七年级下数学期中复习试卷二
浙教版2020七年级数学下册期中综合复习培优训练题2(附答案详解)
解: ,
,
由光学原理可得 ,
由三角形外角性质可得 ,
在第2次“好的发射”的条件下, ,
在第3次“好的发射”的条件下, ,
,
若最多能进行n次“好的发射”,则 , 若 ,则反射光线 在 的左侧
解得 ,
故答案为:4.
【点睛】
本题考查了平行线的性质和图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解 探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
18.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是_____.
19.若x=2m,则将y=1+4m+1,则用含x的代数式表示y为______________________.
20.若9x=4,3y=﹣2,则34x﹣3y的值是.
21.
22.如图,在平面直角坐标系中,小方格边长为1,点A,B,P都在格点上.
故答案为
【点睛】
考查代数式的化简求值,掌握整式的乘法法则是解题的关键.
19.
【解析】
试题分析: ,则 .
点睛:本题主要考查的就是幂的几个公式的应用,属于中等难度的题型. , ,解答这个问题的关键就是对这两个公式的运用要非常的熟悉,将所求的量通过公式之间的转化转化为已知的量.
20.﹣2.
【解析】试题分析:∵9x=32x=4,3y=﹣2,
27.如图是一个由4条线段构成的“鱼”形图案,其中∠1=55°,∠2=55°,∠3=125°,找出图中的平行线,并说明理由.
28.计算:
(1)2(y6)2-(y4)3;(2)(ab2c)2÷(ab3c2);
七年级下册 期中数学试卷(有答案) (2)
七年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x62.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温3.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.4.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣57.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.139.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为.12.∠1=35°,则∠1的余角为,补角为.13.计算:a m=3,a n=8,则a m+n=.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为.15.若x2﹣mx+25是完全平方式,则m=.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是.(填序号)能够得到AB∥CD的条件是.(填序号)三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×11118.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+=180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg弹簧长度1212.51313.51414.515y/cm(1)由表格知,弹簧原长为cm,所挂物体每增加1kg弹簧伸长cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为,图2中阴影部分面积为,对照两个图形的面积可以验证公式(填公式名称)请写出这个乘法公式.(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.七年级(下)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x6【分析】依据同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方法则计算即可.【解答】解:A、x6÷x3=x3,故A错误;B、(﹣2x)3=﹣8x3,故B正确;C、x6•x4=x10,故C错误;D、(x3)3=x9,故D错误.故选:B.【点评】本题主要考查的是同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方,熟练掌握相关法则是解题的关键.2.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间;故选:A.【点评】此题考查常量和变量问题,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可.【解答】解:根据分析可得D的画法正确,故选:D.【点评】此题主要考查了垂线的画法,同学们应熟练掌握垂线画法,此知识考查较多.4.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)【分析】根据平方差公式对各选项进行逐一分析即可.【解答】解:A、原式可化为﹣(a+b)(a﹣b),能用平方差公式计算,故本选项正确;B、原式可化为﹣(x﹣2)(x﹣2),不能用平方差公式计算,故本选项错误;C、原式可化为﹣(2x+1)(2x+1),不能用平方差公式计算,故本选项错误;D、不符合两个数的和与这两个数的差相乘,不能用平方差公式计算,故本选项错误.故选:A.【点评】本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定【分析】直接利用垂线段最短进而得出小明跳远成绩.【解答】解:过点P作PE⊥AC,垂足为E,∵AP=2.3米,∴这次小明跳远成绩小于2.3米.故选:C.【点评】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣5【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴m=1、n=﹣6,则m+n=﹣5,故选:D.【点评】本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.7.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】依据对顶角的性质、补角的定义、平行线的性质、垂线段的性质以及平行线的定义进行判断即可.【解答】解:①相等的两个角不一定是对顶角,故错误;②若∠1+∠2=180°,则∠1与∠2互为补角,故正确;③同位角不一定相等,故错误;④垂线段最短,故正确;⑤在同一平面内,两条直线的位置关系有平行、相交,故错误;⑥过直线外一点,有且只有一条直线与这条直线平行,故正确;故选:C.【点评】本题主要考查了对顶角的性质、补角的定义、平行线的性质、垂线段的性质,解题时注意:同一平面内,两条直线的位置关系:平行或相交.8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.13【分析】根据完全平方公式即可求出答案.【解答】解:当a+b=3时,原式=(a+b)2=32=9,故选:C.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.9.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.【分析】根据动点P在正方形各边上的运动状态分类讨论△APD的面积即可.【解答】解:有点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8当8≤x≤12时,点P在CB上运动,△APD的面积y=8当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32故选:B.【点评】本题为动点问题的函数图象探究题,考查了当动点到达临界点前后的图象变化,解答时根据临界点画出一般图形分段讨论即可.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为 1.56×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=1.56,10的指数为﹣6.【解答】解:0.000 001 56=1.56×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.∠1=35°,则∠1的余角为55°,补角为145°.【分析】根据余角和补角的定义求出即可.【解答】解:∵∠1=35°,∴∠1的余角为90°﹣∠1=55°,补角为180°﹣∠1=145°,故答案为:55°,145°.【点评】本题考查了余角与补角,知道∠1的余角为90°﹣∠1和∠1的补角为180°﹣∠1是解此题的关键.13.计算:a m=3,a n=8,则a m+n=24.【分析】同底数幂相乘,底数不变指数相加.【解答】解:∵a m=3,a n=8,∴a m+n=a m•a n=3×8=24.故答案是:24.【点评】考查了同底数幂的乘法.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为y =4x.【分析】根据三角形的面积公式求出即可.【解答】解:∵△ABC底边BC上的高是8,三角形的底边BC长为x,∴三角形的面积y可以表示为y==4x,故答案为:y=4x.【点评】本题考查了列代数式和三角形的面积,能熟记三角形的面积公式是解此题的关键.15.若x2﹣mx+25是完全平方式,则m=±10.【分析】原式利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2﹣mx+25是完全平方式,∴m=±10,故答案为:±10【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是①④.(填序号)能够得到AB∥CD的条件是②③⑤.(填序号)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【解答】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为:①④,②③⑤.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×111【分析】(1)根据多项式除以多项式和合并同类项可以解答本题;(2)根据多项式乘多项式、单项式乘多项式可以解答本题;(3)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(4)根据平方差公式可以解答本题.【解答】解:(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2=﹣3x2+2x﹣1+3x2=2x﹣1;(2)(x﹣5)(2x+5)+2x(3﹣x)=2x2﹣5x﹣25+6x﹣2x2=x﹣25;(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0=1+4﹣1=4;(4)1122﹣113×111=1122﹣(112+1)×(112﹣1)=1122﹣1122+1=1.【点评】本题考查整式的混合运算、实数的运算、幂的乘方、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.18.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.【分析】分两种情况:①根据同位角相等两直线平行,过D点作AD的平行线即可.②当所作的角在BC下方.【解答】解:(2)EB与AD不一定平行.①当所作的角在BC上方时平行.∵∠EBC=∠A,∴EB∥AD.当所作的角在BC下方,所作的角对称时EB与AD就不平行.【点评】此题主要考查学生对平行线的判定和尺规作图相关知识的理解和掌握,此题难度不大,属于基础题.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=a2﹣4b2﹣a2﹣4ab﹣4b2+4ab=﹣8b2,当b=时,原式=﹣8×=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∴∠DBC+∠D=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等)【分析】根据平行线的性质与判定即可求出答案.【解答】解:故答案为:对顶角;DMN;同为角相等,两直线平行;同旁内角互补;已知;∠D;同旁内角互补;两直线平行,内错角相等【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)【分析】(1)根据图象看相对应的y的值即可.(2)休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行.(3)这段时间的平均速度=这段时间的总路程÷这段时间.【解答】解:(1)看图可知y值为:4km,9km,15km,故9时,10时30分,12时所走的路程分别是4km,9km,15km;(2)根据图象可得,路程没有变化,但时间在增长,故表示该旅行者在休息:10.5﹣10=0.5小时=30分钟;(3)根据求平均速度的公式可得:(15﹣9)÷(12﹣10.5)=4千米/时.【点评】本题主要考查了实际问题的函数图象,正确理解函数的图象所表示的意义是解决问题的关键,注意休息时表现在函数图象上是与x轴平行的线段.22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.【分析】过P作PG∥AB或延长AP交直线CD于M或延长CP交直线AB于N,利用平行线的性质以及三角形外角性质进行计算即可.【解答】解:(1)过P作PG∥AB,∵AB∥CD,∴AB∥CD∥PG,∴∠A=∠APG,∠C=∠CPG,∴∠APC=APG+∠CPG=∠A+∠C=50°+45°=95°;(2)延长AP交直线CD于M;∵AB∥CD,∴∠A=∠AMC=50°,又∵∠C=45°,∴∠APC=∠AMC+∠C=50°+45°=95°;(3)延长CP交直线AB于N.∵AB∥CD,∴∠C=∠ANC=45°,又∵∠A=50°,∴∠APC=∠ANC+∠A=45°+50°=95°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目的难点在于过拐点作辅助线.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg1212.51313.51414.515弹簧长度y/cm(1)由表格知,弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式.(3)令x=10时,求出y的值即可.(4)令y=20时,求出x的值即可.【解答】解:(1)由表可知:弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm,故答案为:12,0.5;(2)弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式为y=0.5x+12,(3)当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧总长为17cm.(4)当y=20kg时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点评】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式(填公式名称)请写出这个乘法公式a2﹣b2=(a+b)(a﹣b).(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)①把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;②利用平方差公式化成式子相乘的形式即可求解.【解答】解:(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b),平方差,a2﹣b2=(a+b)(a﹣b).(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴15=3(x﹣2y),∴x﹣2y=5;②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)……(264+1)+1=(24﹣1)(24+1)(28+1)……(264+1)+1=(28﹣1)(28+1)……(264+1)+1=(264﹣1)(264+1)+1=2128﹣1+1=2128.【点评】本题主要考查了平方差公式的几何表示,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.表示出图形阴影部分面积是解题的关键.。
苏科版七年级下学期期中模拟数学试题2及答案
