高中数学 必修内容复习(5) 平面向量
高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。
高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)
第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向; 当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a||b| cos θ叫做a 与b 的数量积(或内积),记作a·b ,即a·b =|a||b|cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b|cos θ叫做向量b 在向量a 的方向上的投影,|a|cos θ叫做向量a 在向量b 的方向上的投影.(2)a·b 的几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a·b =b·a.(2)数乘结合律:(λa)·b =λ(a·b)=a·(λb). (3)分配律:(a +b)·c =a·c +b·c.向量数量积的运算不满足乘法结合律,即(a·b)·c 不一定等于a·(b·c),这是由于(a·b)·c 表示一个与c 共线的向量,a·(b·c)表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a. (4)cos θ=a ·b|a ||b |.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a|=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式 (1)(a +b)·(a -b)=a 2-b 2; (2)(a±b)2=a 2±2a·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)(2018·新乡二模)若向量m =(2k -1,k )与向量n =(4,1)共线,则m·n =( ) A .0 B .4 C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172.(2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a·b =0, ∵|a|=2,|b|=1,∴AC ―→·CB ―→=(a +b)·(-b)=-a·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a·(b +a)=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a|=5, 由a·(b +a)=2,可得a·b +a 2=2, ∴a·b =-3,∴向量b 在a 方向上的投影为a·b |a|=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14. 答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a·b =-12,向量c 与a +b 共线,则|a +c|的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a|=3,∴a·(a +b)=a 2+a·b =|a||a +b|cos π4,∴|a +b|=32,将|a +b|=32两边平方可得,a 2+2a·b +b 2=18,解得|b|=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b)(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c)2=(t +1)2a 2+2t (t +1)·a·b +t 2b 2, ∵向量a ,b 为单位向量,且a·b =-12,∴(a +c)2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c|≥32,∴|a +c|的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a|=1,|b|=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b|2=|a|2+4|b|2+4a·b =1+1+4×1×12×cos π3=3,所以|a +2b|= 3.又(a +2b)·b =a·b +2|b|2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=a +2b ·b|a +2b||b|=343×12=32, 所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b|cos 〈a ,b 〉=-3,又|a|=12+32=2,所以a·b =|a||b|cos 〈a ,b 〉=-6,又a·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b|=32+-332=6,所以cos 〈a ,b 〉=a·b |a||b|=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a|=223|b|,且(a -b)⊥(3a +2b),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a|=223|b|,(a -b)⊥(3a +2b), 所以(a -b)·(3a +2b)=3|a|2-2|b|2-a·b =83|b|2-2|b|2-223|b|2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→ ·BC ―→=0,即AP ―→ ·BC ―→=(λAB ―→+AC ―→ )·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n)⊥(m -n),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b|=1,|2a -b|=1,则|a|=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b|=1,∴a·b =|a|×1×12=|a|2,∵|2a -b|=1,∴|2a -b|2=4a 2-4a·b +b 2=4|a|2-2|a|+1=1,∴4|a|2-2|a|=0,∴|a|=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a|=1,|b|=2,a +b =(1,3),记向量a ,b 的夹角为θ,则tan θ=________.解析:∵|a|=1,|b|=2,a +b =(1,3),∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =1+3,∴a·b =-12,∴cos θ=a·b |a|·|b|=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴tan θ=sin θcos θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a|=1,|b|=23,a 与b 的夹角的余弦值为sin 17π3,则b·(2a -b)等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32,∴a·b =-3,b·(2a -b)=2a·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b)·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a|=1,b =(2,1),且a·b =0,则|a -b|=( ) A.6 B.5 C .2D.3解析:选A 因为|a|=1,b =(2,1),且a·b =0,所以|a -b|2=a 2+b 2-2a·b =1+5-0=6,所以|a -b|= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c)∥b ,c ⊥(a +b),则c =( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c)∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12 D.⎝⎛⎭⎫-∞,12 解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b|=|a -b|=2|b|,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b|=|a -b|,∴|a +b|2=|a -b|2,∴a·b =0.又|a +b|=2|b |,∴|a +b|2=4|b|2,|a|2=3|b|2,∴|a|=3|b|,cos 〈a +b ,a 〉=a +b ·a |a +b||a|=a 2+a·b |a +b||a|=|a|22|b||a|=|a|2|b|=32,故a +b 与a 的夹角为π6.7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e|=1,a·e =1,b·e =-2,|a +b|=2,则a·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b|=1+m +n2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn=4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a·b =-2+mn ≤-54,综上可得a·b 的最大值为-54.9.已知平面向量a ,b 满足a·(a +b)=3,且|a|=2,|b|=1,则向量a 与b 的夹角的正弦值为________.解析:∵a·(a +b)=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-cos 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a|=1,|b|=2,若(λa +b)⊥(a -2b),则λ=________.解析:∵|a|=1,|b|=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b)⊥(a -2b),∴(λa +b)·(a -2b)=0,即(λa +b)·(a -2b)=λa 2-2b 2+(1-2λ)a·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a|=1,|b|=2,|a +b|=3,则a 在b 方向上的投影等于________.解析:∵|a|=1,|b|=2,|a +b|=3, ∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =3, ∴a·b =-1,∴a 在b 方向上的投影为a·b |b|=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→ ·(OB ―→-OA ―→ )=(OA ―→+AC ―→ )·AB ―→=OA ―→ ·AB ―→+AC ―→ ·AB ―→= 2 c os 3π4+24 ×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a|=|b|=1,且|2a -b|= 5. (1)求|2a -3b|的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b|2=4a 2-4a·b +b 2=4-4a·b +1=5,∴a·b =0, ∴|2a -3b|=4a 2-12a·b +9b 2=4+9=13.(2)cos θ=3a -b ·a -2b |3a -b||a -2b|=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22, ∵θ∈[0,π],∴θ=π4.。
高中数学-平面向量基本定理
夹角
B
b a
b
θ O aA
∠AOB= θ(0°≤θ≤180°)
叫做向量a与b的夹角
夹角
θ=0°时, a与b有同什向么. 位置关系?
a
b
O
A
B
θ=180°时, a与b有反什向么. 位置关系?
b
a
B
B
O
A
b θ=90°,说a与b垂直,记作a⊥b
平面向量基本定理
复习引入 1、两个向量的和(差)的求法
三角形法则 平行四边形法则 2、实数与向量的积 3、两个向量共线定理
向量b与非零向量a共线 有且只有一个实数λ,使得 b =λa
新课引入
如何作出 e1 + e2 ?
A
C
e1
O e2 B
OC可以分解成 e1 ,e2
e1 e2
任意一个向量 a 是否可以分解成 λ 1e1 ,λ2e2 ?
