2014年九年级第一次质量预测数学备考_4
2014年郑州市九年级第一次质量预测数学试卷及答案(word版)
2014年九年级第一次质量预测数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 15-的相反数是( )A .15-B .15C .5D .5-2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( ) A .350.19×108 B .3.501 9×109 C .35.019×109D .3.501 9×10103. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人 B .1.65米是该班学生身高的平均水平 C .这组身高数据的中位数不一定是1.65米 D .这组身高数据的众数不一定是1.65米5. 小明在2013年暑假帮某服装店买卖T 恤衫时发现:在一段时间内,T 恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T 恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x 元,那么下列所列方程正确的是( ) A .(80)(20) 1 200x x -+= B .(80)(202) 1 200x x -+= C .(40)(20) 1 200x x -+=D .(40)(202) 1 200x x -+=德美种是容宽德美种是容宽德美种是容宽德美种是容宽6. 如图,直线l 上摆有三个正方形a ,b ,c ,若a ,c 的面积分别为10和8,则b 的面积是( ) A .16B .20C .18D .24第6题图 第7题图 第8题图7. 如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当字母B 第2 014次出现时,恰好数到的数是( ) A .4 028B .6 042C .8 056D .12 0848. 如图,一条抛物线与x 轴相交于A ,B 两点,其顶点P 在折线CD -DE 上移动,若点C ,D ,E 的坐标分别为(-2,8),(8,8),(8,2),点B 的横坐标的最小值为0,则点A 的横坐标的最大值为( ) A .5B .6C .7D .8二、填空题(本题共7个小题,每小题3分,共21分) 9. 计算16=_________.10. 已知反比例函数6y x=-的图象经过点P (2,a ),则a =_____________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是___________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为___________.13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为___________.lcbaDC B Axy PCED B OA Cy xO BA14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG =_________.第14题图 第15题图15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________. 三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第_______步(填序号),原因:________________;还有第_______步出错(填序号),原因:____________________. 请你写出此题的正确解答过程.D'A'GFE DCB A y xEO D CBA17.(9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统计图:课程类别频数频率法律360.09礼仪550.1375环保m a感恩1300.325互助490.1225合计n 1.00(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a=_________;m=_________;n=_________.(2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.18.(9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.491305536校本课程报名意向条形统计图人数/人180160140120100806040200课程类别互助感恩环保礼仪法律19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y a x =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向_____,再向下平移7个单位,相应的朋友距离为_____; (2)探究二:将函数451x y x +=+化成y =__________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠P AB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动67.5°36.9°PAB区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.(参考值3 1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;出口出口出口出口(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.图1 图223. (11分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为Q (-2,-1),且与y 轴交于点C (0,3),与x 轴交于A ,B 两点(点A 在点B 的左侧),点AB CDEFGM NABCD EFGM NP 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交直线AC 于点D . (1)求该抛物线的函数关系式.(2)当△ADP 是直角三角形时,求点P 的坐标.(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A ,P ,E ,F 为顶点的平行四边形?若存在,请直接写出点F 的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测QxyOA B D PC数学 参考答案一、选择题(每小题3分,共24分) 1. B 2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分) 9.410. -3 11.52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2(-三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式= == . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b ≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130; 400;……………………4分(2)如图:117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分21)1)(1(1aba a a a ab -∙-++⨯b1211)1)(1(aba a a a ab -∙+-+÷人数(人)493655课程类别 法律礼仪环保感恩互助100608012014016018040200130130AC…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.) 19.(9分)(1)左平移1个单位 ,25; …………………………4分 (2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位.相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………2分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………4分∵AC +BC =AB =63,∴54215123x x +=⨯ 63,解得x = 36.…………6分 ∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分21. (10分)解:(1)480000400402++-=x x y …………………………………4分 (2) 投资46.9万元能完成工程任务. …………………………………5分 依题意,可得到2025x ≤≤.…………………………7分240400480000469000x x -++=, ∴2102750x x --=.1020351032x ±∴==±.(负值舍去). 510322.32x ∴=+≈.DEBECD AB =G∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ;方案二:一块矩形绿地的长为24m ,宽为14m ;方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .又∵AE =EF ,∠EHF =∠EBA =90º,∴△EHF ≌△ABE . …………4分∴FH =BE ,EH =AB =BC ,∴CH =BE =FH.∵∠FHC =90º,∴∠FCH =45º. tan ∠FCH =1. …………6分(2)作FH ⊥MN 于H .由已知可得∠EAG =∠BAD =∠AEF =90º.结合(1)易得∠FEH =∠BAE =∠DAG.又∵G 在射线CD 上,∠GDA =∠EHF =∠EBA =90º,∴△EFH ≌△AGD ,△EFH ∽△AEB . ……8分∴EH =AD =BC =n ,∴CH =BE.∴EH AB =FH BE =FH CH. ∴在Rt △FEH 中,tan ∠FCN =FH CH =EH AB =mn . ∴当点E 沿射线CN 运动时,tan ∠FCN =mn .……10分 23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1),∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得 1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x x y .……………………4分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x , 32-=x .M B E A C D F G N H∵点A 在点B 的左边, ∴B(-1,0), A (-3,0). ∴P 1(-1,0). …………………………………………5分 ②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC = 90, ∴∠OAD 2= 45. 当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2 . 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分 设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分 ∵D 2在3+=x y 上, P 2在342++=x x y 上, ∴设D 2(x ,3+x ), P 2(x ,342++x x ). ∴(3+x )+(342++x x )=0.0652=++x x , ∴21-=x , 32-=x (舍). ∴当x =-2时, 342++=x x y=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1), F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于点F . 当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x .解之得: 221--=x , 222+-=x . ∴F 点存在有两点,F 1(-22-,1), F 2(-22+,1). )。
2014年郑州市九年级第一次质量检测及答案