第二学期期中考试试卷(七年级数学)命题人:文林中学 黄兆兰 审核人:钱永芹一、选择题(每题3分,共24分;请将答案填在答题卷上) 1.下列计算正确的是A .336a a a +=B .33(2)2a a =C .325()a a =D .56a a a ⋅=2.下列算式能用平方差公式计算的是A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+ D .()()m n m n ---+ 3.如图,不一定能推出a ∥b 的条件是A.13∠=∠B .24∠=∠C .14∠=∠D .23180∠+∠=︒第3题图 第4题图 第8题图 4.如图,下列说法正确的是A .1∠与C ∠是同位角B .1∠与3∠是对顶角C .3∠与C ∠是内错角D .B ∠与3∠是同旁内角5.把多项式(1)(1)(1)m m m +-+-提公因式(1)m -后,余下的部分是 A .1m +B .2mC .2D .2m +6.在ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20︒,则A ∠的度数为 A .40°B .60°C .80°D .90°7.一个边长为a 的正方形,若将其边长增加6cm ,则新的正方形的面积增加 A .236cmB .212acmC .2(3612)a cm +D .以上都不对8.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到DEF ∆的位置,∠B=90°,AB=10,DH=4,平移距离为6,求阴影部分的面积为A .24B .36C .40D .48二、填空题(每空2分,共24分;请将答案填在答题卷上) 9.计算:0(2)-= ;21()2-= ;20162015(0.5)2-⋅= .10.微电技术的不断进步,使半导体教材的精细加工尺寸幅度缩小,某种电子元件的面积大约为0.000 0007平方毫米,用科学记数法表示为 平方毫米.11.如果一个多边形的内角和为1440︒,那么这个多边形的边数是 .12.若22m =,23n=,则322m n+ = .13.已知在△ABC 中有两个角的大小分别为40°和70°,则这个三角形是 ;14.若(2)9x m x +-+是一个完全平方式,则的值是 .15.一个大正方形和四个全等的小正方形按如图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是 (用含a 、b 的代数式表示).第15题图 第16题图 第17题图16.如图,小明在操场上从A 点出发,沿直线前进10米后向左转40º,再沿直线前进10米后向左转40º…照这样走下去,他第一次回到出发地A 点时,一共走了米.17.如图,线段1AC n =+(其中n 为正整数),点B 在线段AC 上,在线段AC同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到AME ∆.当AB =1时,AME ∆的面积记为S 1;当AB =2时,AME ∆的面积记为S 2;当AB =3时,AME∆的面积记为S 3;则 S 3-S 2= .(七年级数学)命题人:文林中学 黄兆兰 审核人:钱永芹一、选择题(每题3分,共24分)9. ; ; . 10. 平方毫米.11. .12. .13. , . 14. .15. .16. 米.17. . 三、解答题(本大题共有8小题,共52分,请写出必要的演算或推理过程.) 18.(本题满分12分,每小题3分)计算:(1) ()022213.142(3)()2π---++-- (2)232321(2)(3)()4xy x y xy -⋅-⋅(3) 23552122(2)a a a a a a ⋅⋅+--÷ (4)2(21)(21)4(1)x x x +---19.(本题满分6分,每小题3分)因式分解 (1)22()()a x y b x y +-+ (2)42816x x -+20. 对于任何实数,我们规定符号c a db=bc ad -,例如:3142=3241⨯-⨯=2- (1)按照这个规律请你计算32- 54的值;(2)按照这个规定请你计算,当0132=+-a a 时,21-+a a13-a a 的值. (本题满分4分)21.画图并填空:(本题满分4分)如图,在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图: (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ; (4)设格点小正方形边长为1, △A′B′C′的面积为 .22.如图所示,已知AD ∥BC ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE=∠E .试说明AB ∥DC .(本题6分)23.(本题满分6分)如图,在ABC ∆中,CD 、CE 分别是ABC ∆的高和角平分线,BAC α∠=,B β∠=αβ(>). (1)若70α=︒,40β=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数(直接写出结果);(3)如图②,若CE 是ABC ∆外角ACF ∠的平分线,交BA 延长线于点E , 且30αβ-=︒,求DCE ∠的度数.24.(本题满分6分)我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释222()2a b a ab b +=++.(1)图(乙)是四张全等的矩形纸片拼成的图形, 请利用图中阴影部分面积的不同表示方法,写出 一个关于a 、b 代数恒等式表示; (2)请构图解释:2222 222a b c a b c ab bc ac ++=+++++();(3)请先构图,后分解因式:2232a ab b ++.25.(本题满分8分)已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC=x°.(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ; ②当∠BAD=∠ABD 时,x= ;当∠BAD=∠BDA 时,x= .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.(七年级数学)一、选择题(每题3分,共24分)9.1;4;12. 10.7710-⨯平方毫米.11.十.12.72.13.等腰三角形,4或6.14.8或-4.15.ab.16.90米.17.52.三、解答题18.(1) ()022213.142(3)()2π---++--(2)232321(2)(3)()4xy x y xy -⋅-⋅11944=++- ……2分 36461894x y x y xy =-⋅⋅ ……2分164= ……3分81318x y =- ……3分(3) 23552122(2)a a a a a a ⋅⋅+--÷ (4) 2(21)(21)4(1)x x x +---1010104a a a =+- ……2分 22414(21)x x x =---+……1分104a = ......3分 2241484x x x =--+- (2)分85x =- ……3分19.(1)22()()a x y b x y +-+ (2)42816x x -+22()()x y a b =+- ……2分 22(4)x =- ……1分 ()()()x y a b a b =++-……3分 []2(2)(2)x x =+- ……2分22(2)(2)x x =+- ……3分20. (1)32- 542543101222=-⨯-⨯=--=-; ……2分 (2)2310a a -+= 231a a ∴-=-∴ 21-+a a 13-a a22(1)(1)3(2)136a a a a a a a =+---=--+2261211a a =-+-=-= ……4分21.(1)补全△A ′B ′C ′……1分 (2)画出中线CD ……2分(3)画出高线AE ……3分 (4) 8 . ……4分22.AD BC 2E ∴∠=∠ ……2分AE 平分∠BAD 12∴∠=∠ 1E ∴∠=∠ ……4分 又 ∠CFE =∠E 1CFE ∴∠=∠ ∴AB ∥DC ……6分23.(1)15DCE ∠=︒……2分 (2)2DCE αβ-∠=……4分(3)75DCE ∠=︒……6分24.(1)22()()4a b a b ab -=+-……2分第(2)题图……4分 第(3)题图……5分 分解因式:22(3)()22a a a ab b b b ++=++……6分. 25.(1)①20︒ ②120︒;60︒ 每空1分(2)若70ADB ABD ∠=∠=︒,则50x =︒;……2分若70CAB ABD ∠=∠=︒,则20x =︒;……2分 若BAD ADB ∠=∠,则35x =︒;……2分50x ∴=︒、20︒、35︒时,△ADB 中有两个相等的角.。
华东师大版2020-2021学年七年级下册数学期中复习试卷二(含答案)
华东师大版2020-2021学年七年级下册数学期中复习试卷二一、选择题二、1.不等式293(2)x x ++≥的解集是( )A.3x ≤B.3x -≤C.3x ≥D.3x -≥2.根据等式的性质,下列变形正确的是( )A.若2x a =,则2x a =B.若123x x +=,则321x x += C.若ab bc =,则a c = D.若a b c c =,则a b = 3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A.9B.8C.5D.4 4.若m n >,下列不等式不一定成立的是( )A.33m n ++>B.33m n --<C.33m n >D.22m n >5.不等式组271532x x +⎧⎨-⎩>≥的解集在数轴上表示正确的是( ) A.B. C. D.6.若关于x 的不等式组2(1)20x a x -⎧⎨-⎩><的解集是x a >,则a 的取值范围是( )A.2a <B.2a ≤C.2a >D.2a ≥7.已知232a x y 与214a b x y +-是同类项,则a b 的值为( )A.2B.2-C.1D.1-8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少15元。
”乙说:“至多12元。
”丙说:“至多10元。
”小明说:“你们三个人都说错了”。
则这本书的价格x (元)所在的范围为( )A.1012x <<B.1215x <<C.1015x <<D.1114x <<9.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数。
甲得乙半而钱五十,乙得甲太半而钱亦五十。
问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B.15022503x y x y +=+= C.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ D.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩10.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A.106 cmB.110 cmC.114 cmD.116 cm二、填空题(每小题3分,共15分)11.若1m +与2-互为相反数,则m 的值为________。
浙教版七年级数学下册 期中考试模拟试卷2
浙教版七年级下期中考试模拟试卷2一.选择题(共10小题,每小题3分,共30分)1.(2021秋•南岗区期末)下列计算正确的是()A.a•a2=a2 B.(a2)3=a5 C.a+a2=a3D.(ab2)2=a2b42.(2021秋•顺德区期末)方程2x﹣y=5的解是()A.B.C.D.3.(2021秋•河源期末)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠5 B.∠1=∠3 C.∠5=∠4 D.∠1+∠5=180°4.(2021秋•兰陵县期末)将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于()A.45°B.55°C.70°D.110°5.(2021秋•西青区期末)计算(﹣2ab)(ab﹣3a2﹣1)的结果是()A.﹣2a2b2+6a3b B.﹣2a2b2﹣6a3b﹣2abC.﹣2a2b2+6a3b+2ab D.﹣2a2b2+6a3b﹣16.(2021•江油市一模)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A.B.C.D.7.(2020秋•射洪市期中)如果(x﹣3)(3x+m)的积中不含x的一次项,则m的值为()A.7 B.8 C.9 D.108.(2021秋•忠县期末)若5x=a,5y=b,则53x+2y=()A.3a+2b B.a3+b2C.6ab D.a3b29.(2021秋•太仓市期末)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°)按如图所示方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是()A.38°B.45°C.58°D.60°10.(2021春•余杭区期中)在关于x,y的二元一次方程组的下列说法中,正确的是()①当a=3时,方程的两根互为相反数;②当且仅当a=﹣4时,解得x与y相等;③x,y满足关系式x+5y=﹣12;④若9x•27y=81,则a=10.A.①③B.①②C.①②③D.①②③④二.填空题(共6小题,每小题4分,共24分)11.已知是方程组的解,则a=,b=.12.(2021秋•简阳市期中)如图,将△ABC沿BC方向平移1cm得到△A'B'C',若△ABC的周长为8cm,则四边形ABC'A'的周长为cm.13.(2022春•临川区校级月考)现有以下几个算式:(1)(0.5﹣)0=1;(2)﹣x•(﹣x)6=x7;(3)(﹣a2)3=a6;(4)(b﹣a)2=b2﹣ab+a2;(5)(﹣a﹣2b)(a﹣2b)=﹣a2+4b2;(6)(a﹣b)(a+b)(a2+b2)(a4﹣b4)=a8﹣b8.其中正确的是(只需填写相应的序号).14.(2021秋•枣阳市期末)已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.15.(2022春•源汇区校级月考)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=43°,则∠2的度数为.16.(2021秋•东坡区期末)如果多项式ax+b与2x2+2x+3的乘积展开式中不含x的二次项,且常数项为6,求a b的值为.三.解答题(共7小题,共66分)17.(6分)(2021秋•甘州区校级期末)解方程组(1)(2)18.(8分)(2022春•薛城区月考)(1)1232﹣124×122;(2)(a+b﹣c)(a+b+c);(3)(3x2)2•(﹣4y3)÷(6xy)2;(4)[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x.19.(8分)(2021秋•会宁县期末)如图,点B,E分别在AC,DF上,BD,CE均与AF相交,∠A=∠F,∠C=∠D,求证:∠1=∠2.20.(10分)(2022春•开福区校级月考)若关于x,y的二元一次方程组和有相同的解.(1)这两个方程组的解;(2)代数式(2a+b)2022的值.21.(10分)(2021春•温江区校级期中)先化简,再求值:[2x(x+2y)﹣(x+y)(x﹣y)﹣(x﹣3y)2]÷(2y),其中x,y满足|x﹣2|+(y+1)2=0.22.(12分)(2022春•宜黄县月考)阅读:已知a﹣b=﹣4,ab=3,求a2+b2的值.小明的解法如下:解:因为a﹣b=﹣4,ab=3,所以a2+b2﹣(a﹣b)2+2ab=(﹣4)2+2×3=22.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣5.ab=2,求a2+b2﹣ab的值.(2)已知(2020﹣x)(2021﹣x)=2058,求(2020﹣x)2+(2021﹣x)2的值.23.(12分)(2021秋•朝阳区校级期末)将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)若∠1=25°,则∠2的度数为;(2)直接写出∠1与∠3的数量关系:;(3)直接写出∠2与∠ACB的数量关系:;(4)如图2,当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE 的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出∠ACE角度所有可能的值.答案与解析一.选择题1.(2021秋•南岗区期末)下列计算正确的是()A.a•a2=a2 B.(a2)3=a5 C.a+a2=a3 D.(ab2)2=a2b4【解析】解:A、a•a2=a3,故A不符合题意;B、(a2)3=a6,故B不符合题意;C、a与a2不属于同类项,不能合并,故C不符合题意;D、(ab2)2=a2b4,故D符合题意;故选:D.2.(2021秋•顺德区期末)方程2x﹣y=5的解是()A.B.C.D.【解析】解:A、当x=﹣2、y=﹣1时,2x﹣y=﹣4+1=﹣3,不符合方程;B、当x=3、y=1时,2x﹣y=6﹣1=5,符合方程;C、当x=1、y=3时,2x﹣y=2﹣3=﹣1,不符合方程;D、当x=0、y=﹣时,2x﹣y=0﹣5=﹣5,不符合方程;故选:B.3.(2021秋•河源期末)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠5 B.∠1=∠3 C.∠5=∠4 D.