1.2《独立性检验的基本思想及其初步应用》教案(新人教选修1-2)
高中数学第一章统计案例1.2独立性检验的基本思想及初步应用教案新人教A版选修1_2
高中数学第一章统计案例1.2独立性检验的基本思想及初步应用教案新人教A版选修1_2独立性检验的基本思想及其初步应用【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】K的含义。
独立性检验的基本思想;随机变量2【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人列联表称为22 列联表)。
问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
因此,直观上可以得到结论:吸烟群体和不吸烟群体患肺癌的可能性存在差异。
还有其它方法来判断吸烟和患肺癌有关呢?3.等高条形图比较图中两个深色条的高可以发现,在吸烟样本中患肺癌的频率要高一些,因此直观上可以认为吸烟更容易引发肺癌。
三、小组讨论,合作交流问题2、你有多大程度判断吸烟与患肺癌有关?用什么方法进行检验呢?我们先假设 0H :吸烟与患肺癌没有关系。
人教课标版高中数学选修1-2《独立性检验的基本思想及其初步应用(第3课时)》教案-新版
1.1.2 独立性检验的基本思想及其初步应用第三课时一、教学目标 1.核心素养:通过学习独立性检验的基本思想及其初步应用,初步形成基本的数据分析能力, 培养数学运算能力. 2.学习目标(1)1.1.3.1 巩固复习利用等高条形图、列联表、独立性检验的基本思想判断分类变量的关系(3)1.1.3.2 总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤. 3.学习重点总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤. 4.学习难点对独立性检验基本思想的进一步理解 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P10-P15,回顾本节主要知识点有哪些? 任务2利用独立性检验判断两个分类变量相关关系的一般步骤是什么?2.预习自测1.与表格相比,能更直观地反映出相关数据总体状况的是( ) A.列联表 B.散点图 C.残差图D.等高条形图解: D2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若2K 的观测值为635.6 k ,我们有%99的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病.B.从独立性检验可知有%99的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有%99的可能患有肺病.C.若从统计量中求出有%95的把握认为吸烟与患肺病有关系,是指有%5的可能性使得推判出现错误.D.以上三种说法都不正确. 解: C (二)课堂设计 1.知识回顾(1)变量的不同“值”表示个体所属的不同类别,像这样的变量成为分类变量. (2)列出两个分类变量的频数表,称为列联表.(3)独立性检验的基本思想类似于数学中的反证法,要确认两个分类变量有关系这一结论成立的可信程度,首先假设该结论不成立,即0H :两个分类变量没有关系成立,在该假设下我们构造的随机变量2K 应该很小,如果由观测数据计算得到2K 的观测值k 很大,则在一定程度上说明假设不合理,即断言0H 不成立,即认为“两个分类变量有关系”;如果观测值k 很小,则说明在样本数据中没有发现足够证据拒绝0H . 2.问题探究问题探究一 我们主要从几个方面来研究两个分类变量之间有无关系?●活动一 回归旧知,巩固复习重点知识例1.为了调查某生产线上,某质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品982件,次品87件;甲不在现场时,510件产品中合格品493件,次品17件.试分别用列联表,等高条形图,独立性检验的方法对数据进行分析. 【知识点:分类变量,独立性检验,变量间的关系】 详解:(1)2×2列联表如下:由列联表看出|ac -bd |=|982×17-493×8|=12750,即可在某种程度上认为“甲在不在场与产品质量有关”.相应的等高条形图如图所示:●活动二对比学习,巩固重点(2)在解答独立性检验题目过程中.数据有时比较多,一定不要混淆,要分辨清楚,否则会影响解题的下一步,同时计算不能失误.问题探究二利用独立性检验判断两个分类变量是否有关系的一般步骤是什么?●活动一实际操作例2.为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本. (1)根据所给样本数据完成下面2×2列联表;(2)请问能有多大把握认为药物有效?【知识点:分类变量,独立性检验,变量间的关系】详解:(1)(2)由列联表得:706.2778.260404060)20202040(10022>≈⨯⨯⨯⨯-⨯=K所以大概90%认为药物有效. ●活动二 深层思考,得出一般步骤通过上述解答过程,利用独立性检验判断两个分类变量是否有关系的一般步骤是什么? 1.独立性检验的基本步骤①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查临界值表确定临界值0k .②利用公式))()()(()(22d b c a d c b a bd ac n K ++++-=计算随机变量2K 的观测值0k .③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”. 2.独立性检验的基本思想(1)利用2K 进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2K 进行独立性检验的结果就不具有可靠性. (2)独立性检验的思想就是在假设0H 成立的条件下,如果出现一个与0H 相矛盾的小概率事件,就推断0H 不成立,且该推断犯错误的概率不超过这个小概率. 3.课堂总结【知识梳理】1.独立性检验的基本步骤①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查临界值表确定临界值0k .②利用公式))()()(()(22d b c a d c b a bd ac n K ++++-=计算随机变量2K 的观测值0k .③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”. 2.