反比例函数图象与三等分角
反比例函数图像
反比例函数图像反比例函数,也称为倒数函数,是一种特殊的函数形式。
它的定义为:当一个变量的取值不断增加时,另一个变量的取值不断减小,两个变量之间存在着一个倒数的关系。
反比例函数可以表示为y = k/x,其中,k是一个常数,x和y分别表示两个变量的取值。
在这个函数中,x是自变量,y是因变量。
反比例函数的图像通常为一个由第一象限的正半轴上的一条直线和原点构成的曲线。
具体来说,当x取较大的正值时,y取较小的正值;当x取较小的正值时,y取较大的正值;当x取0时,y的值趋近于无穷大;当x取负值时,y的值亦为负值,但绝对值较小。
为了更好地理解反比例函数的图像,我们可以绘制一组函数值对应的点,然后将这些点连接起来,从而形成函数的图像。
下面我们将通过几个例子来说明。
例子1:考虑函数y = 2/x,在自变量x取不同的值时,查找相应的因变量y的值:当x取1时,y = 2/1 = 2;当x取2时,y = 2/2 = 1;当x取3时,y = 2/3 ≈ 0.67;当x取4时,y = 2/4 = 0.5;当x取5时,y = 2/5 ≈ 0.4;当x取10时,y = 2/10 = 0.2。
通过将这些点连接起来,我们可以得到反比例函数y = 2/x的图像。
图像呈现出一条从第一象限的正半轴开始的曲线,曲线与x轴以y轴为渐近线。
x 越大,y越小;x越小,y越大。
当x等于0时,函数的图像无定义。
例子2:再考虑函数y = 3/x,在自变量x取不同的值时,查找相应的因变量y的值:当x取1时,y = 3/1 = 3;当x取2时,y = 3/2 ≈ 1.5;当x取3时,y = 3/3 = 1;当x取4时,y = 3/4 ≈ 0.75;当x取5时,y = 3/5 ≈ 0.6;当x取10时,y = 3/10 = 0.3。
同样地,通过连接这些点,我们可以得到反比例函数y = 3/x的图像。
图像也呈现出一条从第一象限的正半轴开始的曲线,曲线与x轴以y轴为渐近线。
人教版九年级初三数学下册《反比例函数的图像和性质》PPT课件
2-3
-4
-5
-6
3)图像位于二、四象限。
y=
−6
x • y = - 6
(-x ) • y =6
4)y随x的增大而增大。
5)函数图像与坐标轴无交点。
01
反比例函数图像小结
当k<0时,反比例函数y =
的图象:
(1)函数图象分别位于第二、第四象限;
(2)在每一个象限内,y随x的增大而增大.
01
反比例函数图像
观察反比例函数 y=
6
和y= -
6
的图象,你发现了什么?
y= −
6
y
y=
6
6
5
形状:图像都是由两条曲线组成,因此称反比例函数的图象为双曲线。
4
两个分支都无限趋近坐标轴,但不与坐标轴相交。
3
2
位置:
6
函数 y= (k>0)图像位于第一、三象限内.
6
函数y= -(k<0)图像位于第二、四象限内.
A.
B.
C.
D.
【详解】
解:当k>0时,函数y= 的图象在第一、三象限,函数y=kx+1在第一、二、三象限,故选项C错误,选项D正确,
当k<0时,函数y=的图象在第二、四象限,函数y=kx+1在第一、二、四象限,故选项A、B错误,故选:D.
)
02
练一练
3.(2018·福建省永春第一中学初二期末)在同一平面直角坐标系中,函数
01
反比例函数图像小结
当k>0时,反比例函数y =
的图象:
反比例函数图像和性质ppt课件
反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
27.2 反比例函数的图像和性质-2020秋冀教版九年级数学上册课件(共24张PPT)
课程讲授
2 反比例函数y= k 的性质
x
y 5
y=
-
12 x
4
3
2
1
-5 -4 -3 -2 -1-1 O 1 2 3 4 5 x -2 -3 -4 -5
函数 所在象限
增减性
y= -
12 x
第二、四象限
x>0时,y 随 x 的增大而增大
x<0时,y 随 x 的增大而增大
课程讲授
2 反比例函数y= k 的性质
图象上,则y1__<____y2;(填“>”“<”或“=”)
(2)若反比例函数y=
k x
的图象经过点(-2,-5),则该函数
的图象在平面直角坐标系中位于第__一__、__三__象限.