已知:OA,OB不共线,AP=tAB,(t∈R),
用OA,OB表示OP。
P
分析:OP = OA + AP 或 OP = OB + BP
B
解:∵AP = t AB
∴OP = OA + AP
O
A
= OA + t AB
= OA + t(OB – OA)
= OA + tOB – tOA
=(1 - t)OA + tOB
e1
e2
OC OM ON
M
Aa e1
O
e2
C NB
OM与OБайду номын сангаас共线
高中数学第五章_平面向量
第五章⎪⎪⎪平面向量第一节平面向量的概念及其线性运算1.向量的有关概念平行四边形法则向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b ,则a =b B .若|a |=|b |,则a =b C .若|a |=|b |,则a ∥b D .若a =b ,则|a |=|b |答案:D2.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线答案:D3.若D 是△ABC 的边AB 上的中点,则向量CD ―→等于( ) A .-BC ―→+12BA ―→B .-BC ―→-12 BA ―→C .BC ―→ -12BA ―→D .BC ―→+12BA ―→答案:A4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系. [小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的________条件. 解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念(基础送分型考点——自主练透)[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 和b 不共线,则a 和b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等解析:选C 选项A 中向量与有向线段是两个完全不同的概念,故正确;选项B 中零向量与任意向量共线,故a ,b 都是非零向量,故正确;选项C 中是共线向量,故错误;选项D 中既然方向相反就一定不相等,故正确.3.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点 (1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0. (5)相等相量:方向相同且长度相等.考点二 向量的线性运算(基础送分型考点——自主练透)[题组练透]1.(2018·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2018·温州模拟)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB ―→+AC ―→)=12(AB―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.3.(2019·郑州第一次质量预测)如图,在△ABC 中,N 为线段AC 上靠近点A 的三等分点,点P 在线段BN 上且AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→,则实数m 的值为( )A .1 B.13C.911D.511解析:选D AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→=⎝⎛⎭⎫m +211AB ―→+211(AC ―→-AB ―→)=m AB ―→+211AC ―→,设BP ―→=λBN ―→(0≤λ≤1),则AP ―→=AB ―→+λBN ―→=AB ―→+λ(AN ―→-AB ―→)=(1-λ)AB ―→+λAN ―→,因为AN ―→ =13AC ―→,所以AP ―→=(1-λ)AB ―→+13λAC ―→,则⎩⎪⎨⎪⎧m =1-λ,211=13λ,解得⎩⎨⎧λ=611,m =511,故选D.[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用(重点保分型考点——师生共研)[典例引领]1.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )·AC ―→,则x 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 解析:选D 设CO ―→=y BC ―→,∵AO ―→=AC ―→+CO ―→=AC ―→+y BC ―→=AC ―→+y (AC ―→-AB ―→)=-y AB ―→+(1+y ) AC ―→,∵BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO ―→=x AB ―→+(1-x )AC ―→,∴x ∈⎝⎛⎭⎫-13,0. 2.设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→.∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]1.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.2.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( ) A .2OA ―→-OB ―→B .-OA ―→+2OB ―→C.23OA ―→-13OB ―→ D .-13OA ―→+23OB ―→解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→=2OA ―→-OB ―→. 2.(2019·石家庄质检)在△ABC 中,点D 在边AB 上,且BD ―→=12DA ―→,设CB ―→=a ,CA ―→=b ,则CD ―→=( )A.13a +23bB.23a +13b C.35a +45b D.45a +35b 解析:选B ∵BD ―→=12DA ―→,∴BD ―→=13BA ―→,∴CD ―→=CB ―→+BD ―→=CB ―→+13BA ―→=CB ―→+13(CA ―→-CB ―→)=23CB ―→+13CA ―→=23a +13b . 3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→. 又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2018·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP ―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13. 答案:135.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM ―→=34AB ―→,因为在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,所以四边形ANDM 为菱形,因为AB =4,所以AN =AM =3,AD =3 3.答案:3 3二保高考,全练题型做到高考达标1.已知向量a ,b ,且AB ―→=a +2b ,BC ―→=-5a +6b ,CD ―→=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:选A AD ―→=AB ―→+BC ―→+CD ―→=3a +6b =3AB ―→.因为AB ―→与AD ―→有公共点A ,所以A ,B ,D 三点共线.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =k d (k <0),于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.(2019·浙江六校联考)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB ―→=a ,AD ―→=b ,则向量BF ―→=( )A.13a +23b B .-13a -23bC .-13a +23b D.13a -23b解析:选C 如图,因为点E 为CD 的中点,CD ∥AB ,所以BFEF =ABEC =2,所以BF ―→=23BE ―→=23(BC ―→+CE ―→)=23⎝⎛⎭⎫b -12a =-13a +23b . 4.(2018·遂昌期初)已知a ,b 是两个不共线的非零向量,且起点在同一点上,若a ,t b ,13(a +b )三向量的终点在同一直线上,则实数t 的值为( )A .2B .1C .23D .12解析:选D 由题可设13(a +b )=λa +μt b ,因为a ,t b ,13(a +b )三向量的终点在同一直线上,所以有λ+μ=1.所以13=λ,μ=23,所以13=23t ,解得t =12.5.(2019·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA ―→+PB ―→+PC ―→=2AB ―→,若S △ABC=6,则△PAB 的面积为( )A .2B .3C .4D .8解析:选A ∵PA ―→+PB ―→+PC ―→=2AB ―→=2(PB ―→-PA ―→),∴3PA ―→=PB ―→-PC ―→=CB ―→,∴PA ―→∥CB ―→,且方向相同,∴S △ABC S △PAB =BC AP =|CB ―→||PA ―→|=3,∴S △PAB =S △ABC3=2. 6.已知O 为△ABC 内一点,且2AO ―→=OB ―→+OC ―→,AD ―→=t AC ―→,若B ,O ,D 三点共线,则t 的值为________.解析:设线段BC 的中点为M ,则OB ―→+OC ―→=2OM ―→. 因为2AO ―→=OB ―→+OC ―→,所以AO ―→=OM ―→,则AO ―→=12AM ―→=14(AB ―→+AC ―→)=14⎝⎛⎭⎫AB ―→+1t AD ―→=14AB ―→+14t AD ―→.由B ,O ,D 三点共线,得14+14t =1,解得t =13.答案:137.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0. 其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b )=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ. 解得k =12.10.已知a ,b 不共线,OA ―→=a ,OB ―→=b ,OC ―→=c ,OD ―→=d ,OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.三上台阶,自主选做志在冲刺名校1.如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2 D.2m +1n 是定值,定值为3解析:选D 因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n =3,故选D.2.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:133.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP ―→=m OA ―→+(1-m )OB ―→=OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B ,∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0.∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1. 第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______.答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -134.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 答案:-11.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:02.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3考点一 平面向量基本定理及其应用(基础送分型考点——自主练透)[题组练透]1.(2019·温州模拟)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→D .