平行线性质

合集下载

平行线的性质

平行线的性质

平行线的性质平行线是几何学中一个重要的概念,它具有一系列独特的性质和规律。

本文将从定义、性质以及常见应用几个方面来探讨平行线的特点。

一、定义平行线指在同一个平面上,永远不会相交的两条直线。

两条平行线之间的距离是不变的,无论它们延伸多远。

二、性质1. 平行线具有相同的斜率:对于两条平行线,它们的斜率相等。

可以通过直线的斜率公式来证明这个性质。

2. 平行线没有交点:平行线不会相交,因此在它们之间不存在交点。

这一性质是平行线的基本特征。

3. 平行线的内角和性质:当一条直线与两条平行线相交时,相应的内角和是补角。

也就是说,这些内角的和等于180度。

4. 平行线的外角性质:当一条直线与两条平行线相交时,相应的外角是等于对应内角的。

5. 平行线的转角性质:当有两条平行线与一条交线相交时,它们所对应的转角相等。

三、应用平行线的性质在几何学中有广泛的应用。

下面列举几个常见的应用场景。

1. 建筑与设计:在建筑和设计过程中,平行线的概念经常被用来处理墙壁、地板、屋顶等元素的布局。

通过确保平行线之间的距离一致,可以营造出整齐、协调的空间效果。

2. 路面交通:在道路设计和交通规划中,平行线的性质被用于绘制车行道、人行道和停车位等交通设施。

通过确保平行线的平直性和正确的间距,可以提高交通流畅度和安全性。

3. 数学证明:平行线的性质在数学证明中扮演重要的角色。

通过运用平行线的相关性质和定理,可以推导出更复杂的几何定理,解决各种几何问题。

总结:平行线是几何学中一个基础而重要的概念,它具有独特的性质和规律。

通过理解和应用平行线的性质,我们可以更好地解决几何问题,同时在建筑、设计和交通规划等领域中发挥重要作用。

掌握平行线的性质对于理解几何学和应用几何学都是至关重要的。

平行线的判定及性质

平行线的判定及性质

授课主题平行线教学目的1.理解平行线的概念,掌握平行公理及其推论;2.掌握平行线的判定方法及性质,并能进行简单的推理3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容【知识梳理】要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、平行线例1.下列说法正确的是()A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内,不相交的两条直线叫做平行线.【答案】D例2.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。

平行线的性质(5)

平行线的性质(5)

CFBiblioteka 两条平行线中,任意一条直线上的所 有点到另一条直线的距离是一个定值,这 个定值叫做这两条平行线间的距离。
两条平行线中,任意一条直线上的所 有点到另一条直线的距离是一个定值,这 个定值叫做这两条平行线间的距离。
例1:如图,直线a//b,点A、E、F在a上,点B、 C、D在b上,BC=EF,三角形ABC与三角形DEF 的面积相等吗?为什么?
a
A
F
E
b B
C
D
两条平行线中,任意一条直线上的所 有点到另一条直线的距离是一个定值,这 个定值叫做这两条平行线间的距离。
c
4
d
1 5 3
a
2
b
平行线的性质1:两直线平行,同位角相等。 平行线的性质2: 两直线平行,内错角相等。 平行线的性质3: 两直线平行,同旁内角互补。
平行线的判定方法1:同位角相等,两直线平行。 平行线的判定方法2:内错角相等,两直线平行。 平行线的判定方法3:同旁内角互补,两直线平行。
例题2:如图,已知AB//CD, 1 2 180 , 那么 CD与EF平行吗?为什么?
E F D
A
B
C
平行线的性质1:两直线平行,同位角相等。 平行线的性质2: 两直线平行,内错角相等。 平行线的性质3: 两直线平行,同旁内角互补。
如图(1),已知直线a、b,且a//b.在图(1)直线 a上 任取5个点:点 P 度量它们到直线 b 1、P 2、P 3、P 4、P 5 , 的距离,你能得到什么结论? 在图(2)的直线 b上任取5个点作类似的度量, 能否得到同样的结论?
E A D
1 B
2 F C
平行线的性质1:两直线平行,同位角相等。 平行线的性质2: 两直线平行,内错角相等。 平行线的性质3: 两直线平行,同旁内角互补。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中重要的概念之一,它们有着独特的性质和特点。

本文将介绍平行线的性质,包括定义、判定方法以及与其他几何对象的关系。

一、定义及判定方法平行线是指在同一平面上永不相交的直线。

根据平行线的定义可以得出以下性质:1. 平行线具有相同的斜率:如果两条直线的斜率相等,那么这两条直线是平行线。

反之,如果两条直线平行,那么它们的斜率一定相等。

2. 平行线具有相同的夹角:如果两条直线分别与一条横穿它们的直线相交,且交角相等,那么这两条直线是平行线。

反之,如果两条直线平行,那么它们与同一条横穿它们的直线的交角一定相等。

3. 平行线具有相同的倾斜角:倾斜角指直线与水平线之间的夹角。

如果两条直线的倾斜角相等,那么这两条直线是平行线。

反之,如果两条直线平行,它们与水平线的倾斜角一定相等。

二、平行线与其他几何对象的关系1. 平行线与角的关系:当一条直线与两条平行线相交时,所对应的内角或外角具有特定的关系。

如果同时给定两条直线为平行线,以及一条与它们相交的第三条直线,那么我们可以根据角的性质计算出交角的大小。

2. 平行线与三角形的关系:如果一条直线与一个三角形的两条边分别平行,那么这条直线将会将这两条边分成对应的等分线段,从而形成一组相似三角形。

3. 平行线与平行四边形的关系:平行四边形是指具有两对平行边的四边形。

在平行四边形中,对角线相交于一点,并且相交点将对角线等分。

同时,两对相对边及相对角也具有相等关系。

三、应用举例平行线的性质在实际应用中有着广泛的应用。

以下是一些例子:1. 建筑工程:在建造房屋或桥梁等结构时,工程师需要利用平行线的性质来确保构件的平行度和垂直度。

2. 地理测量:地理测量中使用的经纬线是地球表面上的平行线,它们能够提供位置和方向信息。

3. 电路布局:在电路设计中,平行线的性质被应用于布线和电路板设计,以确保信号传输的稳定性和减少电磁干扰。

4. 图形学:在计算机图形学中,平行线的性质被用于3D渲染和投影算法,以模拟真实世界中的透视效果。

平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( ) .A.S1>S2 B.S1=S2 C.S1<S2 D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵ EF∥AB∴ EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。