随堂练习
5.如图,A,B两点在反比例函数y=
4 x
(x>0)的图象上,
分别过A,B两点向坐标轴作垂线,已知S阴影=1,则
x>0时,y 随 x 的增大而减小
x<0时,y 随 x 的增大而减小
课程讲授
2 反比例函数y= k 的性质
x
y
y= -
6 x
5
4
3
2
1
-5 -4 -3 -2 -1-1 O 1 2 3 4 5 x -2 -3 -4 -5
函数 所在象限
增减性
y=
-
6 x
第二、四象限
x>0时,y 随 x 的增大而增大
x<0时,y 随 x 的增大而增大
S1+S2=_____6_______.
随堂练习
6.如图是反比例函数y=-
4 x
在第四象限内的图像.
(1)当0<x<2时,y___<__-_2_____;
反比例函数的图象和性质
感谢观看
汇报人:XX
单击此处添加副标题
反比例函数的图象和性质
汇报人:XX
目录
01 02 03 04
添加目录项标题 反比例函数的图象 反比例函数的性质 反比例函数与其他函数的比较
01
添加目录项标题
02
反比例函数的图象
反比例函数的定义
反比例函数是一种数学函数,其定义为 y = k/x (k为常数且k≠0) 该函数在平面坐标系上的图像为双曲线 双曲线的两个分支分别位于第一、三象限或第二、四象限 当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限
反比例函数与二次函数的比较
定义域:反比例函数的定义域为x≠0,而二次函数的定义域为全体实数。
值域:反比例函数的值域为y≠0,而二次函数的值域取决于开口方向和顶点位置。
函数图像:反比例函数的图像位于x轴和y轴之间,而二次函数的图像可能为开口向上或向下的抛 物线。
导数:反比例函数的导数在x=0处不存在,而二次函数的导义域和值域
添加标题
添加标题
根据函数的表达式,在坐标系上 描点并绘制出反比例函数的图象
反比例函数图象的特性
反比例函数的图象是双曲线
反比例函数的图象在各自象限内 单调递减
添加标题
添加标题
添加标题
添加标题
双曲线的两支分别位于第二、第 四象限
反比例函数的图象与坐标轴无限 接近但永不相交
反比例函数的奇偶性
奇函数:满足f(-x)=-f(x) 偶函数:满足f(-x)=f(x) 图像特点:关于原点对称 性质推导:利用极限思想推导
反比例函数的极限性质
北师大版数学九年级上册.反比例函数的图像课件 PPT精品课件
•
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
为(2,1),那么B点的坐标为 (-2,-1) .
1、作函数图象的一般步骤是:列表,描点,连线__
2、反比例函数y=
k x
的图象是
双曲线
①、当k>0时,两支曲线分别位于第 一、三 象限内
(第其中三当象x限>0)时;,分支在第 一 象限;当x<0时,分支在
②、当k<0时,两支曲线分别位于第 二、四 象限内.
-3
2
34
5
6x
-4 对称图形; 它们分别是y-=4 x
-5 对称中心 -6 为原点。
和y=-x.