-13AB ―→+23AD ―→解析:选C 如图,取AB 的中点G ,连接DG ,CG ,易知四边形DCBG 为平行四边形,∴BC ―→=GD ―→=AD ―→-AG ―→=AD ―→-12AB ―→,∴AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23⎝⎛⎭⎫AD ―→-12AB ―→=23AB ―→+23AD ―→,于是BF ―→=AF ―→-AB ―→=12AE ―→-AB ―→=12⎝⎛⎭⎫23AB ―→+23AD ―→-AB ―→=-23AB ―→+13AD ―→,故选C.2.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.解析:∵AM ―→=2MC ―→,∴AM ―→=23AC ―→.∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→),∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→=12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16.答案:12 -16L ,且AK ―→=3.如图,已知平行四边形ABCD 的边BC ,CD 的中点分别是K ,e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,CD ―→.解:设BC ―→=x ,CD ―→=y ,则BK ―→=12x ,DL ―→=-12y .由AB ―→+BK ―→=AK ―→,AD ―→+DL ―→=AL ―→,得⎩⎨⎧-y +12x =e 1, ①x -12y =e 2, ②①+②×(-2),得12x -2x =e 1-2e 2,即x =-23(e 1-2e 2)=-23e 1+43e 2,所以BC ―→=-23e 1+43e 2.同理可得y =-43e 1+23e 2,即CD ―→=-43e 1+23e 2.[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点二 平面向量的坐标运算(基础送分型考点——自主练透)[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A.2.已知M (3,-2),N (-5,-1),且MP ―→=12MN ―→,则P 点的坐标为( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1)解析:选B 设P (x ,y ),则MP ―→= (x -3,y +2),而12MN ―→=12(-8,1)=⎝⎛⎭⎫-4,12,所以⎩⎪⎨⎪⎧x -3=-4,y +2=12,解得⎩⎪⎨⎪⎧x =-1,y =-32,所以P ⎝⎛⎭⎫-1,-32. 3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示(重点保分型考点——师生共研)[典例引领]1.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)2.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[由题悟法]向量共线的充要条件 (1)a ∥b ⇔a =λb (b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6.当m =-6时,a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件.2.(2018·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________. 解析:因为m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0. 答案:03.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析:∵a 与b 方向相反,∴可设a =λb (λ<0), ∴a =λ(2,1)=(2λ,λ).由|a |=5λ2=25,解得λ=-2或λ=2(舍去), 故a =(-4,-2). 答案:(-4,-2)4.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值等于________.解析:AB ―→=(a -2,-2),AC ―→=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案:12一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→,∴3(m +3)-6(m +1)=0, ∴m =1.故选A.3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.(2019·舟山模拟)已知向量a =(2,3),b =(-1,2),若m a +b 与a -2b 共线,则m 的值为________. 解析:由a =(2,3),b =(-1,2),得m a +b =(2m -1,3m +2),a -2b =(4,-1),又m a +b 与a -2b 共线,所以-1×(2m -1)=(3m +2)×4,解得m =-12.答案:-125.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:12二保高考,全练题型做到高考达标1.(2018·温州十校联考)已知a =(-3,1),b =(-1,2),则3a -2b =( ) A .(7,1) B .(-7,-1) C .(-7,1)D .(7,-1)解析:选B 由题可得,3a -2b =3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1).2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π3解析:选B 因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3.3.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC ―→=2CB ―→,则实数a 等于( )A .2B .1C .45D .53解析:选A 设C (x ,y ),则AC ―→=(x -7,y -1),CB ―→=(1-x,4-y ),∵AC ―→=2CB ―→,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3). 又∵点C 在直线y =12ax 上,∴3=12a ×3,∴a =2.4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.12a +14bC.23a +13bD.13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b , ∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎡⎦⎤-12 BD ―→⎝⎛⎭⎫-12AC ―→=16AC ―→-16BD ―→=16a -16b , ∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C.6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________,若c =x a +y b ,则x +y 的值为________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.因为c =x a +y b ,所以(3,2)=(x -2y,3x +y ),即x -2y =3,3x +y =2,解得x =1,y =-1,所以x +y =0.答案:-1 07.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.如图,在正方形ABCD 中,P 为DC 边上的动点,设向量AC ―→=λDB ―→+μAP ―→,则λ+μ的最大值为________.解析:以A 为坐标原点,以AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为2,则B (2,0),C (2,2),D (0,2),P (x,2),x ∈[0,2]. ∴AC ―→=(2,2),DB ―→=(2,-2),AP ―→=(x,2).∵AC ―→=λDB ―→+μAP ―→,∴⎩⎪⎨⎪⎧2λ+xμ=2,-2λ+2μ=2,∴⎩⎪⎨⎪⎧λ=2-x2+x ,μ=42+x ,∴λ+μ=6-x 2+x .令f (x )=6-x2+x(0≤x ≤2), ∵f (x )在[0,2]上单调递减,∴f (x )max =f (0)=3,即λ+μ的最大值为3. 答案:39.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k . 解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎨⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝⎛⎭⎫13b -a =16b -a , CD ―→=CF ―→+FD ―→=-12b -⎝⎛⎭⎫16b -a =a -23b . 三上台阶,自主选做志在冲刺名校1.在平面直角坐标系xOy 中,已知点A (2,3),B (3,2),C (1,1),点P (x ,y )在△ABC 三边围成的区域(含边界)内,设OP ―→=m AB ―→-n CA ―→(m ,n ∈R ),则2m +n 的最大值为( )A .-1B .1C .2D .3解析:选B 由已知得AB ―→=(1,-1),CA ―→=(1,2),设OP ―→=(x ,y ),∵OP ―→=m AB ―→-n CA ―→,∴⎩⎪⎨⎪⎧x =m -n ,y =-m -2n ,∴2m +n =x -y .作出平面区域如图所示,令z =x -y ,则y =x -z ,由图象可知当直线y =x -z 经过点B (3,2)时,截距最小,即z 最大.∴z 的最大值为3-2=1,即2m +n 的最大值为1.2.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3―→=λA 1A 2―→(λ∈R ),A 1A 4―→=μA 1A 2―→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c,0),D (d,0)(c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c =λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d =μ.根据1λ+1μ=2,得1c +1d =2.线段AB 的方程是y =0,x ∈[0,1].若C 是线段AB 的中点,则c =12,代入1c +1d =2得,1d =0,此等式不可能成立,故选项A 的说法不正确;同理选项B 的说法也不正确;若C ,D 同时在线段AB 上,则0<c ≤1,0<d ≤1,此时1c ≥1,1d ≥1,1c +1d ≥2,若等号成立,则只能c =d =1,根据定义,C ,D 是两个不同的点,矛盾,故选项C 的说法也不正确;若C ,D 同时在线段AB 的延长线上,即c >1,d >1,则1c +1d <2,与1c +1d =2矛盾,若c <0,d <0,则1c +1d 是负值,与1c +1d =2矛盾,若c >1,d <0,则1c <1,1d <0,此时1c +1d <1,与1c +1d =2矛盾,故选项D 的说法是正确的.3.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧ a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→,所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤⎝⎛⎭⎫a +b 22, 即(a +b )2-8(a +b )≥0,解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.[小题体验]1.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( ) A.π6 B.π3 C.2π3 D.5π6 答案:D2.