独立性检验的基本思想(1)利用2K 进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2K 进行独立性检验的结果就不具有可靠性. (2)独立性检验的思想就是在假设0H 成立的条件下,如果出现一个与0H 相矛盾的小概率事件,就推断0H 不成立,且该推断犯错误的概率不超过这个小概率.【重难点突破】(1)利用三维柱形图、二维条形图、等高条形图直观判断两个分类变量之间是否有关系. (2)利用2×2列联表以及随机变量2K 对两个变量进行独立性检验. 4.随堂检测1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( ) A.散点图 B.等高条形图 C.2×2列联表 D.以上均不对 【知识点:独立性检验】解:B2.性别与身高列联表如下:A.0.043B.0.367C.22D.26.87【知识点:独立性检验】解:C3.给出列联表如下:()A.0.4B.0.5C.0.75D.0.85【知识点:独立性检验】解:B4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关【知识点:独立性检验】解:D5.若由一个2×2列联表中的数据计算得K2=4.013,那么在犯错误的概率不超过0.05的前提下认为两个变量______(填“有”或“没有”)关系.【知识点:独立性检验】解:有(三)课后作业基础型自主突破1.在吸烟与患肺病是否有关的研究中,下列属于两个分类变量的是()A.吸烟,不吸烟B.患病,不患病C.是否吸烟、是否患病D.以上都不对【知识点:独立性检验】解:C“是否吸烟”是分类变量,它的两个不同取值;吸烟和不吸烟;“是否患病”是分类变量,它的两个不同取值:患病和不患病.可知A、B都是一个分类变量所取的两个不同值.故选C.【知识点:独立性检验】解:C 由题设知:a=45,b=10,c=30,d=15,=-255×45×75×25≈3.030由附表可知,有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选C. 3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )① 若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A.①B.① ③C.③D.②【知识点:独立性检验】解:C ①推断在100个吸烟的人中必有99人患有肺病,说法错误,排除A ,B ,③正确.排除D.4.在一个2×2列联表中,由其数据计算得K 2的观测值679.7 k ,则这两个变量间有关系的可能性为( ) A.99%B.99.5%C.99.9%D.无关系【知识点:独立性检验】解:A K 2的观测值6.635<k <7.879,所以有99%的把握认为两个变量有关系.5. 在600人身上实验某种新药预防感冒的作用,把一年中的记录与另外600个未用新药的人作比较,结果如下问该种新药起到预防感冒的作用的可能性为( ) A. 99%B. 90%C.99.9%D.小于90%【知识点:独立性检验】 解:D6.分析两个分类变量之间是否有关系的常用方法有________;独立性检验的基本思想类似于____.【知识点:独立性检验】解:.频率比较法、图形分析法(三维柱形图、二维条形图、等高条形图)、独立性检验;反证法能力型 师生共研7.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:则有多少的把握认为多看电视与人变冷漠有关系( )A.95%B.99%C. 5%D. 99.9%【知识点:独立性检验】解:B8. 两个分类变量X 和Y 可能的取值分别为{}21,x x 和{}21,y y ,其样本频数满足10=a ,21=b ,35=+d c .若“X 和Y 有关系”犯错误的概率不超过0.05,则c 的值可能等于( )A. 4B. 5C. 6D. 7【知识点:独立性检验】解:A9. 为了考察长头发与女性头晕是否有关联,随机抽取了301名女性,得到如下列联表.试根据表格中已有数据填空.空格中的数据应分别为①________;②________;③________;④________. 【知识点:独立性检验】解:86; 180; 229; 30110. 为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射14天内的结果如表所示:进行统计分析时的统计假设是_______. 【知识点:独立性检验】解:小白鼠的死亡与剂量无关 探究型 多维突破11.调查339名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如下试问:(1)有吸烟习惯与患慢性气管炎病是否有关? (2)用假设检验的思想给予说明. 【知识点:独立性检验】解:(1)根据列联表的数据,得到 6.6356.674))()()(()(22>=++++-=d b c a d c b a bd ac n K 所以有99%的把握认为“吸烟与患慢性气管炎病有关”.(2)假设“吸烟与患病之间没有关系”,由于事件A ={635.62≥K }的概率P(A)≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.10. 20国集团峰会于2016年月9日至4日在中国杭州进行,为了搞好接待工作,组委会招幕了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人会德语,其余人不会德语.(1)根据以上数据完成以下2×2列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与会德语有关?【知识点:独立性检验】解:(1)(2)假设:是否会德语与性别无关,由已知数据可求得:706≈k1575.2.1<因此,在犯错误的概率不超过0.10的前提下不能判断会德语与性别有关.自助餐1.为了评价某个电视栏目改革效果,在改革前后分别从居名点抽取了100居民进行调查,经过计算得2K的观测值99=k.根据这一数据分析,下列说法正确的是().0A.有99%的人认为该栏目优秀B.有99%的人认为该栏目是否优秀与改革无关C.有99%的把握认为该栏目是否优秀与改革有关系D.没有充分理由认为该栏目是否优秀与改革有关系【知识点:独立性检验】解:D2.硕士学位与博士学位的一个随机样本给出了关于所获取学位类别与学生性别的分类数据,如下表所示下列各项说法正确的是()A.在犯错误的概率不超过0.01的前提下认为性别与获取学位类别有关B.在犯错误的概率不超过0.01的前提下认为性别与获取学位类别无关C.性格决定获取学位的类别D.以上都是错误的【知识点:独立性检验】解:A3.经过对随机变量2K的研究,得到了若干临界值,当其观测值072k时,对于两个事件A与B,.2我们认为()A. 