-5 -6
y=-x
k=-5<0
1、(2014·淮安)若反比例函数y=
k x
的图象经过
(x,y)
点(5,-1),则双曲线位于( B )
A.第一、三象限
B.第二、四象限
C.第一、四象限
D.第二、三象限
2、(2014·兰州)若反比例函数y=
-1
-1
-2
-2
B(---432,-3)
-3 -4
-5
-5
-6
-6
(-6,-1)
(-3,-2) (-1,-6)(1,6) (3,2)
(6,1)
数学反比例函数的图象及性质知识点归纳
注意:反比例函数的图象不会与坐标 轴相交或重合。
03
反比例函数性质分析
单调性
01
02
在每一象限内,从左到右,随着x的增大,y值逐渐减小,即函数单调 递减。
反比例函数在第一、三象限为减函数,在第二、四象限也为减函数。
奇偶性
反比例函数是奇函数,即满足f(-x)=-f(x)。 奇函数的图象关于原点对称,因此反比例函数的图象也关于原点对称。
反比例函数的比例系数k和直线 的斜率都不能为0,否则交点不
存在。
反比例函数的图象是双曲线,而 直线的图象是直线,因此只有当 直线与双曲线有交点时,才能确
定交点的存在。
05
反比例函数在实际问题中 应用
面积问题
01
矩形面积
当矩形的长度和宽度成反比例 关系时,可以通过反比例函数
来描述其面积变化。
02
三角形面积
数学反比例函数的图象及性 质知识点归纳
汇报人:XXX
汇报时间:2024-01-26
目录
• 反比例函数基本概念 • 反比例函数图象特征 • 反比例函数性质分析 • 反比例函数与直线交点问题
目录
• 反比例函数在实际问题中应用 • 反比例函数与其他知识点联系
01
反比例函数基本概念
定义与表达式
01
反比例函数定义
形如 $y = frac{k}{x}$ (其中 $k$ 为非零常数) 的函数称为
反比例函数。
$y = frac{k}{x}$,其中 $k neq 0$,$x neq 0$。
02
表达式
自变量取值范围
自变量 $x$ 的取值范围是所有 不等于零的实数,即 $x neq
0$。
02
反比例函数的图象和性质课件
反比例函数的图象和性质ppt课件介绍了反比例函数的定义、性质、图象以及 应用。通过课件,你将了解反比例函数的基本概念和特点,并掌握其在实际 问题中的应用。
I. 反比例函数的定义及性质
定义
反比例函数是一种特殊的函 数关系,其变量之间的比例 关系是相反的。
解析式
反比例函数的解析式一般为y = k/x,其中k为常数。
练习题演练
通过练习题的演练,加深对反比例函数的理解,并提高解决实际问题的能力。
IV. 总结与思考
特点回顾
反比例函数具有对称轴、渐近线等特点,是一种重要的函数类型。
图象对实际问题的帮助
反比例函数的图象可以帮助我们理解和解决实际问题,提供定性和定量的分析。
进一步思考
通过深入思考和探索,我们可以将反比例函数应用于更复杂的优化问题中。
反比例函数的图象可以通过平移、 伸缩等变换得到不同的形态。
反比例函数的图象包括关键点, 如顶点、渐近线和交点。
III. 反比例函数的应用
与正比例函数的关系
反比例函数和正比例函数是互为倒数的关系,它们在实际问题中经常同时出现。
实际问题中的应用
反比例函数在经济、物理和工程等领域中有广泛的应用,例如弹簧的伸长和台阶的高度与数 量关系。
定义域和值域
反比例函数的定义域为除数 不为0的实数集合,值域为不 等于0的实数集合。
单调性
反比例函数在定义域内通常是单调递减或单调增 函数。
渐近线
反比例函数在x轴和y轴上都有渐近线,分别为y = 0和x = 0。
II. 反比例函数的图象
基本形态
变形
特征点
反比例函数的图象通常为双曲线, 具有一个对称轴。
八年级数学反比例函数的图解和性质
声速
声速与频率和介质有关,在一定 介质中,声速与频率成反比关系。
磁场
在磁场中,磁感应强度与电流成 正比,与导线长度成反比,这是
电磁感应现象的基础。
在经济中的应用
供需关系
01
在市场经济中,商品的价格与供应量成反比关系,当需求量一
定时,供应量增加会导致价格下降。
投资回报
02
投资回报率与投资额成反比关系,当风险一定时,投资额越大,
中心对称
分布在第二和第四象限
由于k的正负性,反比例函数的图像分 布在第二和第四象限。
反比例函数的图像关于原点中心对称。
反比例函数图像的变换
k值变化
改变k的值会影响反比例函 数图像的形状和位置。
x轴和y轴的变换
通过伸缩x轴和y轴,可以 改变反比例函数图像的形 状。
图像的旋转
通过旋转反比例函数图像, 可以观察其在不同角度下 的形态。
01
02
03
确定函数表达式
首先确定反比例函数的表
达式,例如$y
=
frac{k}{x}$(其中k为常
数)。
ห้องสมุดไป่ตู้
确定坐标轴
在平面直角坐标系中,选 择适当的x和y轴范围。
绘制图像
根据反比例函数的表达式, 在坐标系中逐点绘制函数 图像。
反比例函数图像的特性
无限接近x轴和y轴
反比例函数的图像会无限接近x轴和y 轴,但不会与它们相交。
反比例函数可以看作是幂函数的一种特殊情况,即当n=-1时 的幂函数。因此,反比例函数与幂函数在性质上有一定的相 似性,例如它们的导数都与自身有关。
THANKS FOR WATCHING
感谢您的观看
反比例函数反比例函数的图象与性质ppt
利用反比例函数的单调性可以构造一些单调的等式或不等 式。例如,利用反比例函数在x<0时增加的性质可以得到 一些单调递增的等式或不等式。
THANK YOU.