平行线的性质及平移(基础)知识讲解

平行线的性质及平移(基础)知识讲解

平行线的性质及平移(基础)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;4.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点四、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.如图所示,如果AB∥DF,DE∥BC,且∠1=65°.那么你能说出∠2、∠3、∠4的度数吗?为什么.【思路点拨】本题已知条件中,包含了两个层次:第一层次是由DE∥BC,可得∠1=∠4,∠1+∠2=180°;第二层次是由DF∥AB,可得∠3=∠2或∠3+∠4=180°,从而解出∠2、∠3、∠4的度数.【答案与解析】解:∵DE∥BC,∴∠4=∠1=65°(两直线平行,内错角相等).∠2+∠1=180°(两直线平行,同旁内角互补).∴∠2=180°-∠1=180°-65°=115°.又∵DF∥AB(已知),∴∠3=∠2(两直线平行,同位角相等).∴∠3=115°(等量代换).【点评】平行线的性质:由两条直线平行的位置关系得到两个相关角的数量关系.举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离2.如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定【答案】B【解析】因为l 1∥l 2,所以C 、D 两点到l 2的距离相等.同时△ABC 和△ABD 有共同的底AB ,所以它们的面积相等.【点评】三角形等面积问题常与平行线间距离处处相等相结合.类型三、命题 3.判断下列语句是不是命题,如果是命题,是正确的? 还是错误的?①画直线AB ;②两条直线相交,有几个交点;③若a ∥b ,b ∥c ,则a ∥c ;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等,那么这两个角不是对顶角.【答案】①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.【解析】因为①②不是对某一事情作出判断的句子,所以①②不是命题;在③④⑤⑥四个命题中,③④⑥是真命题,⑤是假命题.【点评】命题必须对某件事情作出“是什么”或“不是什么”的判断,如问句、陈述句就不是命题,值得注意的是错误的命题也是命题.举一反三:【变式】把下列命题改写成“如果……,那么……”的形式.(1)两直线平行,同位角相等; (2)对顶角相等;(3)同角的余角相等.【答案】解:(1)如果两直线平行,那么同位角相等.(2)如果两个角是对顶角,那么这两个角相等.(3)如果有两个角是同一个角的余角,那么它们相等.类型四、平移4.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【点评】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C 按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.5.(湖南益阳)如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°【解析】根据平移的特征可知:∠EBD=∠CAB=50°而∠ABC=100°所以∠CBE=180°-∠EBD-∠ABC=180°-50°-100°=30°【点评】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△BED.则有AC=BE,AB=BD,BC=DE,∠A=∠EBD,∠C=∠E,∠ABC=∠BDE.举一反三:【变式】 (上海静安区一模)如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型五、平行的性质与判定综合应用6、如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【点评】这是平行线性质与平行公理的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+ ∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。

平行线及其性质和判定

平行线及其性质和判定

平行线及其性质和判定核心纲要1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行".2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.本节重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.基础演练1.在同一平面内,两条直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交2.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行.3.如图所示,下列推理中错误的是( )A.∵∠A+∠ADC=180°,∴AB∥CD B.∵∠DCE=∠ABC,∴AB∥CDC.∵∠3=∠4,∴AD∥BC D.∵∠1=∠2,∴AD∥BC4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度可能是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°5.(1)如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D’,C’的位置.若∠EFB=65°,则∠AED’等于__________.(2)如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.图1 图2 图36.解答题.(1)填写推理理由如图所示,D、F、E分别是BC、AC、AB上的点,DF∥AB,DE∥AC,试说明:∠EDF=∠A.解:∵DF∥AB( )∴∠A+__________=180°( )∵DE∥AC(已知)∴∠AFD+__________=180°()∴∠EDF=∠A( )(2)推理填空,如图所示,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的度数过程填写完整:解:∵EF∥AD()∴∠2=__________()又∵∠1=∠2( )∴∠1=∠3( )∴AB∥__________( )∴∠BAC+__________=180°( )又∵∠BAC=70°( )∴∠AGD=__________7.已知:如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC.能力提升8.若α和β是同位角,且a=30°,则β的度数是( )A.30°B.150°C.30°或150°D.不能确定9.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A.30°和150°B.42°和138°C.都等于10°D.42°和138°或都等于10°10.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④11.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C,∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有( )个数A.1 B.2 C.3 D.412.如图所示,AB∥EF,EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=__________.13.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.14.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.15.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.16.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF17.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.18.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.19.阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b),已知△ABC,过点A作AD∥BC则∠DAC=∠C.又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b 反射出的光线n平行于m,且∠1=50°,则∠2=_________,∠3=__________;(2)在(1)中,若∠1=40°,则∠3=__________,若∠1=55°,则∠3=__________;(3)由(1)(2)请你猜想:当∠3=__________时,任何射到平面镜a上的光线m经过平面镜a和b 的两次反射后,入射光线m与反射光线n总是平行,请说明理由.20.已知直线MN∥BC,点A在直线MN上,点D在线段BC上,AB平分∠MAD,AC平分∠NAD(1)如图(a)所示,若DE⊥AC于E,求证:∠1=∠2.(2)若点F为线段AB上不与点A、B重合的一动点,点H在线段AC上,FQ平分∠AFD交AC于点Q,设∠HFQ=x,∠MAB=α,∠BDF=β,∠AFD=∠FBD+∠FDB,点D在线段BC上(不与B、C两点重合),问当α、β、x之间满足怎样的等量关系时,FH∥MN(如图(b)所示)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH∥MN.21.如图所示,已知射线CB∥OA,AB∥OC,∠C=∠OAB=100°,点E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.中考连接22.如图所示,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( ) A.17°B.34°C.56°D.68°23.如图所示,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30°B.25°C.20°D.15°巅峰突破24.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )A.①②B.①③C.③④D.①②④25.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.平行线及其性质和判定26.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11 / 11。

