天津市和平区2017年中考数学专题练习一次函数50题
中考数学《一次函数》专题练习含答案解析
一次函数一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)566.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?一次函数参考答案与试题解析一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【考点】一次函数的应用.【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.【点评】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】一次函数的应用.【专题】压轴题.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.型号A B单个盒子容量(升)23单价(元)56【考点】一次函数的应用.【分析】设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.【解答】解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.6.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.【考点】一次函数的应用.【分析】一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.【解答】解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.【点评】此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【点评】本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB 的函数解析式.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(2)设A文具为x只,则B文具为(100﹣x)只,根据题意列出函数解答即可.【解答】解:(1)设A文具为x只,则B文具为(100﹣x)只,可得:10x+15(100﹣x)=1300,解得:x=40.答:A文具为40只,则B文具为100﹣40=60只;(2)设A文具为x只,则B文具为(100﹣x)只,可得(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.【点评】此题考查一次函数的应用,关键是根据题意列出方程和不等式,根据函数是减函数进行解答.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【考点】一次函数的应用.【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【考点】一次函数的应用.【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.【点评】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.【解答】解:(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意得:,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大.【点评】本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.。
中考数学复习《一次函数》专项练习题-附带有答案
中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。
中考数学《根据实际问题列一次函数表达式》专项练习题及答案
中考数学《根据实际问题列一次函数表达式》专项练习题及答案一、单选题1.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米。
要围成的菜园是如图所示的长方形ABCD。
设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=- 12x+12B.y=-2x+24C.y=2x-24D.y= 12x-122.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+403.某书定价8元,如果一次购买10本以上,超过10本部分打八折,那么付款金额y,与购书数量x之间的函数关系如何,同学们对此展开了讨论:⑴小明说:y与x之间的函数关系为y=6.4x+16;⑴小刚说:y与x之间的函数关系为y=8x;⑴小聪说:y与x之间的函数关系在0≤x≤10时,y=8x;在x>10时,y=6.4x+ 16;⑴小斌说;我认为用下面的列表法也能表示它们之间的关系.购买量/本1234…9101112…付款金额/元8162432…728086.492.8…A.1个B.2个C.3个D.4个4.若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为()A.y=t+2.4B.y=0.5t+1C.y=0.5t+0.3D.y=0.5t-0.35.某超市进了一批优质水果,出售时在进价(进货的价格)的基础上加上一定的利润,其销售数量x(kg)与售价y(元)的关系如表:销售数量x(kg)12345…售价y(元)4+0.58+1.012+1.516+2.020+2.5…A.y=4x+0.5B.y=4+0.5x C.y=4.5x D.y=4+x6.如图,Rt⑴ABC中,⑴C=90°,AC=3,BC=4,点P为AB上的一个动点,过点P作PD⑴AC于点D,PE⑴BC于点E,当点P由A向B移动时,四边形CDPE周长的变化情况是()A.逐渐变大B.逐渐变小C.先变大后变小D.不变7.如图,在等腰⑴ABC中,AB=AC=4cm,⑴B=30°,点P从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若⑴BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.8.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x 之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)9.小明在深圳书城会员日当天购买了一本8折的图书,节约了17.2元,那么这本图书的原价是()A.86元B.68.8元C.18元D.21.5元10.网购一种图书,每册定价40元,另加书价的4%作为快递费,若购书x册,则付款y(元)与x (册)之间的关系式为()A.y=40x+4%x B.y=40.04xC.y=40(1+4%)x D.y=39.96x11.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900﹣30t(t>15)C.y=45t﹣225(t>15)D.y=45t﹣675(t>15)12.若以周长为12长方形的长为自变量x,宽的长度y为x的函数,则它的表达式是()A.y=-x+6(0<x<6)B.y=-x+6(0<x≤3)C.y=-2x+12(0<x<6)D.y=-x+6(3<x<6)二、填空题13.已知等腰三角形的周长为12cm,若底边长为ycm,一腰长为xcm. 则y与x的函数关系式是;自变量x的取值范围是.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为15.把一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为(不需要写出自变量的取值范围).16.某人摆苹果地摊,其卖出的苹果质量x与售价y的关系如下表:质量x/千克12345售价y/元2+0.14+0.26+0.38+0.410+0.5的关系式为.17.用每片长6cm的纸条,重叠1cm粘贴成一条纸带,如图.纸带的长度y(cm)与纸片的张数x 之间的函数关系式是18.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往滨海公园.如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是,因变量是;(2)小明家到滨海公园的路程为km,小明在中心书城逗留的时间为h;(3)小明出发小时后爸爸驾车出发;(4)小明从中心书城到滨海公园的平均速度为km/h,小明爸爸驾车的平均速度为km/h;(5)爸爸驾车经过小时追上小明,他离家路程s与小明离家时间t之间的关系式为.三、综合题19.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x13610…天)日销售量198194188180…(m件)天内每天的销售价格与时间(第时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.20.文具店打算用5000元(全部用完)购进A、B两种类型的计算器进行零售,进价和零售价如下表所示:类型进价(元/个)零售价(元/个)A型计算器5080B型计算器2545若购进A类型的计算器x个,B类型的计算器y个,请解决下列问题.(1)求y与x之间的函数表达式;(2)若A、B两种类型的计算器的进货总数不超过150个,请问文具店如何进货,才能使两种计算器全部卖完后能获得最大利润?21.小张前往某精密仪器产应聘,公司承诺工资待遇如图,进厂后小张发现:加工1件A型零件和3件B型零件需5小时;加工2件A型零件和5件B型零件需9小时.工资待遇:每月工资至少3000元;每天工作8小时,每月工作25天,加工1件A型零件计酬16元,加工1件B型零件计酬12元;月工资=底薪(800元)+计件工资.(1)小张加工1件A型零件和1件B型零件各需要多少小时?(2)若公司规定:小张每月必须加工A、B两种型号的零件,且加工B型的数量不大于A型零件数量的2倍,设小张每月加工A型零件a件,工资总额为W元,请你运用所学知识判断该公司颁布执行此规定后是否违背了工资待遇承诺?22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?23.甲、已两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.设原价购物金额累计为x元( x>0).(1)根据题意,填写下表:(单位:元)原价购物金额累计/元.130300700···甲商场实际购物金额/元104560···乙商场实际购物金额/元130270···()设在甲商场实际购物金额为y甲y乙y甲y关于x的函数解析式;乙(3)根据题意填空:①若在同甲商场和在乙商场实际购物花费金额一样多,则在同一商场所购商品原价金额累计为元;②若在同一商场购物,商品原价购物金额累计为800元,则在甲、乙.两家商场中的商场实际购物花费金少.③若在同一商场实际购物金额为400元,则在甲、乙两家商场中的商场商品原价购物累计金额多.24.学习用品超市出售两种笔记本:小笔记本6元/个,大笔记本10元/个,若一次购买大笔记本不超过20个时,按原价出售,购买数量超过20个时,超过的部分打八折出售;购买小笔记本均按原价出售.(1)写出购买小笔记本的金额y1(单位:元)与购买小笔记本的数量x(单位:个)之间的关系式,并直接写出自变量的取值范围;(2)写出购买大笔记本的金额y2(单位:元)与购买大笔记本的数量x(单位:个)之间的关系式,并直接写出自变量的取值范围;(3)为了奖励表现突出学生,某学年计划到学习用品超市购买这两种笔记本共90个,其中小笔记本的数量不超过大笔记本数量的一半,两种笔记本各买多少个时,总费用最少,最少费用是多少元?参考答案1.【答案】A 2.【答案】C 3.【答案】B 4.【答案】C 5.【答案】C 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】C 12.【答案】D13.【答案】y =−2x +12;3<x <6 14.【答案】y=6+0.3x 15.【答案】y=20-2t 16.【答案】y=2.1x 17.【答案】y=5x+1. 18.【答案】(1)时间;路程(2)30;1.7 (3)2.5 (4)12;30(5)23;s =30t ﹣75(t≥2.5)19.【答案】(1)解:∵m 与x 成一次函数∴设m=kx+b ,将x=1,m=198,x=3,m=194代入,得:{k +b =1983k +b =194解得:{k =−2b =200.所以m 关于x 的一次函数表达式为m=﹣2x+200; (2)解:设销售该产品每天利润为y 元,y 关于x 的函数表达式为:{y =−2x 2+160x +4000(1≤x <50)y =−120x +12000(50≤x ≤90) 当1≤x <50时,y=﹣2x 2+160x+4000=﹣2(x ﹣40)2+7200∵﹣2<0∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000∵﹣120<0∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)解:在该产品销售的过程中,共有46天销售利润不低于5400元.20.【答案】(1)解:根据题意,得50x+25y=5000,∴y关于x的函数表达式为y=−2x+200;(2)解:设获得的总利润为w元,根据题意,得w=(80−50)x+(45−25)(−2x+200)=−10x+ 4000.又∵A、B两种类型的计算器的进货总数不超过150个,∴x+(−2x+200)≤150,解得x≥50,∴在函数w=−10x+4000中,w随x的增大而减小,∴当x=50时,w取最大值,w= 3500,此时y=−2x+200=100.答:当A类型的计算器购进50个,B类型的计算器购进100个时,能获得最大的利润.21.【答案】(1)解:设小张加工1件A型零件需要x小时,加工1件B型零件需要y小时根据题意得{x+3y=52x+5y=9解得{x=2y=1答:小张加工1件A型零件需要2小时,加工1件B型零件需要1小时;(2)解:由题意可得小张每月加工A型零件2a小时,每月加工A型a件,则还可以加工B型零件(8×25−2a)小时,即每月加工B型零件(8×25−2a)件根据题意得W=16a+12×(8×25−2a)+800=−8a+3200∵k=−8<0∴W随a的增大而减小∵8×25−2a⩽2a∴a⩾50∴当a=50时,W取最大值,最大值为−8×50+3200=2800元∵2800<3000∴该公司颁布执行此规定后违背了工资待遇承诺.22.【答案】(1)解:设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据题意得:y=200-4× x 10∴y=−25x+200.(2)解:设每间客房每天的定价增加x元根据题意,得(180+x)(−25x+200)=38400.整理后,得x2-320x+6000=0.解得x1=20,x2=300.当x=20时,x+180=200(元).当x=300时,x+180=480(元).答:这天的每间客房的价格是200元或480元.23.【答案】(1)240;550(2)y甲=0.8x(x>0)当0<x≤200时当x>200时即y乙=0.7x+60(3)①600;②乙;③甲24.【答案】(1)y1=6x(x>0)(2)y2={10x(0<x≤20)8x+40(x>20)(3)解:设购买小笔记本a个,则购买大笔记本(90−a)个,设购买的费用为w元,根据题意得a≤12(90−a)解得a≤30当0<a≤20时,w=6a+10(90−a)=900−4a∵−4<0∴w随着a的增大而减小∴当a=20时,w最小值为900−80=820(元)当20<a≤30时,w=6a+8(90−a)+40=760−2a∵−2<0∴w随着a的增大而减小∴当a=30时,w最小值为760−60=700(元);综上所述,当购买小笔记本30个,则购买大笔记本60个时,总费用最少,最少费用是700元.。
天津市和平区二十一中 2017年八年级数学下册 一次函数图象性质 同步练习题(含答案)
2017年八年级数学下册一次函数图象性质同步练习题一、选择题:1、若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5B.4C.3D.12、对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3) B.它的图象经过第一、二、四象限C.当x>0时,y<0 D.y的值随x值的增大而增大3、若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是( )A.m<0B.m>0C.m<2D.m>24、若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<35、在平面直角坐标系中,点M(a,1)在一次函数y=-x+3图象上,则点N(2a-1,a)所在象限是( )A.一象限B.二象限C.四象限D.不能确定6、已知一次函数y=kx+b,y随着x的增大而增大,且kb>0,则在直角坐标系内它大致图象是()7、关于x的一次函数y=kx+k2+1的图象可能正确的是( )8、如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )9、若正比例函数y=kx的图像如图所示,则一次函数y=kx+k的图像大致是()10、已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为()A. B.5 C.6 D.711、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.412、若A(x1,y1)、B(x2,y2)是一次函数y=ax-3x+5图像上的不同的两个点,记W=(x1-x2)( y1-y2),则当W<0时,a的取值范围是()A.a<0B.a>0C.a<3D.a>3二、填空题:13、已知一次函数y=(m+4)x+2,若y随x的增大而减小,则m的取值范围是.14、已知点A(a,2a﹣3)在一次函数y=x+1的图象上,则a= .15、一次函数y=﹣3x+6的图象不经过象限.16、已知直线y=kx+b经过点(2,3),则4k+2b﹣7= .17、某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,具有一次函数的关系,如下表所示.则y关于x的函数解析式为.(写出自变量取值范围)18、若直线y=kx+b(k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k的值为.19、如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为.■20、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2坐标分别为B1(1,1),B2(3,2),则B8坐标是.三、简答题:21、已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式; (2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.22、已知一次函数y=-2x+4,完成下列问题:(1)求此函数图像与x轴、y轴的交点坐标;(2)画出此函数的图像;观察图像,当0≤y≤4时,x的取值范围是;(3)平移一次函数y=-2x+4的图像后经过点(-3,1),求平移后的函数表达式.23、已知一次函数y=kx+b的图象经过点A(0,3),B(﹣4,0).(1)求此函数的解析式.(2)若点(a,6)在此函数的图象上,求a的值为多少?(3)求原点到直线AB的距离.24、已知直线y=-3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=-3x+6与坐标轴围成的三角形的面积.25、在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x轴、y轴分别交于点A、B,则△OAB为此函数的坐标三角形.(1)求函数y=-x+3的坐标三角形的三条边长;(2)若函数y=-x+b(b>0常数)的坐标三角形周长为16,求此三角形的面积.■26、如图,在平面直角坐标系中,已知一次函数y=0.5x+1的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求边AB的长;(2)求点C,D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.参考答案1、D.2、B3、D4、A5、A6、D7、C8、D9、B 10、C 11、B 12、C 13、答案是:m<﹣4.14、答案是:4.15、答案为:三 16、答案为:﹣1.17、答案为:y=﹣0.2x+50. 18、答案为:±1. 19、答案为:(,).20、答案为:(28﹣1,28﹣1)或(255,128).21、(1)y=3x-9; (2)一次函数;(3)y=-1.5.22、(1)解:当时,∴函数的图像与y轴的交点坐标为(0,4);当时,,解得:,∴函数的图像与x轴的交点坐标(2,0).(2)解:图像略;观察图像,当时,x的取值范围是.(3)解:设平移后的函数表达式为,将(-3,1)代入得:,∴,∴.答:平移后的直线函数表达式为:.23、【解答】解:(1)把A(0,3),B(﹣4,0)代入y=kx+b得,解得.所以一次函数解析式为y=x+3;(2)把(a,6)代入y=x+3得a+3=6,解得a=4;(3)AB==5,设原点到直线AB的距离为h,则•h•5=•3•4,解得h=,所以原点到直线AB的距离为.24、(1)A(2,0),B(0,6);(2)面积为6.25、26、(1);(2)C(-1,3) D(-3,2);(3)M(-2,0).。