2014年郑州市九年级第一次质量检测及答案2014年九年级第一次质量预测数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 15-的相反数是( )A .15-B .15C .5D .5-2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( )A .350.19×108B .3.501 9×109C .35.019×109D .3.501 9×10103. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )德美种是容宽德美种是容宽德美种是容宽德美种是容宽A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人B.1.65米是该班学生身高的平均水平C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米5.小明在2013年暑假帮某服装店买卖T恤衫时发现:在一段时间内,T恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x元,那么下列所列方程正确的是()A.(80)(20) 1 200x x-+=B.(80)(202) 1 200x x-+= C.(40)(20) 1 200x x-+=D.(40)(202) 1 200x x-+=6.如图,直线l上摆有三个正方形a,b,c,若a,c的面积分别为10和8,则b的面积是()A.16 B.20 C.18 D.24lcbaDCBA第6题图第7题图第8题图7.如图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当字母B第2 014次出现时,恰好数到的数是()A.4 028 B.6 042 C.8 056 D.12 0848.如图,一条抛物线与x轴相交于A,B两点,其顶点P在折线CD-DE上移动,若点C,D,E的坐标分别为(-2,8),(8,8),(8,2),点B的横坐标的最小值为0,则点A的横坐标的最大值为()A .5B .6C .7D .8二、填空题(本题共7个小题,每小题3分,共21分) 9..10. 已知反比例函数6y x=-的图象经过点P (2,a ),则a =_____________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是___________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为___________.13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为___________.14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG=_________.D'A'GFE DCB A第14题图 第15题图15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________.三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第____步(填序号),原因: ; 还有第_______步出错(填序号),原因:____________________.请你写出此题的正确解答过程.17. (9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统 计图:(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a =_________;m =_________;n =_________. (2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.校本课程报名意向条形统计图课程类别互助感恩环保礼仪法律18. (9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向____,再向下平移7个单位,相应的朋友距离为_____;(2)探究二:将函数451x y x +=+化成y =_________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠PAB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)67.5°36.9°PAB21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.AB C DE FGM NABCD EFGM N图1 图223.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(-2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交直线AC于点D.(1)求该抛物线的函数关系式.(2)当△ADP是直角三角形时,求点P的坐标.(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,请直接写出点F的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. B2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分)9.4 10. -3 11. 52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2( 三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式=== . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130;400;……………………4分(2)21)1)(1(1aba a a a ab -•-++⨯b1211)1)(1(aba a a a ab -•+-+÷117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分AB C D E…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.)19.(9分)(1)左平移1个单位 ,25; …………………………4分(2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位. 相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt△APC 中,∵tan∠A =PC AC,∴AC DEBECD AB ==5tan 67.512PC x=︒.…………2分 在Rt△PCB 中,∵tan∠B =PC BC,∴BC =4tan 36.93x x =︒.…………4分 ∵AC +BC =AB =63,∴54215123x x+=⨯ 63,解得x = 36.…………6分∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分 21.(10分)解:(1)480000400402++-=x x y …………………………………4分(2) 投资46.9万元能完成工程任务. …………………………………5分依题意,可得到2025x ≤≤.…………………………7分Q 240400480000469000x x -++=,∴2102750x x --=.1020351032x ±∴==±.(负值舍去).510322.32x ∴=+≈.∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ; 方案二:一块矩形绿地的长为24m ,宽为14m ; 方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .GNM B AE DFGH又∵AE=EF,∠EHF=∠EBA=90º,∴△EHF≌△ABE . …………4分∴FH=BE,EH=AB=BC,∴CH=BE=FH.∵∠FHC=90º,∴∠FCH=45º. tan ∠FCH=1. …………6分(2)作FH⊥MN于H .由已知可得∠EAG=∠BAD=∠AEF=90º.结合(1)易得∠FEH=∠BAE=∠DAG.又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90º,∴△EFH≌△AGD,△EFH∽△AEB. (8)分∴EH=AD=BC=n,∴CH=BE.∴EHAB=FHBE=FHCH.∴在Rt△FEH中,tan∠FCN=FHCH=EHAB=mn .∴当点E沿射线CN运动时,tan∠FCN=mn.……10分23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1), ∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x xy (4)分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x, 32-=x.∵点A 在点B 的左边, ∴B(-1,0),A (-3,0).∴P 1(-1,0). …………………………………………5分②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC =ο90, ∴∠OAD 2=ο45.当∠D 2AP 2=ο90时, ∠OAP 2=ο45, ∴AO 平分∠D 2AP 2 .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分∵D 2在3+=x y 上, P 2在342++=x x y 上,∴设D 2(x ,3+x ), P 2(x ,342++x x ).∴(3+x )+(342++x x)=0. 0652=++x x , ∴21-=x, 32-=x(舍). ∴当x =-2时, 342++=x xy=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1),F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于点F .当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x.解之得: 221--=x, 222+-=x.∴F 点存在有两点,F 1(-22-,1),F 2(-22+,1). )。
2014年九年级第一次质量预测数学备考
2014年九年级第一次质量预测数学备考一、选择题1.-2013的倒数是()A.12013B.12013-C.2013 D.-20132.已知24328a ba b+=⎧⎨+=⎩,则a b+等于()A.3B.83C.2D.1【常考题型】①若分式12xx-+的值为0,则( )A. x=-2B. x=0C. x=1或x=-2D. x=1②3是关于x的方程250x x c-+=的一个根,则这个方程的另一个根是()A.-2B.2C.-5D.63.从《中华人民共和国2011年国民经济和社会发展统计报告》中获悉,前年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示前年我国的国内生产总值为(结果保留两个有效数字)()A.3.9×1013B.4.0×1013C.3.9×105D.4.0×1054.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他是否获奖,只需知道这11名学生决赛得分的()A.中位数B.平均数C.众数D.方差【常考题型】①我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别是()A.2,28 B.3,29 C.2,29 D.3,28②下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式B.了解郑州市每天的流动人口数,采用抽样调查方式C.了解郑州市居民日平均用水量,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式③为了了解郑州市2013年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A.150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.郑州市2013年中考数学成绩5.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕点O顺时针旋转105°至OA B C'''的位置,则点B'的坐标为()A.-B.(C.(2,-2) D.(-2,2)xx第①题图第②题图【常考题型】①如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+②如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4B.8C.16D.6.如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.【常考题型】① 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为( )A .5B .6C .7D .8第①题图 第②题图② 一个几何体的三视图如图所示,其中主视图和左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ) A .2π B .12π C .4π D .8π7. 将不等式组841163x x x x +<-⎧⎨≤-⎩的解集在数轴上表示出来,正确的是( )D .C .B .A .8. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )A .CM =DMB .⌒CB=⌒BD C .∠ACD =∠ADCD .OM =MB二、 填空题9. 2的平方根是________.10. 如图,直线l ∥m ,将含有45°角的直角三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为 . 11. 已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y3的大小关系是 . 【常考题型】主视图左视图21l mBCA① 在同一平面直角坐标系内,将函数1422++=x x y 的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1个单位长度,得到图象的顶点坐标是 .② 在正比例函数y =-3mx 中,函数y 的值随x 的值的增大而增大,则P (m ,5)在第 象限. 12. 郑州小商品城博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,,则该组能够翻译上述两种语言的概率是 . 【常考题型】① 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为______. 13. 如图,点A 在反比例函数y =xk第一象限的图象上,AB 垂直y 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.ADEFC B第13题图 第14题图 第15题图14. 如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分的面积是 .15. 如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE =DF 时,∠BAE 的大小可以是 . 【常考题型】① 如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在AD ,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2,则正方形ABCD 的边长是 .QP CB A第①题图 第②题图② 如图,在△ABC 中,∠ABC =90°,AB =3,BC =4,P 是BC 边上的动点,设BP =x ,若能在AC 边上找到一点Q ,使∠BQP =90°,则x 的取值范围是 .三、解答题16.先化简22444()2x xxx x x-+÷--,然后从x<<x的值代入求值.17.