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =( ) A .1 B .2 C .3D .4解析:选C 由题意可得a ·b =|a |·|b |·cos 〈a ,b 〉=2×3×32=3. 3.已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |=( ) A.7 B.10 C.13D .4解析:选C 依题意得a ·b =12,则|a +3b |=a 2+9b 2+6a ·b =13.4.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =________.解析:因为向量a ,b 为单位向量,所以b 2=1,又向量a ,b 的夹角为60°,所以a ·b =12,由b ·c =0,得b ·[t a +(1-t )b ]=0,即t a ·b +(1-t )b 2=0,所以12t +(1-t )=0,所以t =2.答案:25.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ―→·BD ―→=________.解析:选向量的基底为AB ―→,AD ―→,则BD ―→=AD ―→-AB ―→,AE ―→=AD ―→+12AB ―→,所以AE ―→·BD ―→=⎝⎛⎭⎫AD ―→+12AB ―→ ·(AD ―→-AB ―→)=2. 答案:21.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量. 2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.3.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 4.在用|a |=a 2求向量的模时,一定要把求出的a 2再进行开方. [小题纠偏]1.若a ,b 是两个互相垂直的非零向量,给出以下式子:①a ·b =0;②a +b =a -b ;③|a +b |=|a -b |;④a 2+b 2=(a +b )2.其中正确的个数是( )A .1B .2C .3D .4解析:选C 因为a ,b 是两个互相垂直的非零向量,所以a·b =0;所以(a +b )2=a 2+b 2+2a·b =a 2+b 2;(a -b )2=a 2+b 2-2a ·b =a 2+b 2;所以(a +b )2=(a -b )2,即|a +b |=|a -b |.故①③④是正确的,②是错误的.2.设向量a ,b 满足|a |=|b |=1,a ·b =-12,则|a +2b |=________.解析:|a +2b |=(a +2b )2=|a |2+4a ·b +4|b |2= 1+4×⎝⎛⎭⎫-12+4= 3. 答案: 3考点一 平面向量的数量积的运算(基础送分型考点——自主练透)[题组练透]1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.(2018·浙江考前冲刺)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |=4,则向量a 在a +b 上的投影为( )A. 3 B .3 C. 6D .6解析:选B 由|a +b |=|a -b |,得a 2+2a ·b +b 2=a 2-2a ·b +b 2,即a ·b =0, 由|a +b |=2|b |,得a 2+2a ·b +b 2=4b 2,即a 2=3b 2,所以|a |=3|b |=23, 所以向量a 在a +b 上的投影为a ·(a +b )|a +b |=a 2|a +b |=3.中点,则AB ―→·AD―→3.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→)=AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|cos 45°+|AB ―→|·|CD ―→|cos 45° =22×2×22+22×1×22=6. 法二:建立如图所示的平面直角坐标系,由题意得A (0,2),B (-2,0), D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2), ∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:64.(2019·台州模拟)以O 为起点作三个不共线的非零向量OA ―→,OB ―→,OC ―→,使AB ―→=-2BC ―→,|OA ―→|=4,OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,则OA ―→·BC ―→=________. 解析:法一:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,平方得OA ―→|OA ―→|·OB ―→|OB ―→|=-12,即cos ∠AOB =-12,因为OA ―→,OB ―→不共线,所以0°<∠AOB <180°,所以∠AOB =120°.因为AB ―→=-2BC ―→,所以C 为线段AB 的中点.由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|两边同乘以OC ―→|OC ―→|,得cos ∠AOC +cos ∠BOC =1,即cos ∠AOC +cos(120°-∠AOC )=1,解得∠AOC =60°,所以OC 为∠AOB 的平分线,所以OC ―→⊥AB ―→.又|OA ―→|=4,所以|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.法二:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|及AB ―→=-2BC ―→,结合向量加法的平行四边形法则得OC 为∠AOB 的平分线,C 为AB 的中点,所以OC ―→⊥AB ―→,且|OA ―→|=|OB ―→|=4,|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.答案:12[谨记通法]向量数量积的2种运算方法考点二 平面向量数量积的性质(题点多变型考点——多角探明) [锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题. 常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直;(4)与最值、范围有关问题.[题点全练]角度一:平面向量的模1.已知e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析:法一:∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.法二:由题可得,不妨设e 1=(1,0),e 2=⎝⎛⎭⎫12,32,b =(x ,y ). ∵b ·e 1=b ·e 2=1,∴x =1,12x +32y =1,解得y =33.∴b =⎝⎛⎭⎫1,33,∴|b |= 1+13=233. 答案:233角度二:平面向量的夹角2.(2018·浙江十校联盟适考)若向量a ,b 满足|a |=4,|b |=1,且(a +8b )⊥a ,则向量a ,b 的夹角为( ) A.π6 B.π3C.2π3D.5π6解析:选C 由(a +8b )⊥a ,得|a |2+8a ·b =0,因为|a |=4,所以a ·b =-2,所以cos 〈a ,b 〉=a ·b |a |·|b |=-12,所以向量a ,b 的夹角为2π3. 3.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:因为a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),|a |=5,|b |=25, 所以c ·a =5m +8,c ·b =8m +20. 因为c 与a 的夹角等于c 与b 的夹角, 所以c ·a |c |·|a |=c ·b|c |·|b |, 即5m +85=8m +2025,解得m =2. 答案:2角度三:平面向量的垂直4.(2019·南宁模拟)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.解析:由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. 答案:7125.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2, 即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β。
人教版高中数学教案:第5章:平面向量,教案,课时第 (13)
第十三教时教材:平面向量的数量积的坐标表示目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。
过程:一、复习:1.平面向量的坐标表示及加、减、实数与向量的乘积的坐标表示 2.平面向量数量积的运算 3.两平面向量垂直的充要条件 4.两向量共线的坐标表示: 二、 课题:平面两向量数量积的坐标表示1.设a = (x 1, y 1),b = (x 2, y 2),x 轴上单位向量i ,y 轴上单位向量j , 则:i ⋅i = 1,j ⋅j = 1,i ⋅j = j ⋅i = 0 2.推导坐标公式:∵a = x 1i + y 1j , b = x 2i + y 2j∴a ⋅b = (x 1i + y 1j )(x 2i + y 2j ) = x 1x 2i 2 + x 1y 1i ⋅j + x 2y 1i ⋅j + y 1y 2j 2 = x 1x 2 + y 1y 2从而获得公式:a ⋅b = x 1x 2 + y 1y 2例一、设a = (5, -7),b = (-6, -4),求a ⋅b解:a ⋅b = 5×(-6) + (-7)×(-4) = -30 + 28 = -2 3.长度、角度、垂直的坐标表示1︒a = (x , y ) ⇒ |a|2 = x 2 + y 2 ⇒ |a | =22y x +2︒若A = (x 1, y 1),B = (x 2, y 2),则=221221)()(y y x x -+-3︒ co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=4︒∵a ⊥b ⇔ a ⋅b = 0 即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示原则)4.例二、已知A (1, 2),B (2, 3),C (-2, 5),求证:△ABC 是直角三角形。
证:∵=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3) ∴⋅=1×(-3) + 1×3 = 0 ∴⊥∴△ABC 是直角三角形三、补充例题:处理《教学与测试》P153 第73课例三、已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x 。
高中数学平面向量知识点总结
高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b == ,则a +b =AB BC + =AC(1)a a a=+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++= ,但这时必须“首尾相连”. 3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+ ,记作a =(x,y)。
2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±±(2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa=(λx, λy) (4) 若()()1122,,,a x y b x y == ,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y == ,则1212a b x x y y ⋅=⋅+⋅若a b ⊥ ,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅= 2向量的投影:︱b ︱cos θ=||a b a ⋅ ∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b a b a b +⋅-=-=- ; ()2222a b a a b b ±=±⋅+ 222a a b b =±⋅+ 6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅ ()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅ ;(2)消去律不成立a b a c ⋅=⋅ 不能b c =⋅ (3)a b ⋅ =0不能a =0 或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y == ,则a ·b =1212x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b ∙<>=∙当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =O ⇔2121=+y y x x 平面向量数量积的性质。