∠1+∠5=180°【解析】解:∵∠2=∠5,∴a∥b,∵∠4=∠5,∴a∥b,∵∠1+∠5=180°,∴a∥b,故选:B.4.(2021秋•兰陵县期末)将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于()A.45°B.55°C.70°D.110°【解析】解:根据题意,得:2∠ABC+∠DBA=180°,则∠ABC=(180°﹣70°)÷2=55°.故选:B.5.(2021秋•西青区期末)计算(﹣2ab)(ab﹣3a2﹣1)的结果是()A.﹣2a2b2+6a3b B.﹣2a2b2﹣6a3b﹣2abC.﹣2a2b2+6a3b+2ab D.﹣2a2b2+6a3b﹣1【解析】解:原式=﹣2a2b2+6a3b+2ab,故选:C.6.(2021•江油市一模)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A.B.C.D.【解析】解:由题意可得,,故选:B.7.(2020秋•射洪市期中)如果(x﹣3)(3x+m)的积中不含x的一次项,则m的值为()A.7 B.8 C.9 D.10【解析】解:(x﹣3)(3x+m)=3x2+mx﹣9x﹣3m=3x2+(m﹣9)x﹣3m,∵(x﹣3)(3x+m)的积中不含x的一次项,∴m﹣9=0,解得:m=9,故选:C.8.(2021秋•忠县期末)若5x=a,5y=b,则53x+2y=()A.3a+2b B.a3+b2C.6ab D.a3b2【解析】解:∵5x=a,5y=b,∴53x+2y=53x•52y=(5x)3•(5y)2=a3b2,故选:D.9.(2021秋•太仓市期末)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°)按如图所示方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是()A.38°B.45°C.58°D.60°【解析】解:如图,过点B作BD∥a,∴∠ABD=∠1=22°,∵a∥b,∴BD∥b,∴∠2=∠DBC=∠ABC﹣∠ABD=60°﹣22°=38°.故选:A.10.(2021春•余杭区期中)在关于x,y的二元一次方程组的下列说法中,正确的是()①当a=3时,方程的两根互为相反数;②当且仅当a=﹣4时,解得x与y相等;③x,y满足关系式x+5y=﹣12;④若9x•27y=81,则a=10.A.①③B.①②C.①②③D.①②③④【解析】解:,由①得:x=2y+a+6③,把③代入②中,得:y=④,把④代入③中,得:x=,∴原方程组的解为.①∵方程的两根互为相反数,∴x+y=0,即,解得:a=3,∴①正确;②当x与y相等时,x=y,即,解得:a=﹣4,∴②正确;③在原方程中,我们消去a,得到x,y的关系,②﹣①×2得:x+5y=﹣12,∴③正确;④∵9x•27y=81,∴(32)x•(33)y=34,∴32x•33y=34,∴32x+3y=34,∴2x+3y=4,将方程组的解代入得:=4,解得:a=10,∴④正确.综上所述,①②③④都正确.故选:D.二.填空题11.已知是方程组的解,则a=,b=﹣8.【解析】解:依题意,得,解得a=,b=﹣8.12.(2021秋•简阳市期中)如图,将△ABC沿BC方向平移1cm得到△A'B'C',若△ABC的周长为8cm,则四边形ABC'A'的周长为10cm.【解析】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴AA′=CC′=1(cm),AC=A′C′,∴四边形ABC′A′的周长=AB+(BC+CC′)+C′A′+AA′=AB+BC+AC+AC′+CC′, ∵△ABC的周长=8cm,∴AB+BC+AC=8(cm),∴四边形ABC′A′的周长=8+1+1=10(cm).故答案为:10.13.(2022春•临川区校级月考)现有以下几个算式:(1)(0.5﹣)0=1;(2)﹣x•(﹣x)6=x7;(3)(﹣a2)3=a6;(4)(b﹣a)2=b2﹣ab+a2;(5)(﹣a﹣2b)(a﹣2b)=﹣a2+4b2;(6)(a﹣b)(a+b)(a2+b2)(a4﹣b4)=a8﹣b8.其中正确的是(4)(5)(6)(只需填写相应的序号).【解析】解:∵0.5﹣=0,∴(0.5﹣)0没有意义,故(1)不符合题意;﹣x•(﹣x)6=(﹣x)7=﹣x7,故(2)不符合题意;(﹣a2)3=﹣a6,故(3)不符合题意;(b﹣a)2=b2﹣ab+a2,故(4)符合题意;(﹣a﹣2b)(a﹣2b)=4b2﹣a2=﹣a2+4b2,故(5)符合题意;(a﹣b)(a+b)(a2+b2)(a4﹣b4)=(a2﹣b2)(a2+b2)(a4﹣b4)=(a4﹣b4)(a4﹣b4)=a8﹣b8,故(6)符合题意;故答案为:(4)(5)(6).14.(2021秋•枣阳市期末)已知(x+y)2=2,(x﹣y)2=8,则x2+y2=5.【解析】解:∵(x+y)2=2,(x﹣y)2=8,∴x2+2xy+y2=2①,x2﹣2xy+y2=8②,①+②得:2(x2+y2)=10,∴x2+y2=5.故答案为:5.15.(2022春•源汇区校级月考)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=43°,则∠2的度数为103°.【解析】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,∠1=43°,∴∠ANM=43°,∵∠A=60°,∴∠AMN=180°﹣60°﹣43°=77°,∴∠AMO=180°﹣∠AMN=180°+77°=103°,∴∠2=∠AMO=103°.故答案为:103°.16.(2021秋•东坡区期末)如果多项式ax+b与2x2+2x+3的乘积展开式中不含x的二次项,且常数项为6,求a b的值为4.【解析】解:(ax+b)(2x2+2x+3)=2ax3+2ax2+3ax+2bx2+2bx+3b=2ax3+(2a+2b)x2+(3a+2b)x+3b,∵展开式中不含x的二次项,且常数项为6,∴2a+2b=0,3b=6,∴a=﹣2,b=2,∴a b=(﹣2)2=4,故答案为:4.三.解答题17.(2021秋•甘州区校级期末)解方程组(1)(2)【解析】解:(1),由①得:x=2y③,将③代入②,得4y+3y=21,即y=3,将y=3 代入①,得x=6,∴方程组的解为;(2)将整理得:,①+②得:9a=18,∴a=2③,把③代入①得:3×2+2b=7,∴2b=1,∴b=,∴方程组的解为.18.(2022春•薛城区月考)(1)1232﹣124×122;(2)(a+b﹣c)(a+b+c);(3)(3x2)2•(﹣4y3)÷(6xy)2;(4)[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x.【解析】解:(1)原式=1232﹣(123+1)×(123﹣1)=1232﹣1232+1=1;(2)原式=[(a+b)﹣c][(a+b)+c]=(a+b)2﹣c2;=a2+b2+2ab﹣c2;(3)原式=(9x4)•(﹣4y3)÷(36x2y2)=﹣x2y;(4)原式=(4x2﹣y2+y2﹣6xy)÷2x=(4x2﹣6xy)÷2x=2x﹣3y.19.(2021秋•会宁县期末)如图,点B,E分别在AC,DF上,BD,CE均与AF相交,∠A=∠F,∠C=∠D,求证:∠1=∠2.【解析】证明:∵∠A=∠F,∴AC∥DF,∴∠3=∠D;又∵∠C=∠D,∴∠C=∠3,∴BD∥CE,∴∠1=∠4,∵∠2=∠4,∴∠1=∠2.20.(2022春•开福区校级月考)若关于x,y的二元一次方程组和有相同的解.(1)这两个方程组的解;(2)代数式(2a+b)2022的值.【解析】解:由题意得:,①+②得:5x=10,解得:x=2,把x=2代入①得:4+5y=﹣26,解得:y=﹣6,原方程组的解为:,∴这两个方程组的解为:;(2)把代入中可得:,化简得:,①×3得:3a+9b=﹣6③,②+③得:10b=﹣10,解得:b=﹣1,把b=﹣1代入②得:﹣1﹣3a=﹣4,解得:a=1∴(2a+b)2022=(2﹣1)2022=12022=1,∴(2a+b)2022的值为1.21.(2021春•温江区校级期中)先化简,再求值:[2x(x+2y)﹣(x+y)(x﹣y)﹣(x﹣3y)2]÷(2y),其中x,y满足|x﹣2|+(y+1)2=0.【解析】解:原式=[2x2+4xy﹣(x2﹣y2)﹣(x2﹣6xy+9y2)]÷(2y)=(2x2+4xy﹣x2+y2﹣x2+6xy﹣9y2)÷(2y)=(10xy﹣8y2)÷(2y)=5x﹣4y,∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴原式=5×2﹣4×(﹣1)=10+4=14.22.(2022春•宜黄县月考)阅读:已知a﹣b=﹣4,ab=3,求a2+b2的值.小明的解法如下:解:因为a﹣b=﹣4,ab=3,所以a2+b2﹣(a﹣b)2+2ab=(﹣4)2+2×3=22.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣5.ab=2,求a2+b2﹣ab的值.(2)已知(2020﹣x)(2021﹣x)=2058,求(2020﹣x)2+(2021﹣x)2的值.【解析】解:(1)∵a﹣b=﹣5,ab=2,∴a2+b2﹣ab=(a﹣b)2+ab=(﹣5)2+(﹣2)=23;(2)(2020﹣x)2+(2021﹣x)2=[(2020﹣x)﹣(2021﹣x)]2+2(2020﹣x)(2021﹣x)=(﹣1)2+2(2020﹣x)(2021﹣x)∵(2020﹣x)(2021﹣x)=2058,∴原式=1+2×2058=4117.23.(2021秋•朝阳区校级期末)将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)若∠1=25°,则∠2的度数为65°;(2)直接写出∠1与∠3的数量关系:∠1=∠3;(3)直接写出∠2与∠ACB的数量关系:∠2+∠ACB=180°;(4)如图2,当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE 的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出∠ACE角度所有可能的值30°或45°或120°或135°或165°.【解析】解:(1)∵∠1=25°,∠ACD=90°,∴∠2=∠ACD﹣∠1=65°,故答案为:65°;(2)∵∠1+∠2=∠ACD=90°,∠2+∠3=∠BCE=90°, ∴∠1+∠2=∠2+∠3,∴∠1=∠3,故答案为:∠1=∠3;(3)∵∠ACD=∠BCE=90°,∴∠ACB+∠2=∠1+∠2+∠3+∠2=∠ACD+∠BCE=180°,即∠2+∠ACB=180°,故答案为:∠2+∠ACB=180°;(4)存在,①当BC∥AD时,∵BC∥AD,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°;②当BE∥AC时,如图,∵BE∥AC,∴∠ACE=∠E=45°;③当AD∥CE时,如图,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;④当BE∥CD时,如图,∵BE∥CD,∴∠DCE=∠E=45°,∴∠ACE=∠ACD+∠DCE=135°;⑤当BE∥AD时,如图,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°,∴∠ACE=90°+75°=165°.综上所述:当∠ACE=30°或45°或120°或135°或165°时,有一组边互相平行.故答案为:30°或45°或120°或135°或165°.。
最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列数是无理数的有()A.B.﹣1C.0D.2、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行3、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣64、星城长沙是湖南省省会城市,也是长江中游地区重要的中心城市,以下能准确表示长沙地理位置的是()A.在北京的西南方B.东经112.59°,北纬28.12°C.距离北京1478千米处D.东经112.59°5、如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°6、已知方程2x m+1+3y2n﹣1=7是二元一次方程,则m,n的值分别为()A.﹣1,0B.﹣1,1C.0,1D.1,17、若是方程组的解,则a值为()A.1B.2C.3D.48、已知方程,用含x的代数式表示y,正确的是()A.B.C.D.9、明代数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程组为()A.B.C.D.10、如图,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二、填空题(每小题3分,满分18分)11、在实数0,﹣1,﹣,π中,最小的是.12、在平面直角坐标系中,点(5,﹣6)到x轴的距离为.13、如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是.14、满足方程组的x,y互为相反数,则m=.15、如图,将长方形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠AEB′=30o,则∠DFE的度数为.16、已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知某正数的两个不同的平方根是3a﹣14和a+2;b是的整数部分;(1)求2a+b的值;(2)求3a﹣2b的平方根.19、解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.20、若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2022的值.21、如图,D,E分别在△ABC的边AB,AC上,F在线段CD上,且∠1+∠2=180°,DE∥BC.(1)求证:∠3=∠B;(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.22、某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,恰好每辆车都坐满且两种车都要租,请你设计出所有的租车方案.23、已知点P(2a﹣2,a+5),分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(2,5),且直线PQ∥x轴;(3)点P到x轴的距离与到y轴的距离相等.24、如图1,在平面直角坐标系中,A(0,a),B(b,0),且(a﹣6)2+=0,过A,B两点分别作y轴,x轴的垂线交于C点.(1)求C点的坐标;(2)P,Q为两动点,P,Q同时出发,其中P从C出发,在线段CB,BO 上以2个单位长度每秒的速度沿着C→B→O运动,到达O点P停止运动;Q 从B点出发以1个单位长度每秒速度沿着线段BO向O点运动,到O点Q停止运动.设运动时间为t秒,当点P在线段BO上运动时,t取何值,P,Q,C三点构成的三角形面积为1?(3)如图2,连接AB,点M(m,n)在线段AB上,且m,n满足|m﹣n|=1 0,点N在y轴负半轴上,连接MN交x轴于K点,记M,B,K三点构成的三角形面积为S1,记N,O,K三点构成的三角形面积分别记为S2,若S1=S2,求N点的坐标.25、如图1,在长方形OABC中,O为平面直角坐标系的原点,OA=2,OC=4,点B在第一象限.(1)点B的坐标为;(2)如图2,点P是线段CB延长线上的点,连接AP,OP,则∠POC,∠A PO,∠P AB三个角满足的关系是什么?并说明理由;(3)在(2)的基础上,已知:∠P AB=20°,∠POC=50°,在第一象限内取一点F,连接OF,AF,满足∠P AB=2∠F AP,∠POC=2∠FOP,请直接写出的值.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、-12、6 13、55°14、1 15、、75°16、三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣3﹣18、(1)8 (2)a﹣2b的平方根为19、a=2.5,b=1,c=220、(1)(2)121、(1)略(2)72°22、(1)每辆小客车能坐20人,每辆大客车能坐45人(2)方案1:租用小客车11辆,大客车4辆;方案2:租用小客车2辆,大客车8辆23、(1)P(0,6)(2)P(﹣2,5)(3)P的坐标为(12,12)或(﹣12,﹣12)或(﹣4,4)或(4,﹣4)24、(1)C(﹣12,6)(2)t=或(3)N(0,﹣3)25、(1)B(4,2)(2)∠POC=∠APO+∠PAB的值为或2或(3)。
期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
七年级第二学期初一数学期中考试试卷
