|y|=﹣y是解题的关键.14.7000万用科学记数法表示为7×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7000万=7000 0000=7×107,故答案为:7×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.已知m=﹣3,n=﹣2,则(m﹣n)5=﹣1.【考点】有理数的乘方.【分析】把m,n的值带入代数式,根据有理数的乘方,即可解答.【解答】解:(m﹣n)5=[﹣3﹣(﹣2)]5=(﹣1)5=﹣1,故答案为:﹣1.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.16.规定a⊗b=a+b﹣1,a⊙b=ab﹣a2,则(﹣2)⊙[7⊗(﹣3)]=﹣10.【考点】有理数的混合运算.【专题】新定义.【分析】按照运算顺序,根据规定的运算方法化为有理数的混合运算,计算得出结果即可.【解答】解:(﹣2)⊙[7⊗(﹣3)]=(﹣2)⊙[7+(﹣3)﹣1]=(﹣2)⊙3=(﹣2)×3﹣(﹣2)2=﹣6﹣4=﹣10.故答案为:﹣10.【点评】此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、认真答一答(本大题共6题,满分72分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!Believeinyourself!)17.(30分)(1)﹣(﹣3)2×2(2)+(﹣)++(﹣)+(﹣)(3)﹣82+72÷(﹣36)(4)8+(﹣)﹣2.5﹣(+1)(5)2×÷(﹣2)(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008.【考点】有理数的混合运算.【分析】(1)先算乘方,再算乘法;(2)利用加法交换律与结合律,将分母相同的分数结合在一起;(3)先算除法,再算加法;(4)先将减法转化为加法,再计算加法即可;(5)先算括号,再从左往右依次计算;(6)先将减法转化为加法,再计算加法即可;(7)利用乘法分配律计算;(8)利用乘法分配律计算;(9)先把四项一组进行计算,再相加即可求解.【解答】解:(1)﹣(﹣3)2×2=﹣9×2=﹣18;(2)+(﹣)++(﹣)+(﹣)=(﹣)+(﹣﹣)+=0﹣1+=﹣;(3)﹣82+72÷(﹣36)=﹣82﹣2=﹣84;(4)8+(﹣)﹣2.5﹣(+1)=(8﹣2.5)+(﹣﹣1)=5.5﹣2=3.5;(5)2×÷(﹣2)=××(﹣)=﹣;(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)=﹣5﹣6﹣12+7=﹣23+7=﹣16;(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)=11.8×(3+1.7﹣+0.3)=11.8×5=59;(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)=(﹣5﹣7+12)×(﹣3)=0×(﹣3)=0;(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008 =(1﹣2﹣3+4)+(5﹣6﹣7+8)+(9﹣10﹣11+12)+…+=0.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.18.(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列.②当x=2,y=﹣1时,求该代数式的值(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.【考点】多项式;代数式求值.【分析】(1)①先分清多项式的各项,然后按多项式降幂排列的定义排列.②将x=2,y=﹣1代入计算即可求解.(2)根据多项式次数及项数的定义,可得m、n的值,再代入即可求解.【解答】解:(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列为﹣x2y3+y2﹣4xy+4x.②当x=2,y=﹣1时,4x﹣4xy+y2﹣x2y3=8+8+1+4=21;(2)∵关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,∴,解得,∴|m﹣n|=|1﹣2|=1.【点评】本题考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.19.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?【考点】正数和负数.【分析】(1)把爬行记录相加,然后根据正负数的意义解答;(2)根据正负数的意义分别求出各记录时与出发点的距离,然后判断即可;(3)求出所有爬行记录的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5、3、10、8、6、12、10,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.探索规律将连续的偶2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数;如不能,说明理由.【考点】一元一次方程的应用.【分析】(1)让方框中的5个数相加,看结果与中间的数的关系即可;(2)根据上下相邻的数相隔10,左右相邻的数相隔2表示出其余数,相加即可;(3)让(2)得到的式子的结果等于201,看有没有整数解,然后看有没有存在的可能即可.【解答】解:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍;(2)设中间的数为x,则十字框中的五个数的和为:(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x;(3)不能,理由如下:假设能够框出满足条件的五个数,设中间的数为x,由(2)得5x=201,所以x=40.2,40.2不是整数,所以不能框住五个数,使它们的和等于201.【点评】本题考查了一元一次方程的应用.解决本题的关键是得到连续偶数中左右相邻及上下相邻的数的关系;注意根据实际情况判断是否存在可以框住的数.21.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2015年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2015年10月份用电113度,则他应交电费多少元?【考点】列代数式;代数式求值.【专题】数与式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案.【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=0.6b ﹣10.(2)∵用户2015年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2015年10月份用电113度,则他应交电费57.8元.【点评】本题考查列代数式和代数式求值的问题,关键是明确题意,列出正确的代数式.22.阅读与应用计算:+++…+解:因为:=1﹣,=﹣,=﹣,…=﹣所以:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣…+﹣=1﹣=计算:①+++…+②.【考点】有理数的混合运算.【专题】阅读型;规律型.【分析】根据题意得出拆项规律,两式利用拆项法则变形,抵消合并即可得到结果.【解答】解:①原式=1﹣+﹣+…+﹣=1﹣=;②原式=(1﹣+﹣+…+﹣)=(1﹣)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