反比例函数的奇偶性
奇函数
反比例函数是奇函数,因为对 于所有实数x,都有f(-x)=-f(x)
。
图像对称
反比例函数的图像关于原点对 称,即对于所有实数x和y,都
有f(x)=f(-x)。
域和值域
反比例函数的定义域和值域都 是R。
反比例函数的凹凸性
01
02
03
凹函数
当比例系数大于0时,反 比例函数是凹函数。
凸函数
当比例系数小于0时,反 比例函数是凸函数。
拐点和极值
当比例系数等于0时,反 比例函数没有拐点,也没 有极值。
04
反比例函数的应用
用反比例函数解决实际问题
描述现实生活中的反比例关系
反比例函数在现实生活中有着广泛的应用,例如在物理学中的万有引力定律、工程学中的材料强度、经济学中的通货膨胀率 等。
2023
《反比例函数反比例函数 的图象与性质ppt》
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数的定义
反比例函数是一种特殊的函数,通常表示为y=k/x(k为常数,x不等于0)。它描述的是 当一个变量x变化时,另一个变量y如何以相反的方向变化。
交通流量的预测
反比例函数图像和性质教学课件
THANK YOU
反比例函数图像和性质教学 课件
contents
目录
• 反比例函数简介 • 反比例函数的图像绘制 • 反比例函数的性质分析 • 反比例函数的应用举例 • 反比例函数与其他知识点的关联
01
反比例函数简介
反比例函数的定义
1 2
反比例函数
形如 (f(x) = frac{k}{x}) (其中 (k neq 0)) 的函数 被称为反比例函数。
反比例函数的渐近线
反比例函数的图像没有界限,但可以无限接近两条渐近线,分别是 (y = 0) 和 (x = 0)。
反比例函数的应用
在物理学、工程学和其他科学领域中,反比例函数有广泛的应用,例如电阻、电容和电感 之间的关系。
02
反比例函数的图像绘 制
使用数学软件绘制反比例函数图像
软件选择
选择适合的数学软件,如 GeoGebra、Desmos等,这些
运动与减肥的关系
在减肥过程中,运动量与减肥效果之 间存在反比关系,即当运动量增大时 ,减肥效果不一定更明显,需要合理 控制饮食和运动量。
05
反比例函数与其他知 识点的关联
与一次函数的关联
一次函数是形如y=kx+b的函数,其中k和b是常数,且k≠0。当b=0时,一次函数退化为正比例函数 ,其图像是一条过原点的直线。反比例函数与正比例函数在形式上相似,只是自变量x的次数为-1。 因此,反比例函数的图像也位于坐标轴的两侧,并随着x的增大而趋近于无穷远。
一次函数和反比例函数在图像上都是单调的,但方向相反。一次函数随着x的增大而增大或减小,而 反比例函数则随着x的增大而减小或增大。
反比例函数图象与三等分角
反比例函数图象与三等分角历史上,曾有人把三等分角问题归结为下面的作图问题.任取一锐角∠POH ,过点P 作OH 的平行线,过点O 作直线,两线相交于点M,OM 交PH 于点Q ,并使QM=20P ,设N 为QM 的中点.∵NP=NM =OP,∴∠1=∠2=2∠3.∵∠4=∠3,∴∠1=2∠4.∴∠MOH =31∠POH. 问题在于,如何确定线段QM 两端点的位置,并且保证O ,Q ,M 在同一条直线上?事实上,用尺规作图无法解决这一问题.那么,退而求其次,能不能借助一些特殊曲线解决这一问题呢?