2022-2023学年第二学期期中考试试卷初一数学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相对应的位置上)1.下列生活现象中,属于平移的是()A.卫星绕地球运动B.钟表指针的运动C.电梯从底楼升到顶楼D.教室门从开到关2.下列运算正确的是()A.x 2+x 3=x 6B.x 2·x 3=x 6C.(3x )3÷3x =9x 2D.(-xy 2)2=-x 2y 43.下列计算正确的是()A.(x -y )2=x 2+2xy -y 2B.(x +y )2=x 2+y 2C.(x +y )(x -y )=x 2-y 2D.(-x +y )(x -y )=x 2-y 24.下列各组线段能组成三角形的是()A.3cm 、4cm 、5cmB.4cm 、6cm 、10cmC.3cm 、3cm 、6cmD.5cm 、12cm 、18cm5.下列由左边到右边的变形,属于因式分解的是()A.a 2+2a +1=a (a +2)+1B.(x +1)(x -1)=x 2-1C.a 2+2a +4=(a +2)2D.-a 2+4a -4=-(a -2)26.当x 2-3x =1时,代数式2x 2-6x +3的值为()A.2B.3C.4D.57.下列图形中,由∠1+∠2=180°能推理得到AB ∥CD 的是()8.如图,长为y ,宽为x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5,下列说法中正确的是()①小长方形的较长边为y -15;②阴影A 的较短边和阴影B 的较短边之和为x -y +5:③若x 为定值,则阴影A 和阴影B 的周长和为定值:④当x =15时,阴影A 和阴影B 的面积和为定值.A.①③④ B.②④C.①③D.①④二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)9.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,则0.0000002cm 用科学记数法可表示为cm .10.计算:3-2=.A B CD12A.AB CD12B.ABCD12C.12D.y x5第8题图11.因式分解:x 2-6x +9=.12.若一个多边形的每个外角都相同且为72°,则这个多边形有条边.13.若3m =8,3n =2,则3m +n =.14.如图所示,直线a 、直线b 被直线c 所截,且直线a ∥b ,∠1=125°,则∠2=°.15.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连接MD 和ME .设AP =a ,BP =b ,如果a +b =10, ab =15.则阴影部分的面积为.16.阅读材料:求1+2+22+23+24+⋯+22013的值.解:设S =1+2+22+23+24+⋯+22012+22013,将等式两边同时乘以2得:2S =2+22+23+2425+⋯+22013+22014将下式减去上式得2S -S =22014-1即S =22014-1即1+2+22+23+24+⋯+22013=22014-1请你仿照上述方法,计算1+2-1+2-2+2-3+2-4+2-5+2-6=.三、三、解答题(本大题共11小题,共82分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)17.(本题共3小题,每小题4分,共12分)计算(1)(-1)2-32+(π-3.14)0(2)(-3a 3)2-2a 2·a 4+(a 2)3(3)(x +6)2+(1+x )(1-x )18.(本题共2题,每小题4分,共8分)因式分解(1)ax 2+5a(2)3x 2+6xy +3y 219.(本题共4分)先化简,再求值:(x +4)(x -4)+(x -3)2,其中x =1.abc 12第14题图A BC DEFP M 第15题图20.(本题共6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 与点D 重合,点E 、F 分别是B 、C 的对应点.(1)请画出平移后的△DEF ,并画出AB 边上的中线CG ;(2)若连接AD 、BE ,则这两条线段之间的关系是_________;(3)△DEF 的面积为_________;21.(本题共6分)如图,已知∠1+∠4=180°,∠3=∠B ,试证明DE ∥BC .完成以下解答过程中的空缺部分:解:∵∠1+∠4=180°(已知)∠1=∠2( )∴_______=180°(等量代换)∴EG ∥AB ( )∴∠B =∠EGC ( )∵∠3=∠B (已知)∴∠3=∠EGC ( )∴________(内错角相等,两直线平行)22.(本题共6分)在ax +1与bx +1的乘积中,x 2的系数为-3,x 的系数为-6,求a 2+b 2的值.23.(本题共6分)我们可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,例如x 2+4x -5=x 2+4x +22-22-5=(x +2)2-9,我们把这样的变形叫做多项式ax 2+bx +c (a ≠0)的配方法;已知关于a ,b 的代数式满足a 2+b 2+2a -4b +5=0,请你利用配方法求a +b 的值.A BCD24.(本题共7分)如图,长方形ABCD 中,∠BAD =∠B =∠D =∠C =90°,AD ∥BC ,E 为边BC 上一点,将长方形沿AE 折叠(AE 为折痕),使点B 与点F 重合, EG 平分∠CEF 交CD 于点G ,过点G 作HG ⊥EG 交AD 于点H .(1)请判断HG 与AE 的位置关系,并说明理由.(2)若∠CEG =20°,求∠DHG 的度数.25.(本题共7分)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(-2,-8)=;(2)有同学在研究这种运算时发现一个现象:(3n ,4n )=(3,4),他给出了如下的证明:设(3n ,4n )=x ,∴(3n )x =4n 即(3x )n =4n ∵3x >0∴3x =4即(3,4)=x ,∴(3n ,4n )=(3,4).①若(4,5)=a ,(4,6)=b ,(4,30)=c ,请你尝试运用上述这种方法证明a +b =c .②猜想[(x -1)n ,(y +1)n +[(x -1)n ,(y -2)n =(,)(结果化成最简形式).ABCDEFGH26.(本题共10分)在几何问题中,当求几个角之间的等量关系时,可以设未知数,通过“设而不解”的方法,以它们为中间量,结合三角形的性质和已知条件,构建所求角之间的等量关系;当需要求出某个角的具体度数时,我们可以通过设未知数的方式,根据问题中的等量关系列方程,并将方程进行求解,最后得到所求角的度数。
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷+答案解析
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中正确的是()A. B. C. D.3.如图,下列两个角是内错角的是()A.与B.与C.与D.与4.在实数,,,,,0,,中,无理数有个()A.1B.2C.3D.45.若是二元一次方程的一个解,则m的值为()A. B. C.1 D.6.下列命题中,真命题是()A.互补的角是邻补角B.同旁内角互补C.过直线外一点,有且只有一条直线与已知直线平行D.如果两条直线都与第三条直线垂直,那么这两条直线也相互垂直7.已知,则下列不等式中不成立的是()A. B. C. D.8.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A. B. C. D.9.如图,直线AB,CD交于点O,已知于点平分,若,则的度数是()A. B. C. D.10.如图,是由8个大小相同的小长方形无缝拼接而成的一个大长方形,已知大长方形的周长为2a,则小长方形的周长为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.x的2倍与4的差不大于3,用不等式表示为__________.12.如图,点E在DC的延长线上,请添加一个恰当的条件__________,使13.如图,,则AC__________填>,<,,理由是__________.14.已知二元一次方程组,则的值为__________.15.若是关于x、的二元一次方程,则__________.16.已知:实数a,b满足,则的平方根是__________.17.如图,在公园的长方形草地内修建了宽为2米的道路后,剩余的草地面积是__________平方米.18.如图,第一象限内有两点,,将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是__________.三、解答题:本题共10小题,共80分。
北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)
仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。
人教版七年级下期中数学试卷(含答案)
人教版七年级数学下学期期中测试卷(含答案)班级:姓名:学号:分数:(考试时间:120分钟试卷满分:120分)一、选择题(1—6题每题2分,7-16题每题3分,共42分)1.若2a=,10b=,则20用含a,b的式子表示是()A.2a B.2b C.a b+D.ab2.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.如图,若12∠=∠,则下列选项中可以判定//AB CD的是()A.B.C.D.4.下列各数比1大的是()A.0 B.12C2D.3-5.下面四个命题中,它们的逆命题是真命题的是()①对顶角相等;②同旁内角互补,两直线平行;③直角三角形两锐角互余;④如果a,b都是正数,那么0ab>.A.①②③B.②③④C.②③D.③④6.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为() A.(5,3)--D.(3,5)-B.(5,3)-C.(3,5)7.如图,数轴上点N表示的数可能是()A.2B.3C.7D.108.4的算术平方根是()A.2±B.2 C.2-D.16±9.若点(,)x y+=)y=,则(x=,||3P x y在第四象限,且||2A.1-B.1 C.5 D.5-10.一辆汽车在笔直的公路上行驶,第一次左拐50︒,再在笔直的公路上行驶一段距离后,第二次右拐50︒,两次拐弯后的行驶方向与原来的行驶方向()A.恰好相同B.恰好相反C.互相垂直D.夹角为100︒11.如图,四边形OABC是矩形,(2,1)B,点C在第二象限,则点C的坐标是()A,(0,5)A.(1,3)--D.(2,4)-C.(2,3)-B.(1,2)12.小明做了四道练习题:①有公共顶点的两个角是对顶角;②两个直角互为补角;③一个三角板中两个锐角互为余角;④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角;⑤平面内,有且只有一条直线与已知直线垂直;⑥两条直线相交,一定垂直;⑦若两条直线相交所形成的四个角都相等,则这两条直线互相垂直.其中正确的有()A.4个B.3个C.2个D.1个14. 已知则( )A. B. C. D.5215.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为A. B. C. D.16.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C.D.二.填空题(每题3分,共12分)17.长为3m+2n,宽为5m-n的长方形的面积为__________.18.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。
2020最新七年级下册期中数学试卷及答案 (2)
七年级(下)期中数学试卷一、选择题:(每题2分,共20分)1.下列各图中,正确画出AC边上的高的是()A.B.C. D.2.(﹣0.25)2014×42013等于()A.﹣4 B.4 C.0.25 D.﹣0.253.下列各式中,为完全平方式的是()A.a2+2a+B.a2+a+C.x2﹣2x﹣1 D.x2﹣xy+y24.已知方程组,则x+y的值是()A.5 B.1 C.0 D.﹣15.一个多边形的外角和是内角和的一半,则它是()边形A.7 B.6 C.5 D.46.某流感病毒的直径大约是0.000000081m,用科学记数法可表示为()A.8.1×10﹣9m B.8.1×10﹣8m C.81×10﹣9m D.0.81×10﹣7m7.已知代数式﹣a2+2a﹣1,无论a取任何值,它的值一定是()A.正数B.非正数C.负数 D.非负数8.如图,AB∥CD,E是BD上的一点.下列结论中,正确的是()A.∠1=∠2﹣∠3 B.∠2=∠1﹣∠3C.∠3=∠1+∠2 D.∠1+∠2+∠3=180°9.(2x+1)(﹣2x+1)的计算结果是()A.4x2+1 B.1﹣4x2C.1+4x2D.﹣4x2﹣110.设a m=8,a n=16,则a m+n=()A.24 B.32 C.64 D.128二、填空题:(每空2分,共26分)11.如图,AB∥CD,点G、F分别在AB、CD上,FE平分∠GFD交AB于点E,∠EGF=40°,则∠BEF= .12.()0÷()﹣2= .13.若a+b=11,ab=24,则a2+b2= ,(a﹣b)2= .14.已知x与y互为相反数,且3x﹣y=4,则x= ,y= .15.一个等腰三角形的边长分别是4cm和9cm,则它的周长是cm.16.若是二元一次方程3x+ay=5的一组解,则a= .17.若x+2y﹣3=0,则2x•4y的值为.18.如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC中点,若S△ABC =12,则S△A DF﹣S△BEF= .19.一个正多边形的每个外角都等于24°,则它是边形,它的内角和是度.20.若x2+kx+9恰好为一个整式的完全平方,则常数k的值是.21.已知a2+4a+b2﹣2b+5=0,则a b= .三、计算:(每小题8分,共8分)22.(1)2(a2)3﹣a2•a4+(2a4)2÷a2;(2)30﹣2﹣3+(﹣3)2﹣()﹣1.四、解下列方程组:(每小题8分,共8分)23.(1)(2).五、因式分解:(每小题8分,共8分)24.(1)m3﹣10m2+25m(2)x2(y2﹣1)﹣(y2﹣1).六、解答题:25.先化简再求值:(2x+3)(2x﹣3)﹣2x(x+1)﹣2(x﹣1)2,其中x=﹣1.26.今年,小丽和她爸爸年龄和是52岁,三年后的2018年,爸爸的年龄将比女儿年龄的2倍大10岁,请你算出小丽和她爸爸今年的年龄.27.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF.(2)若连接AD、CF,则这两条线段之间的关系是.(3)画出△ABC的BC边上的高AD,并画出AC边上的中线BE.28.有两个多边形,这两个多边形的边数比为3:5.内角和的度数之比是1:2,求它们各自的边数.29.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每题2分,共20分)1.下列各图中,正确画出AC边上的高的是()A.B. C. D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.2.(﹣0.25)2014×42013等于()A.﹣4 B.4 C.0.25 D.﹣0.25【考点】幂的乘方与积的乘方.【分析】首先把所求的算式适当变形,然后根据积的乘方法则,求出算式的值是多少即可.【解答】解:(﹣0.25)2014×42013=(﹣0.25)2013×(﹣0.25)×42013=(﹣0.25)2013×42013×(﹣0.25)=[(﹣0.25)×4]2013×(﹣0.25)=﹣1×(﹣0.25)=0.25故选:C.3.下列各式中,为完全平方式的是()A.a2+2a+ B.a2+a+ C.x2﹣2x﹣1 D.x2﹣xy+y2【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:a2+a+=(a+)2,故选B4.已知方程组,则x+y的值是()A.5 B.1 C.0 D.﹣1【考点】解二元一次方程组.【分析】观察方程组,即可发现,只需两个方程相加,得3x+3y=15,解得x+y=5.【解答】解:在方程组中,两方程相加得:3x+3y=15,即x+y=5.故选A.5.一个多边形的外角和是内角和的一半,则它是()边形A.7 B.6 C.5 D.4【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的一半,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故选B.6.某流感病毒的直径大约是0.000000081m,用科学记数法可表示为()A.8.1×10﹣9m B.8.1×10﹣8m C.81×10﹣9m D.0.81×10﹣7m【考点】科学记数法—表示较小的数.【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000081=8.1×10﹣8.故选B.7.已知代数式﹣a2+2a﹣1,无论a取任何值,它的值一定是()A.正数B.非正数C.负数 D.非负数【考点】因式分解-运用公式法;非负数的性质:偶次方.【分析】直接利用完全平方公式分解因式进而利用偶次方的性质分析得出即可.【解答】解:∵﹣a2+2a﹣1=﹣(a2﹣2a+1)=﹣(a﹣1)2,(a﹣1)2≥0,∴﹣(a﹣1)2≤0,故选:B.8.如图,AB∥CD,E是BD上的一点.下列结论中,正确的是()A.