新人教版2016-2017学年七年级上册期中数学试卷含答案

新人教版2016-2017学年七年级上册期中数学试卷含答案

2016-2017学年七年级(上)期中数学试卷一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣14.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.107.4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×1079.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣510.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣211.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.414.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg二、填空题15.(4分)若|a|=6,则a= .16.×()=1.17.(4分)按四舍五入法则取近似值:2.096≈(精确到百分位).﹣0.03445≈(精确到0.001).18.(4分)用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要根火柴棒(用含n的代数式表示).三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.20.直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=21.计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).22.当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.【考点】有理数大小比较.【专题】计算题.【分析】由于正数大于0,负数小于0,则这样比较﹣1与﹣2的大小即可,然后计算出它们的绝对值,根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1<0<.故选C.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣1【考点】有理数大小比较;数轴.【分析】根据数轴上右边的数总比左边的数大来解答.【解答】解:根据数轴排列的特点可得b>0>a>﹣2.故选A.【点评】解答此题,要熟悉数轴的特点:数轴上右边的数总比左边的数大.4.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,0到原点的距离为0,所以有理数中绝对值最小的数是0.故选B.【点评】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)【考点】有理数大小比较.【专题】计算题.【分析】将各项两式化为最简,比较大小即可.【解答】解:A、﹣(+5)=﹣5,∴2>﹣5,本选项错误;B、∵|﹣1|=1,|﹣0.01|=0.01,∴|﹣1|>|﹣0.01|,∴﹣1<﹣0.01,本选项错误;C、∵|﹣3|=3,|+3|=3,∴|﹣3|=|+3|,本选项错误;D、﹣(﹣5)=5,+(﹣7)=﹣7,∴﹣(﹣5)>+(﹣7),本选项正确,故选D【点评】此题考查了有理数大小比较,注意两负数比较大小的方法.6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.10【考点】数轴.【分析】求数轴上两点之间的距离:数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.【解答】解:∵数轴上A、B两点所对应的数分别是4和﹣6,∴A、B两点间的距离为4﹣(﹣6)=10.故选D.【点评】本题考查了求数轴上两点间的距离的方法:数轴上表示两个点所对应的两个数的差的绝对值.7.(﹣2)4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)【考点】有理数的乘方.【专题】计算题.【分析】原式表示4个﹣2的乘积,即可得到正确的选项.【解答】解:(﹣2)4表示(﹣2)×(﹣2)×(﹣2)×(﹣2).故选B【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500 000=6.5×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣5【考点】有理数的加减混合运算.【专题】计算题.【分析】利用去括号法则去括号后即可得到结果.【解答】解:(﹣2)﹣(﹣10)+(﹣6)﹣(+5)=﹣2+10﹣6﹣5.故选A【点评】此题考查了有理数的加减混合运算,熟练掌握去括号法则是解本题的关键.10.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣2【考点】有理数的乘方.【专题】计算题.【分析】原式利用﹣1的奇次幂为﹣1,偶次幂为1计算即可得到结果.【解答】解:原式=1﹣1=0.故选B【点评】此题考查了有理数的乘方,熟练掌握﹣1的奇偶次幂是解本题的关键.11.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)【考点】列代数式.【分析】根据平方和就是先平方再相加,乘积的2倍就是2ab,从而列出代数式即可.【解答】解:a、b两数的平方和是a2+b2,它们乘积的2倍是2ab,则a、b两数的平方和减去它们乘积的2倍是:a2+b2﹣2ab;故选A.【点评】此题考查了列代数式,关键是读懂题意,找到所求的量的等量关系,要理解“和”、“差”、“倍”、“商”等的意义.12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米【考点】列代数式.【分析】先根据周长=(长+宽)×2,表示出另一边的长,再根据长方形的面积=长×宽求面积.【解答】解:由题意可知:长方形另一边用(15﹣x)厘米表示,则该长方形面积为x(15﹣x)平方厘米,故选C.