天津市和平区2017年中考数学专题练习二次函数50题2
二次函数50题一、选择题:1.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或12.若为二次函数的图象上的三点,则的大小关系是()A. B. C. D.3.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对4.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,FB.E,GC.E,HD.F,G5.已知二次函数y=ax2-1的图象开口向下,则直线y=ax-1经过的象限是( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月7.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.48.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.9.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或510.抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3C.y=3(x+2)2﹣3D.y=3(x-2)2﹣311.已知二次函数y=x2+2x﹣3,当自变量x取m时,对应的函数值小于0,设自变量分别取m﹣4,m+4时对应的函数值为y1,y2,则下列判断正确的是()A.y1<0,y2<0B.y1<0,y2>0C.y1>0,y2<0D.y1>0,y2>012.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-213.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月14.二次函数y=-x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y215.二次函数y=x2﹣4x+5的最小值是( )A.﹣1B.1C.3D.516.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣417.二次函数y=ax2+bx+c(a,bx -1 0 1 3y -1 3 5 3下列结论:①ac<0;②当x>1(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个 B.3个 C.2个 D.1个18.如图,直线y=0.5x+2与y轴交于点A,与直线y=﹣0.5x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=-0.5x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤0.5B.﹣2≤h≤1C.﹣1≤h≤1.5D.﹣1≤h≤0.519.下列函数是二次函数的是( )A.y=2x+1B.y=-2x+1C.y=x2+2D.y=0.5x-220.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+2二、填空题:21.已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点, 则这条抛物线的对称轴是22.二次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为23.对于二次函数,有下列说法:①如果当x≤1时随的增大而减小,则m≥1;②如果它的图象与x轴的两交点的距离是4,则;③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m=-1;④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.其中正确的说法是.24.如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?25.如图,在Rt△ABC中,∠C=90°,AB= 5,AC= 4,则cos A= .ABC26.抛物线y=2(x﹣3)2+3的顶点在象限.27.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.28.如图,点A是抛物线y=x2﹣4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.29.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°,按以下步骤作图:①以点B为圆心,小于AB的长为半径画弧,分别交AB、BC于点M、N;②分别以点M、N为圆心,大于0.5MN的长为半径画弧,两弧相交于点G;③连结BG交AC边于点E,交⊙O于点D,连接CD.则△ABE与△CDE的面积之比为.30.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.31.如图,二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则使y1>y2成立的x的取值范围是__ _.32.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.33.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△PAC为直角三角形时, 点P的坐标是____________________.34.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.35.二次函数y=2(x﹣3)2﹣4的最小值为.36.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 -a-1.其中正确的结论个数有(填序号)37.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.38.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.39.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开口方向,开口大小不一定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).40.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题:41.已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.42.一元二次方程x2+2x-3=0的二根x1,x2(x1< x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式.(2)用配方法求此抛物线的顶点为P对称轴(3)当x取什么值时,y随x增大而减小?43.某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.44.某公司销售A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.45.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.46. 某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?47.如图,二次函数y=﹣x2+bx+c图象(抛物线)与x轴交于A(1,0),且当x=0和x=﹣2时所对应函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.48.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.49.如图,直线y=0.5x﹣2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx﹣2经过A,B,C,点B坐标为(﹣1,0).(1)求抛物线的解析式;(2)若点D是线段AC上一个动点,DE⊥AC,交直线AC下方的抛物线于点E,EG⊥x轴于点G,交AC于点F,请求出DF长的最大值;(3)设抛物线对称轴与x轴相交于点H,点P是射线CH上的一个动点,当△ABP是直角三角形时,请直接写出点P的坐标.50.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连结OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.参考答案1.C2.D3.C4.C5.D6.C7.C8.C9.C10.C11.D12.D13.C14.B15.B16.D17.B18.A19.C20.A21.答案为:(0,6) ; (2,0),(3,0)22.答案为:(1,0),(2,0)、(0,2),23.答案为:①②④.24.答案为:0.8.25.答案为:0.826.答案为:第一.27.答案为:2528.答案为:(2,﹣1)或(2,2).29.答案为0.5.30.答案为:12.5;31.答案为:x<-2或x>832.解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故答案是:﹣3<m<﹣.33.答案为:(3,5)或(3.5,5.5)33.答案为:x=﹣3.34.答案为:﹣4.35.答案为:①③④;36.答案为:x1=4,x2=﹣237.答案为:0.538.答案为:①②④.39.答案为:-1<x<3.40.解:把点(0,2)和(1,﹣1)代入y=x2+bx+c得,解这个方程组得,所以所求二次函数的解析式是y=x2﹣4x+2;因为y=x2﹣4x+2=(x﹣2)2﹣2,所以顶点坐标是(2,﹣2),对称轴是直线x=2.y=0.5(x+1)2 -2 ∴它的顶点坐标为(-1,-2)对称轴为直线x=-1.当y=0时,即0.5(x+3)(x-1)=0解得x1=-3,x2=1.∴x<-3时…当x取什么值时, y随x增大而减小.41.解:(1)∵ ,由抛物线的对称性可知,∴(4,0).∴ 0=16a-4.∴ a.(2)如图所示,过点C作于点E,过点D作于点F.∵ a=,∴ -4.当-1时,m=×-4=-,∴ C(-1,-).∵点C关于原点O的对称点为点D,∴ D(1,).∴ .∴△BCD的面积为15平方米.42.解:(1)根据题意,设销售A种产品所获利润y与销售产品x之间的函数关系式为y=ax2+bx,将(1,1.4)、(3,3.6)代入解析式,得:a+b=1.4,9a+3b=3.6,解得:a=-0.1,b=1.5,∴销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W取得最大值,最大值为6.6万元,答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.44.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.45.解答:解:(1)y=(30-20+x)(180-10x)=-10x2+80x+1800(0≤x≤5,且x为整数);(2)当x=时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;(3))1920=-10x2+80x+1800 , x2-8x+12=0,即(x-2)(x-6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,∴售价为32元时,利润为1920元.46.【解答】解:(1)∵当x=0和x=﹣2时所对应的函数值相等,∴抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,0),∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2存在.连结BC交直线x=﹣1于点D,则DB=DA,∴DC+DA=DC+DB=BC,∴此时DA+DC最小,△ADC的周长最小,当x=0时,y=﹣x2﹣2x+3=3,则C(0,3),设直线BC的解析式为y=kx+m,把B(﹣3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=x+3,当x=﹣1时,y=x+3=2,∴D点坐标为(﹣1,2);(3)作MN∥y轴交BC于N,如图,设M(t,﹣t2﹣2t+3)(﹣3<x<0),则N(t,t+3),S△BCM=S△MNB+S△NMC=•3•MN=(﹣t2﹣2t+3﹣t﹣3)=﹣t2﹣t=﹣(t+)2+,∴当t=﹣时,△MBC的面积的最大值为,此时M点坐标为(﹣,).47.解:(1)设二次函数的解析式为y=a(x+2)(x﹣6)∵图象过点(0,﹣8)∴a=∴二次函数的解析式为y=x2﹣x﹣8;(2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣∴点M的坐标为(2,﹣)∵点C的坐标为(0,﹣8),∴点C关于x轴对称的点C′的坐标为(0,8)∴直线C′M的解析式为:y=﹣x+8令y=0得﹣x+8=0解得:x=∴点K的坐标为(,0);(3)①不存在PQ∥OC,若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,1<t<2∵PQ∥OC,∴△APQ∽△AOC∴∵AP=6﹣3tAQ=18﹣8t,∴∴t=∵t=>2不满足1<t<2;∴不存在PQ∥OC;②分情况讨论如下,情况1:0≤t≤1S=OP•OQ=×3t×8t=12t2;情况2:1<t≤2作QE⊥OA,垂足为E,S=OP•EQ=×3t×=﹣+情况3:2<t<作OF⊥AC,垂足为F,则OF=S=QP•OF=×(24-11t)×=-+;③当0≤t≤1时,S=12t2,函数的最大值是12;当1<t≤2时,S=﹣+,函数的最大值是;当2<t<,S=QP•OF=﹣+,函数的最大值为;∴S0的值为.49.50.解(1)解方程,得,.∵,∴,∴A(-1,-1),B(3,-3).∵抛物线过原点,设抛物线的解析式为.∴解得,.∴抛物线的解析式为.(2)①设直线AB的解析式为.∴解得,. ∴直线AB的解析式为.∴C点坐标为(0,).∵直线OB过点O(0,0),B(3,-3),∴直线OB的解析式为.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设,,(i)当OC=OP时, .解得,(舍去). ∴ P(,). (ii)当OP=PC时,点P在线段OC的中垂线上,∴ (,.(iii)当OC=PC时,由,解得,(舍去). ∴ P(.∴P点坐标为P1(,)或(,或P(.②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(,),D(,).===,∵0<<3,∴当时,S取得最大值为,此时D(,.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A.m<1 B.m>﹣1 C.m>1 D.m<﹣12.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.1253.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°4.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.105.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=47.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°8.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体9.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A.B.C.D.10.下列图形中,阴影部分面积最大的是A.B.C.D.11.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,12C.1,13D.1,2312.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .103 mD .123 m二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .14.若x=2-1, 则x 2+2x+1=__________.15.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.16.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32- 1-12-12132…y…54- 2-94-2-54-74…则2ax bx c 0++=的解为________.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.18.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x,则应列出方程(列出方程,不要求解方程). 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;对于任意实数m ,判断方程①的根的情况,并说明理由.20.(6分)解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 21.(6分)如图,已知在⊙O 中,AB 是⊙O 的直径,AC =8,BC =1.求⊙O 的面积;若D 为⊙O 上一点,且△ABD 为等腰三角形,求CD 的长.22.(8分)如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE=∠C .求证:AE 与⊙O 相切于点A ;若AE ∥BC ,BC=27,AC=22,求AD 的长.23.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.24.