如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.FED BCA18.省教育厅决定在全省中小学开展以“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.其他14%骑自行车 20%步行m乘公交车40%行车交车(1)m= %,这次共抽取名学生进行调查,并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示.慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.解读信息(1)甲、乙两地之间的距离为_________km.(2)线段AB的解析式为_______________,线段OC的解析式为_________________.问题解决(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图象.20.如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(结果精确到0.1≈1.732)(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?F21.某电子商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式;(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?22.在四边形ABCD中,对角线AC,BD相交于点O,设锐角∠DOC=α,将△DOC绕点O按逆时针方向旋转得到△D′OC′(0°<旋转角<90°),连接AC′,BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(I)中AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.图1D'C'OMDC BA图2D'C'OM DCBA图3D'C'OM DCBA23. 如图,矩形OABC 中,A (6,0)、C (0,、D (0,,射线l 过点D 且与x 轴平行,点P ,Q 分别是l 和x 轴正半轴上的动点,满足∠PQO =60°.(1)①点B 的坐标是 ;②∠CAO = 度;③当点Q 与点A 重合时,点P 的坐标为 .(直接写出答案)(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 重叠部分的面积为S ,试求S 与x 的函数关系式和相应的自变量x 的取值范围.。
2014届九年级数学中考一模押题试卷及答案
2014年初中毕业生学业考试模拟(一)数学试题一、选择题(每小题3分,共24分)1.在0.1,3-,2和13这四个实数中,无理数是(A )0.1. (B )3-. (C )2. (D )13.2.2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为(A )43.7510⨯. (B )337.510⨯. (C )50.37510⨯. (D )33.7510⨯. 3.有一组数据:2,4,3,4,5,3,4,则这组数据的众数是(A )5. (B )4. (C )3. (D )2. 4.将“中国梦我的梦”六个字分别写在一个正方体的六个面上, 这个正方体的展开图如图所示,那么在这个正方体中, 和“我”字相对的字是(A )中. (B )国. (C )的. (D5.不等式组⎩⎨⎧≤>+1,022x x 的解集是(A )11≤<-x .(B )11<<-x .(C )1->x . (D )1≤x . 6.如图,直线 l 1∥l 2,且分别与△ABC 的两边AB 、AC 相交, 若∠A =50°,∠1=35°,则∠2的度数为(A )35°. (B )65°.(C )85°.(D )95°.7.如图,O ⊙是ABC △的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠=°,则ACB ∠的度数为 (A )B )45°.(C )308.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为(-1,0),点B 的坐标为(0,2),点A 在第二象限.直线521+-=x y 与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点D 落在△MON 的内部时(不包括三角形的边),则m 的值可能是(第4题)BCAl 1 l 21 2(第6题)(第7题) (第8题)二、填空题(每小题3分,共18分) 9.计算:=-29 .10.某饭店在2014年春节年夜饭的预定工作中,第一天预定了a 桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了 桌年夜饭(用含a 的代数式表示). 11.一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为 度.12.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB = 4,则AD13.如图,抛物线2y x bx c =-++的对称轴是直线x =1,与x 轴的一个交点为(3,0),则此抛物线的函数关系式为 . 14.如图,点A 在反比例函数ky x=(x>0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使AD =DC ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E .若△ABC 的面积为4,则k 的值为 . 三、解答题(本大题10小题,共78分)15.(5分)化简:x x xx x 12122-÷+-.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A 、B 、C ,每张卡片除了标记不同外,其余均相同. 某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A 的概率. 17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.(第11题) (第12题)M A B C D O · N18.(7分)如图,在矩形ABCD 中,以点D 为圆心,DA 长为半径画弧,交CD 于点E ,以点A 为圆心,AE 长为半径画弧,恰好经过点B ,连结BE 、AE . 求∠EBC 的度数.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米). (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a 名学生的上学交通方式,统计结果如图所示. (1)求a 的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.(第20题) 被调查学生上学采用交通方式扇形统计图 20% 10%10% 公共汽车 私家车校车步行 其它被调查学生上学采用交通方式条形统计图 0200400600800100012001400人数(第18题) A B DC E (第19题) A B C21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t 小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.A BDC(第22题)E23.(10分)如图①,在平面直角坐标系中,点A 是抛物线y =x 2在第一象限上的一个点,连结OA ,过点A 作AB ⊥OA ,交y 轴于点B ,设点A 的横坐标为n . 探究:(1)当n =1时,点B 的纵坐标是 ; (2)当n =2时,点B 的纵坐标是 ;(3)点B 的纵坐标是 (用含n 的代数式表示). 应用:如图②,将△OAB 绕着斜边OB 的中点顺时针旋转180°,得到△BCO . (1)求点C 的坐标(用含n 的代数式表示);(2)当点A 在抛物线上运动时,点C 也随之运动.当1≤n ≤5时,线段OC 扫过的图形的面积是 .24.(12分)如图,在Rt ABC ∆中,∠ACB =90°,AC =8cm ,AB =10cm .点P 从点A 出发,以5cm/s 的速度从点A 运动到终点B ;同时,点Q 从点C 出发,以3cm/s 的速度从点C 运动到终点B ,连结PQ ;过点P 作PD ⊥AC 交AC 于点D ,将APD ∆沿PD 翻折得到'A PD ∆,以'A P 和PB 为邻边作□'A PBE ,'A E 交射线BC 于点F ,交射线PQ 于点G .设□'A PBE 与四边形PDCQ 重叠部分图形的面积为S cm 2,点P 的运动时间为t s . (1)当t 为何值时,点'A 与点C 重合; (2)用含t 的代数式表示QF 的长; (3)求S 与t 的函数关系式;(4)请直接写出当射线PQ 将□'A PBE 分成的两部分图形的面积之比是1:3时t 的值. (第24题)E(图①) (第232014年初中毕业生学业考试模拟试题(一)·数学答案一、选择题(每小题3分,共24分)1.C 2.A 3.B 4.B 5.A 6.D 7.D 8.C二、填空题(每小题3分,共18分)9.1 10.(2a +4) 11.30 12.6 13.223y x x =-++ 14. 4 三、解答题(本大题10小题,共78分) 15.解:原式=1)2()1)(1(-⋅+-+x xx x x x (3分) =21++x x . (5分) 16.列表法.4分)树状图略 P (两次抽取的卡片都是A )=19(6分) 17.解:设原来每天加工零件x 个. (1分)根据题意,得40160132.5x x+=. (3分) 解得 8x = (4分) 经检验8x =是原方程的解,且符合题意 . (5分)答:原来每天加工零件8个. (6分)18.解:∵四边形ABCD 是矩形,∴∠D =∠ABC =90°. (2分) ∵AD =DE ,∴∠DAE =∠AED =45°,∴∠EAB =45. (4分) ∵AB =AE , ∴∠ABE =67.5°,∴∠CBE =22.5°. (7分)19.解:如图:过点C 作CD ⊥AD 于点D ,过点B 作BE ⊥CD 于点E .(注:作图正确,不写作法也可得2分) (2分)由题知, AB =DE =1.55,∠CBE =58°. (3分)在Rt CEB △中,sin 58CEBC=°. (4分) sin 58100.858.5CE BC ∴=⨯=·°≈. (6分) 8.5 1.5510.0510.1CD CE ED ∴=+=+=≈m . (7分)58°(第18题)A BD C E20.(1)a =600÷20%=3000. (2分) (2)如图所示: (4分)圆心角的度数为︒=︒⨯723603000600. (6分) (3)15000×40%=6000.答:估计其中坐校车上学的人数约为6000人. (8分) (注:此问不答不扣分)21.解:(1)轿车从乙地返回甲地时的速度为240÷3×1.5=120; (1分)t =240÷120+3=5. (2分) (2)设轿车从乙地返回甲地时y 与x 之间的函数关系式为y =kx +b .则BC =CE ,∠CBE =60°. ∴∠ABE =∠ABC +∠CBE =90°. (7分)在Rt △ABE 中,由勾股定理得AE 2=AB 2+BE 2.又∵BD =AE ,∴BD 2=AB 2+BC 2,∴BD =13 . (9分) 被调查学生上学采用交通方式条形统计图 0200 400 600 800 1000 1200 1400 公共汽车私家车校车步行其它交通方式人数(1)2. (1分) (2)5. (2分) (3)n 2+1. (4分) 应用:(1)解:如图②,过点C 作CD ⊥x 轴于点D ,过点A 作AE ⊥y∴∠ODC =∠AEB =90°,∴∠ABE +∠BAE =90°. ∵∠ABE =∠COB ,且∠COD +∠COB =90°, ∴∠BAE =∠COD . ∵AB =OC ,∴△DCO ≌△EBA , ∴OD =AE ,CD =BE ,∴点C 的坐标为(-n ,1). (8分)(注:写出C 点坐标给2分,求解过程2 其它方法可参考此评分标准.)(2)2.(10分) 24.(1)∵∠ACB =∠APD = 90°,∠A =∠A∴△APD ∽△ABC ∴AD ='A D =4t∴当8t =8,即t =1时,点'A 与点C 重合 (2分) (注:此问直接写出t 的值也可给2分)(2)当点Q 与点F 相遇前,QF =6-9t (3分)当点Q 与点F 相遇前,QF =9t -6 (4分)(3)①如图①,当6-9t =0时,即t =32,点G 、F 、Q 重合 PG ='AA =8t ,过点'A 作'A M PG ⊥于点M ,则'3A M t =∴当0<t ≤32时, 2123821'21t t t M A PG S =∙=∙=②如图②,'88A C t =-,66CF t =-∴当32<t ≤1时, 247242)66)(88(214321)48(32-+-=---∙--∙=t t t t t t t t S③如图③,3(84)4BQ t =-当1<t<2时, 24246)48(432122+-=-∙=t t t S (10分)(注:每段解析式1分,取值范围1分)(4)32,43(12分) 1分)E A'。
2014年九年级数学第一次中考模拟考试试卷及答案