【点评】本题考查了列代数式,列代数式要注意:①要注意书写的规范性,用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.②在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.③含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.4【考点】代数式求值.【专题】计算题.【分析】直接把x=﹣1代入计算即可.【解答】解:当x=﹣1,原式=(﹣1)2﹣2×(﹣1)+1=1+2+1=4.故选D.【点评】本题考查了代数式求值:把满足条件的字母的值代入代数式中进行计算得到对应的代数式的值.14.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg【考点】正数和负数.【专题】应用题.【分析】正确理解(25±0.25)的含义,25+0.25=25.25,25﹣0.25=24.75,说明面粉在此区间内合格.【解答】解:在24.75~25.25这个区间内的只有24.80.故选B.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.二、填空题15.若|a|=6,则a= ±6 .【考点】绝对值.【专题】计算题.【分析】利用绝对值的代数意义计算即可确定出a的值.【解答】解:∵|a|=6,∴a=±6.故答案为:±6.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.16.(﹣5 )×()=1.【考点】有理数的乘法.【专题】计算题.【分析】利用有理数的乘法法则计算即可得到结果.【解答】解:(﹣5)×(﹣)=1.故答案为:﹣5【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.17.按四舍五入法则取近似值:2.096≈ 2.10 (精确到百分位).﹣0.03445≈﹣0.034 (精确到0.001).【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到哪位就是对这位后边的数进行四舍五入.【解答】解:用四舍五入法计算即可.2.096精确到百分位就是小数点后两位,就是2.10;﹣0.034 45精确到0.001就是小数点后三位就是﹣0.034.【点评】本题主要考查了近似数和有效数字的有关知识,做这类题要注意按要求做题.18.用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要5n+1 根火柴棒(用含n的代数式表示).【考点】规律型:图形的变化类.【分析】仔细观察发现每增加一个正六边形其火柴根数增加5根,将此规律用代数式表示出来即可.【解答】解:由图可知:图形标号(1)的火柴棒根数为6;图形标号(2)的火柴棒根数为11;图形标号(3)的火柴棒根数为16;…由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n个图形需要火柴根数为:6+5(n﹣1)=5n+1,故答案为:5n+1.【点评】本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.【考点】有理数.【分析】根据负数及分数的定义,结合所给的数据进行解答即可.【解答】解:填写如下:【点评】此题考查有理数的知识,掌握负数及分数的定义是解答本题的关键.20.(12分)(2012秋•定安县期中)直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=【考点】有理数的混合运算.【分析】(1)利用加法法则计算即可;(2)首先利用减法法则转化成加法,然后运算即可;(3)利用加法法则计算即可;(4)利用有理数的乘法法则即可求解;(5)利用立方的意义即可求解.【解答】解:(1)原式=﹣(8+2)=﹣10;(2)原式=2.5+7.5=10;(3)原式=;(4)原式=﹣12×4=﹣48;(5)原式=0.8×0.2=1.6;(6)原式=﹣8.【点评】本题考查了有理数的运算,理解运算法则是关键.21.(20分)(2012秋•定安县期中)计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).【考点】有理数的混合运算.【分析】(1)首先利用符号法则对式子进行化简,然后进行加减运算即可;(2)首先进行同分母的分式的加减,然后对所得结果进行运算即可;(3)首先利用分配律计算乘法,然后进行加减运算即可;(4)首先计算乘方,计算括号内的式子,然后进行加减运算;(5)逆用乘法的分配律,计算整数的加减,然后进行乘法运算.【解答】解:(1)原式=﹣16﹣29+7﹣11=﹣49;(2)原式=3﹣24=﹣21;(3)原式=﹣12+2﹣25=﹣35;(4)原式=﹣1﹣[﹣2+×(﹣3)]=﹣1﹣[﹣2﹣2]=﹣1+4=3;(5)原式=(23﹣57﹣26)×=﹣15.【点评】本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.(10分)(2012秋•定安县期中)当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.【考点】代数式求值.【专题】计算题.【分析】(1)先计算出a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,然后利用整体思想进行计算;(2)先变形原式得到(a﹣2b)2,然后把a=﹣2,b=3代入计算.【解答】解:(1)∵a=﹣2,b=3,∴a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,∴原式=12﹣(﹣5)2=﹣24;(2)原式=(a﹣2b)2,当a=﹣2,b=3,原式=(﹣2﹣2×3)2=64.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【考点】列代数式.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入以上两式即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。