欧氏几何中平行线的性质和判定

欧氏几何中平行线的性质和判定

欧氏几何中平行线的性质和判定平行线的性质1、经过直线外一点,有且只有一条直线与已知直线平行。

2、两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。

3、两条直线平行于第三条直线时,两条直线平行。

4、平行线分三角形对应边成比例。

这几条命题依赖于欧氏几何的第五公设(平行公理),所以在非欧几何中不成立。

平行线的判定1、同位角相等,两直线平行。

2、内错角相等,两直线平行。

3、同旁内角互补,两直线平行。

4、在同一平面内,垂直于同一直线的两条直线互相平行。

5、在同一平面内,平行于同一直线的两条直线互相平行。

6、同一平面内永不相交的两直线互相平行。

在欧几里得几何原本的体系中,这几条判定法则不依赖于第五公设(平行公理),所以在非欧几何中也成立。

平行公理在欧几里得的几何原本中,第五公设(又称为平行公理)是关于平行线的性质。

它的陈述是:“在平面内,如果两条直线被第三条直线所截,一侧的同旁内角之和大于两个直角,那么最初的两条直线相交于这对同旁内角的另一侧。

”这条公理的陈述过于冗长。

在1795年,苏格兰数学家Playfair 提出了以下公理作为平行公理的代替,在被人们广泛的使用。

Playfair's Postulate:在同一平面内,过直线外一点,有且只有一条直线与这条直线互相平行。

平行公理的推论:(平行线的传递性)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

可以简称为:平行于同一条直线的两条直线互相平行。

非欧几何由于平行公理陈述冗长,并且不像欧氏几何中的其他公理那么显而易见,人们觉得它更像一个定理,可以从其他公理出发来证明。

经历了许多错误的证明,数学家们意识到这确实应作为一条公理。

更重要的是,在19世纪,数学家高斯,鲍耶,罗巴切夫斯基等发现,如果以平行公理的否定形式来代替平行公理,那么可以演绎出一套和欧氏几何完全不同,却没有内在矛盾的公理体系。

这个大胆的观点最初很难被人接受,但在逻辑上却没有任何问题。

平行线与坐标系中的形

平行线与坐标系中的形

平行线与坐标系中的形形可以是平行线之间的夹角关系,也可以是平行线与坐标系中的相交关系。

在几何学中,平行线是指在同一平面上没有交点的直线,而坐标系是表示点的位置和方向的一种系统。

本文将探讨平行线与坐标系中的形。

一、平行线的定义与性质平行线是几何形状中的重要概念,它们在平面几何中具有独特的特征与性质。

在坐标系中,我们可以通过斜率来描述平行线之间的关系。

1. 平行线定义:在平面几何中,如果两条直线不存在交点且在同一个平面内,我们称它们为平行线。

2. 平行线性质:平行线有以下性质:a. 平行线具有相同的斜率。

b. 平行线的斜率是斜率-截距方程的解集。

c. 平行线的垂直距离相等。

二、平行线的夹角关系平行线之间的夹角关系是几何学中常见的形状之一。

在坐标系中,通过斜率可以判断两条线段是否平行,并计算出它们之间的夹角。

1. 夹角关系定义:两条平行线之间的夹角为0度。

2. 夹角计算方法:a. 通过斜率计算:如果两条线段的斜率相等,则它们是平行线,夹角为0度。

b. 通过方程计算:根据两条线段的方程,可以计算它们之间的夹角。

三、平行线与坐标系中的相交关系平行线与坐标系中的相交关系也是几何学中常见的形状之一。

在坐标系中,我们可以通过方程或图形的交点来判断两条线段是否平行。

1. 相交关系定义:两条平行线与坐标系中的x轴、y轴相交,形成交点。

2. 相交关系图示:通过将坐标系中的两条平行线与x轴、y轴相交,可以形成一个矩形或梯形。

四、实际应用平行线与坐标系中的形不仅在几何学中有重要的意义,也广泛应用于实际生活中的各个领域。

1. 建筑设计:在建筑设计中,平行线可以用于确定建筑物的立面与相邻建筑的夹角关系,从而确保建筑物的平衡和美观。

2. 汽车设计:汽车的车身设计中也会涉及平行线的应用,通过平行的线条来营造流畅的外观或强调车辆的动态感。

3. 电子技术:在电路板设计中,平行线的运用可以使信号传输更加稳定,减少干扰。

结语平行线与坐标系中的形是几何学中重要的概念之一,它们在平面几何和实际应用中起着关键的作用。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中的重要概念,具有许多特殊的性质和规律。