高中数学-公式-平面向量
平面向量1.两个向量平行的充要条件,设a =(x 1,y 1),b =(x 2,y 2),λ为实数。
〔1〕向量式:a ∥b (b ≠0)⇔a =λb ;〔2〕坐标式:a ∥b (b ≠0)⇔x 1y 2-x 2y 1=0;2.两个向量垂直的充要条件, 设a =(x 1,y 1),b =(x 2,y 2), 〔1〕向量式:a ⊥b (b ≠0)⇔a b =0; 〔2〕坐标式:a ⊥b ⇔x 1x 2+y 1y 2=0;3.设a =(x 1,y 1),b =(x 2,y 2),那么a b θ=x 1x 2+y 1y 2;其几何意义是a b 等于a 的长度与b 在a 的方向上的投影的乘积;4.设A 〔x 1,x 2〕、B(x 2,y 2),那么S ⊿AOB =122121y x y x -; 5.平面向量数量积的坐标表示:〔1〕假设a =(x 1,y 1),b =(x 2,y 2),那么a b =x 1x 2+y 1y 2221221)()(y y x x -+-=; 〔2〕假设a =(x,y),那么a 2=a a =x 2+y 2,22y x a +=;十、向量法 1、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕线线平行:l ∥m ⇔a ∥b ⇔=a kb〔2〕线面平行:l ∥α⇔a ⊥u 0⇔=a u〔3〕面面平行:////αβ⇔⇔=u v u kv注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.2、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕线线垂直:⊥⇔l m a ⊥b 0⇔=a b〔2〕线面垂直:α⊥⇔l a ∥u ⇔=a ku〔3〕面面垂直:αβ⊥⇔u ⊥v 0⇔=u v3、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕直线、m l 所成的角(0)2πθθ≤≤,cos θ⋅=a ba b〔2〕直线l 与平面α所成的角(0)2πθθ≤≤,sin θ⋅=a ua u〔3〕平面α与平面β所成的二面角的平面角(0)θθπ≤≤,cos θ⋅=u vu v教学过程:二、新课讲授1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模.3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a +b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c );⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a .4. 推广:⑴12233411n n n A A A A A A A A A A -++++=;⑵122334110n n n A A A A A A A A A A -+++++=;方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量. 向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .称平面向量共线定理,二、新课讲授1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.a 平行于b 记作a //b .2.关于空间共线向量的结论有共线向量定理及其推论: 共线向量定理:空间任意两个向量a 、b 〔b ≠0〕,a //b 的充要条件是存在实数λ,使a =λb . 理解:⑴上述定理包含两个方面:①性质定理:假设a ∥b 〔a ≠0〕,那么有b =λa ,其中λ是唯一确定的实数。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
高中数学平面向量知识点与典型例题总结(师)
高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
人教版高中数学教案:第5章:平面向量,教案,课时第 (21)
第二十二教时教材:复习一——向量、向量的加法与减法、实数与向量的积目的:通过复习对上述内容作一次梳理,使学生对知识的理解与应用提高到一个新的水平。
过程:一、知识(概念)的梳理:1.向量:定义、表示法、模、几种特殊向量 2.向量的加法与减法:法则(作图)、运算律3.实数与向量的积:定义、运算律、向量共线的充要条件、平面向量的基本定义二、 例题:1.若命题M :'=;命题N :四边形ABB ’A ’是平行四边形。
则M 是N 的 ( C ) (A )充分不必要条件 (B ) 必要不充分条件(C )充要条件 (D ) 既不充分也不必要条件 解:若=,则 ||=||,且, 方向相同∴AA ’∥BB ’ 从而ABB ’A ’是平行四边形,即:M ⇒N 若ABB ’A ’是平行四边形,则|AA ’|=|BB ’|,且AA ’∥BB ’ ∴|'|=|'| 从而'=,即:N ⇒M 2.设A 、B 、C 、D 、O 是平面上的任意五点,试化简:1︒CD BC AB ++ 2︒BD AC DB ++ 3︒CO OB OC OA -+-- 解:1︒ 原式= =+=++)(2︒ 原式= =+=++)(3︒ 原式= =+=+-=--+-)()()( 3.a =“向东走5km ”,b =“向西走12km ”,试求a +b 的长度与方向。
解:如图:13125||22=+=(km )tan ∠AOB =512 , ∴∠AOB = arctan 512∴a + b 的长为13km ,方向与成arctan 512的角。
4.如图:1︒已知a 、b 、c 、d ,求作向量a -b 、c -d 。
2︒已知a 、b 、c ,求作a + c - b5.设x 为未知向量,a 、b 为已知向量,解方程2x -(5a +3x -4b )+21a -3b =0解:原方程可化为:(2x - 3x ) + (-5a +21a ) + (4b -3b ) = 0 ∴x =29-a + b6.设非零向量a 、b 不共线,c =k a +b ,d =a +k b (k ∈R),若c ∥d ,试求k 。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r(1)a a a00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0 a ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a r 可表示成a xi yj r r r ,记作a r =(x,y)。
2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y r r(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r =( x, y) (4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y r r(5) 若 1122,,,a x y b x y r r ,则1212a b x x y y r r若a b r r ,则02121 y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r ︱·︱b r ︱cos叫做a r 与b r 的数量积(或内积) 规定00a r r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b a b a b a b r r r r r r r r ; 2222a b a a b b r r r r r r 222a a b b r r r r 6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r ③分配律成立: a b c a c b c r r r r r r r c a b r r r特别注意:(1)结合律不成立: a b c a b c r r r r r r ;(2)消去律不成立a b a c r r r r 不能得到b c r r (3)a b r r =0不能得到a r =0r 或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r ,则a r ·b r =121x x y y 8向量的夹角:已知两个非零向量a r 与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB= (001800 )叫做向量a r 与b r 的夹角 cos =cos ,a b a b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r 10两个非零向量垂直的充要条件:a ⊥b a ·b =O 2121 y y x x 平面向量数量积的性质。
高中数学基础知识大筛查(5)-平面向量
基础知识大筛查-平面向量概念与定理1、有关概念(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示 (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。
4、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
高中的数学平面向量专题复习(含例题练习)
标准实用平面向量专题复习一.向量有关概念:1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意 不能说向量就是有向线段,为什么?(向量可以平移) 。
如:2•零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3 .单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是-AB ); 一|AB|4 •相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a 、b 叫做平行向量,记作: a // b ,规定零向量和任何向量平行。
提醒:① 相等向量一定是共线向量,但共线向量不一定相等;② 两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线 平行不包含两条直线重合; *③ 平行向量无传递性!(因为有0)$ ④ 三点A B C 共线 AB AC 共线;a 的相反向量是一a 。
女口 =b ,则a =b 。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(4)若ABCD 是平行四边形,则 AB = DC 。
( 5)若a = b,b= c ,则、向量的表示1•几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后;2 •符号表示法:用一个小写的英文字母来表示,如 a , b , c 等;坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
三. 平面向量的基本定理:如果 e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数 ■ 1、 ’2,使a= \ 8+ '2e 2。
女口卄片 片 ■+4例 2 (1)若 a =(1,1)b =(1,-1),c=(—1,2),则 c= _________(2) 下列向量组中,能作为平面内所有向量基底的是A. 2 =(0,0),e 2 =(1,-2)B. e =(-1,2)© =(5,7)13 C. e = (3,5)6 =(6,10) D. e =(2,-3)© =(—,-—)24(3) 已知AD,BE 分别是 ABC 的边BC,AC 上的中线,且AD =a,BE =b ,则BC 可用向量a,b 表示为 _____但两条直线6 .相反向量:长度相等方向相反的向量叫做相反向量。
人教版高中数学教案:第5章:平面向量,教案,课时第 (23)