2016-2017学年人教版七年级上期中数学试卷含答案

2016-2017学年人教版七年级上期中数学试卷含答案

22.(8 分)观察下列式子: -a+b=-(a-b), 2-3x=-(3x-2), 5x+30=5(x+6), -x-6=-(x+6). 由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解 决下列问题:已知 a2+b2=5,1-b=-2,求-1+a2+b+b2 的值.
28
26
………………
根据上述规律,2 016 应为( )
A.第 251 行 第 1 列
B.第 251 行 第 5 列
C.第 252 行 第 1 列
D.第 252 行 第 4 列
二、填空题(每小题 4 分,共 20 分)
13.已知 a,b 互为相反数,则 a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=
23.(8 分)我们把符号“n!”读作“n 的阶乘”,规定“其中 n 为自然数,当 n≠0 时,n!=n·(n-1)·(n2)·…·2·1,当 n=0 时,0!=1”.例如:6!=6×5×4×3×2×1=720. 又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括 号里面的”. 按照以上的定义和运算顺序,计算: (1)4!; (2); (3)(3+2)!-4!; (4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.
km 后每千米 1.4 元(不足 1 km 按 1 km 算).小明坐车 x(x>3)km,应付车费( )
A.6 元
B.6x 元
C.(1.4x+2.8)元

2016-2017学年人教版数学七年级上期中试卷含答案(新课标人教版 小学 七年级上 数学试卷)

2016-2017学年人教版数学七年级上期中试卷含答案(新课标人教版 小学 七年级上 数学试卷)

期中测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.下列各题中计算正确的个数是()(1)--=-3(2)-=-4(3)--=1(4)--=-3A.1B.2C.3D.42.太阳的半径约为696 000 km,把696 000这个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×1063.下列各对单项式是同类项的是()A.-x3y2与3x3y2B.-x与yC.3与3aD.3ab2与a2b4.在数轴上有两个点A,B,点A表示-3,点B与点A相距5.5个单位长度,则点B表示的数为()A.-2.5或8.5B.2.5或-8.5C.2.5D.-8.55.一个数的平方和它的倒数相等,则这个数是()A.1B.-1C.±1D.±1和06.下列各式计算正确的是()A.6a+a=6a2B.-2a+5b=3abC.4m2n-2mn2=2mnD.3ab2-5b2a=-2ab27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3 km收费7元).3 km后每千米1.4元(不足1 km按1 km算).小明坐车x(x>3)km,应付车费()A.6元B.6x元C.(1.4x+2.8)元D.1.4x元8.下列各数:0.01,10,-6.67,-,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为()A.1B.2C.3D.49.一个多项式加上3x2y-3xy2得x3+3x2y,则这个多项式是()A.x3+3xy2B.x3-3xy2C.x3-6x2y+3xy2D.x3-6x2y-3x2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a11.已知x2+3x+5的值是7,则多项式3x2+9x-2的值是()A.6B.4C.2D.012.将正偶数按下表排成5列若干行,根据上述规律,2 016应为()A.第251行第1列B.第251行第5列C.第252行第1列D.第252行第4列二、填空题(每小题4分,共20分)13.已知a,b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=.14.在式子,3,m,xy2+1中,单项式有个.15.多项式x3y+2xy2-y5-12x3是次多项式,它的最高次项是.16.若有理数a,b满足|a+3|+(b-2)2=0,则a b的值为.17.规定一种新的运算:a△b=a×b-a+b+1.如,3△4=3×4-3+4+1=12-3+4+1=14,比较大小:(-3)△4 4△(-3).三、解答题(共64分)18.计算(每小题4分,共24分)(1)-4÷-×(-30);(2)-20+(-14)-(-18)-13;(3)-22+|5-8|+24÷(-3)×;(4)-÷(-5)-2.5÷-;(5)-5m2n+4mn2-2mn+6m2n+3mn;(6)2(2a-3b)-3(2b-3a).19.