2014年中考第一次模拟考试数学试题本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.∣-4∣的平方根是A.2 B.±2 C.-2 D.不存在2.下列图形中既是中心对称图形,又是轴对称图形的是A.B.C.D.3. 2013年德州市参加学业水平考试的学生人数为43259人,那么数据43259用科学记数法并保留到百位可以表示为A.5⨯D.44.33104.32610⨯⨯B.4⨯C.40.432104.32104.下列说法正确的是A.某工厂质检员检测某批灯泡的使用寿命采用普查法B . 一组数据1,a ,4,4,9的平均数是4,则这组数据的方差是7.6C . 12名同学中有两人的出生月份相同是必然事件D . 一组数据:5,4,3,6,4中,中位数是35.已知点M (1-2m ,1-m )在第一象限,则m 的取值范围在数轴上表示正确的是6. 若反比例函数xky =(k <0)的图象上有两点1P (2,1y )和2P (3,2y ),那么 A .021<<y y B .021>>y y C .012<<y y D .012>>y y 7. 下列命题中,正确的是A .平分弦的直径垂直于弦B .对角线相等的平行四边形是正方形C .对角线互相垂直的四边形是菱形D .三角形的一条中线能将三角形分成面积相等的两部分 8.直线y =2x 经过平移可以得到直线y =2x -2的是A .向左平移1个单位B .向左平移2个单位C .向右平移1个单位D .向上平移2个单位9.如图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠DHF 的度数是A .35°B .50°C .65°D .75°10.有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为A .12 B .13 C .23 D .5911.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x =1,点A 坐标为(-1,0).则下面的四个结论:①2a +b =0;②4a +2b +c >0 ③B 点坐标为(4,0);④当x <-1时,y >0.其中正确的是10 0.510 0.510.5 10 0.5A . B . C . D .A BCD 图aEA .①②B .③④C .①④D .②③12.如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ;把正方形1111A B C D 边长按原法延长一倍得到正方形2222A B C D ;以此进行下去…,则正方形n n n n A B C D 的面积为A.n B .5n C .15n - D .15n +非选择题 (共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13°的值为 .14.设x 1,x 2是方程2x 2+4x -3=0的两个根,则x 12+x 22= .15.新定义:[a ,b ,c ]为函数y =2ax bx c ++ (a ,b ,c 为实数)的“关联数”.若“关联数”为 [m -2,m ,1]的函数为一次函数,则m 的值为 .16.如图,在□ABCD 中,AD =4,AB =8,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 .(结果保留π)17.如图,在等腰直角△ACB 中,∠ACB =90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE =90°,DE 交OC 于点P .有下列结论: ①∠DEO =45°;②△AOD ≌△COE ; ③S 四边形CDOE =12S △ABC ;④2OD OP OC =⋅. ACD 第16题图第17题图A x =1xyBO 第11题图 CB 1B C D AA 1C 1D 1A 2B 2C 2D 2第12题图其中正确的结论序号为.(把你认为正确的都写上)三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)化简求值:22221211x x x xx x x x+÷--++-,其中1x=.19.(本题满分8分)如图,已知矩形OABC的A点在x轴上,C点在y轴上,6=OC,10OA=.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.20.(本题满分8分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据PM2.5检测网的空气质量新标准,从德州市2013年全年每天的PM2.5日均值标准值(单位:微克/立方米)监测数据中随机地抽取25天的数据作为样本,并根据检测数据制作了尚不完整的频数分布表和条形图:空气质量PM2.5日均频频等级 值标准值 数 率 优 0~35 1 0.04 良 35~75 m 0.2 轻度污染 75~150 11 0.44 中度污染 150~200 5 0.2 重度污染 200~300 n a 严重污染大于30010.04(1)求出表中m ,n ,a 的值,并将条形图补充完整;(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;(3)请你结合图表评价一下我市的空气质量情况.21.(本题满分10分)如图,△ABC 中,AB =AC ,作以AB 为直径的⊙O 与边BC 交于点D ,过点D 作⊙O 的切线,分别交AC 、AB 的延长线于点E 、F . (1)求证:EF ⊥AC ;(2)若BF =2,CE =1.2,求⊙O 的半径.第21题图22.(本题满分10分)某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?23.(本题满分10分)如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____度时,图中阴影部分的面积和有最大值是________.24. (本题满分12分)如图,已知抛物线y =x 2+bx +c 经过A (-1, 0)、B (4, 5)两点,过点B 作BC ⊥x 轴,垂足为C . (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果以M 、N 、B 、C 为顶点的四边形是平行四边形,求出点M 的横坐标.图3A BC DEFG图1GAB C DEF图2第23题图 ABO xyC第24题图数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDBAADCDCCB二、填空题:(本大题共5小题,每小题4分,共20分) 13.14.7 15.2 16.12﹣34π 17.①②③④ 三、解答题:(本大题共7小题, 共64分) 18. (本题满分6分)解:原式= 222(1)1(1)1x x x x x x x +⋅--+- =22(1)(1)(1)(1)1x x x x x x x x +⋅-+-+- ………………………2分 = 2111x x x ---= 211x x --= (1)(1)1x x x +---= 1x --, ………………………4分当1x =时,原式= ………………………6分19.(本题满分8分)解:(1)保留痕迹,作图正确.…………3分 (2)过点E 做EF ⊥OA ,垂足为F . ∵矩形OABC 中6=OC ,10OA =, ∴B 点坐标为(10,6). ∴EF =6.…………5分 又∵OE =OA ,∴OF.…………7分 ∴点E 的坐标为(8,6).…………8分 20.(本题满分8分)解:(1)观察频数分布表可知,空气质量为良的频数m =25×0.2=5(天),重度污染的频数n =25-1-5-11-5-1=2(天), 所以重度污染的频率a =2÷25=0.08.…………3分 条形图补充如下:…………5分(2)这25天中空气质量达到优或良的频率为:0.04+0.2=0.24,以此估计该年(365天)空气质量达到优或良的天数为:365×0.24=87.6≈88(天);……7分 (3)结合图表可知我市的空气质量情况主要是轻度污染及其他程度的污染(占76%),空气质量较差. …………8分 21.(本题满分10分)(1)证明:连接OD ,AD .…………1分 ∵EF 是⊙O 的切线, ∴OD ⊥EF .…………2分 又∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC .…………3分 又∵AB =AC , ∴BD =DC .∴OD ∥AC . …………4分 ∴AC ⊥EF . …………5分 (2)解:设⊙O 的半径为x . ∵OD ∥AE ,∴△ODF ∽△AEF .…………7分 ∴OD OF AE AF =,即22 1.222x xx x+=-+. 解得:x =3.∴⊙O 的半径为3. …………10分22.(本题满分10分) 解:(1)由题意得:y =30﹣10x,且0<x ≤90,且x 为10的正整数倍.…………2分 (2)w=(120﹣20+x )(30﹣10x), …………4分整理,得w =﹣110x 2+20x +3000.…………5分(3)w=﹣110x 2+20x +3000=﹣110(x ﹣100)2+4000.…………7分∵110a =-,∴抛物线的开口向下,当x <100时,w 随x 的增大而增大,又0<x ≤90,因而当x =90时,利润最大,此时一天订住的房间数是:30﹣9010=21间,最大利润是:3990元.…………10分答:一天订住21个房间时,宾馆每天利润最大,最大利润为3990元. 23.(本题满分10分)解:(1)证明:在△ABC 与△DFC 中, ∵AC =DC ,∠ACB =∠DCF =90°,BC =FC , ∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等.…………………2分 (2)成立.…………………3分证明:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .∴∠APC =∠DQC =90°.…………………4分 ∵四边形ACDE ,BCFG 均为正方形, ∴AC =CD ,BC =CF ,∠ACP +∠PCD =90°, ∠DCQ +∠PCD =90°. ∴∠ACP =∠DCQ .∴△APC ≌△DQC .(AAS )…………………5分 ∴AP =DQ . 又∵S △ABC =12BC •AP ,S △DFC =12FC •DQ , ∴S △ABC =S △DQC . …………………7分ABC D EFGQPGA B C DEF11(3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍, 若图中阴影部分的面积和的最大值,则三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.…………9分 ∴S 阴影部分面积和=3S △ABC =3×12×3×4=18.………………10分 24.(本题满分12分)解:(1)将A (-1, 0)、B (4, 5)分别代入y =x 2+bx +c ,得10164 5.b c b c -+=⎧⎨++=⎩,解得b =-2,c =-3.∴抛物线的解析式:y =x 2-2x -3.…… 2分 (2)在Rt △BOC 中,OC =4,BC =5. 在Rt △ACB 中,AC =AO +OC =1+4=5, ∴AC =BC .………………4分 ∴ ∠BAC =45°,AB =25552222=+=+BC AC .………………5分如图1,过点O 作OH ⊥AB ,垂足为H . 在Rt △AOH 中,OA =1, ∴AH =OH =OA ×sin45°=1×22=22, ∴BH =AB -AH =52-22=229 在Rt △BOH 中,tan ∠ABO =BH OH =22×292=91.…………7分 (3)直线AB 的解析式为:y =x +1.………8分设点M 的坐标为(x ,x 2-2x -3), 点N 的坐标为(x ,x +1),① 如图2,当点M 在点N 的上方时, 则四边形MNCB 是平行四边形,MN =BC23题图123题图212=5.由MN =(x 2-2x -3)-(x +1)=x 2-2x -3-x -1=x 2-3x -4, 解方程x 2-3x -4=5, 得x =2533+或x =2533-. ……………………10分②如图3,当点M 在点N 的下方时,则四边形NMCB 是平行四边形,NM =BC =5. 由MN =(x +1)-(x 2-2x -3) =x +1-x 2+2x +3=-x 2+3x +4, 解方程-x 2+3x +4=5, 得x =253+或x =253-. 所以符合题意的点M 有4个,其横坐标分别为:2533+,2533-,253+,253-.……………12分MN N23题图3。
鞍山市2014届九年级数学第一次模拟考试试题及答案扫描版
鞍山市2014年九年级第一次质量检测数学参考答案及评分标准一、选择题(每题3分,共24分) A C C B C B C D二、填空题(每题3分,共24分)9、1≥x ; 10、)1)(1(+-a a ;11、12;12、π72;13、 70或40;14、12;15、3245;16、34。
三、(每题8分,共16分)17、21212)1)(1(12)1(22+-=++-+=+--∙++-+x x x x x x x x x x x x (8分)18、(1)设甲工程队每天修路x 米,乙队每天修y 米。
由题意列方程组⎩⎨⎧=+=+700324002y x y x ,(2分)解这个方程组得⎩⎨⎧==100200y x 。
(4分) 答:甲、乙每天分别修路200米和100米。
(2)设甲队最多可以调走m 人,由题意列方程为)200(101210012)100200(85280m -⨯⨯+⨯++⨯=(2分) 解得6=m 。
(4分)答:甲队最多可以调走6人。
四、(每题10分,共20分)19、解:在Rt △BCH 中,∠BCH=2.69,BH=CH2.69tan ∙,(3分) 在Rt △ACH 中,∠ACH=6.62,AH=CH6.62tan ∙,(6分)AB=BH-AH= CH2.69tan ∙- CH6.62tan ∙=CH(2.69tan -6.62tan )(8分) 因为AB=10千米,CH ≈14.(9分)答:此时该集装箱货船与海岸之间距离为14米。
(10分) (1)正确画出图形(4分) (2)π2(3分) (3)21(3分)。
2014年九年级第一次质量预测数学试题卷答题卡(A3版)
以下为非选择题答题区,必须用黑色字迹的钢笔或签字笔在指定的区域内作答,否则答案无效。
21.(10 分) (1)________;
出口
22.(10 分)
G
23.(11 分)
y
F
出口 出口
D C P A B O Q
不
A
D
x
请
出口
M
B
C
E
N
图1
y
要 在
G F
D C P A B O Q x
此 区 域 做
A M B
法律 礼仪 环保 感恩 互助 课程类别
以下为非选择题答题区,必须用黑色字迹的钢笔或签字笔在指定的区域内作答,否则答案无效。
二、填空题(每小题 3 分,共 21 分) 9._______________ 12.______________ 15.______________ 三、解答题(本大题共 8 小题,满分 75 分) 16.(8 分) ________,________________________________; ________,________________________________. 10.________________ 13.________________ 11. ________________ 14.________________
D C
图2
E
N
任 何 标 记 !
2
17.(9 分) (1)________;a=________;m=________;n=________. (2)________.