有95%的把握认为A与B有关系B. 有99%的把握认为A与B有关系C. 没有充分理由说明事件A与B有关系D. 确定事件A与B没有关系【知识点:独立性检验】解:C4. 以下关于独立性检验的说法中,错误的是()A. 独立性检验依据小概率原理B. 独立性检验得到的结论一定正确C. 样本不同,独立性检验的结论可能有差异D. 独立性检验不是判定两分类变量是否相关的唯一方法【知识点:独立性检验】解:B6.某班主任对全班50名学生进行了作业量多少的调查,数据如下表则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) A. 99% B. 97.5%C. 90%D. 无充分依据【知识点:独立性检验】解:B7. 给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有_______. 【知识点:独立性检验】 解:②④⑤8.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为2 3.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________. 【知识点:独立性检验】 解:0.059. 为加强素质教育,使学生各方面全面发展,某学校对学生文化课与体育课的成绩进行了调查统计,结果如下:在探究体育课成绩与文化课成绩是否有关时,根据以上数据可以得到2K 的观测值为________.(精确到0.001) 【知识点:独立性检验】 解:1.25510. 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众是否与年龄有关;________(填“是”或“否”) 【知识点:独立性检验】 解:是11. 为了了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:(平均每天喝500ml 以上为常喝,体重超过50kg 为肥胖)已知在30人中随机抽取一人,抽到肥胖的学生的概率为154. (1)请将上面的列联表补充完整(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由 参考数据:(参考公式:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=)【知识点:独立性检验,古典概型】解:(1)设常喝碳酸饮料肥胖的学生有x 人,154302=+x ,6=x (2)由已知数据可求得: 879.7523.82>≈K ,因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.12. 某大学高等数学老师这学期分别用B A ,两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:(1)依茎叶图判断哪个班的平均分高?(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;(3)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关”.下面临界值表仅供参考:(参考公式:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=)【知识点:独立性检验,简单抽样,概率】解(1)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高.(2)记成绩为86分的同学为A,B ,其他不低于80分的同学为C,D,E,F“从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)、(C,D)、(C,E)、(C,F)、(D,E)、(D,F)、(E,F)一共15个.“抽到至少有一个86分的同学”所组成的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)共9个,故93155P ==. (3)2240(3101017) 5.584 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关. 数学视野在实际问题中,经常会面临需要推断的问题,比说研制出一种新药,需要推断此药是否有效;有人怀疑吸烟的人更易患肺癌,需要推断患肺癌是否与吸烟有关;等等.在对类似问题作出推断时,我们不能仅凭主观意愿得出结论,需要通过试验来手机数据,并依据独立性检验的原理作出合理的推断.。
人教版高中选修1—2数学1.2独立性检验的基本思想及其初步应用教案(9)
1.2独立性检验的基本思想及其初步应用本周题目:独立性检验的基本思想及其初步应用本周重点:(1)通过对实际问题的分析探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.;了解独立性检验的常用方法:三维柱形图和二维条形图,及其K²(或R²)的大小关系.(2)通过典型案例的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用。
(3)理解独立性检验的基本思想及实施步骤,能运用自己所学的知识对具体案例进行检验.本周难点:(1)了解独立性检验的基本思想;(2)了解随机变量的含义,太大认为两个分类变量是有关系的;(3)能运用自己所学的知识对具体案例进行检验与说明.本周内容:一、基础知识梳理1.独立性检验利用随机变量来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。
2.判断结论成立的可能性的步骤:(1)通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度。
(2)可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。
二、例题选讲例1.为了探究患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表所示:试问:50岁以上的人患慢性气管炎与吸烟习惯有关吗?分析:最理想的解决办法是向所有50岁以上的人作调查,然后对所得到的数据进行统计处理,但这花费的代价太大,实际上是行不通的,339人相对于全体50岁以上的人,只是一个小部分,已学过总体和样本的关系,当用样本平均数,样本方差去估计总体相应的数字特征时,由于抽样的随机性,结果并不唯一。
现在情况类似,我们用部分对全体作推断,推断可能正确,也可能错误。