(8分)先化简,再求值:3x2y---,其中x=-1,y=2.20.(8分)下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的时间数)(1)如果现在时间是北京时间7:00,那么现在的纽约时间是多少?(2)如果现在的北京时间是7:00,小轩现在想给巴黎的姑姑打电话,你认为合适吗?21.(8分)某休闲广场是老百姓休闲娱乐的大型场所,其形状为长方形(如图),现要在广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积.(2)若休闲广场的长为800 m,宽为300 m,圆形花坛的半径为30 m,求广场空地的面积.(计算结果保留π)22.(8分)观察下列式子:-a+b=-(a-b),2-3x=-(3x-2),5x+30=5(x+6),-x-6=-(x+6).由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解决下列问题:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.23.(8分)我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n·(n-1)·(n-2)·…·2·1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2);(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.参考答案一、选择题1.B2.C696000=6.96×105.3.A根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.B当点B在点A的左侧时,点B表示的数为-8.5;当点B在点A的右侧时,点B表示的数为2.5.所以点B表示的数为2.5或-8.5.5.A0的平方为0但0没有倒数;-1的平方为1,倒数为-1;1的平方和它的倒数相等,都是1.6.D7.C小明坐车x(x>3)km,应付车费=起步价7元+超过3km的收费=7+1.4(x-3)=(1.4x+2.8)元.8.D非负整数即正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数.9.A这个多项式=(x3+3x2y)-(3x2y-3xy2)=x3+3x2y-3x2y+3xy2=x3+3xy2.10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,所以c<a<b.11.B因为x2+3x+5=7,所以x2+3x=2.所以3x2+9x-2=3(x2+3x)-2=6-2=4.12.C二、填空题13.014.3单项式有,3,m共3个.15.五-y516.9因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,所以a+3=0,b-2=0,即a=-3,b=2,所以a b=(-3)2=9.17.>(-3)△4=(-3)×4-(-3)+4+1=-12+3+4+1=-4,4△(-3)=4×(-3)-4+(-3)+1=-12-4-3+1=-18,-4>-18,所以(-3)△4>4△(-3).三、解答题18.解:(1)-4÷-×(-30)=-4××30=-6-20=-26.(2)-20+(-14)-(-18)-13=-20-14+18-13=(-20-14-13)+18=-47+18=-29.(3)-22+|5-8|+24÷(-3)×=-4+3+24×-=-1-=-.(4)-÷(-5)-2.5÷-=125×=25++1=26.(5)-5m2n+4mn2-2mn+6m2n+3mn=(-5m2n+6m2n)+(-2mn+3mn)+4mn2=m2n+mn+4mn2.(6)2(2a-3b)-3(2b-3a)=4a-6b-6b+9a=(4a+9a)+(-6b-6b)=13a-12b.19.解:原式=3x2y-(2xy-2xy+3x2y-4xy)=3x2y-2xy+2xy-3x2y+4xy=4xy.当x=-1,y=2时,原式=4×(-1)×2=-8.20.解:(1)纽约时间是18:00.(2)北京是7:00,北京与巴黎的时差是-7,即巴黎要晚7小时,此时巴黎恰好是0:00,正好是深夜,小轩不宜给姑姑打电话.21.解:(1)(ab-πr2)m2.(2)(240000-900π)m2.22.解:四个式子中括号的变化规律其实就是去括号的逆运算.-1+a2+b+b2=a2+b2-1+b=(a2+b2)-(1-b).因为a2+b2=5,1-b=-2,所以原式=5-(-2)=7.23.解:(1)4!=4×3×2×1=24;(2);(3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96;(4)如当m=3,n=2时,(m+n)!=(3+2)!=120,m!+n!=3!+2!=8,所以(m+n)!≠m!+n!,等式(m+n)!=m!+n!不恒成立.。