本文将详细介绍平行线的性质,并探讨其在几何学中的应用。

一、平行线的定义平行线是指在同一个平面上,永不相交的两条直线。

根据几何学的定义,平行线具有以下重要性质。

1. 平行线的方向相同当两条直线平行时,它们的方向相同,即它们在同一平面上以相同的方向延伸。

2. 平行线的距离相等平行线之间的距离是恒定的,无论延长多长,始终保持相等的间隔。

3. 平行线不会相交平行线永远不会相交,无论两条线延长多长,它们始终保持相互平行的关系。

二、1. 夹角性质当一条直线与另外两条平行线相交时,形成的对应角、内错角、同旁内角等具有特殊的关系。

- 对应角:对应角相等,即对应的内角或外角大小相等。

- 内错角:内错角互补,即内接平行线上的内错角之和等于180度。

- 同旁内角:同旁内角互补,即相邻的内错角之和等于180度。

2. 平行线与垂直线的关系当一条直线与另外两条平行线相交时,形成的垂直线与平行线之间也有特殊的关系。

- 垂直线性质:垂直线与平行线形成的内角互补,即内接垂直线与平行线上的内角之和为180度。

- 垂直角:当两条垂直线相交时,形成的角称为垂直角,垂直角的大小为90度。

3. 平行线的延长性平行线可以无限延长,延长后的平行线与原线具有相同的性质。

这意味着无论平行线延长多长,它们仍然保持着互相平行的关系。

三、平行线的应用平行线的性质和规律在几何学中有着广泛的应用。

1. 三角形的判定平行线可以用来判定三角形是否相似。

当一条直线与两条平行线相交时,对应的对角线之间的比例相等,表明两个三角形相似。

2. 平行四边形的性质平行线的性质还可以用来研究平行四边形。

平行四边形的对角线相互平分,且对角线之间的比例相等。

3. 镜像对称平行线的延长线可以用于镜像对称的构造。

通过平行线的延长,可以找到与原线对称的另一条线,从而构造出完美的镜像对称。

四、总结平行线是几何学中的重要概念,具有许多独特的性质和规律。

平行线的性质

平行线的性质

本节的主要概念有:1.平行线的三条性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.2.平行线的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.3.命题:判断一件事情的语句,叫命题.重、难、疑点:重点:平行线三条性质、平行线的距离和命题的概念.难点:平行线的性质与平行线的判定的区别和综合运用.疑点:命题与肯定句、疑问句之间的关系与区别典例精讲例1 (北京市海淀区中考题)如图所示,已知DE∥BC,∠1=∠2,试说明CD是∠ECB 的平分线.方法指导:由BC∥DE可得∠1=∠DCB,而恰巧是要说明∠DCB=∠2.解:∵DE∥BC(已知),∴∠1=∠DCB(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠2=∠DCB.即CD是∠ECB的平分线.方法总结:由平行线性质得到恰当的角之间的关系,为说明结论成立提供依据.举一反三如图,已知AB∥CD,EF交AB于点H,交CD于点G,试判断∠1与∠2是否相等.解:∠1=∠2.∵AB∥CD,∴AHG=∠DGE(两直线平行,内错角相等).又∵∠1=∠AHG,∠DGE=∠2(对顶角相等),∴∠1=∠2.例2如图,已知∠1=∠2,∠3=∠4,∠5=∠C,证明:AB∥DE.方法指导:欲证AB∥DE,可证∠1=∠AGD,而∠1=∠2,所以须证∠2=∠AGD;证∠2=∠AGD.只需证AF∥CD,即需证∠5+∠ADC=180°,也就是要证AD∥BC,而这可以由∠3=∠4证得.解:证明:∵∠3=∠4.∴AD∥BC(内错角相等,两直线平行),∴∠ADC+∠C=180°(两直线平行,同旁内角互补).∵∠5=∠C,∴∠ADC+∠5=180°,∴AF∥CD(同旁内角互补,两直线平行),∴∠2=∠AGD(两直线平行,内错角相等).又∵∠1=∠2∴∠1=∠AGD,∴AB∥DE(内错角相等,两直线平行).方法总结:本题的思考过程是从结论出发,分析所要说明的结论成立须具备哪些条件,再看这些条件成立又须具备什么条件,直到追溯到已知条件为止.另外,在书写推理过程中,每一步必须有根有据,将理由写在每一步的括号内,防止把平行线的判定和性质混淆,这对初学阶段尤其重要.举一反三如图所示,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:∠EBC=∠DBC.解:证明,∵∠2+∠BDC=180°,∠2+∠1=180°,∴∠BDC=∠1(同角的补角相等),∴AE∥FC(同位角相等,两直线平行),∴∠EBC=∠C(两直线平行,内错角相等).又∵∠A=∠C(已知),∴∠EBC=∠A,∴AD∥BC(同位角相等,两直线平行),∴∠ADB=∠CBD,∠ADF=∠C.又∵∠ADB=∠ADF(角平分线定义),∴∠FBC=∠DBC.例3如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=50,∠B=76°,求∠EDC 及∠CDB的度数.方法指导:由DE∥BC可知,∠EDC=∠DCB(两直线平行,内错角相等),而;∠CDB=180°—∠EDC—∠ADE,而根据“两直线平行,同位角相等”可知∠ADE=∠B=76°.解:∵DE∥BC(已知),∴∠EDC=∠DCB(两直线平行,内错角相等).又∵∠ACD=∠BCD,∠ACB=50°(已知),∴.∵DE∥BC(已知),∴∠ADE=∠B(两直线平行,同位角相等).又∵∠B=76°,∴∠ADE=76°,∴∠CDB=180°—∠EDC—∠ADE=180°—25°—76°=79°.故∠EDC=25°,∠CDB=79°.方法总结:从题目的条件出发,结合图形,根据所学的性质和定理,找出所求的角与已知角之间的关系,达到计算角度数的目的.举一反三如图,已知∠ECD=∠ABC,问∠A+∠B+∠ACB等于多少度?并说明理由.解:∠A+∠B+∠ACB=180°.理由如下:∵∠ECD=∠ABC,∴AB∥EC(同位角相等,两直线平行).∴∠A=∠ACE(两直线平行,内错角相等).又∵∠ACB+∠ACE+∠ECD=180°(平角的定义).∴∠A+∠B+∠ACB=180°(等量代换).例4 判断下列语句是否是命题,如果是,指出命题的题设和结论.(1)同旁内角互补,两直线平行;(2)平角的一半是直角;(3)连接AB;(4)两个正数之和必为正数;(5)取AB的中点M.方法指导:(3)、(5)两个句子并未对某件事作出判断,(1)、(2)、(4)对某件事作出判断,是命题,可将它们写成“如果……那么……”的形式,再找出题设和结论.解:(3)、(5)不是命题,(1)、(2)、(4)是命题.(1)的题设是同旁内角互补,结论是两直线平等;(2)的题设是平角的一半,结论是直角;(4)的题设是两个正数之和,结论是为正数.方法总结:命题必须对某件事情作出判断,疑问句就不是命题,同时要注意的是错误的命题也是命题;将命题写成“如果……那么……”的形式,有助于分清命题的题设和结论.举一反三下列语句中,不是命题的是()A.同位角相等B.经过一点只能作一条直线与已知直线平行C.如果,那么a=bD.相交线和平行线解:D例5 将下列命题改成“如果……那么……”的形式,并判断其直假.(1)同角的补角相等;(2)垂直于同一条直线的两直线平行;(3)两个锐角的补角相等;(4)同旁内角互补;(5)正数与负数之和为正数.方法指导:分析命题的含义,找出题设和结论,将命题写成“如果……那么……”的形式;判断一个命题是假命题,只需要举出一个反例即可.解:(1)如果几个角是同一个角的补角,那么这几个角相等;是真命题;(2)如果两条直线都和同一条直线垂直,那么这两条直线平等;是真命题;(3)如果几个角是两个锐角的补角,那么这几个角相等;如130°是50°角的补角,120°是60°角的补角,但130°≠120°,所以此命题是假命题;(4)如果两个角是两条直线被第三条直线所截得的同旁内角,那么这两个角互补;显然,只有两条平行线被第三条直线所截得的同旁内角才互补,所以此命题是假命题;(5)如果一个数是一个正数与一个负数的和,那么这个数为正数;显然,如+5+(-8)=-3为负数,所以此命题为假命题.方法总结:将一个命题写成“如果……那么……”的形式,要先弄清语句的含义,分清题设和结论,改造后的句子要语句通顺,不能改变命题的意义;判断一个命题的真假,要运用和该命题相关的知识来作出判断,对于假命题,给出一个反例即可说明其为假命题.举一反三(黄冈市中考题)命题:(1)对顶角相等;(2)三条直线每两条直线都相交,最多有6对对顶角;(3)等角的补角相等;(4)不相等的角一定不是对顶角.其中真命题的个数是()A.1个B.2个C.3个D.4个解:D例6 如图,已知AB∥DE,∠B=40°,∠D=56,CF平分∠BCD,求∠DCF的度数.方法指导:由于“CF平分∠BCD”,所以欲求∠DCF的度数,只需求∠BCD的度数;但∠BCD与已知角∠B、∠D的关系并不明显,因此考虑构造辅助线——过点C作AB的平行线,再结合已知条件“AB∥DE”,利用平行线的性质,就不难找到所求角与已知角之间的联系了.解:过点C作CM∥AB(过一点有且只有一条直线与已知直线平行),∵AB∥ED,∴CM∥ED(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).