校本课程报名意向条形统计图
请 注 意 粘 贴 范 围
19.(9 分) (1)________,________________; (2)________.
人教版2014年中考九年级数学模拟试题(四)
2014年九年级数学一轮试题满分:120分 时间:120分钟注意事项:1.本试题分卷Ⅰ和卷Ⅱ两部分,卷Ⅰ为选择题42分;卷Ⅱ为非选择题78分. 2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回. 3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案. 4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共42分)一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的。
)1. -6是6的( ) A .算术平方根 B .倒数 C .绝对值 D .相反数2. PM 2.5是指大气中直径0000025.0≤米的颗粒物,将0.0000025用科学记数法表示为 2.5×10-n (n 是正整数),则n 的值为( ) A .5 B .6 C .7 D .83. 如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A. 10° B. 20° C. 25° D.30°4. 下列运算正确的是( )A .3x 2+4x 2=7x 4B .2x 3∙3x 3=6x 3 C.(a +2) 2=a 2+4 D .x 6÷x 3=x 3 5. 已知xy >0,化简二次根式2x y x -的正确结果为( )A .yB .y -C .y -D .y --6. 化简112+--x x x 的结果是( ) A.x -11 B. x x --112 C. 112--x x D.11-x 7. 如图是某几何体的三视图,则该几何体的体积是( )A. 318B. 354C. 3108D. 32168. 不等式组⎩⎨⎧>+≤-- ,x x x x 3427)1(3的解集是( ) A .-2<x <4 B .x <4或x ≥-2 C .-2≤x <4 D .-2<x ≤49. 在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所 示:A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,410. 如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF ∶S 四边形BDEF 为( )A .3∶4B .1∶2C .2∶3D .1∶310题图 12题图 13题图 11. “服务他人,提升自我”,五一学校积极开展四德教育服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A .16B .15C .25D .3512. 如图,AB 是⊙O 的直径,∠AOC =110°,则∠D=( )A .25°B .35°C .55°D .70° 13. 如图,在平面直角坐标系中,抛物线221x y =经过平移得到抛物线x x y 2212-= ,其对称轴与两段抛物线弧所围成的阴影部分的面积为( )A .2B .4C .8D .1614. 如图,已知A 、B 是反比例函数(0,0)ky k x x=>>上的两点,BC x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O A B C →→→匀速运动,终点为C ,过运动路线上任意一点P 作PM x ⊥轴于M ,PN y ⊥轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )第Ⅱ卷(非选择题 共78分)注意事项:1.请用钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上。
2014年九年级数学第一次中考模拟试卷及答案
2014年4月九年级第一次数学模拟试题及答案一.选择题:(每小题3分,共18分)1.在-6,0,3,8这四个数中,最小的数是( )A . -6B 、0C 、3D 82.下列图形中,是中心对称图形的是( )4.已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如上图所示,则下列结论中,正确的是( )A 、a>0B b<0C c<0D a+b+c>05.为了建设社会主义新农村,我市积极推进“行政村通畅工程”。
张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按完成了两村之间的道路改造。
下面能反映该工程尚未改造的道路里程y (公里)与时间x(天)的函数关系的大致图象是()6.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
将△ADE 沿对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF 。
下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF;④S △FGC =3. 其中正确结论的个数是( ) A 1 B 2 C 、3 D 、48. 如图,已知一次函数kx b +的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A 、1y <;B 、y <0;C 、y >1;D 、y <2二.填空题:(每小题,每小题3分,共27分) 9. 64的立方根是 .10.如图,AB/∥CD ,∠∠C =800,∠CAD =600,则∠BAD 的度数等于 。
11.如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为 。
12.在参加的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,12,11,9.则这组数据的众数是 ,中位数是 ,平均数是 。
2014年郑州市九年级数学第一次质量预测试卷(含参考答案)
新世纪教育网精选资料版权全部@新世纪教育网郑州市 2014 年九年级第一次质量展望数学试题卷2014.1.(满分 120分,考试时间100分钟)一、选择题(此题共8个小题,每题 3分,共 24分)1.1)的相反数是(511C. 5 D .5 A . B .552.网上购物已成为现代人花费的趋向, 2013年天猫“11·11”购物狂欢节创建了一天 350.19亿元的支付宝成交额.此中350.19亿用科学记数法能够表示为()A . 350.19×108B. 3.501 9× 109C.35.019 × 109D. 3.501 9× 10103. 妈妈昨天为小杰制作了一个正方体礼物盒,该礼物盒的六个面上各有一个字,连起来就是“宽容是种美德”,此中“宽”的对面是“是”,“美”的对面是“德”,则它的平面睁开图可能是()宽容宽宽是种容是种美容美种德宽容是美德德是种美德A.B.C.D.4.小华所在的九年级( 1)班共有 50名学生,一次体检丈量了全班学生的身高,由此求得该班学生的均匀身高是 1.65米,而小华的身高是 1.68米,以下说法错误的选项是()A .班上比小华高的学生人数不超出25人B. 1.65米是该班学生身高的均匀水平C.这组身高数据的中位数不必定是 1.65米D.这组身高数据的众数不必定是 1.65米5. 小明在 2013年暑期帮某服饰店买卖T恤衫时发现:在一段时间内,T恤衫按每件 80元销售时,每日销售量是20件,而单价每降低4元,每日就能够多销售8件,已知该 T恤衫进价是每件40元.请问服饰店一天能盈利 1 200元吗?假如设每件降价x元,那么以下所列方程正确的是()A. (80x)(20x) 1 200B. (80x)(202x) 1 200C. (40x)(20x) 1 200D. (40x)(202x) 1 2006. 如图,直线 l上摆有三个正方形 a,b,c,若 a,c的面积分别为10和 8,则 b的面积是()A.16B. 20C. 18D. 24yC P Da bc E第6第7第87.如手的表示,在各个手指字母A, B, C,D .你按中箭所指方向(即A→B→ C→ D→ C→ B→ A→ B→ C→⋯的方式)从A开始数的正整数1,2,3,4,⋯,当字母 B第 2 014次出,恰巧数到的数是()A.4 028B.6 042C.8 056D.12 0848.如,一条抛物与 x订交于 A, B两点,其点 P在折 CD - DE上移,若点 C, D, E的坐分( 2, 8), (8, 8) , (8, 2),点 B的横坐的最小0,点 A的横坐的最大()A . 5B. 6C. 7D. 8二、填空(本共7个小,每小3分,共 21分)9. 算16 =_________.10.已知反比率函数 y 6的象点 P(2,a), a=_____________ .x11.《爸爸去哪儿》有一期住宅,一排五套房屋号分1, 2, 3, 4,5.五个家庭每家只好一套房不可以重复,Kimi 和王代表各自家庭房,他的住宅号相的概率是___________.12.如,半径 5的⊙ A点 C(0, 5)和点 O(0, 0), B是 y右⊙ A弧上一点,∠ OBC的正弦___________.yCAOxB13.数学的美无不在,数学家研究琴弦作声音的音高低取决于弦的度,如三根弦之比15: 12: 10,把它得一,用同的力度,它将分出很和的声: do、mi 、 so,研究 15, 12, 10三个数的倒数:1111121510,此12我称 15, 12, 10一和数,有一和数:x, 5, 3 (x5),整数 x的___________.14.如,在菱形片 ABCD 中,∠ A=60°.将片折叠,点 A, D分落在点 A′, D′ ,且A′ D′ 点 B, EF 折痕,当 D ′ F⊥ CD,CG_________.BGDyAFEACD xEBOGCA'B D'第 14第 1515. 如 ,在菱形 ABCD 中, 角 AC ,BD 订交于点 O ,AC=6,BD =8,E AD 中点,点 P 在x 上移 . 你写出全部使△POE 等腰三角形的P 点坐 : __________________ .三、解答 (本 共8个小 ,共 75分)÷ a 2 1 a1aba1 ab216. ( 8分)化 :a ,b 代入求 .,并 你喜 的整数小 算 一 的 程以下:解:原式ab ÷(a1)(a 1) a1⋯⋯ ①a 1ab 2aba 1 a1⋯⋯ ②(a 1)(a 1) ab 21⋯⋯ ③ab当a=1, b=1 ,原式 =1.⋯⋯④以上 程有两 ,第一次出 在第_______步(填序号),原由:________________ ;有第 _______步出 (填序号),原由:____________________ .你写出此 的正确解答 程.17. ( 9分)某校有学生 3 600人,在 “文明我先行 ”的活 中,开 了 “法律、礼 、 保、感恩、相助 ”五校本 程, 定每位学生必 且只好 一 . 认识学生的 名意愿,学校随机 了一些学生,并制成以下 表和 :(1)在 次 活 中,学校采纳的 方式是_________(填写 “普 ”或 “抽 ”),a=_________ ; m=_________ ; n=_________.(2) 全条形 ;假如要画一个“校本 程 名意愿扇形 ”,那么 “ 保 ” 校本 程所 的扇形 心角_______度.( 3) 估量 校 3 600名学生中 “感恩 ”校本 程的学生 有多少人.程 数 率法律360. 09校本课程报名意愿条形统计图550. 137 5礼仪人数 /人180160130140120100805549603640200法律礼仪环保感恩相助课程类型环保m a感恩1300. 325相助490. 122 5共计n 1.0018.(9分)礼拜天,小丽和同学们来碧沙岗公园游乐,他们到达 1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们寂然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案丈量纪念碑的高(画出表示图),并说明原由.19. ( 9分)我们知道,关于二次函数y a( xm)2k的图象,可由函数yax2的图象进行向左或向右平移m个单位、再向上或向下平移k个单位获得,我们称函数yax2为“基本函数”,而称由它平移获得的二次函数y a ( x m)2k y ax2的为“基本函数”“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离m2k 2称为朋友距离.