如果抽取的339个调查对象中很多人是吸烟但没患慢性气管炎,而虽不吸烟因身体体质差而患慢性气管炎,能够得出什么结论呢?我们有95%(或99%)的把握说事件与事件有关,是指推断犯错误的可能性为5%(或1%),这也常常说成是“以95%(或99%)的概率”是一样的。
人教版高中数学选修1-2 1.2独立性检验的基本思想及其初步应用(教案)(共2课时)
1.2独立性检验的基本思想及其初步应用(一)教学目标(一)知识与技能:通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。
明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。
(二)过程与方法:在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。
从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。
最后介绍了独立性检验思想的综合运用(三)情感、态度与价值观:通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。
加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。
明确数学在现实生活中的重要作用和实际价值。
教学中,应多给学生提供自主学习、独立探究、合作交流的机会。
养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。
教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K的含义.教学方法:诱思探究教学法学习方法:自主探究、观察发现、合作交流、归纳总结。
教学过程:一、复习准备:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、讲授新课:1. 教学与列联表相关的概念:①分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”.②列联表:分类变量的汇总统计表(频数个值,这样的列联表称为22. 如吸烟与患肺癌的列联表:2. 教学三维柱形图和二维条形图的概念:由列联表可以粗略估计出吸烟者和不吸烟者患肺癌的可能性存在差异.(教师在课堂上用EXCEL软件演示三维柱形图和二维条形图,引导学生观察这两类图形的特征,并分析由图形得出的结论)3. 独立性检验的基本思想:①独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体.②独立性检验的步骤(略)及原理(与反证法类似):第一步:提出假设检验问题H0:吸烟与患肺癌没有关系↔H1:吸烟与患肺癌有关系第二步:选择检验的指标22()K()()()()n ad bca b c d a c b d-=++++(它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H1:吸烟与患肺癌有关系”成立的可能性越大.1.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值解析: 三维柱形图中柱的高度表示图中各个频数的相对大小.选A2. 统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的.解析:当841.3>k 时,就有95 %的把握说事件A 与B 有关,当076.2≤k 时认为没有充分的证据显示事件A 与B 是有关的.3.为了探究患慢性气管炎与吸烟有无关系,调查了却339名50岁以上的人,结果如下表所示,据此数据请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?分析:有表中所给的数据来计算2K 的观测值k,再确定其中的具体关系. 解:设患慢性气管炎与吸烟无关.a=43,b=162,c=13,d=121,a+b=205,c+d=134, a+c=56,b+d=283,n=339所以2K 的观测值为469.7))()()(()(2==+++-=d b c a d c b a bc ad n k .因此635.6>k ,故有99%的把握认为患慢性气管炎与吸烟有关. 四,课后练习:1. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( ) A.越大 B.越小 C.无法判断 D.以上都不对2.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是() A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大4. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( ) A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.5.若由一个2*2列联表中的数据计算得k 2=4.013,那么有 把握认为两个变量有关系6.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为2 3.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 ____;7.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
【数学】1.2《独立性检验的基本思想及其初步应用》课件(新人教A版选修1—2)
a 与女生中喜欢数学课的人数比例 c 应该
ab
cd
相差很多,即 a ab
c
c d
a
ac bd
bc
d
应很大.
将上式等号右边的乘 式以 子常数因子
abcdabcd acbd
,
然后平方得
K2 abncadcabdc2bd,
其中 nabcd.因此 K2越大 ,"性别与喜 欢数学课之间"成 有立 关的 系可能.性越大
个柱体都能看到.
9000 8000 7000 6000 5000 4000 3000 2000 1000
0
不患肺癌 不吸烟
患肺癌 吸烟
图1.22
图1.2 2 是叠在一起的二维条形图,其中绿色
条高表示不患肺癌的人数,黑色条高表示患肺
癌的人数.从图中可以看出,吸烟者中患肺癌的
比例高于不吸烟者中患肺癌的比例.
1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
不吸烟
吸烟
图1.23
为了更清晰地表达这个特征, 我们还可用如下的等 高条形图表示两种情况下患肺癌的比例.如图1.2 3 所示 , 在等高条形图中, 绿色的条高表示不患肺癌 的百分比;黑色的条高表示患肺癌的百分比.