∵AB∥CM,CM∥ED,∴∠B=∠BCM,∠D=∠DCM(两直线平行,内错角相等),∴∠BCD=∠BCM+∠DCM=∠B+∠D.又∵∠B=40,∠D=56°,∴∠BCD=40°+56°=96°,∵CF平分∠BCD,∴.方法总结:在利用平行线的性质进行有关图形的推理和计算时,有一类“折线”问题(如上图所示),常用的思路是过拐点(如上图中的C点即称为拐点)作已知直线的平行线,从而在已知角与未知角之间架起一道桥梁,找到它们之间的关系.举一反三如图所示,∠ABC=120°,∠BCD=85°,AB∥ED,试求∠EDC的度数.解:过点C作CF∥AB(过一点有且只有一条直线与已知直线平行),∵AB∥ED,∴CF∥ED(两条直线都和第三条直线平行,这两条直线也互相平行).∵AB∥CF,∴∠ABC+∠BCF=180°(两直线平行,同旁内角互补).又∵∠ABC=120°,∴∠BCF=180°—∠ABC=60°.∵∠BCD=85°,∴∠FCD=∠BCD—∠BCF=85°—60°=25°.∵CF∥ED,∴∠EDC=∠FCD(两直线平行,内错角相等),∴∠EDC=25°.例7(河北省中考题)如图所示探究规律:如图①所示,已知,直线m∥n,A、B为直线n上两点,C、P为直线m上两点,(1)请写出图中面积相等的各对三角形;(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_____________与△ABC的面积相等,理由是_________________________________.解决问题:如图②所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图,经多年开垦荒地,现已变成如图③所示的形状,但承包土地与开垦荒地的分界小路(即图③中折线CDE)还保留着,张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多,请你用有关的几何知识,按张大爷的要求设计出修路方案(不计分界小路与直路的占地面积).(1)写出设计方案,并在图③中画出相应的图形;(2)说明方案设计理由.方法指导:探究规律中利用“平行线间的距离相等”,不难找到图中同底等高的三角形;解决问题中,要使得所修的路符合条件,即是要使得左边面积在修好后与修路前相比,多出的部分与减少的部分面积相等,而这两部分刚好是两个三角形.因此,关键是构造平行线,利用前面的结论,说明这两个三角形的面积相等.解:探究规律:(1)△ABC和△ABP,△AOC和△BOP,△CPA和△CPB;(2)△ABP因为平行线间的距离相等,所以无论点P在m上移动到任何位置,总有△ABP与△ABC同底等高,所以它们的面积总相等.解决问题:(1)方案:如图③所示,连结EC,过点D作DF∥EC,交CM于点F,连结EF,EF 即为所求直路的位置;(2)设EF交CD于点H,由上面结论可知:,,∴,,方法总结:善于用所学知识,解决实际问题是学习能力的一种体现.举一反三解放战争时期,有一天江南某游击队在村庄A点出发向正东方向行进,此时有一支残匪在游击队的东北方向B处(如图所示),残匪沿北偏东60°的方向向C村进发.游击队步行到A′处,A′正在B的正南方向上,突然接到上级命令,决定改变行进方向,沿北偏东30°方向赶往C村,问游击队行进方向A′C与残匪行进方向BC至少是多少度角时,才能保证C村村民不受伤害?解:如图,过C点作CE∥BA′,则∠BCE=∠NBC=60°,∴∠A′CE=∠BA′C=30°,∴∠BCA′=∠BCE—∠A′CE=60°—30°=30°.故夹角至少为30°才能保证C村村民不受伤害.知识网络学法点津1.在学习平行线的性质和平行线间的距离时,注意运用比较法、探索法,注意和同学间的探究和合作,归纳相关的知识要点.如要注意总结平行线的性质与判定的区别与联系,归纳如何在推理过程中灵活运用性质和判定,要做到每一步推理都有根有据,思路清晰.2.在学习命题有关的知识时,要结合语文学科的知识,弄清语句的含义,寻找出正确的题设和结论.在遇到较简洁的命题时,可先将命题写为“如果……那么……”的形式,但同时要注意,改编后的命题要语句通畅,同时不能改变原命题的意义,目的在于更清楚、明了地辨别命题的题设和结论.自测题1.下列说法中,平行线的性质为().①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两条直线平行.A.①B.②③C.④D.①④2.如图5-3-10,b∥c,a⊥b,∠1=130°,则∠2的度数为().A.30°B.40°C.50°D.60°3.关于平行线间的距离,下列说法正确的是().A.两条平行线间,任一条线段B.两条平行线间,任一条线段的长度C.两条平行线间,垂线段的长度D.夹在两平行线间的任一条垂线段4.下列语句中是命题的是().A.延长线段AB到点C,使AC=2BCB.你能说出平行线的三条性质吗C.所有的角都相等D.简单的习题5.下列命题中,正确的是().A.在同一平面内,垂直于同一条直线的两条直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同位角相等D.和为180°的两个角叫做邻补角6.已知:如图5-3-11,FH⊥AB,CD⊥AB,∠1=∠2.求证:BC∥EF.(在括号内注明理由)证明:因为FH⊥AB,CD⊥AB,所以FH∥CD(),所以∠1=∠3 ().又因为∠1=∠2,所以∠2=∠3,所以BC∥EF().7.如图5-3-12,AB∥EF,若∠ABC=30°,∠BCD=40°,∠DEF=160°,则∠CDE=__________.8.如图5-3-13,若BD⊥AC于D,EF⊥AC于F,∠ABC+∠BCD=180°,求证:∠1=∠2.证明:因为BD⊥AC,EF⊥AC(已知),所以∠BDC=90°,∠EFC=90°(垂直定义),所以∠BDC=∠EFC(等量代换),所以BD∥_____________(),所以_________=___________(两直线平行,同位角相等).又因为∠ABC+∠BCD=180°(已知),所以__________∥____________(),所以∠1=∠3(),所以∠1=∠2(等量代替).9.命题“两直线平行,内错角相等”的题设是___________,结论是___________;命题“内错角相等,两直线平行”的题设是___________,结论是___________.10.如图5-3-14,∠ADC=∠ABC,∠1+∠2=180°,AD为∠FDB的平分线.试问:BC为∠DBE的平分线吗?若是,请说明理由.11.如图5-3-15,已知AB∥CD,∠BAE=∠DGF,求证:∠E=∠F.12.请将下列命题改写成“如果……那么……”的形式.(1)等角的余角相等;(2)垂直于同一条直线的两直线平行;(3)平行线的同旁内角的平分线互相垂直.13.潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射角等于反射角(如图5-3-16,∠1=∠2,∠3=∠4).请解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的.14.如图5-3-17,在A,B两地之间要修建一条笔直的公路,从A地测得公路走向最北偏东48°,A,B两地同时开工,若干天后公路准确接通.(1)B地所修公路的走向是南偏西多少度?为什么?(2)若公路AB长8km,另一公路BC长6km,且BC的走向是北偏西42°,试求A到公路BC的距离.15.如图5-3-18所示,试说明∠DAC=∠B+∠C.16.如图5-3-19,已知AB∥ED,∠α=∠A+∠E,∠β=∠B+∠C+∠D,求证:∠β=2∠α.参考答案1.A 2.B 3.C 4.C 5.A6.垂直同一直线的两条直线平行两直线平行,同位角相等同位角相等,两直线平行7.30°8.EF 同位角相等,两直线平行∠2 ∠3 GD BC 同旁内角互补,两直线平行,内错角相等9.两直线平行内错角相等内错角相等两直线平行10.BC为∠DBE的平分线.理由是:因为∠2+∠7=180°,∠1+∠2=180°,所以∠1=∠7,所以AB∥CD,所以∠3=∠C.又因为∠ADC=∠ABC,∠1=∠8=∠7,所以∠5=∠4,所以AD∥BC,所以∠6=∠C.又因为∠5=∠6,所以∠3=∠4,所以BC为∠DBE的平分线.11.因为AB∥CD,所以∠BAG=∠DGA(两直线平行,内错角相等),所以∠BAG—∠BAE=∠DGA—∠DGF,即∠EAG=∠FGA,所以AE∥FG(内错角相等,两直线平行),所以∠E=∠F(两直线平行,内错角相等).12.(1)如果两个角相等,那么它们的余角相等(2)如果两条直线垂直于同一条直线,那么它们互相平行(3)如果两条射线分别是平行线的同旁内角的平分线,那么这两条射线互相垂直13.提示:利用条件∠1=∠2,∠3=∠4,说明∠5=∠6.14.(1)48°,因为两直线平行,内错角相等(2)由条件可以计算出∠ABC=90°,所以A到BC的距离为AB=8km.15.解:如图5,过A作AE∥BC,则∠EAC=∠C,∠DAE=∠B,所以∠DAC=∠DAE+∠EAC=∠B+∠C.16.如图6,过C作CF∥AB.。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中的重要概念,它是指在同一个平面上永远不会相交的两条直线。