∠1=∠2﹣∠3 B.∠2=∠1﹣∠3C.∠3=∠1+∠2 D.∠1+∠2+∠3=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补即可得到∠3+∠B=180°,然后在△ABE中利用三角形的内角和定理即可判断.【解答】解:∵AB∥CD,∴∠3+∠B=180°,又∵∠1+∠2+∠B=180°,∴∠3=∠1+∠2.故选C.9.(2x+1)(﹣2x+1)的计算结果是()A.4x2+1 B.1﹣4x2C.1+4x2D.﹣4x2﹣1【考点】平方差公式.【分析】根据平方差公式直接计算即可.【解答】解:(2x+1)(﹣2x+1)=12﹣(2x)2=1﹣4x2.故选B.10.设a m=8,a n=16,则a m+n=()A.24 B.32 C.64 D.128【考点】同底数幂的乘法.【分析】根据同底数幂的乘法的性质,可得a m+n=a m•a n,再代入计算.【解答】解:∵a m=8,a n=16,∴a m+n=a m•a n=8×16=128.故选:D.二、填空题:(每空2分,共26分)11.如图,AB∥CD,点G、F分别在AB、CD上,FE平分∠GFD交AB于点E,∠EGF=40°,则∠BEF= 110°.【考点】平行线的性质.【分析】由AB∥CD,根据“两直线平行,内错角相等”得到∠CFG=∠EGF=40°,求得∠GFD的度数,再根据角平分线的定义得到∠EFD,然后根据“两直线平行,同旁内角互补”即可得到∠BEF.【解答】解:∵AB∥CD,∴∠CFG=∠EGF=40°,∴∠GFD=180°﹣40°=140°,∵FE平分∠BEF,∴∠EFD=∠GFD=70°,而AB∥CD,∴∠BEF=180°﹣∠EFD=180°﹣70°=110°.故答案是:110°12.()0÷()﹣2= .【考点】负整数指数幂;零指数幂.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:原式=()0﹣(﹣2)=()2=.故答案为:.13.若a+b=11,ab=24,则a2+b2= 73 ,(a﹣b)2= 25 .【考点】完全平方公式.【分析】运用完全平方公式计算.【解答】解:a2+b2=(a+b)2﹣2ab=121﹣48=73,(a﹣b)2=(a+b)2﹣4ab=121﹣96=25,故答案为:73,25.14.已知x与y互为相反数,且3x﹣y=4,则x= 1 ,y= ﹣1 .【考点】解二元一次方程组.【分析】根据题意列出方程组,求出方程组的解即可得到x与y的值.【解答】解:根据题意得:,①+②得:4x=4,即x=1,将x=1代入①得:y=﹣1,故答案为:1;﹣1.15.一个等腰三角形的边长分别是4cm和9cm,则它的周长是22 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当4cm是腰时,4+4<9cm,不符合三角形三边关系,故舍去;当9cm是腰时,周长=9+9+4=22cm.故该三角形的周长为22cm.故答案为:22.16.若是二元一次方程3x+ay=5的一组解,则a= 2 .【考点】二元一次方程的解.【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【解答】解:把代入方程得:﹣3+4a=5,解得:a=2.故答案是:2.17.若x+2y﹣3=0,则2x•4y的值为8 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方,可化成同底数幂的乘法,根据同底数幂的乘法,可得答案.【解答】解:2x•4y=2x•22y=2x+2y,x+2y﹣3=0,x+2y=3,2x•4y=2x+2y=23=8,故答案为:8.18.如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC中点,若S△ABC =12,则S△ADF﹣S△BEF= 2 .【考点】三角形的面积.【分析】本题需先分别求出S△ABD ,S△ABE再根据S△ADF﹣S△B EF=S△ABD﹣S△ABE即可求出结果.【解答】解:∵点D是AC的中点,∴AD=AC,∵S△AB C=12,∴S△ABD =S△ABC=×12=6.∵EC=2BE,S△ABC=12,∴S△ABE =S△ABC=×12=4,∵S△AB D ﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,即S△ADF ﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.故答案为:2.19.一个正多边形的每个外角都等于24°,则它是15 边形,它的内角和是2340 度.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数;n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:360÷24=15,则它是15边形;内角和是:(15﹣2)•180°=2340度.20.若x2+kx+9恰好为一个整式的完全平方,则常数k的值是±6 .【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+9=x2+kx+32,∴kx=±2×3x,解得k=±6.故答案为:±6.21.已知a2+4a+b2﹣2b+5=0,则a b= ﹣2 .【考点】因式分解-运用公式法;非负数的性质:偶次方.【分析】直接利用完全平方公式配方,进而得出a,b的值,即可得出答案.【解答】解:∵a2+4a+b2﹣2b+5=0,∴(a+2)2+(b﹣1)2=0,∴a=﹣2,b=1,则a b=﹣2.故答案为:﹣2.三、计算:(每小题8分,共8分)22.(1)2(a2)3﹣a2•a4+(2a4)2÷a2;(2)30﹣2﹣3+(﹣3)2﹣()﹣1.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)首先计算幂的乘方、积的乘方,再计算同底数幂的乘法、单项式除以单项式,然后再合并同类项;(2)首先计算乘方、零次幂、负整数指数幂,然后再计算有理数的加减即可.【解答】解:(1)原式=2a6﹣a6+4a8÷a2,=2a6﹣a6+4a6,=5a6;(2)原式=1﹣+9﹣4=5.四、解下列方程组:(每小题8分,共8分)23.(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把①代入②得:3x+4x﹣6=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)方程组整理得:,①×3﹣②得:8x=﹣40,解得:x=﹣5,把x=﹣5代入②得:y=3,则方程组的解为.五、因式分解:(每小题8分,共8分)24.(1)m3﹣10m2+25m(2)x2(y2﹣1)﹣(y2﹣1).【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式m,再利用完全平方公式进行二次分解;(2)首先提取公因式(y2﹣1),然后两次使用平方差公式分解因式.【解答】解:(1)m3﹣10m2+25m=m(m2﹣10m+25),=m(m﹣5)2;(2)x2(y2﹣1)﹣(y2﹣1)=(x2﹣1)(y2﹣1)=(x+1)(x﹣1)(y+1)(y﹣1)六、解答题:25.先化简再求值:(2x+3)(2x﹣3)﹣2x(x+1)﹣2(x﹣1)2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】先把原式进行化简,再把x=﹣1代入进行计算即可.【解答】解:原式=4x2﹣9﹣2x2﹣2x﹣2(x2+1﹣2x)=4x2﹣9﹣2x2﹣2x﹣2x2﹣2+4x=2x﹣11,当x=﹣1时,原式=2×(﹣1)﹣11=﹣13.26.今年,小丽和她爸爸年龄和是52岁,三年后的2018年,爸爸的年龄将比女儿年龄的2倍大10岁,请你算出小丽和她爸爸今年的年龄.【考点】二元一次方程组的应用.【分析】首先设小丽今年的年龄为x岁,爸爸的年龄为y岁,由题意得等量关系:①小丽和她爸爸年龄和是52岁;②2×(女儿的年龄+3)+10=爸爸三年后的年龄,根据等量关系列出方程组,再解即可.【解答】解:设小丽今年的年龄为x岁,爸爸的年龄为y岁.列出方程组,解得,答:小丽今年的年龄为13岁,爸爸的年龄为39岁.27.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF.(2)若连接AD、CF,则这两条线段之间的关系是平行且相等.(3)画出△ABC的BC边上的高AD,并画出AC边上的中线BE.【考点】作图-平移变换.【分析】(1)根据网格结构找出点B、C平移后的对应点E、F的位置,然后与点D顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)根据网格结构和三角形的高线与中线的定义作出图形即可.【解答】解:(1)△DEF如图所示;(2)AD与CF平行且相等;(3)高线AD,中线BE如图所示.28.有两个多边形,这两个多边形的边数比为3:5.内角和的度数之比是1:2,求它们各自的边数.【考点】多边形内角与外角.【分析】设多边形的边数为3n,则另一个为5n,分别表示出两个多边形的内角和得到有关n的方程求解即可.【解答】解:∵两个多边形的边数之比为3:5,∴设多边形的边数为3n,则另一个为5n,∵内角和度数之比为1:2,∴(3n﹣2):(5n﹣2)=1:2,解得:n=,2,∴3n=6,5n=10.故它们各自的边数为6和10.29.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?【考点】平行线的判定与性质.【分析】两直线的位置关系有两种:平行和相交,根据图形可以猜想两直线平行,然后根据条件探求平行的判定条件.【解答】平行.证明:∵CD∥AB,∴∠ABC=∠DCB=70°;又∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=70°﹣20°=50°;∴∠ABF+∠EFB=50°+130°=180°;∴EF∥AB(同旁内角互补,两直线平行).。
七年级第二学期期中测试数学试题(解析版)
初一数学期中试卷一、选择题:(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的区域内)1.如图所示的图案可以看作由“基本图案”经过平移得到的是()A. B. C. D.【答案】D【解析】【分析】确定一个基本图案按照一定的方向平移一定的距离组成的图形就是经过平移得到的图形.【详解】A.不是由“基本图案”经过平移得到,故此选项错误;B.不是由“基本图案”经过平移得到,故此选项错误;C.不是由“基本图案”经过平移得到,故此选项错误;D.是由“基本图案”经过平移得到,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是正确理解平移的概念.2.下列计算正确的是()A.a2•a3=a6B. a6÷a3=a2C. (a2)3=a6D. (2a)3=6a3【答案】C【解析】【分析】根据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.【详解】解:A、a2•a3=a5,错误;B、a6÷a3=a3,错误;C、(a2)3=a6,正确;D、(2a)3=8a3,错误;故选C3.下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A. 5cm、7cm、2cmB. 7cm、13cm、10cmC. 5cm、7cm、11cmD. 5cm、10cm、13cm【答案】A【解析】试题分析:三角形中任意两边之和大于第三边,任意两边之差小于第三边.A选项中5+2=7,则不能构成三角形.考点:三角形的三边关系4.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. x2-8x+16=(x-4)2C. (x+5)(x-2)=x2+3x-10D. 6ab=2a•3b【答案】B【解析】分析:根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.详解:A.右边不是积的形式,故A选项错误;B.是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故B选项正确;C.是多项式乘法,不是因式分解,故C选项错误;D.不是把多项式化成整式积的形式,故D选项错误.故选B.点睛:本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.5.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以...是()A. ∠1=∠3B. ∠B+∠BCD=180°C. ∠2=∠4D. ∠D+∠BAD=180°【答案】A【解析】【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可【详解】解:A .∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行); B .∵∠B +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行); C .∠2=∠4,∴AB ∥CD (内错角相等,两直线平行);D .∠D +∠BAD =180°,∴AB ∥CD (同旁内角互补,两直线平行). 故选A .【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键. 6. 下列各式能用平方差公式计算的是( ) A. (2a+b )(2b -a ) B. (-12x+1)(-12x -1) C. (a+b )(a -2b ) D. (2x -1)(-2a+1)【答案】B 【解析】试题分析:能用平方差公式的代数式是指(a+b )(a -b ),即必须满足有两个相同的代数式,其中一个相等,另一个互为相反数. 考点:平方差公式.7.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x 场输了y 场,得20分,则可以列出方程组( )A. 20212x y x y +=⎧⎨+=⎩B. 12220x y x y +=⎧⎨+=⎩C. 212220x y x y +=⎧⎨+=⎩D. 12220x y x y +=⎧⎨+=⎩【答案】D 【解析】分析:根据此题的等量关系:①共12场;②赢了x 场,输了y 场,得20分列出方程组解答即可.详解:设赢了x 场,输了y 场,根据题意:12220x y x y +=⎧⎨+=⎩.故选D . 点睛:本题考查了方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.关于x 、y 的方程组93x y mx y m +=⎧⎨-=⎩的解是方程3x +2y =24的一个解,那么m 的值是( )A. 2B. -1C. 1D. -2【答案】C分析:把m 看做已知数表示出方程组的解,代入3x +2y =24计算即可求出m 的值.详解:93x y m x y m +=⎧⎨-=⎩①②,①+②得:2x =12m ,解得:x =6m ,①﹣②得:2y =6m ,即y =3m ,把x =6m ,y =3m 代入3x +2y =24中得:18m +6m =24,解得:m =1.故选C .点睛:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 9.若用十字相乘法分解因式:x 2+mx -12=(x +2)(x +a ),则a 、m 的值分别是( ) A. -6,4 B. -4,-6C. -4, 6D. -6,-4【答案】D 【解析】分析:用多项式乘多项式法则计算后,根据多项式恒等,对应项的系数相等即可得到结论.详解:x 2+mx -12=(x +2)(x +a )= x 2+(a +2)x +2a ,∴m =a +2,2a =-12,解得:a =-6,m =-4. 故选D .点睛:本题考查了多项式乘法法则.解题的关键是多项式恒等,对应项的系数相等.10.如图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE =18°,则图2中∠AEF 的度数为( )A. 108B. 114C.116 D.120【答案】B 【解析】如图,设∠B′FE=x ,根据折叠的性质得∠BFE=∠B′FE=x ,∠AEF=∠A′EF ,则∠BFC=x-18°,再由第2次折叠得到∠C′FB=∠BFC=x-18°,于是利用平角定义可计算出x=66°,接着根据平行线的性质得∠A′EF=180°-∠B′FE=114°,所以∠AEF=114°.故选B.点睛:本题主要考查了翻折变换,利用翻折变换前后角不发生大小变化是解决问题的关键.二、填空题:(每小题2分,共16分,把你的答案填在答题卷相应的横线上)11.遗传物质脱氧核糖核酸(DNA)的分子直径为0.000 0002cm,用科学记数法表示为______________cm.【答案】2×10-7【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,小数点移动的位数的相反数即是n的值.解:0.000 0002=2×10﹣7.故答案2×10﹣7.12.十边形的外角和是_____°.【答案】360【解析】【分析】根据多边形外角和等于360°性质可得.