山东省冠县2017年秋季七年级期中考试数学试题(Word版,有答案).

山东省冠县2017年秋季七年级期中考试数学试题(Word版,有答案).

2017 -2018学年第一学期期中学业水平检测七年级数学试题(时间100分钟满分120分)说明:1.试题由选择题和非选择题两部分组成,共4页。

选择题,36分,非选择题,84分,共120分.考试时间为100分钟。

2.将自己的姓名、准考证号、班级、考场(座位号)填涂到答题卡指定位置.选择题选出答案,要用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须用橡皮擦干净,再改涂其它答案非选择题答案直接写在答题卡相应位置,考试结束,只交答题卡。

3.答题必须用0.5mm黑色签字笔。

4.不允许使用计算器。

愿你放松心情,认真审题,缜密思考,细心演算,交一价满意的答卷.一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求}1.下列说法错误的是①②③④A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点2.下列调査中,调査方式选择正确的是A.为了了解冠县中学生每日的运动量情况,采用抽样调査;B.环保部门想对马颊河某段水域的水污染情况进行调査,采用全面调査;C.质监部门对各厂家生产的电池的使用寿命进行调査,采用全面调査;D.某企业要给每一位职工做工作服所进行的尺寸大小的调査,采用抽样调査3.5月14-15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为 A.4.4xl08B.4.4x109C.4xl09D.44x1084.下列说法中正确的是A.—个数的绝对值—定大于这个数的相反数B.若|a| = -a ,则 a ≤0C.绝对值等于3的数是-3D.绝对值不大于2的数是±2, ±1 ,05. 如图,是一正方体纸盒展开图,按虚线折正体,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次 A.-5,-π,23 B.-π,5,23 C.-5,23,πD.5,π,236.为了了解2017年聊城市九年级学生学业水平考试的数学成绩,从中随机抽取了 1000名学生的数学成绩.下列说法正确的是 A.2017年聊城市九年级学生是总体 B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是10007.如图,数轴上一点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C 表示的数为1,则点A 表示的数A. -3B. -2C.3D.78. 如果a 、b 都是有理数,且a —定是正数,那么 A.a 、b —定都是正数B. a 的绝对值大于b 的绝对俏C.b 的绝对值小,且b 是负数D. a —定比6大 9.下列计算结果正确的是 A.()713676241-=-÷⎪⎭⎫ ⎝⎛-+B.5243875.3-=-⎪⎭⎫⎝⎛-⨯÷- C.311616953=⨯⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-D.()()47511463=÷-÷-- 10. 已知直线AB 上有两点M ,N,且MN = 8cm,再找一点P,使MP + PN = 10cm,则P 点的位置 A.只能在直线AB 上B.只能在直线AB 外C.在直线上或在直线AB 外D.不存在11.若 |a| = 8,|b| =5,且 a>0,b<0,a-b 的值是 A.3B. -3C. 13D. -1312. 某学校学生来自甲、乙、丙三个地区,如图是甲、乙、两三个地区学生人数的扇形统计图,己知来自甲地区的学生有180人,则下列说法不正确的是 A.甲对应扇形的圆心角为72° B.学生的总人数是900人 C.甲比丙地区人数少180人D.丙比乙地区人数多180人二、填空题(本题共6个小题,每小题4分,共24分,只要求写出最后结果) 13. 如图,A ,B ,C ,D 是一直线上的四点,则 + =AD-AB, AB + CD = -14. 如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有_______个,负整数点有______个。