帕普斯(Pappus ,公元300前后)给出的一种方法是:如下图,将给定的锐角∠AOB 置于直角坐标系中,角的一边OA 与y =x1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R.分别过点P 和R 作x 轴和y 轴的平行线,两线相交于点M ,Q ,连接OM 得到∠MOB.(1)为什么矩形PQRM 的顶点Q 在直线OM 上?(2)你能说明∠MOB =31∠AOB 的理由吗? (3)当给定的已知角是钝角或直角时,怎么办? 解:(1)设P 、R 两点的坐标分别为P(a 1,11a ),R(a 2, 21a ),则Q(a 1,21a ),M(a 2, 11a ). 设直线OM 的关系式为y =kx.∵当x =a 2时,y=11a∴11a =ka 2,∴k=211a a .∴y=211a a x. 当x=a 1时,y=21a ∴Q(a 1,21a )在直线OM 上. (2)∵四边形PQRM 是矩形.∴PC=21PR=CM.∴∠2=2∠3. ∵PC=OP ,∴∠1=∠2,∵∠3=∠4,∴∠1=2∠4,即∠MOB=31∠AOB. (3)当给定的已知角是钝角或直角时,钝角或直角的一半是锐角,该锐角可以用此方法三等分.。
反比例函数与一线三等角模型
反⽐例函数与⼀线三等⾓模型反⽐例函数与⼀线三等⾓模型⼀线三等⾓模型下的相似⽐等于周长的⽐将军饮马与三⾓形周长的最⼩值⼀次函数、折叠、勾股定理、点的坐标⼀次函数、翻折、旋转反⽐例函数与K字型相似挖掘隐藏着的经典直⾓顶在直线上⼜称为K字型⼆次函数与⼀次函数的综合90度旋转与K字型全等⼀次函数中的K与特殊的直⾓三⾓形⼀次函数、⼀副三⾓板、垂径定理的综合⼀次函数中的K与⼀副三⾓板的综合正⽐例函数中的⼩题不必⼤作⼀次函数解析式中K的重要意义夜空中美丽的流星平分中⼼对称图形⾯积的直线必经过对称中⼼直线分三⾓形⾯积⽐的思考⽅法从函数的⾓度判断点的位置根据反⽐例函数的性质判断⼆次函数的图象根据⼆次函数和反⽐例函数的性质判断⼀次函数的图象三⾓形的⾯积与⼆元⼀次⽅程组从不同的⾓度审视平⾏四边形关注整体和⼤局是⼀种智慧欧⼏⾥得⽤⼿拉⼿模型证明勾股定理和射影定理中考数学⾼分之路——旋转是重组线段的有效⽅法从熟悉的⼿拉⼿模型开始,环环相扣,层层递进圆、折叠、垂径定理、勾股定理、弦长矩形、折叠、勾股定理等边三⾓形、距离与⾯积⾯积法与线段和定弦对定⾓,必有隐藏圆抛物线、直线与找规律都是全等相似惹的祸矩形、折叠、隐藏圆、最值折叠、隐藏圆、最值折叠、直⾓顶在直线上三⾓形的内⼼与外⼼⼿拉⼿、隐藏圆、最值⾓分平,等腰呈切线、垂径定理、勾股定理折叠、等腰、相似菱形、A型、⾯积中考数学⾼分之路——正⽅形、⾯积、周长中考数学⾼分之路——⼀个特殊的四边形中考数学⾼分之路——等腰三⾓形和直⾓三⾓形的联姻中考数学⾼分之路——等腰三⾓形的两⼤性质中考数学⾼分之路——幂的运算中考数学⾼分之路——完全平⽅式与⾮负数中考数学⾼分之路——平⾏四边形、⾯积、勾股定理中考数学⾼分之路——正⽅形、⾯积、最值中考数学⾼分之路——矩形、折叠与⾯积中考数学⾼分之路——矩形与⾯积(2)中考数学⾼分之路——矩形与⾯积(1)中考数学⾼分之路——定点与变换主元法中考数学⾼分之路——与轴对称有关的最短路径问题中考数学⾼分之路——线段和的最值中考数学压轴题巧解——定弦对定⾓中考数学压轴题巧解——三⾓形中的重要线段~中位线中考数学压轴题巧解——明显圆与隐藏圆中