如一次函数y2x 5是基本函数y2x的朋友函数,由y2x 5 可化成y 2 (x1) 31个单位,再向下平移3个单位,朋友,于是,朋友路径能够是向右平移距离123210 .(1)研究一:小明同学经过思虑后,为函数y2x5又找到了一条朋友路径:由基本函数y 2 x先向 _____,再向下平移7个单位,相应的朋友距离为_____;4x51 y1 化成yy(2)研究二:将函数x__________ ,使其和它的基本函数x成为朋友函数,并写出朋友路径,求相应的朋友距离.20. ( 9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A观察到∠ PAB=67.5 °,同时,巡逻船B观察到∠ PBA=36.9 °,两巡逻船相距63海里,求此时巡逻3312船 A与落水人 P的距离?(参照数据: sin36.9 ≈°5,tan36.9 °≈4,sin67.5 °≈13,tan67.5 °12≈5)B36.9 °P67.5 °A21.( 10分)某小区有一长 100m,宽 80m的空地,现将其建成花园广场,设计图案如图,暗影地区为绿化区(四块绿化区是全等矩形),空白地区为活动区,且周围出口同样宽,宽度不小于 50m,不大于 60m,估计活动区每平方米造价 60元,绿化区每平方米造价 50 元.设一块绿化区的长边为 x( m).(1)设工程总造价为 y(元),直接写出工程总造价 y(元)与 x( m)的函数关系式:__________________.(2)假如小区投资46.9万元,问可否达成工程任务,若能,请写出x为整数的全部工程方案;若不可以,请说明原由.(参照值3 1.732)出口出口出口出口22.(10分)如图 1,已知正方形 ABCD 在直线 MN 的上方, BC在直线 MN上, E是射线 BC上一点,以 AE为边在直线 MN 的上方作正方形 AEFG .(1)连结 FC ,察看并猜想 tan∠ FCN 的值,并说明原由;(2)如图 2,将图 1中正方形 ABCD 改为矩形 ABCD , AB=m, BC=n( m, n为常数), E 是射线 BC上一动点(不含端点B),以 AE为边在直线 MN 的上方作矩形 AEFG ,使极点G恰巧落在射线 CD上,当点 E沿射线 CN运动时,请用含 m,n的代数式表示 tan∠FCN 的值.GGFFA DA DMB C E N MB C E N图 1图 223.( 11分)如图,已知抛物线 y=ax2+bx+c( a≠ 0)的极点坐标为 Q(- 2, - 1),且与 y轴交于点C(0, 3),与 x轴交于 A, B两点(点 A在点 B的左边),点 P是该抛物线上一动点,从点C沿抛物线向点 A运动(点 P与 A不重合),过点P作PD∥ y轴,交直线 AC于点 D.(1)求该抛物线的函数关系式.(2)当△ ADP 是直角三角形时,求点 P的坐标.(3)在问题( 2)的结论下,若点E在 x轴上,点 F在抛物线上,问能否存在以A, P,E,F为极点的平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请简单说明原由.yCDPA B O xQ新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
2014年九年级中考第一次模拟数学试题及答案
2014年中考网上阅卷适应性测试数 学 试 题(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.︱-12︱等于A . 2B .-2C . 12D .-122.9的立方根是A .3B .39C .3±D .39±3.下列各图中,不是中心对称图形的是A .B .C .D . 4.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b5.函数1y x =+x 的取值范围是A .x ≥-1B .x ≤-1C . x >-1D .x <-1 6.已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A 的值为A . 34B . 43C . 35D . 457.在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则P 点表示的数大于3的概率是A .41B .92C .51D .1128.如图,在平面直角坐标系中,⊙M 和y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.地球上的海洋面积大约为361000000千米2,将361000000这个数用科学记数法表示为 .ab(第4题)QP OMy10.计算:( 2- 3 ) (2+ 3 )= .11.分解因式:22242y xy x +-= .12.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:年龄组13岁14岁 15岁 16岁 参赛人数 5191214则全体参赛选手年龄的中位数是 岁.13.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 14.如图,该图形经过折叠可以围成一个正方体,折好以后,和“静”字相对的字是 .15.已知⊙O 的半径为5厘米,若⊙O ′和⊙O 外切时,圆心距为7厘米,则⊙O ′和⊙O 内切时,圆心距为 厘米.16.如图,△ABC 内接于⊙O ,直径AD=2,∠ABC=30°,则CD 的长度是 . 17.如图,矩形ABCD 中,AB=3cm ,BC=4cm 。
2014届九年级数学中考一模模拟试卷及答案
DBCA 2014年中考调研测试(一)数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。
4.选择题使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共30分) 1.54的相反数是( ) A. 45 B. 45- C. 54 D. 54-2.下列计算正确的是( )A .34x x x +=B .325()x x =C .633x x x ÷=D .2532x x x =⋅3.下列图形中既是轴对称图形又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个 4.图1所示的几何体主视图是( )图1 A. B .C .D .5.将抛物线2)2(3-=x y 向左平移3个单位得到的抛物线的解析式是( ) A.2)5(3-=x y B.3)2(32+-=x y C.2)1(3+=x y D.3)2(32--=x y6.一个不透明的袋子里有5个红球和3个黄球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是黄球的概率是( )A.15 B. 31 C. 38 D. 587.已知反比例数3k y x+=的图象在每一象限内y 随x 的增大而增大,则k 的取值范围是( )A. k>3B. k<-3C. k>-3D. k<38.如图,Rt △ABC 中,∠ACB=90º,CD ⊥AB ,BC=3,AC=4, tan ∠BCD 等于( )A.34 B. 43 C. 35 D. 459.如图,矩形ABCD 中,两条对角线相交于点O ,折叠矩形,第8题图 EOA DE DACBAFEACBDx y (时)(千米)4207CO A B ED 使顶点D 与对角线交点O 重合,折痕为CE ,已知△CDE 的 周长是10cm,则矩形ABCD 的周长为( )A. 15cmB. 18cmC. 19cmD. 20cm10.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y (千米)与所用的时间x (时)的关系如图所示,下列说法正确的有 ( )①快车返回的速度为140千米/时 ②慢车的速度为70千米/时 ③出发314小时时,快慢两车距各自出发地的路程相等④快慢两车出发错误!未找到引用源。
2014一模数学答案
2014年九年级第一次模拟考试数学试题参考答案及评分标准一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分,共42分.)二、填空题(每小题3分,共12分) 17.x ≥-1; 18.(-2,1); 19.31003100-; 20.95 .三、解答题(本大题共6个小题;共66分) 21.解:原式=2(1)(1)(1)1(1)x x x x x x x -+-⋅=+- ··········································································· 4分 2320,(2)(1)0x x x x -+=∴--= ····································································· 5分 1,x ∴=或 2.x = ····································································································· 7分当1x =时,2(1)0,x -=分式22121x x x --+无意义.∴原式的值为2. ······································································································ 9分 22.解:(1)1500÷24%=6250 ,6250×7.6%=475所以经济适用房的套数有475套;…………………………………………………………2分 补全图略………………………………………………………………………………………3分 (2)老王被摇中的概率为:; ………………………………………………………………5分(3)设2014~2015这两年新开工廉租房的套数的年平均增长率为x因为2012年廉租房共有6250×8%=500(套)所以依题意,得 500(1+x )2=720………………7分 解这个方程得,x 1=0.2,x 2=﹣2.2(不合题意,舍去)……………………………………………9分 答:这两年新开工廉租房的套数的年平均增长率为20%.………………………………………10分 23.解:(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩,……………………………………………………3分∴y 与x 的函数关系式为60120y x =-.……………………………………………………4分 (2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240),∴两车在途中第二次相遇时,它们距出发地的路程为240千米.…………………………6分(3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩,∴y 与x 的函数关系式为120480y x =-.………………………………………………7分 ∴当 4.5x =时,120 4.548060y =⨯-=.………………………………………………8分∴点B 的纵坐标为60,AB 表示因故停车检修,∴交点P 的纵坐标为60.把60y =代入60120y x =-中,有6060120x =-,解得3x =,∴交点P 的坐标为(3,60).………………………………………………………………9分 交点P 表示第一次相遇,∴乙车出发1h ,两车在途中第一次相遇…………………………………………………………10分 24.解:(1)过点A 作AC ⊥OB 于点C .………………………………………………………………1分由题意,得OA =千米,OB =20千米,∠AOC =30°.∴(千米).……………………………………………………………2分∵在Rt △AOC 中,OC =OA •cos ∠AOC ==30(千米).∴BC =OC ﹣OB =30﹣20=10(千米).………………………………………………………………4分 ∴在Rt △ABC 中,==20(千米).………………………5分∴轮船航行的速度为:(千米/时).……………………………………6分(2)如果该轮船不改变航向继续航行,不能行至码头MN 靠岸. 理由:延长AB 交l 于点D . ∵AB =OB =20(千米),∠AOC =30°.