第二十四教时教材:复习三——平面向量的坐标运算、定比分点过程:一、复习:平面向量坐标的概念,运算法则,定比分点 二、 例题:1.已知四边形的顶点坐标为A (1,2),B (2,5),C (8,14),D (3,5), 求证:四边形ABCD 是一个梯形。
证:∵=(2,3), =(6,9) 且2×9-3×6=0 ∴∥又∵AB =(1,3), =(-5,-9) 而1×(-9)-3×(-5)≠0 ∴AB∥∴ABCD 为梯形2.设a = (1,x ),b = (-1,3),且2a + b ∥a -2b ,试求x 。
解:2a + b = (1,), a -2b = (3, x -6)∵2a + b ∥a -2b ∴1×(x -6) - (2x +3)×3 = 0 ⇒ x = -3 3.已知:A (1,-2),B (2,1),C (3,2),D (-2,3),1︒求证:A ,B ,C 三点不共线2︒以、AC 为一组基底来表示AD ++CD解:1︒∵=(1,3), AC =(2,4) ∵1×4-3×2≠0 AC ∴A ,B ,C 三点不共线2︒++=(-3,5)+(-4,2)+(-5,1) = (-12,8) 设:AD +BD +CD = m AB + n AC 即:(-12,8) = (m + 2n , 3m + 4n )∴⎩⎨⎧-==⇒⎩⎨⎧+=+=-2232438212n m n m n m ∴++= 32-22 4.已知M (1,-3),N (4,6),P (x ,3),且三点共线,求点P 分有向线段MN 所成的比λ及x 的值。
解:36)3(341---=--=x x λ 解得:λ= 2, x = 35.已知△ABC 的顶点是A (x 1, y 1),B (x 2, y 2),C (x 3, y 3),求△ABC 的重心G 的坐标(x , y )。
高中数学平面向量专题复习(知识要点+六大考试题型详解)
平面向量六大题型知识点:1.向量的有关概念(1)定义:即有大小,又有方向的量叫做向量. (2)表示:a AB(,)OA x y =2121(,)AB x x y y =--(3)向量的长度(模):a 或AB 的模记作||a 或||AB . (4)几种特殊向量: 定义备注0,方向任意||aa 即为单位向量记为ab ∥,规定0与任意向量共线a b =,相等一定平行,平行不一定相等a b =-,AB BA =-2.向量的运算 运算几何表示字母表示坐标表示加法a b AB BC AC +=+=三角形法则 类比“位移之和”首尾相连,首位连11(,)a x y =,22(,)b x y = 1212(,)a b x x y y +=++a b AB AD AC +=+= 平行四边形法则 类比“力的合成” 共起点,对角线减法a b AB AC CB -=-= 共起点,后指前11(,)a x y =,22(,)b x y = 1212(,)a b x x y y -=--数乘长度变为||λ倍0λ>,方向相同0λ<,方向相反 0λ=,0a λ=11(,)a x y =12(,)a x x λλλ=数量积||||cos a b a b θ⋅=11(,)a x y =,22(,)b x y =1212a b x x y y ⋅=+3.其他概念(1)平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ,2λ,使1122a e e λλ=+,我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底.(2)投影:||cos (||cos )a b θθ叫做向量a 在b 方向上(b 在a 方向上)的投影.常用投影计算公式:||cos ||||||a b a a a b θ⋅==||a bb ⋅. (3)向量不等式:||||||||||||a b a b a b -≤±≤+(等号在向量a ,b 共线时取得).4.重要结论ABC 中,的中点ABC 的重心(1)PC PA PB λλ=+-1()2AD AB AC =+GB GC ++5.常用性质设向量a 与b 夹角为θ,11(,)a x y =,22(,)b x y =.a b λ= ||||cos 0a b a b θ⋅==12a b x x ⋅=+2||a a = 21||a x y =+cos ||||a ba b θ⋅=122211cos x x x yθ+=+重要考试题型:题型一:向量概念1给出如下命题: ①若||||a b =,则a b =;②若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若a b =,b c =,则a c =; ④a b =的充要条件是||||a b =且a b ∥; ⑤若a b ∥,b c ∥,则a c ∥. 其中正确的命题的序号是______.解析:①两向量模相等,方向不一定相同,所以a b =不正确;②AB DC =说明AB 和DC 两条边即平行又相等,可以推出四边形为平行四边形,反之也成立,是充要条件,正确;③两个向量相等说明它们大小相等,方向相同,故满足此条件的都是相等向量,正确; ④两向量模相等,且平行,不能说明它们方向相同,故错误;⑤若0b =,根据0与任意向量平行的性质,则a b ∥且b c ∥,但a 与c 之间不一定平行,不排除0时,向量之间没有平行的传递性,故错误;主要考察向量定义,表示、以及特殊向量,属于基础题型,需要注意的是: (1)向量二要素(大小、方向)(2)加模后变为实数,去掉了方向的要素,可以比较大小 (3)0与任意向量共线(没有平行传递性) (4)共线向量方向相同或相反 (5)相反向量长度相等AD BC =;AB DC =且||||AB AD =.AD BC =说明AD 和BC 两条边相等且平行,所以为平行四边形;AB DC =说明AB 和DC 相等且平行,为平行四边形,|||AB AD =说明两临边相等,为菱形.答案:(1)平行四边形 (2给出如下命题:①向量AB 的长度与向量BA 的长度相等;a 与b 平行,则a 与b 的方向相同或相反;③两个有公共起点而且相等的向量,其终点必相同;④两个公共终点的向量,一定是共线向量;AB 与向量CD 是共线向量,则点其中正确的命题个数是( B .2 C .3AB 和BA 长度相等,方向相反,正确;②当为零向量时,不满足条件,错误;③起点相同,长度和方向也相同,终点一定相同,正确;④终点相同,起点未必相同,不一定是共线向量,错误;⑤共线向量即平行向量,它们的起点和终点不一定在同一直线上,错误;答案:C题型二:向量四则运算1如图:正六边形ABCDEF 中,BA CD EF ++=( ) A .0 B .BE C .AD D .CF解析:由于BA DE =,故BA CD EF CD DE EF CF ++=++=. 答案:D2根如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC =b ,试用a ,b 将向量OE ,BF ,BD ,FD 表示出来.解析:OE BO a b ==+;2BF BA AF BA BO a b =+=+=+;2BD BC CD BC BO a b =+=+=+;FD AC BC BA b a ==-=-.答案: a b +,2a b +,2a b +,b a -3AB AC BC --=( )A .2BCB .0C .2BC -D .2AC主要考察向量的加法、减法、数乘、数量积四种运算法则,包含纯字母运算、纯坐标运算、字母结合图形运算、坐标结合图形运算等形式,属于基础题型,需要注意: (1)向量没有位置概念,相等向量的有向线段等价 (2)熟练掌握加减法的口诀,可以直接计算的就不必画图 (3)注意数形结合思想的运用,加减法的对角线性质 (4)字母运算和坐标运算自成一体,也可相互转化AC AB BD CD --+=( A .0 B .DA BC AB 0AC AB BD CD BC BD CD DC CD --+=-+=+=. A OA OC OB CO --+-=_____.解析:原式等于 ()()OB OA CO CO AB -+-=. AB如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=AD FE =,BE EC =,则0AD BE CF FE EC CF ++=++=,A 正确.A在ABCD 中,BC CD BA -+=( ) A .BC B .AD C .AB D .AC在平行四边形中,BA 和CD 是相反向,则0CD BA -+=,故0BC BC +=.答案:A8若O 是ABC 所在平面内一点,且满足||2|OB OC OB OC OA -=+-,则的形状为_______.2()()OB OC OA OB OA OC OA AB AC +-=-+-=+,ABC为直角三角(2,4)a=,(1,1)b=-,则a b-=()B.(5,9).(3,7)D(4,8)(1,1)(5,7)a b-=--=.已知四边形ABCD2BC AD=,则顶点D的坐标为((,AD x=2(24)(4,3)BC AD x y==-=,即72y=.(1,3)a=-,(2,4)b=-,若表示向量a,32b a-,c的有向线段首尾相接能构成三角形,则向量c为(1)-.(1,1)-4,6)D.(4,6)-(,)c x y=,能构成三角432230a b a c a b c+-+=++=,即2,4)(,6)(6,12)(4,6)(0,0)x y x y-+-+--++=,即40x-+=,,解得4x=,(2,3)BA=(4,7)CA=BC=(2,4)-B.(3,4)C.(6,10)(4,7)AC=--,(2,3)(4,BC BA AC=+=+-ABC 中,|5BC =,|8CA =,BC CA ⋅.解析:设BC 和CA 的夹角为θ,则120θ=︒,因为||5BC =,|8CA =,则||||cos 58cos120BC CA BC CA θ⋅==⨯答案:20-14已知a ,b 为单位向量,其夹角为)a b b -⋅=( ) A .1- B D .2 221)22||||cos60||2102a b b a b b a b b -⋅=⋅-=︒-=⨯-=.已知两个单位向量a ,b 夹角为60︒,(1)c ta t b =+-,若0b c ⋅=,则2(1)cos6010b c ta b t b t t ⋅=⋅+-=︒+-=,解得2t =. 2设(1,2)a =-,(3,4)b =-,(3,2)c =,则(2)a b c +⋅=( ) A .(15,12)- B .0 C . D .11- 2(1,2)2(3,4)5,6)a b +=-+-=-,(2)(5,6)(3,2)a b c +⋅=-⋅C已知两个单位向量1e ,2e 的夹角为3π,若向量1122b e e =-,21234b e e =+,则12b b ⋅=______.2212121211221(2)(34)32832862b b e e e e e e e e ⋅=-⋅+=-⋅-=-⨯-=-. 6-题型三:平面向量基本定理1在ABCD 中,AB a =,AD b =,3AN NC =,M 为BC 的中点,则MN =_____.解析:33()44AN AC a b ==+,1122AM AB BM AB AD a b =+=+=+, 所以1144MN AN AM a b =-=-+.答案:1144a b -+2如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =,AN d =,试用c ,d 表示AB ,AD .解析:设AB a =,AD b =,则1212c AM AD DM b a d AN AB BN a b⎧==+=+⎪⎪⎨⎪==+=+⎪⎩,解得2(2)32(2)3a d c b c d ⎧=-⎪⎪⎨⎪=-⎪⎩,所以4233AB d c =-,4233AD c d =-. 答案:4233AB d c =-,4233AD c d =-主要考察用两个不共线向量表示一个向量,即12a e e λμ=+,大部分是围绕求基底的系数出题,属简单题型,但考查方式较为灵活,需要注意:(1)有些目标向量用已知基底不太好构造,可以用相对熟悉的基底(例如平行四边形的临边)来表示已知基底,再用熟悉的基底来表示目标向量(2)有些题目会用到几何图形比例问题,注意观察图形中的三角形相似 (3)在求一些长度问题时,可能会用到解三角形内容在梯形ABCD 中,AB CD ∥,2AB CD =,M ,N 分别为CD ,BC 的中点,若AB AM AN λμ=+,则λμ+=______.2AB AN NB AN CN AN CA AN AN CM MA =+=+=++=++=14AN AB AM --,所以8455AB AN AM =-,即45λ=-,85μ=,故λ+答案:454在ABC 中,AB c =,AC b =,若点D 满足2BD DC =,则AD =( A .2133b c + B .5233c b - C .13b c - D .1233b c + 22221()()()33333AD AB BD AB BC AB AC AB c b c b c =+=+=+-=+-=+.