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC ∆关于y 轴对称的'''A B C ∆;点'B 的坐标为 .ABC ∆的面积为 .25.(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.26.(12分)如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=> 的图象于点N. ①当n=1时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN≥PM ,结合函数的图象,直接写出n 的取值范围.27.(12分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根,()224241440b ac m m∆=-=--⨯⨯=-<,解得: 1.m>故选C.2.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.3.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.4.C【解析】【分析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.5.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.D【解析】【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.7.C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.8.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.9.D【解析】【分析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D 是正确答案,故本题正确答案为D 选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.10.C【解析】【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .11.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B 、∵12+12=(2)2,是等腰直角三角形,故选项错误;C 、底边上的高是2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D .12.A【解析】过C 作CE ⊥AB ,Rt △ACE 中,∵∠CAD=60°,AC=15m ,∴∠ACE=30°,AE=12AC=12×15=7.5m ,CE=AC•cos30°=15×3=153, ∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m , ∴AB=BE ﹣AE=22.5﹣7.5=15m ,故选A .【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.16【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥; 根据三视图知:该圆锥的母线长为6cm ,底面半径为2cm ,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵-1,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.15.3或1【解析】【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.16.x2=-或1【解析】【分析】由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.【详解】解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),∴此抛物线的对称轴为:直线x=-12,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(-2,0),∴ax2+bx+c=0的解为:x=-2或1.故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.17.﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,。
中考数学《一次函数图像与坐标轴交点问题》专项练习题及答案
中考数学《一次函数图像与坐标轴交点问题》专项练习题及答案一、单选题1.若直线y=k1x+1与y=k2x−4的交点在x轴上,那么k1k2等于()A.4B.-4C.14D.−142.当一次函数y=2x−3的图象在第四象限时,自变量x的取值范围是()A.0<x<32B.x>0C.x<32D.无法确定3.已知在平面直角坐标系中,C是x轴上的点,点A(0,3),B(6,5),则AC+BC的最小值是( )A.10B.8C.6D.2√104.一次函数y = kx + 4的图象与坐标轴围成的三角形的面积为4,则k的值为().A.2B.−2C.±2D.不存在5.一次函数y=2x+6图象与y轴的交点坐标是()A.(-3,0)B.(3,0)C.(0,-6)D.(0,6)6.一次函数y=﹣2x﹣3的图象和性质.叙述正确的是()A.y随x的增大而增大B.与y轴交于点(0,﹣2)C.函数图象不经过第一象限D.与x轴交于点(﹣3,0)7.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则⊙CDE面积的最小值为()A.3.5B.2.5C.2D.1.28.一次函数y=-2x+m的图象经过点P(-2,3),且与x轴、y轴分别交于点A,B,则⊙AOB的面积是()A.B.C.4D.89.直角坐标系中已知两点A(−8,3)B(−4,5)以及动点C(0,n)D(m ,0),当四边形ABCD 的周长最小时,求比值mn .( ) A .−23B .-2C .−32D .-310.将一次函数y =2x +4的图象与坐标轴围成的三角形面积是( )A .4B .5C .6D .711.如图所示,直线 y =k(x −2)+k −1 与x 轴、y 轴分别交于B 、C 两点,且 OB OC =12。
则K 的值为( )A .13B .12C .1D .212.如图,直线y=kx+b 交坐标轴于A (﹣2,0),B (0,3)两点,则不等式kx+b >0的解集是A .x >3B .﹣2<x <3C .x <﹣2D .x >﹣2二、填空题13.一次函数y =x −1的图像向上平移3个单位后与y 轴的交点是 . 14.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为 .15.如图,在平面直角坐标系中,点A ,A 1,A 2,A 3…A n 都在直线1:y = √32x+1上,点B ,B 1,B 2,B 3…B n 都在x 轴上,且AB 1⊙1,B 1A 1⊙x 轴,A 1B 2⊙1,B 2A 2⊙x 轴,则A n 的横坐标为 (用含有n 的代数式表示)。
天津市和平区中考数学专题练习 一次函数50题
一次函数50题一、选择题:1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<03.据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升。
小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x;B.y=5x;C.y=100x;D.y=0.05x+100.4.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,•如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()5.将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()6.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.7.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x的关系式可以写为( )A.y=12-4xB.y=4x-12C.y=12-xD.以上都不对8.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.9.已知一次函数y=kx+5和y=k/x+7,假设k>0且k/<0,则这两个一次函数图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图一次函数y1=ax+b和y2=cx+d在同一坐标系内的图象,则的解中()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<011.函数y=中自变量x的取值范围在数轴上表示正确的是()A. B.C. D.12.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )14.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )15.若式子有意义,则一次函数y=(1-k)x+k-1的图象可能是( )16.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(,)C.(-,-)D.(-,-)17.清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系. 下列说法错误的是()A.清清等公交车时间为3分钟 B.清清步行的速度是80米/分C.公交车的速度是500米/分 D.清清全程的平均速度为290米/分18.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有()个.①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1B.2C.3D.419.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.420.已知关于x的一次函数,其中实数k满足0<k<1,当自变量x在1≤x≤2范围内时,此函数的最大值为( )A.1B.2C.kD.2k-k-1二、填空题:21.为了加强公民节水意识,某市制定了如下用水收费标准:每户每月用水不超过10吨,水价为每顿1.2元;超过10顿时,超过部分按每顿1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式。
中考数学专项复习《一次函数》练习题及答案
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
天津市和平区2017年中考数学专题练习圆50题2
圆50题一、选择题:1.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位2.如图,AB、CD是⊙O的两条弦,连结AD、BC.若∠BCD=70°,则∠BAD的度数为()A.40° B.50° C.60° D.70°3.已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2 B.3 C.4 D.64.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120°D.140°5.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°6.如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB=0.75,则⊙O的半径为( )A.4B.3C.2D.7.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是()A.30cm2B.30πcm2C.60πcm2D.120cm28.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是弧BE的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE9.如图,AB是⊙O的直径,C、D是⊙O上两点,分别连接AC、BC、CD、OD.∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°10.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C半径为()A.2.6B.2.5C.2.4D.2.311.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角12.如图,⊙O 中,弦AB 、CD 相交于点P , 若30A ∠=︒,70APD ∠=︒,则B ∠等于( )A .30︒B .35︒C .40︒D .50︒13.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( ) A .45° B .30° C .75° D .60°14.如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的面积之差为( )A. B. C. D.15.以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A.不能构成三角形B.这个三角形是等腰三角形C.这个三角形是直角三角形D.这个三角形是钝角三角形16.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D,则图中阴影部分的面积是( )A.﹣B.﹣C.﹣D.﹣17.已知圆锥底面半径为5cm ,侧面积为65πcm 2,设圆锥母线与高夹角为θ,如图,则sin θ值为( )A.B. C. D. 第11题 BCAD PO18.如图,△ABC中,∠B=60°,∠ACB=75°,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC于点E、F,若弦EF的最小值为1,则AB的长为().A. B. C. 1.5 D.19.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. 6B.C. 9D.20.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.1.5B.2C.D.二、填空题:21.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是22.如图,直线AB与☉O相切于点A,AC,CD是☉O的两条弦,且CD∥AB,若☉O的半径为2.5,CD=4,则弦AC的长为 .23.如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°则∠ADC的度数为 .24.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.25.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.26.如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).27.如图,AC是⊙O的直径,∠1=46°,∠2=28°,则∠BCD=______.28.如图,小亮将边长为3的正方形铁丝框ABCD变形为正六边形为EFMNPQ(忽略铁丝的粗细),则所得正六边形的面积为.29.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.30.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.31.将面积为32π的半圆围成一个圆锥的侧面,则这个圆锥的底面半径为.32.如图,已知⊙O半径为2,从⊙O外点C作⊙O的切线CA和CB,切点分别为点A和点D,∠ACB=90°,BC=2,则图中阴影部分的面积是.33.若正n边形的一个外角是一个内角的时,此时该正n边形有_________条对称轴.34.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.35.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.36.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.37.如图,是一个隧道的截面,如果路面AB宽为8米,净高CD为8米,那么这个隧道所在圆的半径OA是___________米.38.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.39.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣4k+3与⊙O交于B、C两点,则弦BC 的长的最小值为.40.如图,已知Rt△ABC,∠ACB=90°,∠BAC=30°,BC=2,D为平面内一动点,连接DA、DC,且∠ADC度数始终等于30°,连接BD,则BD的最大值为 .三、解答题:41.如图,已知⊙O的半径长为R=5,弦AB 与弦CD平行,他们之间距离为7,AB=6求:弦CD的长.42.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.43.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C 作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.44.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.45.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.46.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.47.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.(Ⅰ)如图①,若∠OCA=60°,求OD的长;(Ⅱ)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.48.如图1,在直角坐标系xoy中,直线l与x、y轴分别交于点A(4,0)、B(0,16/3)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求证:y轴是⊙G的切线;(2)请求⊙G的半径r,并直接写出点C的坐标;(3)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?49.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.50.如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.参考答案1.B2.D3.B4.D5.C6.C7.C8.B9.A10.D11.C12.C13.D14.B15.C16.A17.B18.B19.C20.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.21.答案为:65°;22.答案为:223.答案为:110°24.答案为:3π.25.答案为:48.26.答案为:80.27.答案为:72°28.答案为:6.29.答案为:130°.30.答案为:431.答案为:4.32.答案为:3.33.答案:534.答案为:3.35.答案为:.36.答案为:π.37.答案:5.38.答案为6.39.答案为:24.40.