所以在H
成立的条件下应有
0
a a b a c ,其中n a b c d为样本容 nn n
量,即 a b c da a ba c,即 ad bc.
因此,| ad bc | 越小,说明吸烟与患肺癌之间关
系越弱;| ad bc | 越大,说明吸烟与患肺癌之间
关系越强. 为了使不同样本容量的数据有统一的评判标
人教版高中选修1—2数学1.2独立性检验的基本思想及其初步应用教案(3)
1.2 独立性检验的基本思想及其初步应用
教学目标:
1.了解独立性检验的基本思想,
2.注意公式 教学重点:了解其思想。
教学难点:公式的理解 教学过程:
1. 引入:吸烟有害健康吗?你怎么知道
2. 列联表:
3. 用图分析
用图分析很不清楚; 4. 独立性检验
反向思考:检验他们有关系很难,思考他们没关系会不会快点? 假设H0事件:吸烟与患肺癌没关系 所以
≈a c
,a +b c +d
即:ad bc ≈ 引进:随机变量2
2
n(ad -bc)
K =(a +b)(c +d)(a +c)(b +d)
注意:K 2越小,两者越没关系,事件H0发生的可能性越小
2
2
42209956.63278172148987491K ⨯-⨯=≈⨯⨯⨯9965(777549),
那事件H0发生的可能性有多大呢?查表得
2
P K≥≈
(10.828)0.001
所以两者没关系的可能性只有0.001,那么两者有关系的可能性有99.9%
以上过程就是独立性检验
请大家归纳出它的步骤。
做书上练习。
[总结]:
(1)假设结论不成立,即“两个分类变量没有关系”.
(2)在此假设下随机变量K2 应该很能小,如果由观测数据,计算得到K2的观测值k很大,则在一定程度上说明假设不合理.
(3)根据随机变量K2的含义,可以通过评价该假设不合理的程度,由实际计算出的,说明假设合理的程度为99.9%,即“两个分类变量有关系”这一结论成立的可信度为约为99.9%.。
(新课程)高中数学1.2 独立性检验的基本思想及其初步应用教案 新人教A版选修1-2
1.2独立性检验的基本思想及其初步应用(二)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K 的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果; 第三步:由学生计算出2K 的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机由表中数据计算得到的观察值. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3. 小结:独立性检验的方法、原理、步骤 三、巩固练习: 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?。
2019-2020年高中数学《1.2 独立性检验的基本思想及其初步应用》教案 新人教A版选修1-2
2019-2020年高中数学《1.2 独立性检验的基本思想及其初步应用》教案新人教A 版选修1-2教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机有关系?为什么?(学生自练,教师总结)强调:①使得成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3. 小结:独立性检验的方法、原理、步骤 三、巩固练习: 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?2019-2020年高中数学《1.2 空间几何体的三视图和直观图》教案 新人教A版必修2一、二、教学目标:三、1知识与技能:了解中心投影与平行投影;能画出简单几何体的三视图;能识别三视图所表示的空间几何体。
高中数学人教A版选修(1-2) 1.2 教学设计 《独立性检验的基本思想及其初步应用》(人教A版)
《独立性检验的基本思想及其初步应用》通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量的是否有关作出明确的判断,明确对两个分类变量的独立性检验的基本思想和具体步骤,会对具体问题作出独立性检验。
【知识与能力目标】1.了解独立性检验的基本思想、方法及初步应用;2.会从列联表(只要求2×2列联表)、柱形图、条形图直观分析两个分类变量是否有关;3.会用K2公式判断两个分类变量在某种可信程度上的相关性。
【过程与方法目标】运用数形结合的方法,借助对典型案例的探究,了解独立性检验的基本思想,总结独立性检验的基本步骤。
【情感与态度目标】通过教学过程中的师生互动、生生互动,形成学生的体验性认识,提高数学学习兴趣,树立学好数学的信心,逐步形成锲而不舍的钻研精神和合作交流的团队精神。
【教学重点】理解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想和随机变量K2的含义。
多媒体课件。
复习导入回归分析的基本步骤:(1) 画出两个变量的散点图;(2) 求回归直线方程;(3) 用回归直线方程进行预报。
新课导入①2K 的出现比较突然,学生可能会提出疑问. 对于文科学生,我认为只要告诉他们这属于大学的研究范畴,在此不必做过多解释;②为什么给出一个临界值0k 呢?那是因为在假设“0H :两个变量无关”下,2K 的观测值k 应该很小,但多小才算小呢?这时需要一个衡量大小的临界值0k 。