平行线具有一些独特的性质,这些性质在几何学中起着重要的作用。

本文将讨论平行线的性质及其应用。

一、平行线的定义平行线的定义是:在同一个平面上,如果两条直线所成的内角相等或者其中一条直线与另一条直线的一条斜面垂直,则这两条直线是平行线。

二、平行线的性质1. 平行线的夹角性质(1) 同位角性质:同位角是指两条平行线被一条截线切割所形成的对应角,这些对应角相等。

(2) 内错角性质:内错角是指两条平行线被一条截线切割所形成的相邻的内部角,这些内错角相等。

(3) 同旁内角性质:同旁内角是指两条平行线被一条截线切割所形成的同旁的内角,这些同旁内角互补。

(4) 顶角性质:当两条平行线被一条截线切割时,形成的顶角是相等的。

2. 平行线的平移性质平移是指将一个图形在平面上沿着一定方向和距离进行移动,平行线具有平移性质,即平行线的平移仍然是平行线。

3. 平行线的比例性质如果两条平行线被一条截线切割,截线上的任意一点与两条平行线所成的线段的比相等。

4. 平行线的垂直性质平行线具有垂直性质,即与平行线垂直的直线亦为平行线。

5. 平行线与平行线的交点两条平行线在平面上没有交点,如果两条平行线存在交点,那么它们将会重合,即为同一条直线。

三、平行线的应用平行线的性质在几何学和实际生活中有着广泛的应用,以下是其中的几个例子:1. 三角形的判定平行线的性质可用于三角形的判定,例如当一条直线平行于三角形的一边时,可以推断出其他的角和边是否相等。