答案为:;(提示:以AC为半径作⊙O,连接BO并延长,交⊙O于D点,则BD最长)41.答案为:8.42.(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:有(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.43.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=0.5BC=0.5AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.44.【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.45.答案为:∠APB=60°AP=346.【解答】(1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.47.【解答】解:(1)∵AC与⊙O相切,∴∠OAC=90°.∵∠OCA=60°,∴∠AOC=30°.∵OC⊥OB,∴∠AOB=∠AOC+∠BOC=120°.∵OA=OB,∴∠OAB=∠OBA=30°,∴OD=AD,∠DAC=60°∴AD=CD=AC.∵OA=1,∴OD=AC=OA•tan∠AOC=.(2)∵OC⊥OB,∴∠OBE=∠OEB=45°.∵BE∥OA,∴∠AOC=45°,∠ABE=∠OAB,∴OA=AC,∠OAB=∠OBA=22.5°,∴∠ADC=∠AOC+∠OAB=67.5°.∵∠DAC=90°﹣∠OAB=67.5°=∠ADC,∴AC=CD.∵OC==,∴OD=OC﹣CD=﹣1.48.49.解:(1)PD与圆O相切.理由:如图,连接DO并延长交圆于点E,连接AE,∵DE是直径,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵∠PDA=∠ABD=∠AED,∴∠PDA+∠ADE=90°,即PD⊥DO,∴PD与圆O相切于点D;(2)∵tan∠ADB=∴可设AH=3k,则DH=4k,∵PA=AH,∴PA=(4﹣3)k,∴PH=4k,∴在Rt△PDH中,tan∠P==,∴∠P=30°,∠PDH=60°,∵PD⊥DO,∴∠BDE=90°﹣∠PDH=30°,连接BE,则∠DBE=90°,DE=2r=50,∴BD=DE•cos30°=;(3)由(2)知,BH=﹣4k,∴HC=(﹣4k),又∵PD2=PA×PC,∴(8k)2=(4﹣3)k×[4k+(25﹣4k)],解得:k=4﹣3,∴AC=3k+(25﹣4k)=24+7,∴S四边形ABCD=BD•AC=×25×(24+7)=900+.50.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)连接OF,AF,BF,∵DA=DO,CD⊥OA,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=0.5∠AOF=30°(3)过点C作CG⊥BE于点G,由CE=CB,∴EG=0.5BE=5又Rt△ADE∽Rt△CGE∴sin∠ECG=sin∠A=,∴CE==13∴CG==12,又CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE得=∴AD=•CG=4.8∴⊙O的半径为2AD=9.6.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .52.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .3B .5C .23D .25 3.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o4.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C ,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )A.50°B.60°C.70°D.80°5.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.3∶2 D.3∶36.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C.D.7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.8.估计19273⨯-的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣49.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.480480420x x-=-B.480480204x x-=+C.480480420x x-=+D.480480204x x-=-10.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199811.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<212.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.14.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.15.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.16.请写出一个比2大且比4小的无理数:________.17.正五边形的内角和等于______度.18.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(件)62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?20.(6分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.21.(6分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率P 为;该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.22.(8分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =23如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)23.(8分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)24.(10分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?25.(10分)如图,AB是⊙O的直径,»»,连结AC,过点C作直线l∥AB,点P是直线l上的一个动AC BC点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.26.(12分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.27.(12分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02ba-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>, ∴0c >,∴0abc >,故①正确; ②抛物线与x 轴只有一个交点, ∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12ba-=-, ∴2b a =,∴220a a c -++=, ∴2a c =+, ∵22c +>, ∴2a >,故③正确; ④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确; 故选D . 【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想. 2.D 【解析】 【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,==cosA=ADAB ,故选D .3.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.4.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.5.A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°, ∴∠C=∠FDE ,同理可得:∠B=∠DFE ,∠A=DEF , ∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭, 又∵△ABC 为正三角形, ∴∠B=∠C=∠A=60° ∴△EFD 是等边三角形, ∴EF=DE=DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC , ∴△AEF ≌△CDE ≌△BFD , ∴BF=AE=CD ,AF=BD=EC , 在Rt △DEC 中, DE=DC×sin ∠C=2DC ,EC=cos ∠C×DC=12DC ,又∵DC+BD=BC=AC=32DC ,∴232DCDE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比. 6.C 【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2bx a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数cy x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象. 7.C 【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件. 故选C 8.C 【解析】根据二次根式的性质,=﹣然后根据二次根式的估算,由3<<4可知﹣4和﹣3之间. 故选C .点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解. 9.C 【解析】 【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1. 【详解】解:原计划用时为:480x,实际用时为:48020x +.所列方程为:480480420x x -=+, 故选C . 【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 10.B 【解析】 【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.11.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.12.C【解析】【分析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.14.4﹣π【解析】【分析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题15.4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,4. BC==故答案为:4cm.16.π(5或7)【解析】【分析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可【详解】<<,所以x的取值在4~16之间都可,故可填5设无理数为x,4x16【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键17.540【解析】【详解】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3⨯180=540°18.1【解析】【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】【分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y =﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.20.(1)20s;(2)2511 222 y x⎛⎫=+-⎪⎝⎭【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩, 所以抛物线的解析式为y =2x 2+2x ,当y =840时,2x 2+2x =840,解得:x =20(负值舍去),即他需要20s 才能到达终点;(2)∵y =2x 2+2x =2(x+12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x+2+12)2﹣12﹣5=2(x+52)2﹣112. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律. 21.(1)25;(1)35 ;(3)310; 【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P 1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P 1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.22.(1) 当3MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②221【解析】【分析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【详解】(1)当3时,四边形MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=12∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵3∵四边形MCND'是菱形,∴CN=CM,∴CC'=12E'C'=3;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',3∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,22=221AP PD+'.【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P 三点共线时,AP最大.23.(1)这种篮球的标价为每个50元;(2)见解析【解析】【分析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球42000.8x个,在A超市可买篮球42003000.9x+个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得. 【详解】(1)设这种篮球的标价为每个x元,依题意,得420042003005 0.80.9x x+-=,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:20000.950⨯=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24.原计划每天种树40棵.【解析】【分析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案)
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案) 1.蓄电池发展水平是制约新能源汽车发展的关键要素.小明爸爸根据自家电动汽车仪表显示,感觉蓄电池充满电后,用前半部分电量所行驶的路程,总要比用后半部分电量行驶的路程更远一些.于是小明细心观察了充满电后汽车的行驶情况,并将蓄电池剩余电量y(千瓦时)和已行驶路程x(千米)的相关数据,用函数图象表示如下.(1)根据图象,直接写出剩余电量为35千瓦时时,汽车已行驶的路程为千米;(2)求该汽车剩余电量为30千瓦时时,已行驶的路程是多少?(3)根据小明提供的数据,这辆汽车用前半部分电量比用后半部分电量,能多行驶千米.2.如图,l1反映了某品牌手机一天的销售收入与销售量之间的函数关系,l2反映了该品牌手机一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)分别求出l1与l2所对应的函数解析式;(2)当销售量为20部时,该品牌手机所获利润为多少元?(利润=销售收入﹣销售成本)3.为鼓励实习员工工作积极性,某公司提供了两种实习员工月工资方案,方案一如图所示,方案二每生产一件产品25元,实习员工可以任选一种方案与公司签订合同.(1)方案一中,当x≥30时,求月工资y(元)与生产产品x(件)的关系式;(2)某实习员工发现,当月选择方案一比选择方案二月工资多450元,求该实习员工生产产品的件数.4.某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.5.一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是千米,a=;(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)6.2023年,哈尔滨的“冰雪大世界”吸引了众多游客,小明的爸爸将容量为60升的私家车油箱加满后,带着全家从大连自驾到哈尔滨游玩.行驶过程中,车离哈尔滨的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量不超过10升时,车会自动显示加油提醒.设车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出大连到哈尔滨的路程千米;(2)求s关于t的函数表达式;(3)当车显示加油提醒后,问行驶时间t在怎样的范围内车应进站加油?7.2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?8.小强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系.根据记录的数据,画函数图象如图.(1)求乙壶中水温y关于加热时间x的函数解析式;(2)当甲壶中水温刚达到80℃时,求此刻乙壶中水的温度?9.“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.10.洛阳牡丹饼是河南省洛阳市的一道传统小吃,入口酥松绵软,而且具有促进人体代谢,降低胆固醇及防止细胞老化功能,深受老百姓喜爱.刘小姐假期去洛阳游玩,准备回去时带点牡丹饼给家人和朋友品尝.已知甲、乙两家超市都以20元/盒的价格销售同一种牡丹饼,并且同时在做促销活动:甲超市:办理本超市会员卡(卡费50元),食品全部打七折销售;乙超市:购买同种商品超过一定数量后,超过的部分打折销售.活动期间,若刘小姐购买牡丹饼x袋,在甲、乙超市所需费用分别为y1元、y2元,y2与x之间的函数图象如图所示,回答下列问题:(1)分别求出y1、y2与x之间的函数关系式;(2)当x的值为多少时,在两家超市购买的费用一样?(3)若刘小姐准备购买20盒牡丹饼,你认为在哪家超市购买更划算?参考答案1.解:(1)由图象可知,B点表示充满电后行驶150千米时,剩余电量为35千瓦时;故答案为:150;(2)当150≤x≤200时,设y关于x的函数表达式y=kx+b(k≠0),把点(150,35),(200,10)代入得,∴∴y=﹣0.5x+110即当150≤x≤200时,函数表达式为y=﹣0.5x+110当x=30时,﹣0.5x+110=30,解得x=160答:该汽车剩余电量为30千瓦时时,已行驶的路程是160千米;(3)当y=0时,﹣0.5x+110=0,解得x=220160﹣(220﹣160)=100(千米)即这辆汽车用前半部分电量比用后半部分电量,能多行驶100千米.