【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.13.分解因式:9x2―4y2=_______________.【答案】(3x+2y)(3x-2y)【解析】分析:原式利用平方差公式分解即可.详解:原式=(3x+2y)(3x-2y).故答案为(3x+2y)(3x-2y).点睛:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解答本题的关键.14.已知a m=6,a n=3,则a m-n=__________【答案】2【解析】分析:根据同底数幂的除法法则:底数不变,指数相减进行计算即可.详解:∵a m =6,a n =3,∴a m ﹣n =a m ÷a n =6÷3=2.故答案为2.点睛:本题主要考查了同底数幂的除法,关键是掌握a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ).15.若4x 2-mxy +y 2是一个完全平方式.....,那么m 的值是_________. 【答案】±4 【解析】分析:利用完全平方公式的结构特征判断即可确定出m 的值.详解:∵4x 2-mxy +y 2是一个完全平方式,∴m =±4. 故答案为±4.点睛:本题考查了完全平方式,熟练掌握完全平方公式是解答本题的关键. 16.已知a 、b 满足a 2+b 2-6a -4b +13=0,则a+b 的值是_______. 【答案】5 【解析】分析:应用配方法把原式进行变形,根据非负数的性质求出a 、b 的值,代入代数式计算即可.详解:∵a 2+b 2-6a -4b +13=0,∴a 2-6a +9+b 2-4b +4=0,∴(a -3)2+(b ﹣2)2=0,∴303202a a b b -==⎧⎧∴⎨⎨-==⎩⎩,,∴a +b =3+2=5.故答案为5.点睛:本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键. 17.如图,在△ABC 中,∠C=50°,按图中虚线将∠C 剪去后,∠1+∠2等于_____.【答案】230° 【解析】 【分析】首先根据三角形内角和可以计算出∠A+∠B 的度数,再根据四边形内角和为360°可算出∠1+∠2的结果. 【详解】解:∵△ABC 中,∠C=50°, ∴∠A+∠B=180°-∠C=130°, ∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°-130°=230°.故答案为230°.【点睛】此题主要考查了三角形内角和以及多边形内角和,关键是掌握多边形内角和定理:(n-2).180°(n≥3)且n为整数).18.已知m、n满足232431242316m nm n+=⎧⎨+=⎩,则m2-n2的值是_________.【答案】-15【解析】分析:两式相加,求出m+n的值,两式相减,求出m-n的值,即可求出m2-n2的值.详解:232431 242316m nm n+=⎧⎨+=⎩①②①+②得:m+n=1③,②-①得:m-n=-15④,③×④得:m2-n2=-15.故答案为-15.点睛:本题主要考查了解二元一次方程组问题,要熟练掌握,注意整体思想的应用.三、解答题:(本大题共8小题,共54分,要有必要的解题步骤)19.计算或化简:(1)(12)-3- 20160 -|-5|;(2)(-3a2)2-a2·2a2+(a3)2÷a2.【答案】(1)2 ;(2)8a4【解析】分析:(1)原式利用负整数指数幂、零指数幂法则计算即可求出值;(2)原式利用积的乘方和幂的乘方,单项式乘单项式,单项式除以单项式法则计算即可.详解:(1)原式=8-1-5 =2 ;(2)原式=9a4-2a4+a4 = 8a4.点睛:本题考查了整式的混合运算,熟练掌握运算法则是解答本题的关键.20.解二元一次方程组:(1)21367x yx y-=⎧⎨=-⎩;(2)23443x yx y-=-⎧⎨-=-⎩.【答案】(1)235xy=⎧⎨=⎩,(2)121xy⎧=-⎪⎨⎪=⎩【解析】分析:(1)方程组利用代入消元法求出解即可;(2)利用加减消元法求出解即可.详解:(1)21367x y x y -=⎧⎨=-⎩①②,把②代入①得:6y ﹣7﹣2y =13,即y =5,把y =5代入②得:x =23,则方程组的解为235x y =⎧⎨=⎩;(2)23443x y x y -=-⎧⎨-=-⎩①②,①×2-②得:-5y =-5,解得:y =1,把y =1代入①得:x =12-,则方程组的解为121x y ⎧=-⎪⎨⎪=⎩ .点睛:本题考查了解二元一次方程组,利用了整体的思想. 21.分解因式:(1)m (a ―b ) ―n (b ―a ); (2)y 3―6y 2+9 y . 【答案】(1)(a ―b )(m +n );(2)y (y ―3) 2 【解析】分析:(1)直接提取公因式(a -b ),进而分解因式即可;(2)先提取公因式y ,再用完全平方公式分解因式即可. 详解:(1)原式= m (a ―b ) +n (a ―b ) =(a ―b )(m +n ); (2)原式 = y (y 2―6y +9) = y (y ―3) 2.点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点. (1)请画出平移后的△DEF ;(2)若连接AD 、CF ,则这两条线段之间的关系..是________________; (3)在图中找出所有满足S △ABC =S △QBC 的格点Q (异于点A ),并用Q 1、Q 2…表示.【答案】AD =CF ,AD ∥CF 【解析】分析:(1)根据网格结构找出点B、C平移后的对应点E、F的位置,然后与点D顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2..详解:(1)如图所示;(2)AD与CF平行且相等.故答案为AD与CF平行且相等.(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.,如图,点睛:本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.先化简,再求值:x(2x-y)-(x+y) (x-y) + (x-y)2,其中x2+y2=5,xy=-2.【答案】16【解析】分析:原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.详解:原式=2x2﹣xy﹣x2+y2+x2﹣2xy+y2=2x2+2y2﹣3xy,当x2+y2=5,xy=﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.24.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花3600元购买了黑白两种颜色的文化衫200件.每件文化衫的批发价及手绘后的零售价如下表:批发价(元)零售价(元)黑色文化衫20 35白色文化衫15 25假设通过手绘设计后全部售出....,求该校这次义卖活动所获利润. 【答案】该校这次义卖活动所获利润为2600元 【解析】分析:设黑色文化衫x 件,白色文化衫y 件,根据该学校从批发市场花3600元购买了黑白两种颜色的文化衫200件,列二元一次方程组进行求解.详解:设黑色文化衫有x 件,白色文化衫有y 件.由题意得:20020153600x y x y +=⎧⎨+=⎩解得:12080x y =⎧⎨=⎩.利润=(35-20)×120+(25-15)×80=2600(元). 答:该校这次义卖活动所获利润为2600元.点睛:本题主要考查了二元一次方程组的应用,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.。
2022-2023学年第二学期宿迁市宿迁青华中学初一数学期中复习试卷及答案
C.三角形任一边的中线把原三角形分成两个面积相等的三角形
D.一个多边形 边数每增加一条,这个多边形的内角和就增加180°
5.边长为 , 的长方形,它的周长为 ,面积为 ,则 的值为()
A. B. C. D.
6.已知关于x、y方程组 的解满足x+y=3,则 的值为( )
13.若 是关于 、 的二元一次方程,则 ______.
14.已知 与 互为相反数,则 的值为___.
15.如图,长方形ABCD的周长为12,分别以BC和CD为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD的面积是______.
16.如图,五边形 是正五边形,若 ,则 __________.
【答案】4或6
【解析】
【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.
【解答】解:由题意,令第三边为x,则5-3<x<5+3,即2<x<8.
∵第三边长为偶数.
∴第三边长是4或6.
故答案为:4或6.
【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.
A. 折B. 折C. 折D. 折
【答案】A
【解析】
【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于10%,列不等式求解.
【解答】解:设打了x折.
由题意得,1650×0.1x-900≥900×10%.
解得:x≥6.
即最多打6折.
故选:A.
【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于10%,列不等式求解.
江苏省2022年七年级下学期期中考试数学试题2[1]
江苏省七年级写学期期中考试数学试题一、选择题(本大题共8小题,每小题2分,共16分)1.在下列实例中,属于平移过程的个数有( )①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个2.下列计算正确的是( )A.x2•x4=x8B.a10÷a2=a5C.m3+m2=m5D.(﹣a2)3=﹣a63.下列各式从左边到右边的变形是因式分解的是( )A.(a+1)(a﹣1)=a 2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y4.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( )A.2 B.9 C.10 D.115.下列各式能用完全平方式进行分解因式的是( )A.x2+1 B.x2+2x﹣1 C.x2+x+1 D .6.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;④AD∥BE,且∠DCB=∠BAD;其中能推出AB∥DC的条件为( )A.①②B.②④C.②③D.②③④7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是( ) A.45°B.55°C.65°D.75°8.现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )A.a=2b B.a=3b C.a=3.5b D.a=4b二、填空题(本大题共10小题,每空2分,共26分,不需写出解答过程,只需把答案直接填写在横线上)9.生物学家发现了一种病毒的长度约为0.00000432毫米,用科学记数法表示为__________毫米.10.计算:(1)(﹣3x3)2=__________;(2)x6÷(﹣x)3=__________;(3)(﹣0.25)202X×(﹣4)202X=__________;(4)(2x﹣3)(x+1)=__________.11.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是__________.12.已知10m=3,10n=5,则103m﹣n=__________.13.已知x+y=4,x﹣y=﹣2,则x2﹣y2=__________.14.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和的度数等于__________.15.如图:CD平分∠ACB,DE∥AC且∠1=30°,则∠2=__________°.16.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO 的面积为__________.17.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B=__________度.18.定义一种运算:,其中k是正整数,且k≥2,[x]表示非负实数x的整数部分,例如[2.6]=2,[0.8]=0.若a1=1,则a202X的值为__________.三、解答题(本大题共7题,共58分.解答时应写出文字说明、证明过程或演算步骤).19.计算(1);(2)(﹣a2)3﹣6a2•a4;(3)(x+1)2﹣(﹣x﹣2)(﹣x+2)(4)(2a﹣b﹣3)(2a+b﹣3)20.因式分解:(1)2a3﹣8a(2)4a(x﹣y)﹣2b(y﹣x);(3)(x2+4)2﹣16x2(4)(x﹣y)2+4xy.21.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.22.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高(需写出结论);(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.23.已知:如图,△ABC中,AD⊥BC于D,E是CA延长线上一点,EG⊥BC于G,交AB于F,AD是∠BAC的角平分线,试说明∠E=∠EFA.24.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.25.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒2cm.设运动的时间为t秒.(1)当t=__________时,CP把△ABC的周长分成相等的两部分?(2)当t=__________时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为12?26.一个工程队要在一块长方形荒地上建造一套简易住房,如图所示,该住房的平面是由长2x+6、宽x+7构成,要求建成:两室、一厅、一厨、一卫,且各房间为长方形或正方形.其中客厅面积为x2+8x+16,厨房面积为3x+6,卫生间面积为x2+3x+2,两个卧室的面积均为3x+9.若墙体所占面积忽略不计,请你根据所学知识,在所给图中设计一套住房的平面结构示意图.(要求:①在图上标出图中各房间的名称;②在图上用含有x的代数式表示图中各房间的边长)七年级下学期期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.在下列实例中,属于平移过程的个数有( )①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个考点:生活中的平移现象.分析:根据平移的定义直接判断即可.解答:解:①时针运行是旋转,故此选项错误;②电梯上升,是平移现象;③火车直线行驶,是平移现象;④地球自转,是旋转现象;⑤电视机在传送带上运动,是平移现象.故属于平移变换的个数有3个.故选:C.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.2.下列计算正确的是( )A.x2•x4=x8B.a10÷a2=a5C.m3+m2=m5D.(﹣a2)3=﹣a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数幂的除法、合并同类项、同底数幂的乘法及幂的运算性质进行计算后即可得到正确的答案.解答:解:A、x2•x4=x2+4=x6,故本选项错误;B、a10÷a2=a10﹣2=a8,故本选项错误;C、m3+m2不能再继续计算,故本选项错误;D、(﹣a2)3=﹣a2×3=﹣a6,故本选项正确;故选D.点评:本题考查了同底数幂的除法、合并同类项、同底数幂的乘法及幂的运算性质,属于基本运算,应重点掌握.3.下列各式从左边到右边的变形是因式分解的是( )A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y考点:因式分解的意义.分析:分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.解答:解:A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C、右边不是积的形式,错误;D、左边是单项式,不是因式分解,错误.故选B.点评:本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.4.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( )A.2 B.9 C.10 D.11考点:三角形三边关系.专题:应用题.分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,找出选项中符合条件的即可.解答:解:根据三角形的三边关系,得第三边应大于6﹣4=2,而小于6+4=10,∴2<第三边<10,只有B选项符合.故选:B.点评:本题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可,难度适中.5.