2. 平面图形的构建在平面建筑和制图中,平行线的性质被广泛应用。

例如可以通过平行线的性质绘制等角线、平行线的切割以及平行线的延长线等。

3. 几何证明平行线性质常常在几何证明中发挥作用,通过利用平行线的性质可以得出证明中所需的结论。

4. 电子通信的编码在电子通信的编码中,平行线的性质被用来表示不同的信息,利用平行线的编码方式可以进行高效的数据传输。

《平行线的性质》课件

《平行线的性质》课件

反向平行线的性质
• 反向平行线具有相反的斜率。 • 反向平行线之间的距离保持不变。
三、平行线的特殊角度
同位角及其性质
• 同位角是两条平行线 之间的对应角,它们
• 相同等 位。 角具有相等的补 角、余角。
内错角及其性质
• 内错角是两条平行线 之间的相交角,它们
• 互内补错。角具有相等的对 顶角。
相关角及其性质
《平行线的性质》PPT课 件
这是一份关于平行线的精彩课件,通过介绍平行线的基本定义、性质、应用、 证明,并进行综合练习,帮助大家深入理解和应用平行线的知识。
一、基本定义
平行线的概念
平行线是永远不会相交的两条直线。
平行线的符号表示
用“//”表示两条线段平行。
二、平行线的性质
同向平行线的性质
• 同向平行线具有相等的斜率。 • 同向平行线之间的距离保持不变。
对平行线的思考与感悟
通过学习平行线的性质,反思几何学对我们日常生活的影响和意义。
• 相关角是两条平行线 之间的内角与外角。
• 相关角之和等于180°。
四、平行线的应用
1
平行线的实际应用
2
例如,在城市规划中,平行线可用于 规划马路的设计和建设。
平行线的应用场景
平行线的应用广泛,如建筑设计、地 图制作等。
五、平行线的证明
平行线的证明方法
通过等角、等比和等边等多种证明方法来证明平行线。
平行线证明例题
通过实例演示如何在几何问题中使用平行线的证明。
六、综合练习
பைடு நூலகம்
1
综合运用平行线的知识解题
通过题目练习,提升对平行线性质的理解和应用能力。
2
平行线的综合练习题

人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件

人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件
置关系,而平行线的性质是根据两条直线的位置关系得 到两角的数量关系; (2)平行线的判定的条件是平行线的性质的结论,而平行线 的判定的结论是平行线的性质的条件.
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2