答案:A在平行四边形ABCD 中,AC 与DB 相交于点O ,E 是线段OD 的中点,AE 延长线与CD 交于F ,若AC a =,BD b =,则AF =( ) A .1142a b + B .2133a b +C .1124a b + D .1233a b +AD AB aAD AB b+=-=,解得1()2AD a b =+,1()2AB a b =-,EDFEBA ,DE 13=,故11121()()23233AF AD DF a b a b a b =+=++⨯-=+.B如图,平面内有三个向量OA ,OB ,OC ,OA 与OB 夹角为120︒,OA 与OC 夹角为30︒,且||||1OA OB ==,||23OC =,若OC OA OB λμ=+,则λμ+的值为_____.解析:作平行四边形ODCE ,则OC OD OE OA OB λμ=+=+,4cos30OCOD ==︒,2tan30OCOE ==︒,即4λ=,2μ=,6λμ+=. 答案:6(1,1)a =,(1,1)b =-,(4,2)c =,则c =( )a b + B .3a b - C .3a b + D .3a b +(,)(,)(,)(4,2)c a b λμλλμμλμλμ=+=+-=-+=,所以4λμ-=,λ+3,1μ=-,则3c a b =-.如图:向量a b -=( ) A .1224e e -- B .1242e e -- C .123e e - D .123e e -+解析:由图可知12()3a b a b e e -=+-=-+. 答案:D向量a b c ++可表示为( ) A .1232e e - B .1233e e -- C .1232e e + D .1223e e +解析:a b c ++在图上画出来,可知1232a b c e e ++=+.答案:C10向量a ,b ,c 在正方形网格中的位置如图所示,若c a b λμ=+,则λμ=______. 解析:如图所示建立平面直角坐标系,可得(1,1)a =--,(6,2)b =,(1,3)c =--,则(,)(6,2)c a b λμλλμμ=+=-+=(6,2)(1,3)μλλμ-+=--,解得2λ=-,12μ=-,则4λμ=. 答案:4题型四:共线、中点、重心问题1设1e ,2e 是不共线向量,若向量1235a e e =+与向量123b me e =-共线,则m 的值等于( )A .95-B .53-C .35-D .59-解析,a 与b 共线,则满足b a λ=,即12123(35)me e e e λ-=+,则335m λλ=⎧⎨-=⎩,解得95m =-.答案:A主要考察一些常用结论,即本学案知识点第4点的内容,属中下难度题型,再强调一下:(1)(0)a b a b b λ⇔=≠∥,1221x y x y =(2)(1),,PC PA PB A B C λλ=+-⇔三点共线,P A 和PB 系数和为0(3)D 为BC 中点,1()2AD AB AC =+,即平行四边形对角线的一半(4)G 为ABC 重心,0GA GB GC ++=a b λ+与(2)b a --共线((2))a b b a λμ+=--,即2a b a b λμμ+=-,12μλμ=⎧⎨=-⎩,解得λ答案:D3已知(1,0)a =,(2,1)b =,ka b -与2a b +共线;(23AB a b =+,BC a mb =+,且A 三点共线,求m 的值.1)(,0)(2,1)(2,1)ka b k k -=-=--2(1,0)(4,2)(5,2)a b +=+=,两者共线,2)(1)5=-⨯,解得12k =-.,B ,C 三点共线,则AB BC λ=,即23()a b a mb λ+=+,则23=⎧⎨=⎩32m = (2,2),(,0)B a ,(0,)C b (0)ab ≠共线,则1a b(AB a =-(2,AC =-AB AC ∥,2)(2)=-⨯,化简得2ab a -,得1112a b +=BC ,已知点(A -AB DC =,设D (8,8)AB =(8DC =-0=,2y =-,故.答案:(0,6已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( )363AD AB BC CD a b AB =++=+=,所以AD AB ∥,A ,AABC 中,12AM AC =,29AD mAB AC =+,则m =______.12(1)(1)29AD AB AM AB AC mAB AC λλλλ=+-=+-=+,则12,则59m λ==.59设D ,E ,F 分别为ABC 的三边BC ,CA ,AB ,的中点,则EB FC +=( )A .ADB .12ADC .BC D .12BC 11()()()22EB FC BE CF BA BC CA CB AB AC AD +=-+=-+++=+=.A已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( )AO OD = 2AO OD = 3AO OD = D .2AO OD =是中点,则有2OB OC OD +=,原式变为220OA OD +=,即OA OD =-,故AO OD =.答案:A10设M 是ABC 所在平面上的一点,且33022MB MA MC ++=,D 是AC 中点,则||||MD BM 的值为( A .13 B .12D .23)232MA MC MD MD BM +=⋅==,即MD 与BM 共线,则||13||MD BM =.ABC 和点M满足0MA MB MC ++=,若存在实数m 使得AB AC mAM +=成立,则m =_____.解析:由0MA MB MC ++=可知M 为ABC 的重心,则2211[()]()3323AM AD AB AC AB AC ==+=+,即3AB AC AM +=,则3m =. 答案:312如图,在ABC 中,点O 是B C 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB mAM =,AC nAN =,则m n +的值为______.1()222m n AO AB AC AM AN =+=+,因为,O ,N 三点共线,m n2n =. 2在ABC 中,已知D 是AB 边上的一点,2AD DB =,13CD CA CB λ=+,则λ ) .23 3D .23- 解析:因为A ,D ,13CD CA CB λ=+,则113λ+=,23λ=.三点在同一条直线l 上,O 为直线l 外一点,0pOA qOB rOC ++= ,0pOA qOB rOC ++=变形得q rOA OB OC p p=--,因,B ,C 三点共线,则有0=,化简得p q r ++=答案:015已知点G 是ABC 的重心,点P 是GBC 内一点,若AP AB AC λμ=+,则λμ+的取值范围是( )A .1(,1)2 B .2(,1)3 C .3(1,)2D .(1,2)解析:P 是GBC 内一点,则1λμ+<,当且仅当P 在线段BC 上时,λμ+最大等于1,当P 和G 重合时,λμ+最小,此时1()3AP AG AB AC ==+,即23λμ+=,故213λμ<+<. 答案:B 16在ABC 中,2AB =,3AC =,D 是边B C 的中点,则AD BC ⋅=______.解析:1()2AD AB AC =+,BC AC AB =-,则221()2AD BC AC AB ⋅=-15(94)22=-=.答案:52题型五:面积比问题1在ABC 所在平面内有一点P ,如果2PA PC AB PB +=-,那么PBC 与ABC 的面积之比是( ) A .34 B .12 C .13D .23 主要考察用向量性质来研究三角形的关系,掌握了原理后较为简单,大体有3种形式:(1)高相同,底不同,向量线性计算得出底的比例关系(2)高不同,底相同,高的比转换为相似三角形的比,再转化为向量基底的长度比 (3)三角形店内一点与三个顶点的连线把三角形分成三个小三角,它们的面积比问题,把题目给出的向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比解析:2PA PC AB PB +=-化简可得3PC AP =,即P 在AC 上,两个三角形高相等,则34S PBC PC S ABC AC ==.答案:A如图,设P ,Q 为ABC 内的两点,且2155AP AB AC =+,2134AQ AB AC =+,则ABP 与ABQ 的面积之比为______.解析:如图作辅助线,EF ,GH 分别为两个三角形的高,15AE AC =,14AG AC =,则45S ABP EF AE S ABQ GH AG ===.答案:45已知O 是正三角形ABC 内部一点,230OA OB OC ++=,则OAC 与OAB 的面23 D .13解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则OAC 与OAB 的面积比为2:3. 答案:BABC 内一点且满足320PA PB PC ++=,则PBC ,PAC ,PAB 的面积比为( )4:3:2 2:3:4 C .1:1:1 D .3:4:6 解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则面积比为4:3:2. 答案:A题型六:垂直、求模、求角、投影问题1已知向量(,3)a k =,(1,4)b =,(2,1)c =,且(23)a b c -⊥,则k =( ) A .92- B .0 C .3 D .152解析:23(2,6)(3,12)(23,6)a b k k -=-=--,由题意知(23)0a b c -⋅=,则(23,6)(2,1)2(23)60k k --⋅=--=,解得3k =.答案:C2设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( ) A .1 B .2 C .3 D .5解析:由||10a b +=两边平方得22210a b a b ++⋅=,由||6a b -=两边平方得2226a b a b +-⋅=,两式相减得1a b ⋅=.答案:A 3已知向量a ,b 满足(2)()6a b a b +⋅-=-,且||1a =,||2b =,则a 与b 的夹角为主要考察数量积的性质,即本学案知识点第5点的内容,利用数量积的字母公式或坐标公式进行带入计算,由于是本章最后一节,题目融合程度可以比较高,需要记住一些常见题型和结论,大量的练习,高考出题大部分是考察这里,题目难度较低,但也可以出一些中等难度题型,需要注意的是:(1)两个向量的夹角一定要看准,向量的夹角不是线段的夹角,是方向的夹角 (2)0a b a b ⊥⇔⋅=,此乃五星级考点(3)求模公式2||a a =和2211||a x y =+一定要熟练运用,给你带模的条件很多时候都需要平方后再使用(4)求角公式就是数量积公式反过来用 (5)投影有简化公式||a bb ⋅,考察方式比较多样,涉及数量积最值的投影问题,通常需要作图来看,数形结合22222)()21226a b a b a b a b a b +⋅-=-+⋅=-⨯+⋅=-,解1a b ⋅=,11cos 122||||a b a b ⋅==⨯,3πθ=.答案:3π4已知点1,1)-,(1,2)B AB 在CD 方向上的投影为(2,1)AB =(5,5)CD = ,||52CD =10510||||552AB CD AB CD ⋅+==⨯ ,投影为3103|cos 510AB θ⨯=322如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅=_____.22||||cos AP AC AP AO AP AO ⋅=⋅=∠Rt APO 中,|cos ||AO PAC AP ∠=,所以22||218AP AC AP ⋅==⨯.答案:186在平行四边形ABCD 中,1AD =,60BAD ∠=为CD 的中点,1AC BE ⋅=,则AB 的长为_____.AB a =,AD b =,AC a b =+,12BE b a=-,222111111()()||||11222222AC BE a b b a a b a b a a ⋅=+⋅-=⋅-+=⨯-+=,解得||0()a =舍去或1||2=a .答案:127已知1e ,2e 是夹角为2π的两个单位向量,122a e e =-,12b ke e =+,若a ⋅则实数k 的值为______a ,b 不共线,且|||a b =,则下列结论中正确的是(a b +与a b -垂直 B .a b +与a b -共线 a b +与a 垂直 D .a b +与a 共线|||a b =可得22||||a b =,即2222||||()()0a b a b a b a b -=-=+⋅-=,A 项很明显都不正确.