故答案为:100.2.解:(1)设l1所对应的函数解析式为y=k1x(k1为常数,且k1≠0).将坐标(5,1000)代入y=k1x得5k1=1000解得k1=200∴l1所对应的函数解析式为y=200x;设l2所对应的函数解析式为y=k2x+b(k2、b为常数,且k2≠0).将坐标(0,800)和(5,1000)代入y=k2x+b得,解得∴l2所对应的函数解析式为y=40x+800.(2)当x=20时,y=200x=200×20=4000;当x=20时,y=40x+800=40×20+800=1600;4000﹣1600=2400(元)∴销售20部分该品牌的手机获利润为2400元.3.解:(1)方案一中,当x≥30时,设月工资y(元)与生产产品x(件)的关系式为y=kx+b(k ≠0)将A(30,600),(50,1400)代入y=kx+b得:,解得:∴方案一中,当x≥30时,月工资y(元)与生产产品x(件)的关系式为y=40x﹣600;(2)根据题意得:40x﹣600﹣25x=450解得:x=70∴该实习员工生产产品的件数为70件.4.解:(1)由函数图象可得,大巴速度为=40(km/h)∴s=20+40t;当s=100时,100=20+40t解得t=2∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h)设部队官兵在仓库领取物资所用的时间为x h根据题意得:60(2﹣x)=100解得:x=答:部队官兵在仓库领取物资所用的时间为h.5.解:(1)∵80×=60(千米)∴A,B两地之间的距离是60千米;∵货车到达B地填装货物耗时15分钟∴a=+=1故答案为:60,1;(2)设线段FG所在直线的解析式为y=kx+b(k≠0),将F(1,60),G(2,0)代入得:,解得∴线段FG所在直线的函数解析式为y=﹣60x+120;(3)巡逻车速度为60÷(2+)=25(千米/小时)∴线段CD的解析式为y=25x+25×=25x+10(0≤x≤2)当货车第一次追上巡逻车后,80x﹣(25x+10)=15解得x=;当货车返回与巡逻车未相遇时,(﹣60x+120)﹣(25x+10)=15解得x=;当货车返回与巡逻车相遇后,(25x+10)﹣(﹣60x+120)=15解得x=;综上所述,货车出发小时或小时或小时,两车相距15千米.6.解:(1)由图象,得t=0时,s=900工厂离目的地的路程为900千米答:工厂离目的地的路程为900千米;故答案为:900;(2)设s=kt+b(k≠0)将(0,900)和(4,600)代入解得:∴s关于t的函数表达式:s=﹣75t+900(0≤x≤12)答:s关于t的函数表达式:s=﹣75t+900(0≤t≤12);(3)当油箱中剩余油量为10升时s=900﹣(60﹣10)÷0.1=400(千米)∴400=﹣75t+900解得:t=(小时)当油箱中剩余油量为0升时s=900﹣60÷0.1=300(千米)300=﹣75t+900解得:t=8∵k=﹣75<0∴s随t的增大而减小∴t的取值范围为≤t<8.7.解:(1)∵货车的速度是60km/h∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150)设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h)∴货车到达乙地需6h∵s=100t﹣150,s=330解得t=4.8∴两车相差时间为6﹣4.8=1.2(h)∴货车还需要1.2h才能到达即轿车比货车早1.2h到达灾区.8.解:(1)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)代入y=kx+b得,解得∴y=x+20.(2)甲水壶的加热速度为(60﹣20)÷80=℃/s∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷=120s将x=120代入y=x+20得y=65即此刻乙壶中水的温度为65℃.9.解:(1)由图象可得小丽与小明出发30min相遇故答案为:30;(2)①设小丽步行的速度为V1m/min,小明步行的速度为V2m/min,且V2>V1 则,解得:答:小丽步行的速度为80m/min,小明步行的速度为100m/min;②解法一:设点C的坐标为(x,y)则可得方程(100+80)(x﹣30)+80(67.5﹣x)=5400解得x=54,y=(100+80)(54﹣30)=4320m解法二:5400÷100=54,54×80=4320∴点C(54,4320)点C表示:两人出发54min时,小明到达甲地,此时两人相距4320m.10.解:(1)根据题意得:y1=50+20×0.7x=14x+50;当0≤x≤10时,y2=20x;当x>10时,y2=200+(x﹣10)=12x+80;∴y1=14x+50;y2=;(2)当x≤10时,14x+50=20x解得:x=(不符合题意,舍去);当x≥10时,14x+50=12x+80解得:x=15∴x的值为15时,在两家超市购买的费用一样;(3)当x=20时,y1=14×20+50=330,y2=12×20=80=320 ∵330>320∴在乙超市购买更划算.。
中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案
中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案一、单选题1.已知一次函数 y =x +1 和一次函数 y =2x −2 的图象的交点坐标是 (3,4) ,据此可知方程组{x −y =−12x −y =2 的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−32.如图,直线y =kx+b 交x 轴于点A (﹣2,0),直线y =mx+n 交x 轴于点B (5,0),这两条直线相交于点C (2,c ),则关于x 的不等式组 {kx +b <0mx +n >0的解集为( )A .x <5B .1<x <5C .﹣2<x <5D .x <﹣23.用图象法解二元一次方程组{kx −y +b =0x −y +2=0时,小英所画图象如图所示,则方程组的解为( )A .{x =1y =2B .{x =2y =1C .{x =1y =2.5D .{x =1y =34.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组 {2x −y =0x +y =b 的解为( ) A .{x =1y =2B .{x =−1y =2C .{x =1y =−2D .{x =−1y =−25.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组{y =ax +b y =kx的解是( )A .{x =−2y =−4B .{x =−4y =−2C .{x =2y =−4D .{x =−4y =26.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x ﹣y=2的解的是( )A .B .C .D .7.在平面直角坐标系中,直线l 1:y =x+3与直线l 2:y =mx+n 交于点A (﹣1,2),则关于x 、y 的方程组{y =x +3y =mx +n 的解为( ) A .{x =2y =1B .{x =2y =−1C .{x =−1y =2D .{x =−1y =−28.如图,是在同一坐标系内作出的一次函数l 1、l 2的图象,设l 1:y =k 1x+b 1,l 2:y =k 2x+b 2,则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =−2y =2B .{x =−2y =3C .{x =−3y =3D . {x =−3y =49.如图,l 1经过点(0,1.5)和(2,3),l 2经过原点和点(2,3),以两条直线l 1,l 2的交点坐标为解的方程组是( )A .{3x −4y =−63x −2y =0B .{−3x +4y =63x +2y =0C .{3x −4y =63x −2y =0D .{3x −4y =63x +2y =010.直线 y =2x −3 与直线 y =x −1 的交点坐标是( )A .(2,1)B .(4,3)C .(2,−1)D .(−2,1)11.已知直线y=3x ﹣3与y=﹣32x+b 的交点的坐标为(43,a ),则方程组{−3x +y +3=03x +2y −2b =0的解是( )A .{x =43y =−1B .{x =43y =1C .{x =−43y =−1D .{x =−43y =112.如图,已知一次函数y=ax+b 和y=kx 的图象相交于点P ,则根据图象可得二元一次方程组 的解是( )A .{x =−4y =−2B .{x =−2y =−4C .{x =2y =4D .{x =2y =−4二、填空题13.已知方程组{x +y =12x −y =2的解为{x =1y =0,则一次函数y=﹣x+1和y=2x ﹣2的图象的交点坐标为14.如图,直线l 1的解析式是y =2x -1,直线l 2的解析式是y =x +1,则方程组 {x −y =−12x −y =1 的解是 .15.一次函数y =3x -5与y =2x +b 的图象的交点的坐标为P(1,-2),则方程组 {y =3x −5y =2x +b 中b的值为 .16.如图,已知函数y=x ﹣2和y=﹣2x+1的图象交于点P (1,﹣1),根据图象可得方程组{x −y =22x +y =1的解是 .17.已知函数y=2x+1和y=﹣x ﹣2的图象交于点P ,点P 的坐标为(﹣1,﹣1),则方程组{2x −y +1=0x +y +2=0的解为 . 18.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y =kx+b 与y =bx+k 互为交换函数,例如:y =5x+2的交换函数为y =2x+5.一次函数y =kx+2与它的交换函数图象的交点横坐标为 .三、综合题19.如图,在平面直角坐标系中,点O 为坐标原点,直线y =2x ﹣1与直线y = 34 x+ 32交于点A ,过点A 作x 轴的垂线,点B 为垂足,点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上,连接BC .(1)求点A的坐标;(2)求∠CBO的度数.20.如图,在直角坐标系中,直线y=−43x+4与分别于x、y轴交于点A,B,点C在x轴上CD∠AB.垂足为D,交y轴于点E (0,3).(1)求∠AOB的面积;(2)求线段CE的长;(3)求D点的坐标.21.如图,两直线l1:y=−x+4、l2:y=2x+1相交于点P,与x轴分别相交于A、B 两点.(1)求P点的坐标;(2)求S∠PAB.22.一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x ﹣2y=0的解 {x =0y =0 和 {x =2y =1 可以转化为点的坐标A (0,0)和B (2,1).以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象.(1)写出二元一次方程x ﹣2y=0的任意一组解 ,并把它转化为点C 的坐标 ;(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x ﹣2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A 、点B 和点C ,观察它们是否在同一直线上; (3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;(4)根据图象,写出二元一次方程x ﹣2y=0的图象和二元一次方程x+y=3的图象的交点坐标 ,由此可得二元一次方程组 {x −2y =0x +y =3 的解是 .23.如图,直线y 1=kx+b 与坐标轴交于A (0,2),B (m ,0)两点,与直线y 2=-4x+12交于点P (2,n ),直线y 2=-4x+12交x 轴于点C ,交y 轴于点D .(1)求m ,n 值;(2)直接写出方程组{y =kx +b y =−4x +12的解为 ;(3)求∠PBC的面积.24.为便民惠民,树人公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.参考答案1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】B9.【答案】A10.【答案】A11.【答案】B12.【答案】A13.【答案】(1,0)14.【答案】15.【答案】-416.【答案】{x=1y=−117.【答案】{x=−1y=−1 18.【答案】119.【答案】(1)解:由{y=2x−1①y=34x+32②,解得{x=2y=3∴A(2,3);(2)解:过C点作CD∠x轴于D∵A(2,3)∴B (2,0)∵点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上 ∴y =2×(﹣1)﹣1=﹣3 ∴C (﹣1,﹣3) ∴BD =3,CD =3∴∠CBD 的等腰直角三角形 ∴∠CBO =45°.20.【答案】(1)解:∵当x=0时, y =4 ,∴B (0,4)∵当y=0时, x =3 ,∴A (3,0) ∴OA =3,OB =4 ∴S ∠AOB =12×3×4=6 (2)解:∵E (0,3) ∴OE=3 ∴OE=OA∵∠ECO+∠CEO=90°,∠BED+∠DBE=90°,∠CEO=∠BED ∴∠ECO=∠DBE 又∵∠COE=∠BDE=90° ∴∠AOB∠∠EOC (AAS ); ∴OC=OB=4∴Rt∠COE 中,CE =√OC 2+OE 2=√42+32=5 (3)解:由(2)得OC =4,即C (﹣4,0) 设直线CE 的解析式为y=kx+b 把C (﹣4,0),E (0,3)代入得 {−4k +b =0b =3 解得{b =3k =34∴直线CE 解析式为: y =34x +3由题意得方程组 {y =−43x +4y =34x +3解得: {x =1225y =8425 ∴D (1225,8425) .21.【答案】(1)解:联立方程组得: {y =−x +4y =2x +1,解得 {x =1y =3 ,因此 P(1,3) (2)解:在 y =−x +4 中,当 y =0 时, −x +4=0 , x =4 ,在 y =2x +1 中,当 y =0时 2x +1=0 , x =−12 ,∴A (−12,0) ,B (4,0) ,∴AB= |x A −x B |=92∴S ∠PAB = 92⋅|y P |⋅12=92×3×12=27422.【答案】(1){x =−2y =−1;(﹣2,﹣1)(2)解:如图,点A 、点B 和点C 同一直线上(3)二元一次方程x+y=3的两个解为 {x =3y =0 或 {x =0y =3 ,把它们转化成点的坐标为(3,0),(0,3) 如图(4)(2,1);{x =2y =123.【答案】(1)解:把点P (2,n )代入y 2=−4x +12得:n =−8+12=4第 11 页 共 11 ∴P (2,4)把A (0,2),P (2,4)代入y 1=kx +b 得,{b =22k +b =4解得:{k =1b =2∴y 1=x +2把B (m ,0)代入y 1=x +2得:0=m +2解得:m =−2∴m =−2,n =4;(2){x =2y =4(3)解:当y 2=−4x +12=0时解得:x =3∴C (3,0)∵P (2,4),B (-2,0),C (3,0)∴BC=5∴S △PBC =12×5×4=10. 24.【答案】(1)解:由题意得,普通卡:y 1=20x ;贵宾卡:y 2=10x +200; (2)解:令y 1=500得:20x =500,解得:x =25∴点B 坐标为(25,500);令y 2=500得:10x +200=500,解得:x =30∴点C 的坐标为(30,500);联立y 1、y 2得: {y =20x y =10x +200解得: {x =20y =400 ∴点A 的坐标为(20,400);∴A (20,400),B (25,500),C (30,500);(3)解:由图像可知:①当0<x <20时,选择普通卡更合算; ②当x =20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20<x <30时,选择贵宾卡更合算;④当x =30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x >30时,选择至尊卡更合算.。
天津市和平区2017年中考数学专题练习一元二次方程50题2
一元二次方程50题一、选择题:1.已知一次函数y=ax+c图象如图,那么一元二次方程ax2+bx+c=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断2.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b,则的值是()A.7B.-7C.11D.-113.解方程(x+1)(x+3)=5较为合适的方法是( )A.直接开平方法B.配方法C.公式法或配方法D.分解因式法4.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=05.如果关于x的方程x2-4x+m=0有两个不相等的实数根,那么在下列数值中,m可以取的值是 ( )A.3B.5C.6D.86.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )A.a<1B.a>1C.a≤1D.a≥17.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为08.毕业典礼后,九年级(1)班有若干人,若没人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为()A.34B.35C.36D.379.方程x2﹣x﹣1=0的解的情况是()A.有两个不相等的实数根 B.没有实数根10.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2B.m<2C.m>2且m≠1D.m<2且m≠111.满足下列条件的一元二次方程ax2+bx+c=0(a≠0)一定有整数解的是()A.2a+2b+c=0B.4a+2b+c=0C.a=cD.b2﹣4ac=012.若关于的x方程x2+3x+a=0有一个根为-1,则a的值为( )A.-4 B.-2 C.2 D.-413.下列命题是假命题的是()A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根14.若a为方程x2+x-5=0的解,则a2+a+1的值为()A.12B.6C.9D.1615.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是()A. B.x(x﹣1)=90 C. D.x(x+1)=9016.若方程(m-1)x m2+1-(m+1)x-2=0是一元二次方程,则m的值为 ( )A.0B.±1C.1D.-117.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m+n的值是( )A.-10B.10C.-6D.218.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1+x2的值是( )A.1B.5C.-5D.619.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a值是()A.1 B.﹣1 C.1或﹣1 D.220.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10二、填空题:21.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.22.用配方法解一元二次方程x2-6x-10=0:23.方程x2﹣16=0的解为.24.