教材在这一部分处理上,是先进行某一临界值的讲解,而后再给出卡方临界值表,这对于学生是比较难于理解的。
为了突破这个难点,我采用“先入为主”的思想,把教材后面介绍的卡方临界值表提前讲解,用概率知识解读临界值表的含义,至于小概率事件所对应的临界值,则属于大学的研究范畴,也不必做过多解释;③如何理解独立性检验的基本思想?独立性检验的步骤是固定的,仿照教科书的例题,学生不难完成习题,但独立性检验的思想对学生来说是比较难理解的,它来源于统计上的假设检验思想。
高中数学1.2独立性检验的基本思想及其初步应用教学设计新人教A版选修1_2
2015高中数学 1.2独立性检验的基本思想及其初步应用教学设计新人教A版选修1-21.教学结构设计2.教学过程设计(一)创设情境,提出问题据H1N1甲型流感的防治疫苗1和2给出以下列联表:(二)初步探索,展示内涵●问题一:根据表格数据,填写下表,并由此数据判断是疫苗1还是疫苗2对预防甲流的效果更好?同时给出你的理由。
◆借助excel作图功能,通过等高条形图进一步直观的展现得到的结论,同时提出问题:除以上两比例式外,你还可以从哪几个角度说明两种疫苗在预防甲流的效果的好坏?(三)启发引导,深化问题●问题二:把以上具体问题一般化,如何推断接种疫苗与患甲流有没有关系呢?1、小组讨论:假设以上两个分类变量没有关系,你可以得到哪些关系式?2、直观感知得到判断两个分类变量有关系的结论:(四)定量决策,解决问题●问题三:对于不同的样本容量的数据和分类变量,这个差异究竟大到多大程度才算是合适呢?◆类比方差的引入,说明引入统计量的合理性,统计学家经过多次的研究和实验,构造了一个统计量:()()()()()22n ad bc K a b c d a c b d -=++++● 问题四:观察K 2的形式,基于上面的直观分析,猜测:K 2的大小与两个分类变量是否有关的关系如何?并分组计算引例中的数据的2K 的值,验证你的猜测是否合理?● 问题五:引导学生观察分析统计量2K 的观测值表,初步体验独立性检验的基本思想。
1、 阅读课本并 讨论()26.6350.010P K ≥≈的 基本含义,明确独立性检验的的基本思想。
2、 与反证法类比。
(五)类比对比,加深理解小组讨论,完成表格(六)题组巩固,理解思想1、例:在某医院,因为患心脏病而住院的 665 名男性病人中,有 214 人秃顶,而另外 772 名不是因为患心脏病而住院的男性病人中有 175 人秃顶. 能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系? 分析并明确步骤:因此,在犯错误概率不超过0.01的前提下 认为秃顶与患心脏病有关系3、 课堂练习(见评测练习)(七)总结整理,提高认识1、 学生总结H假设,:秃顶与患心脏病没有关系()2143721459717545116.3733891048665772k ⨯⨯-⨯=≈⨯⨯⨯由表中数据得:2、教师总结(体现在板书的生成上,主要让学生明确本节课的体系,让学生明确研究问题的基本思路和方法)(八)布置作业,独立探究书面作业:课本第16页习题1.2 第1、2题;(必做)研究性学习:参考课本第17页,小组选择课题,经历统计决策的全过程。
1.2独立性检验的基本思想及其应用第1课时 选修1-2精品教案
§1.2独立性检验的基本思想及其应用(一)【学情分析】:在实际的问题中,经常会面临需要推断的问题,比如研制一种新药,需要推断此药是否有效?有人怀疑吸烟的人更容易患肺癌,那么吸烟是否与患肺癌有关呢?等等。
在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的分析推断.在本节的学习中,通过案例分析,使学生学会用假设检验的思想方法解决对于两个分类变量是否有关系的判断问题,并理解统计思维与确定性思维的差异。
【教学目标】:(1)知识与技能:理解分类变量的含义;会根据收集的数据列出2×2列联表,并会阅读三维柱形图和二维条形图,并粗略判断两个分类变量是否有关系;理解假设检验思想,会利用独立性检验精确判断两个分类变量是否有关系;(2)过程与方法:利用学生身边熟悉的问题引入分类变量是否相关的问题;运用统计学解决问题的一般思路引导学生;让学生经历假设检验思想的形成及运用过程,领会分析、总结的方法; (3)情感态度与价值观:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对问题的解决,可提高学生应用数学能力。
【教学重点】:理解独立性检验的基本思想及实施步骤。
【教学难点】:.(1)了解独立性检验的基本思想;(2)了解随机变量2K 的含义,2K 太大认为两个分类变量是有关系的。
【课前准备】:课件【教学过程设计】:同步练习与测试:(基础题) 1、根据下表计算:计算随机变量的观测值k= 。
解:把表格补充完整≈⨯⨯⨯⨯-⨯=17812222872)358514337(3002k 4.512、独立性检验常作的图形是 和 。
答案 :三维柱形图 ,二维条形图3、两个临界值为3.841与6.635。
当23.841k ≤时,认为事件A 与B 是 (填“有关的”或“无关的”);当26.635k >时,有99%的把握说事件A 与B 是 (填“有关的”或“无关的”)。
人教A版选修1-2第二课时1.2独立性检验的基本思想及其初步应用(二)教案