考数学压轴题巧解——隐藏圆与最值中考数学压轴题巧解——亲密⽆间的相似与旋转型全等中考数学压轴题巧解——定⾓度与直线型路径中考数学压轴题巧解——定距离与直线型路径洞察隐藏的圆⼀点⼀圆模型与圆有关的最值最值问题(垂线段最短)中考数学压轴题巧解系列——运动、圆、⾯积与最值美妙的旋转之全等与相似三⾓形三边关系与线段的最值(3)三⾓形三边关系与线段的最值(2)三⾓形三边关系与线段的最值(1)三⾓形与⾯积(2)三⾓形与⾯积(1)平⾏线的那些事⼉(3)平⾏线的那些事⼉(2)平⾏线的那些事⼉(1)等腰三⾓形的存在性问题直⾓三⾓形的存在性问题让圆不再有隐形的翅膀(4)让圆不再有隐形的翅膀(3)让圆不再有隐形的翅膀(2)让圆不再有隐形的翅膀(1)矩形内垂直⼗字架之⽐等于邻边之⽐正⽅形内垂直⼗字架相等全等双⼦型(2)附【数学解题⼩常识】全等双⼦型(1)附【数学解题⼩常识】K字模型(2)附【数学解题⼩常识】K字模型(1)附【数学解题⼩常识】⼀线三等⾓模型(2)附【数学解题⼩常识】⼀线三等⾓模型(1)附【数学解题⼩常识】⾓含半⾓模型(2)附【数学解题⼩常识】⾓含半⾓模型(1)附【数学解题⼩常识】直线中k的颜值(2)附【数学解题⼩常识】直线中k的颜值(1)附【数学解题⼩常识】两点的联想(2)附【数学解题⼩常识】两点的联想(1)附【数学解题⼩常识】⼀点的遐想(2)⼀点的遐想(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数图象与三等分角
历史上,曾有人把三等分角问题归结为下面的作图问题
.
任取一锐角∠POH ,过点P 作OH 的平行线,过点O 作直线,两线相交于点M,OM 交PH 于点Q ,并使QM=20P ,设N 为QM 的中点.
∵NP=NM =OP,∴∠1=∠2=2∠3.
∵∠4=∠3,∴∠1=2∠4.
∴∠MOH =3
1∠POH. 问题在于,如何确定线段QM 两端点的位置,并且保证O ,Q ,M 在同一条直线上?事实上,用尺规作图无法解决这一问题.那么,退而求其次,能不能借助一些特殊曲线解决这一问题呢?
帕普斯(Pappus ,公元300前后)给出的一种方法是:如下图,将给定的锐角∠AOB 置于直角坐标系中,角的一边OA 与y =x
1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R.分别过点P 和R 作x 轴和y 轴的平行线,两线相交于点M ,Q ,连接OM 得到∠
MOB.
(1)为什么矩形PQRM 的顶点Q 在直线OM 上?
(2)你能说明∠MOB =3
1∠AOB 的理由吗? (3)当给定的已知角是钝角或直角时,怎么办?
解:(1)设P 、R 两点的坐标分别为P(a 1,
11a ),R(a 2, 21a ),则Q(a 1,21a ),M(a 2, 11a ). 设直线OM 的关系式为y =kx.
∵当x =a 2时,y=1
1a
∴11a =ka 2,∴k=211a a .∴y=2
11a a x. 当x=a 1时,y=
21a ∴Q(a 1,2
1a )在直线OM 上. (2)∵四边形PQRM 是矩形.
∴PC=2
1PR=CM.∴∠2=2∠3. ∵PC=OP ,∴∠1=∠2,
∵∠3=∠4,∴∠1=2∠4,
即∠MOB=3
1∠AOB. (3)当给定的已知角是钝角或直角时,钝角或直角的一半是锐角,该锐角可以用此方法三等分.。