下列各式能用完全平方式进行分解因式的是( )A.x2+1 B.x2+2x﹣1 C.x2+x+1 D .考点:因式分解-运用公式法.分析:直接利用完全平方公式分解因式的方法分别判断得出即可.解答:解:A、x2+1无法用完全平方式分解因式,故此选项错误;B、x2+2x﹣1无法用完全平方式分解因式,故此选项错误;C、x2+x+1无法用完全平方式分解因式,故此选项错误;D、x2﹣x+=(x ﹣)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.6.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;④AD∥BE,且∠DCB=∠BAD;其中能推出AB∥DC的条件为( )A.①②B.②④C.②③D.②③④考点:平行线的判定与性质.分析:根据平行线的判定条件,逐一判断,排除错误答案.解答:解:①∵∠1=∠2,∴AD∥BC,故此选项错误;②∵∠3=∠4,∴AB∥DC,(内错角相等,两直线平行),故此选项正确;③∵AD∥BC,∴∠B+∠BAD=180°,∵∠D=∠B,∴∠D+∠BAD=180°,由同旁内角互补,两直线平行可得AB∥DC,故此选项正确;④∵AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=∠BCD,∴∠B+∠BCD=180°,由同旁内角互补,两直线平行可得AB∥DC,故此选项正确;故能推出AB∥DC的条件为:②③④.故选D.点评:此题考查了平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是( )A.45°B.55°C.65°D.75°考点:平行线的性质;三角形内角和定理.专题:计算题.分析:根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°﹣45°=75°,则∠1=75°,根据对顶角相等即可得到∠β的度数.解答:解:如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°﹣45°=75°,∴∠1=75°,∴∠β=75°.故选:D.点评:本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质以及对顶角的性质.8.现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )A.a=2b B.a=3b C.a=3.5b D.a=4b考点:整式的混合运算.专题:几何图形问题.分析:表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.解答:解:法1:左上角阴影部分的长为AE,宽为AF=3b ,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.法2:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为x,左上阴影增加的是3bx,右下阴影增加的是ax,因为S不变,∴增加的面积相等,∴3bx=ax,∴a=3b.故选:B.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共10小题,每空2分,共26分,不需写出解答过程,只需把答案直接填写在横线上)9.生物学家发现了一种病毒的长度约为0.00000432毫米,用科学记数法表示为4.32×10﹣6毫米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000432=4.32×10﹣6.故答案为:4.32×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.计算:(1)(﹣3x3)2=9x6;(2)x6÷(﹣x)3=﹣x3;(3)(﹣0.25)202X×(﹣4)202X=﹣0.25;(4)(2x﹣3)(x+1)=2x2﹣x﹣3.考点:整式的混合运算.专题:计算题.分析:(1)原式利用幂的乘方与积的乘方运算法则计算,即可得到结果;(2)原式变形后,利用同底数幂的除法法则计算即可得到结果;(3)原式逆用积的乘方运算法则计算即可得到结果;(4)原式利用多项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=9x6;(2)原式=﹣x3;(3)原式=(0.25×4)202X×(﹣0.25)=﹣0.25;(4)原式=2x2+2x﹣3x﹣3=2x2﹣x﹣3.故答案为:(1)9x6;(2)﹣x3;(3)﹣0.25;(4)2x2﹣x﹣3点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.11.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是2x﹣5y.考点:因式分解-提公因式法.分析:根据提公因式法分解因式解答即可.解答:解:﹣16x3+40x2y=﹣8x2•2x+(﹣8x2)•(﹣5y)=﹣8x2(2x﹣5y),所以另一个因式为2x﹣5y.故答案为:2x﹣5y.点评:本题考查了提公因式法分解因式,把多项式的各项写成公因式与另一个因式相乘的形式是解题的关键.12.已知10m=3,10n=5,则103m﹣n=5.4.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先把103m﹣n化为(10m)3÷10n运用同底数幂的除法,幂的乘方法则计算.解答:解:∵10m=3,10n=5,∴103m﹣n=(10m)3÷10n=33÷5=5.4,故答案为:5.4.点评:本题主要考查了同底数幂的除法,幂的乘方等知识,解题的关键是熟记法则.13.已知x+y=4,x﹣y=﹣2,则x2﹣y2=﹣8.考点:完全平方公式.专题:计算题.分析:根据平方差公式得x2﹣y2=(x+y)(x﹣y),然后把x+y=4,x﹣y=﹣2整体代入计算即可.解答:解:x2﹣y2=(x+y)(x﹣y),当x+y=4,x﹣y=﹣2时,x2﹣y2=4×(﹣2)=﹣8.故答案为﹣8.点评:本题考查了平方差公式:a2﹣b2=(a+b)(a﹣b).14.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和的度数等于1800°.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷30°=12,正多边形的内角和:(12﹣2)•180°=1800°,故答案为:1800°.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.如图:CD平分∠ACB,DE∥AC且∠1=30°,则∠2=60°.考点:平行线的性质;角平分线的定义.专题:计算题.分析:已知CD平分∠ACB,∠ACB=2∠1;DE∥AC,可推出∠ACB=∠2,易得:∠2=2∠1,由此求得∠2=60°.解答:解:∵CD平分∠ACB,∴∠ACB=2∠1;∵DE∥AC,∴∠ACB=∠2;又∵∠1=30°,∴∠2=60°.故答案为:60.点评:本题应用的知识点为两直线平行,同位角相等;角平分线的定义.16.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO 的面积为4.考点:三角形的面积.分析:根据“三角形的中线将三角形分为面积相等的两个三角形”得到S△ABM=S△ABN=S△ABC=6,然后结合图形来求四边形MCNO的面积.解答:解:如图,∵△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,∴S△ABM=S△ABN=S△ABC=6.又∵S△ABM﹣S△BOM=S△AOB,△BOM的面积为2,∴S△AOB=2,∴S四边形MCNO=S△ABC﹣S△ABN﹣S△AOB=12﹣6﹣2=4.故答案是:4.点评:本题考查了三角形的面积.解答该题时,需要利用“数形结合”是数学思想.17.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B=78度.考点:翻折变换(折叠问题).专题:压轴题.分析:在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B 的度数.解答:解:在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°﹣82°,即:∠B+∠C=98°…②;①﹣②,得:∠B=52°,解得∠B=78°.点评:此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.18.定义一种运算:,其中k是正整数,且k≥2,[x]表示非负实数x的整数部分,例如[2.6]=2,[0.8]=0.若a1=1,则a202X的值为4.考点:规律型:数字的变化类.专题:新定义.分析:首先定义的新运算方法,可得a2=a1+1﹣5()=1+1=2,a3=a2+1﹣5()=2+1=3,同理,可得a4=4,a5=5,a6=1,a7=2,…,所以这列数是1、2、3、4、5、1、2、3、4、5、…,每5个数是一个循环;然后用202X除以4,根据余数的情况判断出a202X的值为多少即可.解答:解:因为a1=1,所以a2=a1+1﹣5()=1+1=2,a3=a2+1﹣5()=2+1=3,同理,可得a4=4,a5=5,a6=1,a7=2,…,所以这列数是1、2、3、4、5、1、2、3、4、5、…,每5个数是一个循环;因为202X÷5=402…4,所以a202X=4.故答案为:4.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是1、2、3、4、5、1、2、3、4、5、…,每5个数是一个循环.三、解答题(本大题共7题,共58分.解答时应写出文字说明、证明过程或演算步骤).19.计算(1);(2)(﹣a2)3﹣6a2•a4;(3)(x+1)2﹣(﹣x﹣2)(﹣x+2)(4)(2a﹣b﹣3)(2a+b﹣3)考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)先算乘方、0指数幂、负指数幂以及绝对值,再算加减;(2)先算积得乘方和同底数幂的乘法,再算减法;(3)先利用完全平方公式和平方差公式计算,再进一步合并即可;(4)利用平方差公式和完全平方公式计算即可.解答:解:(1)原式=1﹣8+1﹣3=﹣9;(2)原式=﹣a6﹣6a6=﹣7a6;(3)原式=x2+2x+1﹣x2+4=2x+5;(4)原式=(2a﹣3)2﹣b2=4a2﹣12a+9﹣b2.点评:此题考查整式的混合运算,掌握运算方法与计算的顺序符号是解决问题的关键.20.因式分解:(1)2a3﹣8a(2)4a(x﹣y)﹣2b(y﹣x);(3)(x2+4)2﹣16x2(4)(x﹣y)2+4xy.考点:提公因式法与公式法的综合运用.分析:(1)先提取公因式2a,再对余下的多项式利用平方差公式继续分解;(2)提取公因式2(x﹣y),整理即可得解;(3)先利用平方差公式分解因式,再利用完全平方公式继续分解;(4)先利用完全平方公式展开,整理后利用完全平方公式继续分解.解答:解:(1)2a3﹣8a,=2a(a2﹣4),=2a(a+2)(a﹣2);(2)4a(x﹣y)﹣2b(y﹣x),=4a(x﹣y)+2b(x﹣y),=2(x﹣y)(2a+b);(3)(x2+4)2﹣16x2,=(x2+4x+4)(x2﹣4x+4),=(x+2)2(x﹣2)2;(4)(x﹣y)2+4xy,=x2﹣2xy+y2+4xy,=x2+2xy+y2,=(x+y)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.考点:整式的混合运算—化简求值.专题:计算题.分析:原式利用单项式乘以多项式,平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b的值代入计算即可求出值.解答:解:原式=a2﹣2ab+2a2﹣2b2﹣a2+2ab﹣b2=2a2﹣3b2,当a=﹣,b=1时,原式=﹣2.5.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC 边上的高(需写出结论);(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.考点:作图-平移变换.专题:网格型.分析:(1)过点A作AG⊥BC,交CB 的延长线于点G,AG就是所求的△ABC中BC边上的高;(2)把△ABC的三个顶点向右平移6格,再向上平移3格即可得到所求的△DEF;(3)画一个面积为3的锐角三角形即可.解答:解:如图所示,AG就是所求的△ABC中BC边上的高.点评:用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移;各个角都是锐角的三角形叫做锐角三角形.23.已知:如图,△ABC中,AD⊥BC于D,E是CA延长线上一点,EG⊥BC于G,交AB于F,AD是∠BAC的角平分线,试说明∠E=∠EFA.考点:平行线的判定与性质.专题:证明题.分析:由AD⊥BC,EG⊥BC,由垂直的定义可得∠ADC=∠EGC=90°,由平行线的判定可得AD∥EG,由平行线的性质可得∠E=∠CAD,∠BAD=∠EFA,又因为AD是∠BAC的角平分线,所以∠BAD=∠CAD,等量代换可得结论.解答:证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°,∴AD∥EG,∴∠E=∠CAD,∠BAD=∠EFA,∵为AD是∠BAC的角平分线,∴∠BAD=∠CAD,∴∠E=∠EFA.点评:本题主要考查了平行线的性质和判定,综合运用平行线的性质和判定定理是解答此题的关键.24.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.考点:三角形内角和定理;平行线的性质;三角形的外角性质.分析:(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.解答:解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=FBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.点评:本题考查的是三角形外角的性质及平行线的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.25.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒2cm.设运动的时间为t秒.(1)当t=6秒时,CP把△ABC的周长分成相等的两部分?(2)当t=6.5秒时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为12?考点:一元一次方程的应用;三角形的面积.专题:几何动点问题.分析:(1)先求出△ABC的周长为24cm,所以当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,再根据时间=路程÷速度即可求解;(2)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;(3)分两种情况:①P在AC上;②P在AB上.解答:解:(1)△ABC中,∵AC=8cm,BC=6cm,AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴2t=12,t=6;(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴2t=13,t=6.5;(3)分两种情况:①当P在AC上时,∵△BCP的面积=12,∴×6×CP=12,∴CP=4,∴2t=4,t=2;②当P在AB上时,∵△BCP的面积=12=△ABC面积的一半,∴P为AB中点,∴2t=13,t=6.5.故答案为6秒;6.5秒.点评:本题考查了一元一次方程的应用,三角形的周长与面积,三角形的中线,难度适中.利用分类讨论的思想是解(3)题的关键.26.一个工程队要在一块长方形荒地上建造一套简易住房,如图所示,该住房的平面是由长2x+6、宽x+7构成,要求建成:两室、一厅、一厨、一卫,且各房间为长方形或正方形.其中客厅面积为x2+8x+16,厨房面积为3x+6,卫生间面积为x2+3x+2,两个卧室的面积均为3x+9.若墙体所占面积忽略不计,请你根据所学知识,在所给图中设计一套住房的平面结构示意图.(要求:①在图上标出图中各房间的名称;②在图上用含有x的代数式表示图中各房间的边长)考点:作图—应用与设计作图;整式的混合运算.分析:根据题意,先计算出客厅、两个卧室、厨房以及卫生间的长与宽分别是多少,再根据长2x+6、宽x+7的平面来设计.解答:解:如图所示:点评:此题主要考查了应用设计与作图,关键是根据客厅、两个卧室、厨房以及卫生间的面积,找出它们的长和宽.。
北师大版2020七年级数学下册第一章整式的乘除期中复习题2(附答案)
.
2019
20.计算:x3·(-x)2 ________________(结果用幂的形式表示).
21.计算:
(1)
8 2019
0.1252018
3 4
1
π
3.14
0
(2)
1 9
a
2b
3ab2
2
0.5a4b5
22.计算:(1)
2a2b
3
7ab2
14a4b3 ;(2) 2018 2020 20192 1.