聊城市冠县第一学期七年级期中考试

聊城市冠县第一学期七年级期中考试

聊城市冠县第一学期期中考试七年级数学试题一、选择题(每题 3 分,共 36 分)1.以下结论正确的选项是A .零是最小的正整数B .零是最小的整数C .零是最大的负整数D .零是绝对值最小的数2.子夜的温度比正午的温度低7℃,假如正午的温度是a ℃( a 0 ),那么子夜的温度是. -7 ℃ . (7 a) ℃.( a 7 )℃.( a 7 )℃ABCD3.有理数 a 、 b 在数轴上点如图( 1)所示,以下式子正确的选项是图( 1)A . b aB . a bC .a bD .b a4.32 的意义是A .2 个3相乘 B .2 个 3相加C .3乘以 2D . 32 的相反数5.以下说法正确的选项是A .近似数 2.10 与近似数 2.1 的精准度同样B .近似数 2.1× 103 与 2100 的精准度同样C .近似数 5.60 与 0.560 都有三个有效数字D .近似数 2.1× 10 3精准到十位6.以下各组数中,不相等的一组是A . ( 2)3和 23B . ( 2)2和 22C . ( 2)4和 24D . 23和237x x建立的有理数 x 是.使等式A .正数B .非正数C .负数D .非负数8.以下归并同类项正确的选项是A . 4 x 6 y 10xyB . 2x 2 x 22C . 9ax 29ax 2D . 4a 2b 3ab a9.以下所列代数式错误的选项是A . a 的 3 倍与 b 的 2 倍的和为 3a 2bB . a 除以 b 的商与 2 的差的平方为 (a2)2bC . a 、 b 两数和乘以 a 、 b 两数差为( a +b ) ( a -b) D. a 与 b 的和的1为 a1 b4410.以下说法中正确的选项是A . 3x 3 2x 2 1 是五次三项式B . 3m 22 是二次二项式nC . x 2 2x 34 是四次三项式D . 2 x 2 2x 3 中一次项的系数为 211.假如 xyx xy 0 ,则的结果为x xyA . 0B .— 2C . 2D . 312.某种细菌在培育过程中,细菌每半小时分裂一次(由 1 个分裂为 2 个),经过 3 小时,这类细菌由 1 个可分裂殖为A .8 个B .16 个C .32 个D .64 个二、填空题(每题4 分,共 24 分)13.单项式7x 3 y 5的系数是 ____________________,次数是 _________________.9.已知 ax 2 bx 2归并后的结果为 ,则 a 与 b 的关系是 ____________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省聊城市冠县七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.为了了解某县七年级学生的体重情况,从中抽取了200名学生进行体重测试,就这个问题,下面说法正确的是()A.200名学生是总体B.200名学生是一个样本C.每个学生是个体D.全县七年级学生的体重是总体2.今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元3.下列说法错误的是()A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点4.下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34 5.下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC6.下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个 B.4个 C.5个 D.6个7.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|8.如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm9.对某班40同学的一次数学成绩进行统计,适当分组后80~90分这个分数段的划记人数为“”,那么此班在这个分数段的人数占全班人数的百分比是()A.20% B.40% C.8% D.25%10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.11.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.4012.下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个 B.2个 C.3个 D.4个二、填空题(本小题共5小题,每小题4分,共20分)13.莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是.14.比﹣3大而比2小的所有整数的和为.15.已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD 与AB叠合,如果点D在AB的延长线上,那么AB CD.(填“>”、“<”或“=”)16.刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因.17.按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为.三、解答题(本题共7题,共64分)18.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|19.如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.21.有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.22.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?23.某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?24.如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.2016-2017学年山东省聊城市冠县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.为了了解某县七年级学生的体重情况,从中抽取了200名学生进行体重测试,就这个问题,下面说法正确的是()A.200名学生是总体B.200名学生是一个样本C.每个学生是个体D.全县七年级学生的体重是总体【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、200名学生进行体重是一个样本,故A不符合题意;B、200名学生进行体重是一个样本,故B不符合题意;C、每个学生的体重是个体,故C不符合题意;D、全县七年级学生的体重是总体,故D符合题意;故选:D.2.今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:90万亿=90000000000000=9×1013,故选:D.3.下列说法错误的是()A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【考点】直线、射线、线段.【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【解答】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选C.4.下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34【考点】有理数的乘方.【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、(﹣2)2=4,﹣24=﹣16,不相等;B、﹣25=(﹣2)5=﹣32,相等;C、(﹣1)3=﹣1,(﹣1)4=1,不相等;D、43=64,34=81,不相等,故选B5.下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【考点】比较线段的长短.【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.6.下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个 B.4个 C.5个 D.6个【考点】有理数的乘方;有理数;相反数;绝对值.【分析】先对部分数化简后找出正分数,再计算个数.【解答】解:(﹣)2=,|﹣|=;所以正分数有:(﹣)2,,+1.99,|﹣|,共4个.故选B.7.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|【考点】数轴.