平行线的判定及性质课件

平行线的判定及性质课件

05
总结与展望
总结
01
02
03
04
05

直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。

平行线的性质

平行线的性质

平行线的性质在几何学中,平行线是指永远不会相交的直线。

平行线具备以下几个性质:1. 平行线的定义:如果两条直线在平面上没有交点,那么它们是平行线。

2. 平行线的判定定理一:对于一条直线上的一点和一条不与该直线重合的直线,如果点到直线的距离与直线上每个点到另一条直线的距离相等,那么这两条直线是平行线。

3. 平行线的判定定理二:如果两条直线与第三条直线交叉,而且两个内角对与第三条直线的两个内角对互补,那么这两条直线是平行线。

4. 平行线的判定定理三:如果两条直线与第三条直线相交,而且其中一对同位角是内错角,另一对同位角是内对顶角,那么这两条直线是平行线。

5. 平行线的性质一:平行线之间的距离是恒定的。

根据两点间距离公式,我们可以计算出平行线上任意点到另一条平行线的距离,这个距离在整条平行线上是相等的。

6. 平行线的性质二:两条平行线被一条横切线所穿过时,对应角相等,内错角相等,内对顶角相等。

7. 平行线的性质三:两条平行线被一条横切线所穿过时,同位角之和为180度,即互补角。

总结起来,平行线有着独特的性质,它们永远不会相交,具有相等的内错角、内对顶角以及同位角之和为180度的互补角。

这些性质在几何学的证明和问题解答中发挥着重要的作用。

通过了解平行线的性质,我们可以更好地理解几何学中的相关概念和定理,运用这些性质来解决问题。

在数学和工程学等领域,平行线的性质也有广泛的应用,比如在建筑设计中确定直角、测量距离等。

因此,深入学习和掌握平行线的性质对于建立几何学的基础知识和解决实际问题都具有重要的意义。

通过实际操作和练习,我们可以更好地理解和应用平行线的性质,从而提升自己在几何学领域的能力和素养。

八年级数学上册平行线知识点总结

八年级数学上册平行线知识点总结

八年级数学上册平行线知识点总结
本文将总结八年级数学上册关于平行线的知识点。

包括以下内容:
1. 平行线的定义:平行线是在同一个平面上,永远不会相交的
两条直线。

2. 平行线的判定方法:
- 直线与直线的判定方法:当两个直线的斜率相等时,它们是
平行线。

- 线段与直线的判定方法:如果线段的两个端点分别在直线上,并且线段与直线平行,那么它们是平行线。

- 两个直线与平面的判定方法:如果两个直线在同一个平面上,并且与该平面上的一条直线平行,那么它们是平行线。

3. 平行线的性质:
- 平行线的内角与外角性质:两条平行线被一条直线切割所形
成的对应角相等,内错角之和为180度,外错角之和为180度。

- 平行线的同位角与内错角性质:两条平行线被一条直线切割
所形成的同位角相等,内错角互补(和为180度)。

- 平行线与交线的性质:如果一条直线与一对平行线相交,那
么所形成的对应角、同位角、内错角、外错角具有特定的关系。

4. 平行线的应用:
- 平行线在图形中的应用:在解决与平行线相关的图形题目时,可以利用平行线的性质进行求解。

- 平行线在实际生活中的应用:平行线的概念在建筑、几何测量、街道规划等实际生活中有广泛的应用。

以上是八年级数学上册关于平行线的知识点总结。

希望能帮助
你更好地理解和应用平行线的概念。

平行线与角的关系

平行线与角的关系

平行线与角的关系平行线和角是几何学中常见的概念,它们之间存在着紧密的关系。

本文将探讨平行线和角的定义、性质以及它们之间的相互关系。

一、平行线的定义及性质平行线是指在同一个平面内,永远不会相交的两条直线。

根据平行线的定义,我们可以得出以下性质:1. 对于一条给定的直线和平面上的一点,只有唯一一条直线可以与给定的直线平行。

2. 如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。

3. 如果两条直线分别与同一条直线平行,那么这两条直线也是平行的。

二、角的定义及分类角是由两条射线共享一个端点组成的形状。

根据两条射线的位置关系,角可以分为以下几种类型:1. 零度角:两条射线重合时形成的角,也叫作零角。

2. 锐角:角的度数小于90度,例如30度角和60度角。

3. 直角:角的度数等于90度,例如90度角。

4. 钝角:角的度数大于90度但小于180度,例如120度角和150度角。

5. 平角:角的度数等于180度,例如180度角。

三、平行线与角的关系平行线与角之间存在着多种关系,下面将逐一介绍:1. 平行线上的对应角:当一条直线与若干平行线相交时,对应角是位于同一位置的两条相交线所形成的角。

(示意图)根据平行线性质,我们可以得出结论:当两条直线被一组平行线交叉时,对应角互相等于。

2. 平行线上的内错角和外错角:内错角是两条平行线被第三条直线相交所形成的内角,位于平行线之间。

外错角是两条平行线被第三条直线相交所形成的外角,位于平行线的同一侧。

(示意图)根据平行线性质,我们可以得出结论:内错角互相等于,外错角互相等于。

3. 平行线之间的夹角与对应角:当两条平行线被一条斜线相交时,所形成的夹角称为夹角;而位于两条平行线之间并与斜线相交的角称为对应角。

(示意图)根据平行线性质,我们可以得出结论:夹角和对应角互相等于。

4. 平行线上的同位角:当两条平行线被一条直线相交时,同位角是位于平行线同侧但不同位的两个角。

(示意图)根据平行线性质,我们可以得出结论:同位角互相等于。

平行线与横线竖线的性质

平行线与横线竖线的性质

平行线与横线竖线的性质几何学是数学的一个分支,它研究的是空间中的图形和它们之间的关系。

平行线与横线竖线是几何学中的重要概念,它们具有一些独特的性质。

本文将探讨平行线与横线竖线的性质,以及它们在几何学中的应用。

一、平行线的性质平行线是指在同一个平面内不相交且不会相交延拓的两条直线。

平行线有以下几个重要性质:1. 平行线的夹角相等:当两条平行线被一条横线截断时,所截得的对应角相等。

这是平行线性质的基本特征之一。

例如,如图1所示,直线AB和直线CD是平行线,直线EF与直线AB相交,截取的角α和β相等。

2. 平行线的内外角性质:当两条平行线被一条横线截断时,所截得的内角和外角之和分别为180度。

这一性质常被用于解决几何题目中的角度关系。

例如,如图2所示,直线AB和直线CD是平行线,直线EF与直线AB相交,截取的角α和β互补,和为180度。

3. 平行线的对应角性质:当两条平行线被一条横线截断时,对应角相等。

这一性质有广泛的应用,许多几何问题都可以通过对应角关系求解。

例如,如图3所示,直线AB和直线CD是平行线,直线EF与直线AB相交,对应角α和β相等。

二、横线竖线的性质横线和竖线都是特殊的直线,它们有如下性质:1. 横线的特点:横线是指与水平方向垂直的直线,也就是没有斜度的直线。

横线没有斜率,斜率为零。

它们通过数学符号“-”表示。

例如,在数学坐标系中,y = 3就是一条横线。

2. 竖线的特点:竖线是指与垂直方向平行的直线,也就是没有斜率的直线。

竖线没有斜率,斜率不存在。

它们通过数学符号“|”表示。

例如,在数学坐标系中,x = -2就是一条竖线。

横线和竖线在几何学中有着广泛的应用,用于描述和解决空间图形的性质和问题。

三、平行线与横线竖线的应用平行线与横线竖线的性质可以应用于各种几何问题的解决,例如:1. 证明两条线段平行:通过对应角相等的性质,可以证明两条线段平行。

如果两条线段的对应角相等,则可以得出它们是平行的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线性质(2)教案
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
5.训练学生观察图形的能力:找基本图形,基本图形之间的转换。

二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、教学过程:
(一)课前热身
1、如图,已知两平行线AB、CD被直线AE所截。

(1)从∠1=110 °可以知道∠2是多少度?为什么?
(2)从∠1=110 °可以知道∠3是多少度?为什么?
(3)从∠1=110 °可以知道∠4是多少度?为什么?
2.(3013枣庄)如图,AB ∥CD,∠CDE=140°,则∠A=
3.(3013宜宾)如图,一个含有30°角的直角三角板的两个 顶点放在一个长方形的对边上,若∠1=25°,则∠2=
4.(3013遂宁)如图,一个含有30°角的直角三角板的两个 顶点放在一个长方形的对边上,若∠1=18°,则∠2=
5.如图,在三角形ABC 中,DE ∥BC, EF ∥AB,那么和∠B 相等的角有几个? (二)例题讲解
例1.如图,在三角形ABC 中,DE ∥BC, EF ∥AB,证明:∠B=∠DEF.
变式:如图,在三角形ABC 中,DE ∥BC, ∠B=∠DEF ,证明:EF ∥AB 中考链接
1.(2013黄冈)如图,AB ∥CD ∥EF,AC ∥DF,若∠A=120°,则∠D=
2.(2013内江)把一块直尺与一块三角板 如图所示放置,若∠1=40°,则∠2=
E
B
C
F
B
B
B
B
F K
3.(2013雅安)如图,AB∥CB,AD平分
∠BAC,且∠C=80°,则∠D=
4.已知:如图,AC∥DE,∠1=∠2,证明:AB∥CD。

例2、已知:如图AB∥CD,∠ABE= 60°, ∠CDE= 32°,求∠BED的度数.
变式:
提升
1.已知:EF⊥AB,CD⊥AB,∠EFB=∠GDC,求证:∠AGD=∠ACB。

2.如图,AF∥CD,∠A=∠D,∠B=∠
E.AB与EF平行吗?为什么?
F
C
C。

相关文档
最新文档