------------------------- 天才是百分之一的灵感加百分之九十九的勤劳------------------------------第二课时独立性查验的基本思想及其初步应用(二)教课目的1 知识与技术:认识独立性查验的基本思想及步骤、认识随机变量K 2的含义。
2过程与方法:经过研究“抽烟能否与患肺癌相关系”引出独立性查验的问题,并借助样本数据的列联表、柱形图和条形图展现在抽烟者中患肺癌的比率比不抽烟者中患肺癌的比率高3 感情态度价值观:让学生亲自体验独立性查验的实行步骤与必需性.教课要点:理解独立性查验的基本思想及实行步骤.教课难点:认识独立性查验的基本思想、认识随机变量K2的含义.教课过程:一、复习准备:独立性查验的基本步骤、思想二、讲解新课:1.教课例1:例 1 在某医院,由于患心脏病而住院的665 名男性病人中,有214 人秃头;而此外772 名不是由于患心脏病而住院的男性病人中有175 名秃头 .分别利用图形和独立性查验方法判断秃头与患心脏病能否相关系?你所得的结论在什么范围内有效?① 第一步:教师指引学生作出列联表,并剖析列联表,指引学生得出“秃头与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解说所获得的统计结果;第三步:由学生计算出K2的值;第四步:解说结果的含义.②经过第 2 个问题,向学生重申“样本只好代表相应整体”,这里的数据来自于医院的住院病人,因本题目中的结论能够很好地合用于住院的病人集体,而把这个结论推行到其余集体则可能会出现错误,除非有其余的凭证表示能够进行这类推行.2.教课例 2:例 2 为观察高中生的性别与能否喜爱数学课程之间的关系,在某城市的某校高中生中随机抽取 300 名学生,获得以以下联表:喜爱数学课程不喜爱数学课程总计男37 85 122女35 143 178金戈铁骑-------------------------天才是百分之一的灵感加百分之九十九的勤劳------------------------------ 总计72228300由表中数据计算获得K 2的察看值k .在多大程度上能够以为高中生的性别与能否数学课程之间相关系?为何?(学生自练,教师总结)重申:①使得P( K 2 3.841) 0.05 建立的前提是假定“性别与能否喜爱数学课程之间没有关系” . 假如这个前提不建立,上边的概率预计式就不必定正确;②结论有95%的掌握以为“性别与喜爱数学课程之间相关系”的含义;③在娴熟掌握了两个分类变量的独立性查验方法以后,可直接计算K 2的值解决实质问题,而没有必需画相应的图形,可是图形的直观性也不行忽略.3.小结:独立性查验的方法、原理、步骤三、稳固练习:某市为检查全市高中生学习情况能否对生理健康有影响,随机进行检查并获得以下的列联表:请问有多大掌握以为“高中生学习情况与生理健康相关”?不健康健康总计不优异41 626 667优秀37 296 333总计78 922 1000三、作业四、教课反省:金戈铁骑。
人教A版高中数学选修1-2《一章 统计案例 1.2 独立性检验的基本思想及其初步应用》优质课教案_29
1.2.1 《独立性检验的基本思想及其初步应用》教学设计【教材分析】本节课是人教A版(选修)1—2第一章第二节的内容.在本课之前,学生已经学习过事件的相互独立性,回归分析的基本思想及初步应用。
本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。
在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。
在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。
因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。
学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。
这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】K的含义。
独立性检验的基本思想;随机变量2【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
人教A版高中数学选修1-2《一章 统计案例 1.2 独立性检验的基本思想及其初步应用》优质课教案_5
“体现高中数学相关分支教育价值的教学设计”——《独立性检验的基本思想及其初步应用》(人教A版选修1-2第一章第二节)一、教学设计1、内容和内容解析本节课主要内容是通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
“独立性检验”是在考察两个分类变量之间是否具有相关性的背景下提出的,因此教材上首先提到了分类变量的概念,并给出了考察两个分类变量之间是否相关的一种简单的思路,即借助等高条形图的方法,随后引出相对更精确地解决办法——独立性检验。
独立性检验的思想是建立在统计思想、假设检验思想(小概率事件在一次试验中几乎不可能发生)等基础之上。