设x1,x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x1+x2= ,m= .25.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是.26.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是_________.27.已知α、β是一元二次方程x 2﹣2x ﹣2=0的两实数根,则代数式(α-2)(β-2)= .28.若方程x 2-2x-1=0的两个根为x 1,x 2,则x 1+x 2-x 1x 2的值为________.29.已知方程x 2+mx +3=0的一个根是1,则它的另一个根是________,m 的值是________.30.一元二次方程x 2﹣8x ﹣1=0的解为 .31.关于x 的方程mx 2+mx+1=0有两个相等的实数根,那么m= .32.制造一种商品,原来每件成本为100元,由于连续两次降低成本,现在的成本是每件81元,则平均每次降低成本的百分数是 .33.若关于x 的二次方程有两个相等的实数根,则实数a=34.若x 2+x+m=(x ﹣3)(x+n )对x 恒成立,则n= .35.如图,将矩形沿图中虚线(其中x >y )剪成①②③④四块图形,用这四块图形恰能拼一个正方形.若y=2,则x 的值等于 .36.设m ,n 分别为一元二次方程x 2+2x ﹣2018=0的两个实数根,则m 2+3m+n= .37.若关于x 的方程(3+a )x 2﹣5x+1=0有实数根,则整数a 的最大值 .38.已知1x 、2x 是一元二次方程03422=--x x 的两实数根,则代数式)3)(3(21--x x =39.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC ;②GP=GD ;③点P 是△ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题:41.化简求值:()÷,其中x的值为x2+2x﹣3=0的解.42.设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个不相等的整数根,求m的值及方程的根.43.关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.44.在国家的宏观调控下,某市的商品房成交价由今年3月分的5000元/m2下降到5月分的4050元/m2(1)问4、5两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.45.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?46.已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.47.已知实数a满足a2+2a﹣15=0,求的值.48.x(元∕件)15 18 20 22 …y(件)250 220 200 180 …(1)试判断y(2)求日销售利润w(元)与销售单价x(元∕件)之间的函数关系式;(3)若规定销售单价不低于15元,且日销售量不少于120件,那么销售单价应定为多少时,每天获得的利润最大?最大利润是多少?49.商场某种商品平均每天可销售30件,每件盈利100元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价2元,商场平均每天可多售出2件,设每件商品降价x (x为偶数)元,据此规律,请回答:(1)降价后,商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商品日盈利可达到4200元?50.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.参考答案1.A2.A3.C4.C5.A6.B7.B8.B9.A10.D11.B12.C13.A14.B15.B16.D17.A18.B19.B20.B21.答案为:-322.答案为:略;23.答案为:x=±4.24.答案为:4 325.答案为:k≤9,且k≠026.答案为:227.答案为:﹣2.28.答案为:329.答案为:3,-430.答案是:x1=4+,x2=4﹣.31.答案为:m=4.32.解:设平均每次降低成本的百分数是x.第一次降价后的价格为:100×(1﹣x),第二次降价后的价格是:100×(1﹣x)×(1﹣x),∴100×(1﹣x)2=81,解得x=0.1或x=1.9,∵0<x<1,∴x=0.1=10%,答:平均每次降低成本的百分数是10%.33.答案为:6或-234.答案为:4.35.答案为:+1.36.答案为:2016.37.答案为:3.38.答案为:1.539.解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵弦CE⊥AB于点F,∴A为的中点,即=,又∵C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为:②③.40.解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.41.原式=•=•=,方程x2+2x﹣3=0,变形得:(x﹣1)(x+3)=0,解得:x=﹣3或x=1,将x=﹣3代入原式==,x=1使原式无意义.42.43.解:∵方程x2﹣(2m﹣1)x+m2+1=0有两个实数根,∴△=[﹣(2m﹣1)]2﹣4(m2+1)=﹣4m﹣3≥0,∴m≤﹣0.75.∵x1,x2是方程x2﹣(2m﹣1)x+m2+1=0的两个根,∴x1+x2=2m﹣1,x1•x2=m2+1,∴x12+x22==x1x2+10,即(2m﹣1)2﹣2(m2+1)=m2+1+10,解得:m=﹣2或m=6(舍去).∴实数m的值为﹣2.44.解:(1)设两月平均每月降价的百分率是x,根据题意得:5000(1﹣x)2=4050,(1﹣x)2=0.9,解得:x1=10%,x2=1.9(不合题意,舍去).(2)不会跌破3000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:4050(1﹣x)2=4050×0.92=3280>3000.由此可知6月份该市的商品房成交均价不会跌破3000元/m2.45.解:(1)当销售单价定为每千克55元时,月销售量为:500﹣(55﹣50)×10=450(千克),所以月销售利润为:(55﹣40)×450=6750元;(2)由于水产品不超过10000÷40=250kg,定价为x元,则(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.当x1=80时,进货500﹣10(80﹣50)=200kg<250kg,符合题意,当x2=60时,进货500﹣10(60﹣50)=400kg>250kg,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.46.(1)证明:k≠0,△=(4k+1)2﹣4k(3k+3)=(2k﹣1)2,∵k是整数,∴k≠,2k﹣1≠0,∴△=(2k﹣1)2>0,∴方程有两个不相等的实数根;(2)解:y是k的函数.解方程得,x==,∴x=3或x=1+,∵k是整数,∴≤1,∴1+≤2<3.又∵x1<x2,∴x1=1+,x2=3,∴y=3﹣(1+)=2﹣.47.48.解:(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则15k+b=250,18k+b=220,解得:k=-10,b=400.故y与x之间的函数关系式为:y=﹣10x+400;(2)日销售利润w(元)与销售单价x(元)之间的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+400)=﹣10x2+500x﹣4000;(3)∵厂商要获得每月不低于120万元的利润,∴﹣10x+400≥120,∴x≤28,∵不低于15元,∴15≤x≤28,w=﹣10x2+500x﹣4000=﹣10(x﹣25)2+2250,故销售单价应定为25元时,每天获得的利润最大,最大利润是2250元.49.解:(1)降价2元,可多售出2件,降价x元,可多售出x件,每件商品盈利的钱数=元,故答案为:x;100﹣x;(2)由题意得:(30+x)=4200,解得:x1=30,x2=40,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴x=40,答:每件商品降价40元,商场日盈利可达4200元.50.(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0代入y=x+3,∴x=﹣3,∴E(﹣3,0),∴OE=3,∴tan∠BEC==,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图1,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图2,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图3,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴sin∠BEO=,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:9【答案】A【解析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OBOB'=,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.4.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO =30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,33) B.(233C.3332) D.(32,333)【答案】A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33,∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=1233,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.5.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.【答案】D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.7.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.6 【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个【答案】C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0,即4a-2b+c <0∵b=-2a ,∴4a+4a+c <0即8a+c <0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 【答案】A【解析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF ,∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.10.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF ,则AG GF的值是()A.43B.54C.65D.76【答案】C【解析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32 a,∴FM=52 a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C .【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本题包括8个小题)11.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.【答案】1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.12.关于x 的一元二次方程(k-1)x 2+6x+k 2-k=0的一个根是0,则k 的值是______.【答案】2.【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2. 所以k 的值是2.故答案为2.13.16的算术平方根是 .【答案】4【解析】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为414.分解因式:a 3-12a 2+36a=______.【答案】a(a-6)2【解析】原式提取a ,再利用完全平方公式分解即可.【详解】原式=a(a 2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.15.若关于x的分式方程2233x mx x-=--有增根,则m的值为_____.【答案】±3【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘x-3,得x-2(x-3)=m2,∵原方程增根为x=3,∴把x=3代入整式方程,得m=±3.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.【答案】1【解析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【点睛】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关 系的合理应用.17.若m+1m =3,则m 2+21m=_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案. 详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m+2=9, 则m 2+21m=7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键. 18.已知654a b c==,且26a b c +-=,则a 的值为__________. 【答案】1【解析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案. 详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x , ∵a+b-2c=6, ∴6x+5x-8x=6, 解得:x=2, 故a=1. 故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键. 三、解答题(本题包括8个小题) 19.先化简:(1111x x --+)÷221x x ,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值. 【答案】22x ,1.【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【详解】原式=1111x x x x +--+-()()()()•112x x x +-+()()=211x x +-()()•112x x x +-+()()=22x +.∵由题意,x不能取1,﹣1,﹣2,∴x取2.当x=2时,原式=22x+=202+=1.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键.20.小明对A,B,C,D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女工20人.所有超市女工占比统计表超市A B C D女工人数占比62.5% 62.5% 50% 75%A超市共有员工多少人?B超市有女工多少人?若从这些女工中随机选出一个,求正好是C超市的概率;现在D超市又招进男、女员工各1人,D超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.【答案】(1)32(人),25(人);(2)13;(3)乙同学,见解析.【解析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.【详解】解:(1)A超市共有员工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B超市有女工:20×54=25(人);(2)C超市有女工:20×64=30(人).四个超市共有女工:20×45634+++=90(人).从这些女工中随机选出一个,正好是C超市的概率为3090=13.(3)乙同学.理由:D超市有女工20×34=15(人),共有员工15÷75%=20(人),再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为1622=811≠75%.【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.【答案】(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:(3)∵140>0,∴y随x的增大而增大.∴x=50时y 取得最大值. 又∵140×50+6000=13000, ∴选择方案③进货时,经销商可获利最大,最大利润是13000元. 【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[求出y 与x 的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【答案】(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++,当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45, 当x=45时,y 最大=-2×452+180×45+2000=6050,当50≤x≤90时,y 随x 的增大而减小, 当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<, 解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤ 所以当20≤x≤60时,即共41天,每天销售利润不低于4800元. 【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.23.已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求:坡顶A 到地面PO 的距离;古塔BC 的高度(结果精确到1米).【答案】 (1)坡顶A 到地面PQ 的距离为10米;()2移动信号发射塔BC 的高度约为19米.【解析】延长BC 交OP 于H.在Rt △APD 中解直角三角形求出AD =10.PD =24.由题意BH =PH.设BC =x.则x+10=24+DH.推出AC =DH =x ﹣14.在Rt △ABC 中.根据tan76°=BCAC,构建方程求出x 即可. 【详解】延长BC 交OP 于H .∵斜坡AP 的坡度为1:2.4, ∴512AD PD =, 设AD =5k,则PD =12k,由勾股定理,得AP =13k, ∴13k =26, 解得k =2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH, ∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=BCAC,即14xx≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:3≈1.7,2≈1.4)【答案】(1)163;(2)此校车在AB路段超速,理由见解析.【解析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC 中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.25.先化简,再求值:22212212x x xxx x x--+÷-+-,其中x=1.【答案】2【解析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,将x 的值代入计算即可求出值.【详解】原式=()()()()21121•21x x x xx x x+--+--=111xx++ -=21 xx-,当x=1时,原式=233 31⨯=-.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.26.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?【答案】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.。