将 a+b=5 两边平方得: (a+b)2=a2+2ab+b2=25, 将 ab=1 代入得: a2+2+b2=25, 则 a2+b2=23. 故选 C. 【点睛】 考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 11.64. 【解析】 【分析】 根据乘积二倍项和已知平方项确定出这两个数是 8 和 x,然后把 8 平方即可. 【详解】 ∵16x=±2×8•x, ∴m=82, 解得 m=64. 【点睛】 此题考查完全平方公式的应用,两数的平方和,再加上或减去它们积的 2 倍,就构成了一个 完全平方式,解题关键是利用乘积项确定出这两个数.
11 12 ...... 150 0,151 1 11 12 ...... 150 151 1
故答案是:-1 【点睛】 本题要注意关于幂与负号的关系,负数的奇数次幂为负数,负数的偶数次幂为正数. 15.×
【解析】 【分析】 根据同底数幂的除法,底数不变指数相减,可得答案. 【详解】 原式=−a8÷a2=−a8−2=−a6 故原答案错误, 故答案为:×. 【点睛】 此题考查同底数幂的除法,解题关键在于掌握运算法则.
9.设(x+3)(x-2)=x2+px+q,则 p,q 的值分别是( )
华师大版七年级(下)期中数学试卷(含解析)2
华师大版七年级第二学期期中数学试卷一、选择题1.下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0C.x+y=1D.2.方程3x+2=2x﹣1的解为()A.x=﹣3B.x=﹣1C.x=1D.x=33.不等式x﹣1>2的解集是()A.x>1B.x>2C.x>3D.x<34.下列三条线段不能构成三角形的是()A.4cm,2cm,5cm B.3cm,3cm,4cmC.2cm,3cm,4cm D.2cm,2cm,5cm5.下列图形具有稳定性的是()A.正方形B.矩形C.平行四边形D.直角三角形6.已知,则a+b等于()A.3B.C.2D.17.若正多边形的一个内角等于144°,则这个正多边形的边数是()A.9B.10C.11D.128.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种二、填空题(每小题3分,共18分)9.把4x﹣2y﹣1=0写成用含x的代数式来表示y,则y=10.如果将一副三角板按如图方式叠放,那么∠1=.11.如图,△ABC是等边三角形,点P是△ABC内一点.△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是,最小旋转角等于度.12.一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为.13.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是.14.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△A1B1C1的面积是14,那么△ABC的面积是.三、解答题(共10小题,共78分)15.解方程:5(x﹣5)﹣2(12﹣x)=016.解方程:.17.在y=kx+b中,当x=1时,y=4,当x=2时,y=10,求k和b的值.18.已知三角形的两边a=3,b=7,第三边是c.(1)第三边c的取值范围是.(2)若第三边c的长为偶数,则c的值为.(3)若a<b<c,则c的取值范围是.19.如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图(1)变换为图(2)的过程;(2)若AD=3,DB=4,则△ADE与△BDF的面积之和为.20.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?21.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)23.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.24.如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交于点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)参考答案一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0C.x+y=1D.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选:A.2.方程3x+2=2x﹣1的解为()A.x=﹣3B.x=﹣1C.x=1D.x=3【分析】方程移项合并,把x系数化为1,即可求出解.解:方程移项合并得:x=﹣3,故选:A.3.不等式x﹣1>2的解集是()A.x>1B.x>2C.x>3D.x<3【分析】首先移项,移项后要改变﹣1的符号,然后合并同类项即可.解:移项得:x>2+1,合并同类项得:x>3,∴不等式的解集为:x>3.故选:C.4.下列三条线段不能构成三角形的是()A.4cm,2cm,5cm B.3cm,3cm,4cmC.2cm,3cm,4cm D.2cm,2cm,5cm【分析】根据在三角形中“任意两边之和大于第三边,任意两边之差小于第三边”进行分析求解.解:A、4+2>5,4﹣2<5,符合;B、3+3>4,3﹣3<4,符合;C、2+3>4,3﹣2<4,符合;D、2+2<5,不符合.故选:D.5.下列图形具有稳定性的是()A.正方形B.矩形C.平行四边形D.直角三角形【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.解:直角三角形具有稳定性.故选:D.6.已知,则a+b等于()A.3B.C.2D.1【分析】①+②得出4a+4b=12,方程的两边都除以4即可得出答案.解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.7.若正多边形的一个内角等于144°,则这个正多边形的边数是()A.9B.10C.11D.12【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.解:设这个正多边形是正n边形,根据题意得:(n﹣2)×180°÷n=144°,解得:n=10.故选:B.8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种【分析】根据轴对称的定义,及题意要求画出所有图案后即可得出答案.解:得到的不同图案有:,共6种.故选:C.二、填空题(每小题3分,共18分)9.把4x﹣2y﹣1=0写成用含x的代数式来表示y,则y=2x﹣【分析】将x看做已知数求出y即可.解:4x﹣2y﹣1=0,﹣2y=﹣4x+1,y=2x﹣,故答案为:2x﹣10.如果将一副三角板按如图方式叠放,那么∠1=105°.【分析】由三角形的内角和为180°即可得出∠2+∠3+45°=180°结合∠2=30°即可求出∠3的度数,再由∠1和∠3为对顶角即可得出∠1的度数.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.11.如图,△ABC是等边三角形,点P是△ABC内一点.△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是A,最小旋转角等于300度.【分析】关键是分清旋转中心,旋转方向,根据图形的特征求旋转角.解:根据旋转的性质可知,△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是A,最小旋转角等于360°﹣60°=300°.填:A;300.12.一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为48.【分析】设原两位数的十位数字为x,个位数字为y,根据个位数字与十位数字之和为12且交换个位数字与十位数字的位置后所得新数比原数大36,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)即可求出结论.解:设原两位数的十位数字为x,个位数字为y,依题意,得:,解得:,∴10x+y=48.故答案为:48.13.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是﹣π.【分析】直接求出圆的周长,进而结合A点位置得出答案.解:∵将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,∴圆滚动的距离为:π,∵点A从原点运动至数轴上的点B,∴点B表示的数是:﹣π.故答案为:﹣π.14.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△A1B1C1的面积是14,那么△ABC的面积是2.【分析】连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,于是得到结论.解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC,S△A1AB1=S△ABB1=S△ABC,∴S△A1BB1=S△A1AB1+S△ABB1=2S△ABC,同理:S△B1CC1=2S△ABC,S△A1AC1=2S△ABC,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=7S△ABC=14.∴S△ABC=2,故答案为:2.三、解答题(共10小题,共78分)15.解方程:5(x﹣5)﹣2(12﹣x)=0【分析】方程去括号,移项合并,把x系数化为1,即可求出解.解:去括号得:5x﹣25﹣24+2x=0,移项合并得:7x=49,解得:x=7.16.解方程:.【分析】本题要先乘以分母的最小公倍数去掉分母,然后移项合并、化系数为1即可.解:去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x﹣9=2x﹣1,合并得:4x=8,化系数为1得:x=2.17.在y=kx+b中,当x=1时,y=4,当x=2时,y=10,求k和b的值.【分析】首先根据题意,可得:;然后应用加减消元法,求出k和b的值各是多少即可.解:∵当x=1时,y=4,当x=2时,y=10,∴②﹣①,可得:k=6,把k=6代入①,解得b=﹣2.18.已知三角形的两边a=3,b=7,第三边是c.(1)第三边c的取值范围是4<c<10.(2)若第三边c的长为偶数,则c的值为6或8.(3)若a<b<c,则c的取值范围是7<c<10.【分析】(1)根据第三边的取值范围是大于两边之差,而小于两边之和求解;(2)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,再根据c为偶数解答即可.;(3)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,根据a<b<c即可得c的取值范围.解:(1)根据三角形三边关系可得4<c<10,(2)根据三角形三边关系可得4<c<10,因为第三边c的长为偶数,所以c取6或8;(3)根据三角形三边关系可得4<c<10,∵a<b<c,∴7<c<10.,故答案为:4<c<10;6或8;7<c<10.19.如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图(1)变换为图(2)的过程;(2)若AD=3,DB=4,则△ADE与△BDF的面积之和为6.【分析】(1)由于图1通过图形的变换可以得到图2,则可把△DAE绕点A逆时针旋转90°得到△DA′F;(2)由DE∥BC,推出==,可以假设DE=3k,BC=7k,可得DE=DF=CF=3k,推出BF=4k,在Rt△BDF中,利用勾股定理构建方程求出k即可解决问题.解:(1)把△DAE绕点A逆时针旋转90°得到△DA′F,如图2;(2)∵DE∥BC,∴==,∴可以假设DE=3k,BC=7k,∵四边形EDFC是正方形,∴DE=DF=CF=3k,∴BF=4k,在Rt△BDF中,则有42=(3k)2+(4k)2,∵k>0,∴k=,∴DF=CF=DE=,BF=4k=,∴AE==,∴AE=FA′=,∴BA′=•BA′×DF=×(+)×=6,故答案为6.20.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?【分析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40﹣30)+60×(50﹣35)=1300(元).答:商场共计获利1300元.21.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.【分析】(1)设这个多边形的每一个外角的度数为x度,根据题意列出方程解答即可;(2)根据多边形的外角和计算即可.解:(1)设这个多边形的每一个外角的度数为x度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有4个(点P异于A)【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.23.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.24.如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交于点D.①若∠BAO=60°,则∠D=45°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=30°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC﹣∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC﹣∠BAD 可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC﹣∠BAD得出答案.解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学期中复习试卷五
一、选择题(30分)
1、如图,四个图形中的∠1和∠2,不是同位角的是()
A.B.C.D.
2、如图,AB∥CD,∠P=40°,∠D=100°,
则∠ABP的度数是()
A.140°B.40°
C.100°D.60°
3、已知点A(m,n)在第一象限,那么点B(-n,-m)在()
A.第一象限B.第二象限C.第三象限D.第四象限
4、已知点M(3,-2),它与点N(x,y)在同一条平行于x轴的直线上,且MN=4,那么点N的坐标是()
A.(7,-2)或(-1,-2)B.(3,2)或(3,-6)
C.(7,2)或(-1,-6)D.(4,-2)或(-4,-2)
5、如图,已知∠MOQ是直角,∠QON是锐角,
OR平分∠QON,OP平分∠MON,则∠POR的度数为()
A.B.60°
C.D.45°
6、在以下实数:,,π2,3.1411,,,0.020020002…(每两个2之间零的个数依次增加1)中,无理数有()
A.2个B.3个C.4个D.5个
7、A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()
A.先向上平移5个单位长度,再向右平移7个单位长度
B.先向上平移5个单位长度,再向左平移7个单位长度
C.先向左平移7个单位长度,再向上平移5个单位长度
D.先向右平移7个单位长度,再向下平移5个单位长度
8、有以下说法:①△ABC在平移的过程中,对应线段一定相等;
②△ABC在平移过程中,对应线段一定平行;
③△ABC在平移过程中,周长保持不变;
④△ABC在平移过程中,对应边中点的连线的长度等于平移的距离.正确的是()
A.①②③④B.①③④C.②③④D.①②③
9、下列说法中错误的是()
A.数轴上的点与全体实数一一对应B.a,b为实数,若a<b,则
C.a,b为实数,若a<b,则D.实数中没有最小的数
10、若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3 B.-1 C.1 D.-3或1
二、填空题(30分)
11、如图,其中共有________对对顶角.
第11题第12题第15题
12、如图,已知AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=________.
13、绝对值等于的数是________;-x的相反数是________;的相反数是________;的相反数是________.绝对值是________.
14、在直角坐标系中,点A在x轴上,且到原点的距离为5,则A点的坐标为
________;过点(3,-4)且平行于x轴的直线与y轴的交点坐标为________.
15、如图,∠α与∠β有共同的顶点,且它们的两边分别垂直,已知,那么,∠α=________度,∠β=________度.
16、命题“互为邻补角的两个角的平分线相互垂直”的题设是
________ ,结论是________ .
17、若,,则,.
18、垂直于y轴的直线上有A和B两点,若A(2,2),AB的长为,则点B 的坐标为________.
19、如果点A(2m,3-n)在第二象限,那么点B(m-1,n-4)在第_______
象限.
20、已知长方形ABCD在平面直角坐标系的位置如图,将长方形ABCD沿x轴向左平移,使C点和坐标原点重合,再沿y轴向下平移,使D点与坐标原点重合,此时B点的坐标是________.
三、解答题(40分)
21、计算(1)(2)
22、已知点A、B在平面直角坐标系中的位置如图所示,求△AOB的面积
23、若一个立方体木块的体积是0.125m3,现将它锯成8个同样大小的立方体小木块,求每个小立方体木块的表面积.
24、如图,在平面直角坐标系中,一个方格的边长为1个单位长度,三角形MNQ 是三角形ABC经过某种变换后得到的图形.(1)请分别写出点A与点M,点8与点N,点C与点Q的坐标,并观察它们之间的关系;(2)已知点P是三角形ABC内一点,其坐标为(-3,2),探究其在三角形MNQ中的对应点R的坐标,并猜想线段AC和线段MQ的关系.
25、数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,
同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:
“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小
数部分.”张老师说:“晶晶同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其
中x是一个整数,且0<y<1,请你求出的值.
26、如图①②,将两个相同三角板的两个直角顶点O重合在一起,如图①②放置.(1)若∠BOC=60°,如图①猜想∠AOD的度数;
(2)若∠BOC=70°,如图②猜想∠AOD的度数;
(3)猜想∠AOD和∠BOC的关系,请写出理由.。