∴∠OAB =∠AOC =30°,…………………………………………………………………………………8分 ∴∠OBD =∠OAB +∠AOC =60°.…………………………………9分 ∴在Rt △BOD 中,OD =OB •tan ∠OBD =20×tan60°=(千米).……………………10分∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN 靠岸. ……………………………11分 25.解:(1)依题意B (3,0);C (0,3)分别代入y =x 2+bx +c ··································· 1分解方程组得所求解析式为223y x x =-- ····································································· 4分 (2)2223(1)4y x x x =--=-- ······················································································· 5分∴顶点坐标(14)-,,对称轴1x = ··················································································· 7分 (3)设圆半径为r ,当MN 在x 轴下方时,N 点坐标为(1)r r +-, ································ 8分把N 点代入223y x x =--得12r -=····························································· 10分当MN 在x 轴上方时,同理可得r =∴ ··············································································· 12分26.解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ;∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°;∴∠DEF=∠EQC;∴CE=CQ;……………………………………………………………………………………2分由题意知:CE=t,BP=2t,∴CQ=t;∴AQ=8﹣t;………………………………………………………………3分在Rt△ABC中,由勾股定理得:AB=10cm;则AP=10﹣2t;…………………………………………………………………………………4分∴10﹣2t=8﹣t;解得:t=2;答:当t=2s时,点A在线段PQ的垂直平分线上;……………………………………………5分(2)过P作PM⊥BE,交BE于M∴∠BMP=90°;在Rt△ABC和Rt△BPM中,,∴;∴PM=;…………………………………………………………………………6分∵BC=6cm,CE=t,∴BE=6﹣t;……………………………………………………………………7分∴y=S△ABC﹣S△BPE=﹣=﹣==;………………………………………………………8分∵,∴抛物线开口向上;∴当t=3时,y最小=;………………………………………………………………………………9分答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;过P作PN⊥AC,交AC于N∴∠ANP=∠ACB=∠PNQ=90°;∵∠P AN=∠BAC,∴△P AN∽△BAC;∴;∴;∴,;……………………………………………………………………10分∵NQ=AQ﹣AN,∴NQ=8﹣t﹣()=…………………………………………11分∵∠ACB=90°,B、C、E、F在同一条直线上,∴∠QCF=90°,∠QCF=∠PNQ;∵∠FQC=∠PQN,∴△QCF∽△QNP;∴,∴;…………………………………………………………………………12分∵0<t<4.5,∴;解得:t=1;……………………………………………………13分答:当t=1s,点P、Q、F三点在同一条直线上.…………………14分(注:也可以由△QCF∽△PMF 求得)。
2014年九年级第一次模拟考试数学参考答案
20. 解:过点A 作AC ⊥OB 于点C , ……1分 依题意得 ∠1=30°,∠2=45°,OB =20海里 …2分 设AC =x 海里,则BC =AC =x 海里, ……3分在Rt △AOC 中,tan ∠1=OCAC, ……4分∴tan30°=3120=+x x , ……5分 解得()≈+=-=13101320x 27.32, ……6分 ∴AC ≈27.32海里>25海里 ……7分 ∴该船没有触礁的危险. ……8分 21. 解:⑴列表:1 2 3 5 1 1 2 3 5 2 2 4 6 10 336915所以P (奇)=21126= …………6分(列表4分,算出概率2分) ⑵由表格得P (偶)=21126=,所以P (奇)=P (偶),……7分(缺概率相等扣1分) 所以游戏规则对双方是公平的. ……8分22. 证明:(1)∵BE ⊥AC 于E ,DF ⊥AC 于F , ∴∠1=∠2=90°, ……1分 ∵点O 是EF 的中点,∴OE =OF ……2分 在△BOE 和△DOF 中⎪⎩⎪⎨⎧∠=∠=∠=∠4321OF OE ……3分 ∴△BOE ≌△DOF (ASA ) ……4分 解:(2)四边形ABCD 是矩形,理由如下: ……5分 由(1)知△BOE ≌△DOF ,∴OB =OC , ∵点O 既是AC 的中点,∴OA =OC ,∴四边形ABCD 是平行四边形, ……6分 ∵OA =21BD ,∴AC =2OA =BD , ……7分 ∴□ABCD 是矩形. ……8分20x xCO B12东北45︒60︒A4312O FABCDE25.解:(1)易得A (0,2),B (4,0)……1分∴⎩⎨⎧=++-=04422c b c ,解得⎪⎩⎪⎨⎧==272b c ……2分 ∴2272++-=x x y ……3分 (2)由题意易得217(,2),(,2)22M t t N t t t -+-++ …… 4分22712(2)422MN t t t t t =-++--+=-+从而设△ABN 的面积为S ,则()()822442122+--=⨯+-=t t t S ……5分当t =2时,S min =8 ……6 分 (3)由题意可知,D 的可能位置有如图三种情形. 当D 在y 轴上时,设D 的坐标为(0,a ) 由AD =MN 得1224,6,2a a a -===-解得,从而D 为(0,6)或D (0,-2) ……7分 当D 不在y 轴上时,由图可知12D D N D M 为与的交点 易得126,2D N x D x +-13的方程为y=-M 的方程为y=22……8分 由两方程联立解得D 为(4,4) ……9分 故所求的D 为(0,6),(0,-2)或(4,4)(本问给分重点看学生解题思路及结果)本答案仅供参考,其他解法酌情给分。
【精选资料】九年级数学第一次质量检测
2014年九年级数学第一次质量检测(一模)一、选择题(本大题共有8小题,每小题3分,共24分)1.﹣4的倒数是()A .﹣4 B.4 C.D.2.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A .1 B.2 C.3 D.43.计算2a32A .2a5B.5a6C.6a5D.6a6A .B.C.D.5.如图,AB∥CD,AD、BC交于O点,∠BAD=35°,∠BOD=75°,则∠C的度数是()A .30°B.40°C.50°D.45°6.一组数据3、4、3、3、4、7的平均数、中位数分别为()A .4、4 B.4、3.5 C.3.5、3 D.3.5、47.一个不透明的布袋中有10个大小形状质地完全相同的小球,从中随机摸出1球恰是黄球的概率A .2 B.5 C.8 D.108.如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()二、填空题(本大题共有10小题,每小题3分,共30分)9.因式分解:y3﹣4y= _________.10.当a<2时,化简= _________.11.已知∠α=80°,则α的补角等于_________.12.中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固翼飞机的航空母舰,满载排水量为67500吨,这个数据67500用科学记数法表示为6.75×10n(n是正整数),则n的值等于_________.13.如图,在梯形ABCD中,AD∥BC,点E在AB上,点F在CD上,EF为中位线,EF与BD 交于点O,若FO﹣EO=5,则BC﹣AD= _________.14.已知+|a+b+1|=0,则a﹣b的值等于_________.15.若两圆的半径分别为5和3,圆心距为6,则两圆位置关系是_________.16.已知x﹣=1,则x2+= _________.17.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最小值为_________.18.如图,在直角坐标系xOy中,直线L:y=﹣x﹣1,双曲线y=.在L上取点A,过点A1作x 轴的垂线交双曲线于点B1,过点B1作y轴的垂线交L于点A2,再过点A2作x轴的垂线交双曲线于点B2,过点B2作y轴的垂线交L于点A3,…,这样依次得到L上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2014= _________.三、解答题(本大题共有10小题,共86分)19.(1)计算:﹣12014+|﹣2|﹣(π﹣3)0;(2)解不等式组:.20.(1)解分式方程:﹣1=;(2)化简求值:(a﹣)÷.(选取一个合适的a的值代入求值)21.(7分)已知,如图,AC∥DE,AC=DE,BE=CF,求证:∠B=∠F.22.(7分)某校学生会计划在“五•一”前夕举行班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如图所示的两幅不完整的统计图.请根据图①、图②所提供的信息,解答下列问题:(1)本次抽样调查的学生有_________名;(2)请将图②补充完整;(3)若该校共有900名学生,试估计喜欢歌曲C的学生人数?23.(8分)某班45学生协商共建“和谐班委”议案,第一轮无记名方式海选出A、B、C、D四名同学;第二轮A、B、C、D中的2名自由组建“和谐班委”轮回值周,用列表或树状图法解决下列问题:(1)学生A、B获得首次值周的概率是多少?(2)学生A首次不值周的概率是多少?24.(8分)(2014•徐州一模)如图,为测量一座地标性高楼的高度,小明在A点处测得楼顶D 点的仰角为60°,在B点处测得楼顶D点的仰角为30°,A、B、C三点在一条直线上,已知AB=40m,小明的眼睛离地面为1.6m,求楼的高度.25.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.26.(8分)如图,直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)求证:PE=PF.27.(10分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么日均销售多少桶水?28.(10分)在△ABC中,AB=4,BC=6,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△CBC1的面积为3,求△ABA1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按顺时针方向旋转的过程中,点P的对应点是点P1,直接写出线段EP1长度的最大值与最小值.数学参考答案20. (1)由2211-=--x x x 得x(x-2)-(x-1)(x-2)=2(x-1) ………………………2分经检验x=0是原分式方程的根………………………5分(2)(a -a 1)÷1122+++a a a =a 1a 2-·1212+++a a a ………………………1分=a a a )1)(1(-+·2)1(1++a a =a a 1-………………………3分求值时a 不能的取值有0和-1………………………5分21.证:∵AC ∥DE ∴∠BCA=∠FED ………………………2分∵BE=CF ∴BC=FE ………………………4分又∵AC=DE ∴△ABC ≌△DFE ………………………6分 ∴∠B=∠F ………………………7分22.