【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【解答】解:由图可知,b<0<a,且|b|>|a|.A、b+a<0,此选项错误;B、a﹣b>0,此选项错误;C、ab<0,此选项正确;D、|b|>|a|,此选项错误.故选:C.8.如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm【考点】比较线段的长短.【分析】由已知条件可知,AC=AB﹣BC,又因为C为AD中点,则AD=2AC,故BD=AB﹣AD可求.【解答】解:∵AB=10cm,BC=7cm∴AC=3cm又∵C为AD中点∴AD=6cm∴BD=10﹣6=4cm.故选C.9.对某班40同学的一次数学成绩进行统计,适当分组后80~90分这个分数段的划记人数为“”,那么此班在这个分数段的人数占全班人数的百分比是()A.20% B.40% C.8% D.25%【考点】频数与频率.【分析】根据80~90分这个分数段的频数除以总数×100%=80~90分这个分数段占全班人数的百分比,进而求出即可.【解答】解:∵80~90分这个分数段的划记人数为“”,则这个分数段的频数为8,∴此班在这个分数段的人数占全班人数的百分比是:8÷40×100%=20%.故选:A.10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.【考点】有理数的混合运算.【分析】按照规定的运算方法改为有理数的混合运算计算即可.【解答】解:2⊗(﹣3)==6.故选:A.11.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.40【考点】直线、射线、线段.【分析】由已知中两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点,我们分析n值变化过程中,交点最多个数的变化趋势,找出规律后,归纳为一般性公式即可得到答案.【解答】解:令n条直线最多交点个数为M:两条相交直线最多有1个交点,即n=2,M=1,三条直线最多有3个交点,即n=3,M=3,四条直线最多有6个交点点,即n=4,M=6,五条直线最多有10个交点,即n=5,M=10,…则n条直线最多交点个数M=1+2+3+4+…+(n﹣1)=,当n=8时,=28,故选:C.12.下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个 B.2个 C.3个 D.4个【考点】相反数;绝对值;倒数;有理数的加法.【分析】本题须根据负数、正数、倒数、绝对值、相反数的有关定义以及表示方法逐个分析每个说法,得出正确的个数.【解答】解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴③对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.两个负有理数的和小于其中每一个加数,∴⑤错误.如果两个数的和为零,那么这两个数可能为0,∴⑥错误.所以正确的说法共有1个.故选A.二、填空题(本小题共5小题,每小题4分,共20分)13.莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是度.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“态”与“定”是相对面,“度”与“一”是相对面,“决”与“切”是相对面.故答案为:度.14.比﹣3大而比2小的所有整数的和为﹣3.【考点】有理数的加法.【分析】首先找出比﹣3大而比2小的所有整数,在进行加法计算即可.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.15.已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD 与AB叠合,如果点D在AB的延长线上,那么AB<CD.(填“>”、“<”或“=”)【考点】比较线段的长短.【分析】根据题意画出符合已知条件的图形,根据图形即可比较线段AB和线段CD的大小.【解答】解:如图所示,AB<CD,故答案为:<.16.刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因所取样本不具有代表性.【考点】用样本估计总体.【分析】根据用样本估计总体时所选样本的要求要具有代表性、广泛性、随机性进行解答.【解答】解:由于全市初中生既有农村的、又有城市的,故在选取样本时要既有农村人口,又有城市人口,而刘强同学只对自己所在城区人口和城区初中生人数作了调查,所以此样本不具有代表性.故答案为:所取样本不具有代表性.17.按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为120.【考点】有理数的混合运算.【分析】把x=30代入程序中计算,得到结果小于100,以此类推结果大于100,输出即可.【解答】解:把x=30代入得:30×|﹣|÷[﹣(﹣)2]=15÷(﹣)=﹣60<100,把x=﹣60代入得:(﹣60)×÷(﹣)=﹣30×(﹣4)=120>100,则输出结果为120,故答案为:120三、解答题(本题共7题,共64分)18.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|【考点】有理数的混合运算.【分析】(1)根据加减混合运算的顺序和法则计算即可求解;(2)根据加法交换率和结合律简便计算;(3)运用乘法的分配律计算;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9)=﹣3﹣4﹣11+9=﹣18+9=﹣9;(2)=(﹣0.5﹣7)+(3.25+2.75)=﹣8+6=﹣2;(3)=﹣×36﹣×36+×36=﹣18﹣30+21=﹣27;(4)=﹣1+2﹣8÷|﹣9+1|=﹣1+2﹣8÷8=﹣1+2﹣1=0.19.如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.【考点】直线、射线、线段.【分析】分别根据射线、直线、线段的定义作图即可.【解答】解:如图所示.20.把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.【考点】有理数大小比较;数轴.【分析】把各数表示在数轴上,用“<”将它们连接起来即可.【解答】解:把各数表示在数轴上,如图所示:则用“<”将它们连接起来为:﹣3<﹣1.5<0<2.5<3.21.有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.【考点】代数式求值.【分析】依据题意可求得a+b、cd和e的值,然后代入求解即可.【解答】解:根据题意得:a+b=0,cd=1,e=±3.当e=3时,原式=0﹣1﹣3=﹣4;当e=﹣3时,原式=0﹣1+3=2.22.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?【考点】有理数的加减混合运算;正数和负数.【分析】(1)根据80+15求出成绩最好的即可;(2)求出记录成绩,根据结果的正负即可做出判断;(3)求出最高分与最低分,相减即可得到结果.【解答】解:(1)根据题意得:80+15=95(分),则成绩最好为95分;(2)根据题意得:10﹣2+15+8﹣13﹣7=11(分),则超过11分;(3)根据题意得:最高分为80+15=95(分),最低分为80﹣13=67(分),则最高分与最低分相差为95﹣67=28(分).23.某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图的意义,将各组人数依次相加可得答案;(2)根据表中的数据计算可得答案;(3)用样本估计总体,按比例计算可得.【解答】解:(1)由图1知:4+8+10+18+10=50名,答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人×100%=36%∴最喜欢篮球活动的人数占被调查人数的36%.(3)1﹣(30%+26%+24%)=20%,200÷20%=1000人,×100%×1000=160人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.24.如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.【考点】两点间的距离;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)由偶次方及绝对值的非负性即可得出a﹣10=0、﹣4=0,解之即可得出a、b的值;(2)由AB、BD的长度即可求出AD的长度,根据M、N分别是线段AC、AD的中点即可求出AM、AN的长度,再根据MN=AM﹣AN即可求出MN的长度.【解答】解:(1)∵(a﹣10)2+|﹣4|=0.∴a﹣10=0,﹣4=0,∴a=10,b=8.(2)∵BD=AC=8cm,∴AD=AB﹣BD=2cm.又∵M、N分别是线段AC、AD的中点,∴AM=4cm,AN=1cm,∴MN=AM﹣AN=3cm.2017年4月7日。

相关文档
最新文档