虽然本节是新增内容,理论比较复杂,教学时间也不长(1-2课时),但由于它贴近实际生活,体现出数学应用教育价值,故地位不可小视. 该内容是学生前面学习的《必修三》中的统计知识的进一步应用,并与本册课本前一节内容《回归分析的基本思想及其初步应用》(研究两普通变量的相关性)相呼应,此外还涉及到《选修1-2》中的“反证法”思想.通过本节课的学习使文科学生认识到统计方法在决策中的作用,是高中数学知识中体现统计思想的重要内容之一,是素质教育的重要组成部分。
随着现代信息技术飞速传播和发展,人们每天都会接触到影响生活的统计信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
2、目标和目标解析①知识与技能目标通过对典型案例(吸烟和患肺癌有关吗?)的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。
②过程与方法目标通过探究“吸烟和患肺癌是否有关系”引出独立性检验的问题,借助样本数据的列联表画出等高条形图,直观判断出吸烟和患肺癌可能有关系。
这一直觉来自于观测数据,即样本。
问题是这种来自于样本的印象能够在多大程度上代表总体,这节课就是为了解决这个问题,让学生经历逐步领会独立性检验基本思想的体验过程,提高学生的数据分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2独立性检验的基本思想及其初步应用(第一课时)。
教学目标:1理解独立性检验的基本思想
2、会从列联表、柱形图、条形图直观判断吸烟与患癌有关。
3、了解随机变量K 2的含义。
教学重点:理解独立性检验的基本思想。
教学难点;1、理解独立性检验的基本思想、
2、了解随机变量K 2的含义。
教学过程:
一、引入:从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表,柱形图,和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。
二、独立性检验就是检验两个分类变量是否有关的一种统计方法:用字母表示吸烟与患肺癌的列联表:
不患肺癌 患肺癌 合计
不吸烟 a b a+b
吸烟 c d c+d
合计 a+c b+d a+b+c+d
样本容量 n=a+b+c+d
假设H 0 : 吸烟与患肺癌没有关系。
则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:
()()()()()()()
220a c a c d c a b ad bc a b c d
ad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++--=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱.
构造随机变量 其中
()()278172148987491
6.635⨯⨯≈⨯⨯⨯≥≈≥f 2020220202若H 成立,则K 应该很小. 把表中数据代入公式
9965777549-422099K =56.632在H 成立的情况下.统计学家估算出如下概率
P K 0.01
即在H 成立的情况下,K 的值大于6.635的概率非常小.
如果K 6.635,就断定H 不成立,出错的可能性有多大?
出现K =56.632 6.635 的概率不超过1% .
因此,我们有99%的把握认为"吸烟与患肺癌有关系."
三、作业:预习17页。
1.2独立性检验的基本思想及其初步应用(第二课时)。
教学目标:理解独立性检验的基本思想及实施步骤。
教学重点、难点:独立性检验的步骤。
教学过程:
一、1、复习 A 独立性检验 B ()()()()()2
2n ad bc k a b c d a c b d -=++++ 2、独立性检验的思想(类似反证法)
二、新课: (一) 独立性检验的步骤。
1、若要推断的论述为H 1:“X 与Y 有关系”。
可按如下步骤判断H1成立的可能性。
A 通过三维柱形图和二维条形图,粗略判断两个分类变量是否有关系。
B 可以利用独立性检验来考察两个分类变量是否有关系。
并能精确判断可靠程度。
1、由观测数据算K 2 ,其值越大,说明“X 与Y 有关系”成立的可能性越大。
2、由临界值表确定可靠程度。
(二)、举例:例1略。
补充例题:打鼾不仅影响别人休息,而且可能与患某种疾病有关,下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?
患心脏病 未患心脏病 合计
每一晚都打鼾 30 224 254
不打鼾 24 1355 1379
合计 54 1579 1633
解:略。
(三)小结。
(四)作业。
P21 1、
1.2独立性检验的基本思想及其初步应用。
(第三课时)
教学目标:1、会用所学知识对具体案例进行检验。
2、从实例中发现问题,提高学习兴趣,激发学习积极性和主动性,不
断自我完善,养成不断探求知识完善自我的良好态度。
教学重点:独立性检验的步骤。
例2。
教学难点:对临界值的理解。
教学过程:1、复习独立性检验的步骤。
2、可信程度。
3、举例。
例2。
略。
补充例题:对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行3年跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:
试根据上述数据比较两种手术对病人又发作心脏病的影响有没有差别。
解略
4、练习P20 、1、
5、小结。
6、作业:P21 2。
1.3实习作业与小结(略)。