(1)180………………………2分(2)高度为72………………………5分 (3)360人………………………7分 23.(1)列表: …………3分P (AB 首次值周)=61…………6分 (2)P (A 首次不值周)=63=21…………8分24.在Rt △DEF 中 ∵∠DFE=60°∴EF=33DE ………2分 在Rt △DEG 中 ∵∠DGE=30°∴EG=3DE …………4分 ∴GF=EG-EF=3DE-33DE=(3-33)DE又∵GF=AB=403 ∴(3-33)DE=403…………6分 ∴DE=60 ∴DC=DE+EC=60+1.6=61.6即楼的高度为6106米. …………8分25. 解(1)把A (-2,-4)、O (0,0)、B (2,0)三点的坐标代入y=ax 2+bx+c 中,得⎪⎩⎪⎨⎧==++-=+-002442a 4c c b a c b ………2分 解得a=﹣21,b=1,c=0 ∴解析式为y=﹣21x 2+x ………4分 (2)由y=﹣21x 2+x=﹣21(x ﹣1)2+21,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM ∴OM+AM=BM+AM………6分 连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN⊥x 轴于点N ,在Rt△ABN 中,AB=42∴OM+AM 最小值为42………8分26. 解:(1)连接OD∵直线PD 垂直平分⊙O 的半径OA 于点B ,⊙O 的半径为8∴OB=OA=4,BC=BD=12CD ………2分 ∴在Rt △OBD中,BD ∴CD=2BD=4分(2)∵PE 是⊙O 的切线,∴∠PEO=90°∴∠PEF=90°-∠AEO ,∠PFE=∠AFB=90°-∠A ………6分 ∵OE=OA ,∴∠A=∠AEO ,∴∠PEF=∠PFE ,∴PE=PF ………8分27. 设日均销售量p (桶)与销售单价x (元)的函数关系为p=kx+b ,根据题意得⎩⎨⎧=+=+25012500k 7b k b ………2分 解得k=-50,b=850,∴p=-50x+850 ………4分(2)由题意得(x-5)(-50x+850)-250=1350………7分 x 1=9,x 2=13(不合题意,舍去) ………9分当 x=9时,p=-50x+850=400(桶)答:若该经营部希望日均获利1350元,那么日均销售400桶水.………10分28. 解:(1) ∠CC 1A 1 = 60°………2分(2)如图2,由(1)知:△A 1C 1B ≌△ACB.∴A 1B = AB ,BC 1 = BC ,∠A 1BC 1 =∠ABC. ∴∠1 = ∠2,114263A B AB C B BC === ∴ △A 1BA ∽△C 1BC ………4分∴112ΔΔ2439A BA C BCS S ⎛⎫== ⎪⎝⎭. ∵1Δ3C BCS =,∴1Δ43A BA S =. ………6分 (3)在旋转过程中点P 1与线段EB 有三种情况: ①点P 1与线段EB 形成△P 1EB ∴P 1B- EB < P 1E <P 1B+ EB ②点P 1在射线EB 延长线上P 1E=P 1B+ EB21C 1CBA 1A图2③点P 1在射线BE 延长线上P 1E=P 1B- EB ∴P 1B- EB ≤ P 1E ≤P 1B+ EB ………8分在△ABC 中, BC=6,∠ACB=30°∵点P 是线段A C 上的动点∴3≤ P 1B ≤6 又∵BE=21AB=2 ∴P 1B- EB 的最小值为1, P 1B+ EB 的最大值为8∴线段EP 1长度的最大值为8,EP 1长度的最小值1. ………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年九年级第一次质量预测数学备考一、选择题1.-2013的倒数是()A.12013B.12013-C.2013 D.-20132.已知24328a ba b+=⎧⎨+=⎩,则a b+等于()A.3B.83C.2D.1【常考题型】①若分式12xx-+的值为0,则( )A. x=-2B. x=0C. x=1或x=-2D. x=1②3是关于x的方程250x x c-+=的一个根,则这个方程的另一个根是()A.-2B.2C.-5D.63.从《中华人民共和国2011年国民经济和社会发展统计报告》中获悉,前年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示前年我国的国内生产总值为(结果保留两个有效数字)()A.3.9×1013B.4.0×1013C.3.9×105D.4.0×1054.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他是否获奖,只需知道这11名学生决赛得分的()A.中位数B.平均数C.众数D.方差【常考题型】①我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别是()A.2,28 B.3,29 C.2,29 D.3,28②下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式B.了解郑州市每天的流动人口数,采用抽样调查方式C.了解郑州市居民日平均用水量,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式③为了了解郑州市2013年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A.150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.郑州市2013年中考数学成绩5.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕点O顺时针旋转105°至OA B C'''的位置,则点B'的坐标为()A.B.(C.(2,-2) D.(-2,2)x第①题图第②题图【常考题型】①如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+②如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4B.8C.16D.6.如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.【常考题型】①如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为()A.5B.6C.7D.8第①题图第②题图②一个几何体的三视图如图所示,其中主视图和左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为()主视图左视图A .2πB .12π C .4π D .8π7. 将不等式组841163x x x x+<-⎧⎨≤-⎩的解集在数轴上表示出来,正确的是( )D .C .B .A .8. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )A .CM =DMB .⌒CB=⌒BD C .∠ACD =∠ADCD .OM =MB二、 填空题9. 2的平方根是________.10. 如图,直线l ∥m ,将含有45°角的直角三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为 . 11. 已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是 . 【常考题型】① 在同一平面直角坐标系内,将函数1422++=x x y 的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1个单位长度,得到图象的顶点坐标是 .② 在正比例函数y =-3mx 中,函数y 的值随x 的值的增大而增大,则P (m ,5)在第 象限.12. 郑州小商品城博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是 . 【常考题型】① 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为______.13. 如图,点A 在反比例函数y =xk第一象限的图象上,AB 垂直y 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.ADEFC B第13题图 第14题图 第15题图14. 如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分的面积是 .21l mBCA15.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.【常考题型】①如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是 .QBA第①题图第②题图②如图,在△ABC中,∠ABC=90°,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、解答题16.先化简22444()2x xxx x x-+÷--,然后从x<<x的值代入求值.17.如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.FD BCA18.省教育厅决定在全省中小学开展以“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.其他14%骑自行车 20%步行m乘公交车40%行车交车(1)m= %,这次共抽取名学生进行调查,并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示.慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.解读信息(1)甲、乙两地之间的距离为_________km.(2)线段AB的解析式为_______________,线段OC的解析式为_________________.问题解决(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图象.20.如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(结果精确到0.1米,)(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG ⊥CG,问建筑物GH高为多少米?F21. 某电子商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y =-2x +100.(利润=售价-制造成本) (1)写出每月的利润z (万元)与销售单价x (元)之间的函数解析式;(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元 时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?22. 在四边形ABCD 中,对角线AC ,BD 相交于点O ,设锐角∠DOC =α,将△DOC 绕点O 按逆时针方向旋转得到△D′OC′(0°<旋转角<90°),连接AC′,BD′,AC′ 与BD ′ 相交于点M . (1)当四边形ABCD 是矩形时,如图1,请猜想AC′ 与BD ′ 的数量关系以及∠AMB 与α 的大小关系,并证明你的猜想;(2)当四边形ABCD 是平行四边形时,如图2,已知AC =kBD ,请猜想此时AC′ 与BD ′ 的 数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(3)当四边形ABCD 是等腰梯形时,如图3,AD ∥BC ,此时(I )中AC′ 与BD ′ 的数量 关系是否成立?∠AMB 与α的大小关系是否成立?不必证明,直接写出结论.图1D'C'OMDC BA图2D'C'OM DCBA图3D'C'OM DCBA23. 如图,矩形OABC 中,A (6,0)、C (0,、D (0,,射线l 过点D 且与x 轴平行,点P ,Q 分别是l 和x 轴正半轴上的动点,满足∠PQO =60°.(1)①点B 的坐标是 ;②∠CAO = 度;③当点Q 与点A 重合时,点P 的坐标为 .(直接写出答案)(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.。