中考数学一次函数的实际应用专题训练(含答案)
中考数学一次函数的实际应用专题训练(含答案)1.一鱼池有一进水管和一出水管,出水管每小时可排出5 m3 的水,进水管每小时可注入3 m3 的水,现鱼池中约有60 m3 的水.(1) 当进水管、出水管同时打开时,请写出鱼池中的水量y ( m3 ) 与打开的时间x ( 小时) 之间的函数关系式;(2) 根据实际情况,鱼池中的水量不得少于40 m3 . 如果管理人员在上午8:00 同时打开两水管,那么最迟不得超过几点,就应关闭两水管?【参考答案】解:(1) 由题意,可知y=60-5x+3x .∴y=60-2x ( 0 ≤x ≤30 );(2)根据题意,得60-2x ≥40,∴x ≤10 .∴最迟应在下午6:00 关闭两水管.2.艺术节期间,我校乐团在曲江音乐厅举行专场音乐会,成人票每张50 元,学生票每张10 元,为了丰富广大师生的业余文化生活,制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90% 付款.我校现有4 名老师与若干名( 不少于4 人) 学生准备去听音乐会.(1) 设学生人数为x (人),付款总金额为y (元),请分别确定两种优惠方案中y 与x 的函数关系式;(2) 你认为哪种方案较节省费用?为什么?【参考答案】解:(1) 按优惠方案1 可得:y1=50 ×4+( x-4 ) ×10=10x+160 ( x ≥4 ),按优惠方案2 可得:y2=(10x+50 ×4) ×90%=9x+180 ( x ≥4 );(2) ∵y1-y2=x-20 ( x ≥4 ),①当y1-y2=0 时,得x-20=0,解得x=20,∴当x=20 时,两种优惠方案付款一样多;②当y1-y2<0 时,得x-20<0,解得x<20,∴当4 ≤x<20 时,y1<y2,选方案1 较划算;③当y1-y2>0 时,得x-20>0,解得x>20,∴当x>20 时,y1>y2,选方案2 较划算.3.某工厂计划生产甲、乙两种产品共2500 吨,每生产1 吨甲产品可获得利润0.3 万元,每生产1 吨乙产品可获得利润0.4 万元,设该工厂生产了甲产品x ( 吨),生产甲、乙两种产品获得的总利润为y ( 万元).(1) 求y 与x 之间的函数表达式;(2) 若每生产1 吨甲产品需要A 原料0.25 吨,每生产1 吨乙产品需要A 原料0.5 吨,受市场影响,该厂能获得的A 原料至多为1000 吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【参考答案】解:(1) y=x ×0.3+( 2500-x ) ×0.4=-0.1x+1000 ( 0 ≤x ≤2500 );(2) 由题意得:x ×0.25+( 2500-x ) ×0.5 ≤1000,解得x ≥1000 .又∵x ≤2500,∴1000 ≤x ≤2500 .∵-0.1<0,∴y 的值随着x 的增加而减小,∴当x=1000 时,y 取最大值,此时生产乙种产品2500-1000=1500 ( 吨).答:工厂生产甲产品1000 吨,乙产品1500 吨时,能获得最大利润.4.随着科技的飞速发展,智能产品慢慢普及到人们的生活,给人们的生活带来极大的便利.智能拖地机也逐渐受到人们的青睐,走进人们的生活.某经销商决定购买甲、乙两种类型的智能拖地机共8 台进行试销.已知一台乙型智能拖地机的价格是一台甲型智能拖地机价格的1.5 倍;购买甲型智能拖地机3 台,乙型智能拖地机2 台,共需6000 元.(1) 求甲、乙两种类型的智能拖地机每台的价格各是多少元;(2)该公司实际购买时,厂家将甲型智能拖地机的价格下调10% 元,乙型智能拖地机的价格不变.设该公司购买甲型智能拖地机x ( 台),购买两种类型的智能拖地机的总费用为y ( 元),求出y 与x 的函数关系式;若要使总费用不超过9500 元,则该公司如何购买才能使总费用最低?【参考答案】解:(1) 设甲型智能拖地机每台的价格是a 元,乙型智能拖地机每台的价格是b 元,答:甲型智能拖地机每台的价格是1000 元,乙型智能拖地机每台的价格是1500 元;(2) 由题知该公司购买甲型智能拖地机x 台,则购买乙型智能拖地机( 8-x ) 台,则根据题意得,y=1000x ×0.9+1500 ( 8-x )=12000-600x,∵y ≤9500,解得x ≥25/6 ,又∵0 ≤x ≤8,∴25/6 ≤x ≤8,∵x 为整数,∴x 可取5,6,7,8,∵-600<0,∴y 随x 的增大而减小,∴当x=8 时,y 值最小,∴y 与x 的函数关系式为y=12000-600x,要使总费用不超过9500 元,且总费用最低,则该公司应购买8 台甲型智能拖地机,0 台乙型智能拖地机.5.延安是中国优秀旅游城市之一,有着“中国革命博物馆城”的美誉.小明和爸爸在节假日准备去延安革命纪念馆游玩,在去高铁站的途中准备网络呼叫专车.据了解,在非高峰期时,某种专车所收取的费用y ( 元) 与行驶里程x ( km ) 之间的函数关系如图所示,请根据图象解答下列问题:(1) 求y 与x 之间的函数关系式;(2) 若专车低速行驶( 时速≤12 km/h),每分钟另加0.4 元的低速费( 不足1 分钟的部分按1 分钟计算).若小明和爸爸在非高峰期乘坐专车,途中低速行驶了6 分钟,共付费32 元,求专车的行驶里程.【参考答案】解:(1)①当0<x<3 时,y=12;②当x ≥3 时,设y 与x 之间的函数关系式为y=kx+b ( k ≠0 ),将点(3,12),(8,23) 代入,∴y=2.2x+5.4,综上所述,y 与x 之间的函数关系式为(2) ∵车费为32 元,∴行驶里程超过3 km,∴由题意得2.2x+5.4+0.4 ×6=32,解得x=11.答:专车的行驶里程为11 km.6.周六上午8 点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家.如图是小颖一家这次行程中距姥姥家的距离y ( 千米) 与他们路途所用的时间x ( 时) 之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB 所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30 分钟时,距姥姥家还有80 千米,问小颖一家当天几点到达姥姥家?【参考答案】解:(1) 设直线AB 所对应的函数关系式为y=kx+b,把(0,320) 和(2,120) 代入y=kx+b,∴直线AB 所对应的函数关系式为y=-100x+320;(2) 设直线CD 所对应的函数关系式为y=mx+n,把(2.5,120) 和(3,80) 代入y=mx+n,∴直线CD 所对应的函数关系式为y=-80x+320,当y=0 时,x=4,∴小颖一家当天12 点到达姥姥家.7.已知A、B 两地之间有一条270 千米的公路,甲、乙两车同时出发,甲车以60 千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止.甲、乙两车相距的路程y ( 千米) 与甲车的行驶时间x ( 时) 之间的函数关系如图所示.(1) 求甲、乙两车相遇后y 与x 之间的函数关系式;(2) 当甲车到达距B 地70 千米处时,求甲、乙两车之间的路程.【参考答案】解:(1) 乙车的速度为( 270-60 ×2 ) ÷2=75 千米/时,a=270 ÷75=3.6,b=270 ÷60=4.5.设甲、乙两车相遇后y 与x 之间的函数关系式为y=kx+m ( k ≠0 ),当2<x ≤3.6 时,斜率k 为两车速度和135,∴y=135x+m,又∵x=2 时,y=0,∴m=-270,∴y=135x-270;当3.6<x ≤4.5 时,斜率k 为甲车速度60,∴y=60x+n,又∵x=4.5 时,y=270,∴n=0,∴y=60x .综上,(2) 甲车距B 地70 千米时,两车行驶的时间为(270-70)/60=10/3 时,∵10/3 >2,∴当x=10/3 时,y=135 ×10/3-270=180.∴当甲车距B 地70 千米时,甲、乙两车之间的路程为180 千米.8.某校计划组织750 名师生外出参加集体活动,经研究,决定租用当地租车公司A、B 两种型号的客车共30 辆作为交通工具.下表是租车公司提供给学校有关这两种型号客车的载客量、租金单价和押金信息:设租用A 型号客车x 辆,租车总费用为y 元.(注:载客量指的是每辆客车最多可载的乘客数)(1) 求y 与x 之间的函数关系式;(2) 若要使租车总费用不超过17500 元,应如何租车才能使总费用最少.【参考答案】解:(1) 由题意,得y=360x+260×(30-x)+8000=100x+15800,∴y 与x 之间的函数关系式为y=100x+15800 ( 0 ≤x ≤30 );(2)∵30x+20(30-x) ≥750,∴x ≥15,∴15 ≤x ≤30,且x 为正整数.由题意得100x+15800 ≤17500,∴x ≤17,∴15 ≤x ≤17,∵在y=100x+15800 中,y 随x 的增大而增大,∴当x=15 时,y 取得最小值,此时30-x=15,∴租用A、B 两种型号客车各15 辆时,总费用最少.9.李大爷有大小相同的土地20 块和现金4000 元,计划2019 年种植水稻和豌豆这两种农作物,预计每块地种植两种农作物的成本、产量及每千克的收益如下表:若李大爷用x 块地种植水稻,一个收获季的纯收益为y 元.(纯收益=收益-成本)(1) 请写出y 与x 之间的函数关系式;(2) 李大爷应如何分配种植土地( 取整数),才能获得最大纯收益?最大纯收益为多少元?【参考答案】解:(1) 若李大爷用x 块地种植水稻,则用( 20-x ) 块地种植豌豆.由题意得,y=(800x ×3-240x)+[200(20-x) ×5-80(20-x)=1240x+18400 ( 0 ≤x ≤20 );(2) 由题意得,240x+80( 20-x ) ≤4000,解得x ≤15.由(1) 中的函数关系式知,y 随x 的增大而增大,∴当x=15 时,y 取得最大值,最大值为1240×15+18400=37000 (元).则20-15=5 (块).答:当李大爷用15 块地种植水稻、5块地种植豌豆时,才能获得最大纯收益,最大纯收益为37000元.。
天津市河北区2017年中考数学《一次函数》复习练习题(含答案)
九年级中考数学复习专题一次函数一、选择题:1、函数中自变量x的取值范围是( )A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12、如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为( )A.y=xB.y= -2x-1C.y=2x-1D.y=-2x+13、若一次函数的图像过第一、三、四象限,则函数( )A.有最大值为B.有最大值为C.有最大值为D. 有最小值为4、一次函数y=﹣2x﹣1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5、点A(a,y1)、B(a+1,y2)都在一次函数y=﹣2x+3的图象上,则y1、y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不确定6、若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为( )A.2B.0C.-2D. ±27、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B. C. D.8、如图,一个蓄水桶,60分钟可将一满桶水放干.其中,水位h(cm)随着放水时间t (分)的变化而变化.h与t的函数的大致图像为()9、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A. B. C. D.10、已知一次函数y=kx+b中,x取不同值时,y对应的值列表如下:x…﹣m2﹣1 2 3 …y…﹣1 0 n2+1 …则不等式kx+b>0(其中k,b,m,n为常数)的解集为( )A.x>2 B.x>3 C.x<2 D.无法确定11、正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示的方式放置,点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知B1(1,1),B2(3,2),则B5的坐标是( )A.(33,32)B.(31,32)C.(33,16)D.(31,16)12、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.813、如图,己知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),A. B. C. D.14、如图,点A的坐标为,点B在直线上运动,当线段AB最短时点B的坐标为()A.B.C.D.(0,0);15、如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,)B.(8,5)C.(4,3)D.(,)二、填空题:16、已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3图象上,则y1,y2大小关系是y1y2.(填>、=或<)17、如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b>4x+2的解集为.18、如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是.19、如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.20、已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4,对任意一个x,m都取y1,y2中较小值,则m最大值是( )A.1B.2C.24D.-921、已知y=(m-2)x是正比例函数,则m= .22、如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.23、如图是一次函数y=px+q与y=mx+n的图像,动点A(x1,y1)、B(x2,y2)分别在这两个一次函数的图像上,下列说法中:①q和n均为正数;②方程px+q=mx+n的解是一个负数;③当x1=x2=-2时,y1>y2;④当y1=y2=2时,x2-x1<3.其中正确的说法的序号有.24、我市某出租车公司收费标准如图,如果小明只有19元钱,那么他乘此出租车最远能到达公里处.25、如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是 .26、如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°, 若点P在x轴上且它到B、C两点的距离之和最小,则P点坐标是.27、在函数中,自变量x的取值范围是__________.28、如图,点A,A1,A2,…都在直线y=x上,点B,B1,B2,B3,…都在x轴上,且△ABB1,△A1B1B2,△A2B2B3,…都是等腰直角三角形,若按如此规律排列下去,已知B(1,0),则A2016的坐标为.29、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.30、如图,己知点是第一象限内横坐标为10的一个定点,轴于点,交直线于点.若点是线段上的一个动点,,且,则点在线段上运动时,点不变,点随之运动.求当点从点运动到点时,点运动的路径长是.31、如图,在平面直角坐标系中,已知点A(0,4),B(﹣3,0),连接A B.将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则点C的坐标为.三、简答题:32、已知y与x﹣2成正比例,当x=3时,y=2.(1)求y与x之间的函数关系式;(2)当﹣2<x<3时,求y的范围.33、新华文具店的某种毛笔每支售价25元,书法练习本每本售价5元,该文具店为促销制定了两种优惠办法. 甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款。
2017年天津市和平区中考数学一模试卷含答案解析