答案:A 设向量a ,b 满足||||1a b ==,12a b ⋅=-,则|2|a b +=( ) B .3 C .5 D .72222|(2)441423a b a b a b a b +=+=++⋅=+-=.B若(1,3)OA =-,||||OA OB =,0OA OB ⋅=,则||AB =______解析:设||(,)OB x y =,由两个条件可知2221330x y x y ⎧+=+⎪⎨-=⎪⎩,解得(3,1)(3,OB =-或,则(2,4)2)AB OB OA =-=-或,22||=AB 答案:2511设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .B .2C .3D .5解析:条件中两式分别平方得22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得4a b ⋅=,1a b ⋅=.答案:Aa b ∥ a b ⊥ |||a b = a b a b +=-解析:法一:根据向量加法和减法法则,||a b +和||a b -分别代表以a ,b 为临边的平行四边形的对角线长度,两对角线长度一样,说明四边形为矩形.故有a b ⊥;可得222222a a b b a a b b +⋅+=-⋅+,即40a b ⋅=,则a b ⊥.(2,4)a =,(1,2)b =-,若()c a a b b =-⋅,则||c =_____. ()(2,4)(28)(1,2)(8,8)c a a b b =-⋅=--+-=-,22||8(8)82c =+-=.82(,1)a x =,(1,)b y =,(2,4)c =-a c ⊥,b c ∥,则||a b +=( A .5 B .10 .25 D .10a c ⊥,则240a c x ⋅=-=,得2x =,bc ∥,则42y -=,(2,1)(1,2)(3,1)a b +=+-=-,故|9110a b +=+=.答案:B15已知(1,1)m λ=+,(2,2)n λ=+,若()()m n m n +⊥-,则λA .4- .3- C .2- D .1-(2m n λ+=+(1,m n -=--()()(2m n m n λ+⋅-=-.B单位向量1e 与2e 的夹角为α,且13=,向量1232a e e =-与123b e e =-的夹,则cos β=_____1212(32)(3)8a b e e e e ⋅=-⋅-=,212|(32)3a e e =-=,212||(3)8b e e =-=,8||||38a b a b ⋅==2 已知向量a ,b 满足(2)()6a b a b +⋅-=-,|1a =,||2b =,则a 与b 的夹角为222)()2186a b a b a b a b a b +⋅-=-+⋅=-+⋅=-,所以1a b ⋅=,故11122||||a b a b ⋅==⨯,60θ=︒. 60︒若向量(1,2)a =,(1,1)b =-,则a b +与a b -的夹角等于(A .4π- B .6π 4π D .34π (3,3)a b +=,(0,3)a b -=,)()9a b a b +⋅-=,|2|32a b +=,922||||323a b a b ⋅===⨯,夹角为4π.设向量a ,b 夹角为θ(3,3)a =,(1,1)b a -=-(,)b x y =,2(23,23)(1,1)b a x y -=---,得(1,2)b =,9a b ⋅=,||32a =,|5b =,9310cos 10||||325a b a b θ⋅===⨯. 答案:31010已知i ,j 为互相垂直的单位向量,2a i j =+,i j +,且a 与a b λ+的夹角为锐角,则实数λ5(,0)(0,)3-+∞ 3 C .5[,0)(0,)3-+∞ D .5(,0)3- 由题意知(1,2)a =,(1,1)b =,(1,2)a b λλλ+=++,夹角为锐角,即cos 0θ>|||||sin a b a b θ⨯=,a 与b 的夹角,若(3,a =--(1,3)b =|a b ⨯=( )A .3B .23C .2D .432||||a b a b ⋅-=⨯|||||sin a b a b θ⨯==已知点(1,1)A -(3,4),则向量AB 在CD 方向上的投影为( )D .3152- (2,1)AB =(5,5)CD =15AB CD ⋅=,|5AB =,|52CD =151010||||552a b a b θ⋅===⨯,投影为2||cos AB θ=. A (,1)A a ,(2,B 为平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为(.543a b -= D .5414a b +=OA 与OB 在OC 方向上的投影相同,则有OA OC OB OC ⋅=⋅,带入坐标,则有85b =+,即45a b -=.A向量a 的模为1,且a ,b 满足||4a b -=,||2a b +=,则b 在a 方向上的投影等|4a b -=两22216a b a b +-⋅=,|2a b +=两2224a b a b ++⋅=,两式相减得3a b ⋅=-,则投影为3||a b a ⋅=-. 答案:3- 25 在矩形ABCD 中,2,1BC =,的中点,若界)任意一点,则AE AF ⋅的最大值为(2.4 C .2解析:如图,建立坐标系,设AE 与AF 夹角为θ,则||||cos AE AF AE AF θ⋅==2212()||cos 2AF θ+,||cos AF θ为AF 在AE 方向上的投影,由投影定义可知,只有点F 取点C 时,投影有最大值,此时19(2,)(2,1)22AE AF ⋅=⋅=. 答案:C如图,在等腰直角三角形ABC 中,90A ∠=︒,22BC =,G 是ABC 的重心,P 是ABC 内的任意一点(含边界),则BG BP ⋅的最大值为_____.解析:如图所示,2222225||413333BG BD AB AD ==+=+=, 25||||cos ||cos 3BG BP BG BP BP θθ⋅==,则BG BP ⋅的最大值即||cos BP θ最大,由投影定义可知,当P 与C 重合时,有最大值,由余弦定理得222581310cos 2102522BD BC CD BD BC θ+-+-===⋅⨯,则最大值25310||||cos 224310BG BP BG BC θ⋅==⨯⨯=.数学浪子整理制作,侵权必究。
平面向量 高三 一轮复习(完整版)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
高中数学教科书平面向量
高中数学教科书平面向量
以下是一些高中数学教科书中关于平面向量的内容:
1. 《高中数学》(人民教育出版社)- 这本教科书详细介绍了平面向量的基本概念、运算法则和性质,以及平面向量的坐标表示和向量的数量积、向量的夹角等内容。
2. 《高中数学(新课标人教A版)》(人民教育出版社)- 这本教科书详细介绍了平面向量的定义,向量的相等、加法、减法、数乘等运算法则,以及向量的数量积、向量的夹角、向量的投影等内容。
3. 《高中数学(新课标人教B版)》(人民教育出版社)- 这本教科书详细介绍了平面向量的定义和性质,向量的加法、减法、数量积等运算法则,以及向量的坐标表示和向量的夹角等内容。
4. 《高中数学(苏教版)》(苏州大学出版社)- 这本教科书详细介绍了平面向量的基本概念、运算法则和性质,以及向量的数量积、向量的夹角、向量的投影等内容。
5. 《高中数学(沪教版)》(上海教育出版社)- 这本教科书详细介绍了平面向量的基本概念、运算法则和性质,以及向量的数量积、向量的夹角、向量的投影等内容。
这些教科书中的平面向量部分通常包括理论知识、解题方法和例题,可以帮助学生全面理解和掌握平面向量的相关概念和运算法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修内容复习(5)---平面向量
一、
选择题(每题3分,共54分)
1、已知向量等于则
MN OM 2
1
),1,5(),2,3(--=-=( ) A .)1,8(
B .)1,8(-
C .)2
1
,4(-
D .)2
1,4(-
2、已知向量),2,1(),1,3(-=-=b a 则b a 23--的坐标是(
) A .)1,7(
B .)1,7(--
C .)1,7(-
D .)1,7(- 3、已知),1,(),3,1(-=-=x 且∥,则x 等于(
)
A .3
B .3-
C .
3
1
D .3
1-
4、若),12,5(),4,3(==则与的夹角的余弦值为( )
A .
65
63 B .
65
33
C .65
33-
D .65
63-
564==,m 与n 的夹角是
135,则n m ⋅等于( )
A .12
B .212
C .212-
D .12-
6、点)4,3(-关于点)5,6(-B 的对称点是( )
A .)5,3(-
B .)2
9,0(
C .)6,9(-
D .)2
1,3(-
7、下列向量中,与)2,3(垂直的向量是(
)
A .)2,3(-
B .)3,2(
C .)6,4(-
D .)2,3(-
8、已知A 、B 、C 三点共线,且A 、B 、C 三点的纵坐标分别为2、5、10,则点A 分 所成的比是(
) A .8
3-
B .
8
3
C .3
8-
D .3
8
9、在平行四边形ABCD =+(
)
A .0=AD
B .0=AB 或0=AD
C .ABC
D 是矩形
D .ABCD 是正方形
10、已知点C 在线段AB 的延长线上,且λλ则,==等于(
)
A .3
B .
3
1
C .3-
D .3
1-
11、已知平面内三点x C B A ⊥满足),7(),3,1(),2,2(,则x 的值为(
)
A .3
B .6
C .7
D .9
12、已知ABC ∆的三个顶点分别是),(),,(),,(y C B A 1242
31-,重心)1,(-x G ,则y x 、的值分
别是( )
A .5,2==y x
B .2
5,1-
==y x C .1,1-==y x D .2
5,2-
==y x 13、在ABC ∆中,7:5:3::=c b a ,则此三角形中最大角的度数是( )
A .
150
B .
120
C .
90
D .
135
14、在ABC ∆中,等于则c A b a ,30,15,5 ===( )
A .52
B .5
C .52或5
D .以上都不对
15、在ABC ∆中,为锐角B A b a ,30,3,1 ===,那么A 、B 、C 的大小关系为(
)
A .A>B>C
B .B>A>C
C .C>B>A
D .C>A>B
16、设两个非零向量,不共线,且k k ++与共线,则k 的值为( )
A .1
B .1-
C .1±
D .0
17、已知AM B A 32
),2,3(),1,2(=
--,则点M 的坐标是( ) A .)2
1
,21(--
B .)1,34(--
C .)0,3
1(
D .)5
1
,0(- 18、将向量x y 2sin =按向量)1,6
(π
-
=a 平移后的函数解析式是( )
A .1)3
2sin(++=π
x y B .1)3
2sin(+-=π
x y C .1)6
2sin(++
=π
x y
D .1)6
2sin(+-
=π
x y
二、填空题(每题3分,共15分)
19、三角形三边长c b a 、、满足ab c b a c b a 3))((=-+++,则c 边的对角等于
20、已知b a b a b a -+==⊥λ与且23,32垂直,则λ等于 21、已知等边三角形ABC 的边长为1,则=⋅
22、设21e e 是两个单位向量,它们的夹角是
60,则=+-⋅-)23()2(2121e e e e
23、已知=--B A 、),2,5()4,3(
三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分) 24、已知)
,(),,(0823=-AB A ,求线段AB 的中点C 的坐标。
25与,54==的夹角为
60,求-3
26、平面向量),,2(),,2(),4,,3(y x ==-=已知∥,⊥,求及与夹角。
27、已知锐角ABC ∆的边长分别为2、4、x ,试求x 的取值范围。
答案
二、19、 1 20、
2
3 21、2
1-
22、2
9-
23、10
三、24、设).0,8()2,3(),(),,(=--=y x AB y x B
⎩
⎨⎧==⇒⎩⎨⎧=-=+∴250283y x y x )2,1(2,1),2,5(C y x B C C ⇒==∴ 25、109310969)3(2
2
=-⇒=+⋅-=- 26、),,2(),4,3(x =-=∥x 423-=⇔
38-=∴x ,2
3
),2(=⇔⊥=y c a y c 0),2
3
,2(),38,2(=⋅=-=∴c b c b 90,>=∴<c b
27、ABC ∆为锐角三角形⎪⎩
⎪⎨⎧>-+>-+>-+⇒⎪⎩⎪⎨⎧>>>⇔024*******cos 0cos 0cos 2
222
22222x x x C B A , 5232<<∴x。