2017年天津市和平区中考数学一模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.cos45°的值等于()A.B.C.D.12.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)3.如图是某体育馆内的颁奖台,其主视图是()A.B.C.D.4.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.15.下列四组图形中,一定相似的图形是()A.各有一个角是30°的两个等腰三角形B.有两边之比都等于2:3的两个三角形C.各有一个角是120°的两个等腰三角形D.各有一个角是直角的两个三角形6.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.B.C.D.7.如图,AB是⊙O的直径,过⊙O上的点作⊙O的切线,交AB的延长线于点D,若∠A=25°,则∠D的大小是()2-1-c-n-j-yA.25°B.40°C.50°D.65°8.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.59.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.10.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1?x2<0 B.x1?x3<0 C.x2?x3<0 D.x1+x2<011.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.若=,则的值为()A.B.C.1 D.12.对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大.②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣2,x2=1.③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题:本大题共6小题,每小题3分,共18分).13.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是14.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.15.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.16.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG 的边长为.17.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF,EG分别交BC,DC于点M,N,若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为.18.如图,是由边长相等的小正方形组成的网格,点A,B,C均在格点上,连接BC.(1)tan∠ABC的值等于;(2)在网格中,用无刻度直尺,画出∠CBD,使tan∠CBD=.三、解答题:本大题共7小题,共66分.解答写出文字说明、证明过程或演算过程.19.解下列方程.(1)x(x﹣2)﹣(x﹣2)=0;(2)x2+x=1.20.已知二次函数y=5x2﹣12x+7.(1)求自变量x=1时的函数值;(2)求该二次函数的图象与x轴公共点的坐标.21.已知,点B是半径OA的中点,过点B作BC⊥OA交⊙O于点C.(1)如图①,若BC=,求⊙O的直径;(2)如图②,点D是上一点,求∠ADC的大小.22.如图,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,桥DC与桥EF的长相等.(1)求点D到直线AB的距离;(2)现在从A地到B地可比原来少走多少路程?(结果保留小数点后一位.参考数据:≈1.41,sin37°≈0.60,cos37°≈0.80).23.某超市在五十天内试销一款成本为40元/间的新型商品,此款商品在第x天的销售量p(件)与销售的天数x的关系为p=120﹣2x,销售单价q(元/件)与x满足:当1≤x<25时,q=x+60;当25≤x≤50时,q=40+.(1)求该超市销售这款商品第x天获得的利润y(元)关于x的函数关系式;(2)这五十天,该超市第几天获得的利润最大?最大利润为多少?24.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D.(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).25.已知抛物线C:y=x2﹣4x.(1)求抛物线C的开口方向、对称轴和顶点坐标;(2)将抛物线C向下平移,得抛物线C′,使抛物线C′的顶点落在直线y=﹣x﹣7上.①求抛物线C′的解析式;②抛物线C′与x轴的交点为A,B(点A在点B的左侧),抛物线C′的对称轴于x轴的交点为N,点M是线段AN上的一点,过点M作直线MF⊥x轴,交抛物线C′于点F,点F关于抛物线对称轴的对称点为D,点P是线段MF上一点,且MP=MF,连接PD,作PE⊥PD交x轴于点E,且PE=PD,求点E的坐标.2017年天津市和平区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.cos45°的值等于()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:cos45°=.故选B.2.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.3.如图是某体育馆内的颁奖台,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从颁奖台正面看所得到的图形为A.故选A.4.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【考点】平行线分线段成比例.【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.5.下列四组图形中,一定相似的图形是()A.各有一个角是30°的两个等腰三角形B.有两边之比都等于2:3的两个三角形C.各有一个角是120°的两个等腰三角形。
天津市和平区汇文中学 2017年八年级数学下册 一次函数 单元测试题
一次函数单元测试题一、选择题:1.下列函数中,是一次函数的有()(1)y=πx;(2)y=2x﹣1;(3)y=;(4)y=2﹣3x;(5)y=x2﹣1.A.4个 B.3个 C.2个 D.1个2.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣13.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限4.已知点A(﹣2,y),B(3,y2)在一次函数y=﹣x﹣2的图象上,则()1A.y1>y2 B.y1<y2 C.y1≤y2 D.y1≥y25.如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-36.已知一次函数y=kx﹣k,y随x的增大而减小,则函数图象不过第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一次函数y=﹣3x+b和y=kx+1的图象如图,其交点为P(3,4),则不等式(3+k)x≥b﹣1的解集在数轴上表示正确的是()A. B.C. D.8.如图,直线l和l2的交点坐标为()1A.(4,﹣2)B.(2,﹣4)C.(﹣4,2)D.(3,﹣1)9.将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()10.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )11.在△ABC中,点O是△ABC的内心,连接OB、OC,过点O作EF∥BC分别交AB、AC于点E、F,已知BC=a(a是常数),设△ABC的周长为y,△AEF的周长为x,在下列图象中,大致表示y与x之间的函数关系的是()A. B. C. D.12.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()二、填空题:13.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.14.条直线经过点(2,﹣1),且与直线y=﹣3x+1平行,则这条直线的解析式为.15.己知一次函数y=kx+5和y=k/x+3,假设k>0,k/<0,则这两个一次函数图象的交点在第象限;16.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为________.17.已知等腰三角形的周长是20cm,求底边长y与腰长x之间的函数关系式,并写出自变量的取值范围。
和平区中考数学专题练习 一次函数50题(2021年整理)
天津市和平区2017年中考数学专题练习一次函数50题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(天津市和平区2017年中考数学专题练习一次函数50题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为天津市和平区2017年中考数学专题练习一次函数50题的全部内容。
一次函数50题一、选择题:1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱 B。
水的温度 C.所晒时间 D。
热水器2。
已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A。
k>1,b<0 B。
k>1,b>0 C.k>0,b>0 D.k>0,b<03。
据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0。
05毫升。
小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A。
y=0。
05x; B.y=5x; C。
y=100x; D。
y=0.05x+100。
4。
如左图是某蓄水池的横断面示意图,分为深水池和浅水池,•如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()5.将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()6。
点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数50题一、选择题:1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<03.据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升。
小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x;B.y=5x;C.y=100x;D.y=0.05x+100.4.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,•如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()5.将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()6.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.7.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x的关系式可以写为( )A.y=12-4xB.y=4x-12C.y=12-xD.以上都不对8.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.9.已知一次函数y=kx+5和y=k/x+7,假设k>0且k/<0,则这两个一次函数图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图一次函数y1=ax+b和y2=cx+d在同一坐标系内的图象,则的解中()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<011.函数y=中自变量x的取值范围在数轴上表示正确的是()A. B.C. D.12.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )14.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )15.若式子有意义,则一次函数y=(1-k)x+k-1的图象可能是( )16.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(,)C.(-,-)D.(-,-)17.清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系. 下列说法错误的是()A.清清等公交车时间为3分钟 B.清清步行的速度是80米/分C.公交车的速度是500米/分 D.清清全程的平均速度为290米/分18.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有()个.①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1B.2C.3D.419.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.420.已知关于x的一次函数,其中实数k满足0<k<1,当自变量x在1≤x≤2范围内时,此函数的最大值为( )A.1B.2C.kD.2k-k-1二、填空题:21.为了加强公民节水意识,某市制定了如下用水收费标准:每户每月用水不超过10吨,水价为每顿1.2元;超过10顿时,超过部分按每顿1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式。
22.函数y=中,自变量x的取值范围是.23.达成铁路扩能改造工程将于今年6月底完工,届时达州至成都运营长度约为350千米,若一列火车以170千米/时的平均速度从达州开往成都,则火车距成都的路程y(千米)与行驶时间(时)之间的函数关系式为______________24.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b= .25.请写出符合以下两个条件的一个函数解析式 .过点(-2,1),②在第二象限内,y随x增大而增大.26.已知函数y=2x3a+b+a+3b是正比例函数,则a+b= .27.若函数y=(m+1)x+m2﹣1是正比例函数,则m的值为28.已知一次函数y= (k-1)x|k|+3,则k=_________.29.已知函数y=2x2a+3+a+2b是正比例函数,则a= ,b= .30.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,关于y与x的函数关系如图所示,则甲车的速度是米/秒.32.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示,当甲车出发________h时,两车相距350 km.33.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是.34.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/小时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3.75,75);④快递车从乙地返回时的速度为90千米/小时.以上结论正确的是________________.35.如图,当四边形PABN的周长最小时,a=36.如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是9,则k的值为37.如图,已知A、B、C、D是平面直角坐标系中坐标轴上的点,且△AOB≌△COD,设直线AB的表达式为y=k1x +b1,直线CD的表达式为y=k2x+b2,则k1·k2=________.38.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m为 .39.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.40.如图,巳知直线l:y=x+,点A,B的坐标分别是(1,0)和(6,0),点C在直线l上,当△ABC是直角三角形时,点C的坐标为.三、解答题:41.如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求这条直线的解析式.42.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?43.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.44.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为50000元,今年销售总额将比去年减少20%,每辆销售价比去年降低400元,若这两年卖出的数量相同. A,B两种型(1)求今年A(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元.45.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠;方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?46.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.47.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m 与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?48.如图,OA=3,OB=6,以A点为直角顶点的等腰三角形△ABC在第四象限.(1)求点C的坐标;(2)在第四象限是否存在一点P,使△APB和△ABC全等?若存在,求出P坐标;若不存在,请说明理由.49.如图,直线l1在平面直角坐标系中,与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.50.如图,直线y=2x+m(m>0)与x轴交于点A(-2,0)直线y=-x+n(n>0)与x轴、y轴分别交于B、C两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.参考答案1.C2.A3.B4.C5.B6.C7.A8.A9.A10.A11.A12.B13.D14.C15.C16.C17.D18.B19.B20.C21.答案为y=1.8x-622.答案为:x≠0.5.23.答案为:y=350-170x24.答案为:16.25.答案为y=-2x,y=x+3,y=-x2+5等26.答案为:0.25;27.略28.答案为:-1;29.略30.答案为:20;31.答案为:-2,-3;32.答案为:1.5;33.答案为:﹣3.34.答案为:①③④;35.答案为:1.75;36.答案为:±6.37.答案为:1;38.答案为:-2或-339.答案为:120;40.答案为:(1,)或(6,)或(,).41.解:当y=0时,kx+4=0,解得x=﹣,则A(﹣,0),当x=0时,y=kx+4=4,则B(0,4),因为△OAB的面积为10,所以•(﹣)•4=10,解得k=﹣,所以直线解析式为y=﹣x+4.42.解:(1)由题意:设y与的一次函数关系为解得:∴(2)当两摞摆成一摞时,共有11只此时∴这摞碗共高21cm43.解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.44.解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600,经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.45.解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.5、(1)();(2)有三种方案;(3)总运费最低的方案是,10台,2台,0台,6台,此时总运费为8600元.46.解:(1)将点A、B的坐标代入y=kx+b得:0=2k+b,4=b,∴k=﹣2,b=4,∴解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P′,连接P′C,则PC=PC′,∴PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,C′D==2,即PC′+PD的最小值为2,∵OA、AB的中点分别为C、D,∴CD是△OBA的中位线,∴OP∥CD,CD=OB=2,∵C′O=OC,∴OP是△C′CD的中位线,∴OP=CD=1,∴点P的坐标为(0,1).47.(1)解方程组得∴C点坐标为(2,2);当x>2时,y1 > y 2(2)作CD⊥x轴于点D,则D(2,0).①s=x2(0<x≤2);②s=-x2+6x-6(2<x<3);(3)直线m平分△AOB的面积,则点P只能在线段OD内,即0<x<2.又△COB•的面积等于3,故x2=3×,解之得x=.48.解:(1)过C作CE⊥x轴于E,如图1所示:则∠AEC=90°=∠AOB,∵∠BAC=90°,∴∠OAB+∠EAC=90°,∠OAB+∠OBA=90°,∴∠OBA=∠EAC,在△OBA和△EAC中,,∴△OBA≌△EAC(AAS),∴CE=OA=3,AE=OB=6,∴OE=3+6=9,∴C(9,﹣3);(2)在第四象限内存在一点P,使△PAB≌△CAB,理由是:过P作PQ⊥y轴于Q,如图2所示:∵∠ABP=90°,∴∠ABO+∠PBQ=90°,又∵直角△ABO中,∠ABO+∠OAB=90°,∴∠PBQ=∠OAB,∴在△AOB和△BQP中,,∴△AOB≌△BQP.∴在第四象限内存在一点P,使△PAB≌△CAB,P的坐标是(6,﹣9).49.50.(1)把A(-2,0)代入y=2x+m(m>0),∴m=4∵AB=4,A(-2,0)∴B(2,0)∴y=-x+2联立将x=0代入y=-x+2得y=2.∴C(0,2) S四边形ABCD=S△ABD-S△BOC=10/3 (3)E(2,0) E(0,0) E(,0) E(-2-,0)。