01背包回溯
回溯算法解决0-1背包问题(DOC)
《算法分析与设计》实验报告2015-2016年第2学期实验班级:学生姓名:学号:指导老师:信息工程学院实验项目名称:回溯算法解决0-1背包问题实验日期:2016年5 月18 日一、实验类型:□√验证性□设计性二、实验目的掌握0—1背包问题的回溯算法三、实验内容及要求给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?四、实验步骤#include<iostream>using namespace std;class Knap{ friend int Knapsack(int p[],int w[],int c,int n );public:void print(){for(int m=1;m<=n;m++){ cout<<bestx[m]<<" ";}cout<<endl;};private:int Bound(int i);void Backtrack(int i);int c;//背包容量int n; //物品数int *w;//物品重量数组int *p;//物品价值数组int cw;//当前重量int cp;//当前价值int bestp;//当前最优值int *bestx;//当前最优解int *x;//当前解};int Knap::Bound(int i){//计算上界int cleft=c-cw;//剩余容量int b=cp;//以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}void Knap::Backtrack(int i){if(i>n){if(bestp<cp){ for(int j=1;j<=n;j++)bestx[j]=x[j];bestp=cp;}return;}if(cw+w[i]<=c) //搜索左子树{ x[i]=1;cw+=w[i];cp+=p[i];Backtrack(i+1);cw-=w[i];cp-=p[i];}if(Bound(i+1)>bestp)//搜索右子树{ x[i]=0;Backtrack(i+1);}}class Object{friend int Knapsack(int p[],int w[],int c,int n); public:int operator<=(Object a)const{ return (d>=a.d);}private:int ID;float d;};int Knapsack(int p[],int w[],int c,int n){ //为Knap::Backtrack初始化int W=0;int P=0;int i=1;Object *Q=new Object[n]; for(i=1;i<=n;i++){ Q[i-1].ID=i;Q[i-1].d=1.0*p[i]/w[i];P+=p[i];W+=w[i];}if(W<=c)return P;//装入所有物品//依物品单位重量排序float f;for( i=0;i<n;i++)for(int j=i;j<n;j++){if(Q[i].d<Q[j].d){f=Q[i].d;Q[i].d=Q[j].d;Q[j].d=f;}}Knap K;K.p = new int[n+1];K.w = new int[n+1];K.x = new int[n+1];K.bestx = new int[n+1];K.x[0]=0;K.bestx[0]=0;for( i=1;i<=n;i++){ K.p[i]=p[Q[i-1].ID];K.w[i]=w[Q[i-1].ID];}K.cp=0;K.cw=0;K.c=c;K.n=n;K.bestp=0;//回溯搜索K.Backtrack(1);K.print();delete [] Q;delete [] K.w;delete [] K.p;return K.bestp;}void main(){int *p;int *w; int c=0;int n=0;int i=0; cout<<"请输入背包个数:"<<endl; cin>>n;p=new int[n+1];w=new int[n+1];p[0]=0;w[0]=0;cout<<"请输入各背包的价值:"<<endl; for(i=1;i<=n;i++)cin>>p[i];cout<<"请输入各背包的重量:"<<endl; for(i=1;i<=n;i++)cin>>w[i];cout<<"请输入背包容量:"<<endl; cin>>c;cout<<Knapsack(p,w,c,n)<<endl;}五、实验结果1、实验图形2、结果分析输入背包个数为4个,背包价值分别为30 25 26 15,背包重量分别为4 2 3 1,背包的容量分别为1 2 3 4,则得出的背包算法为0 0 0 1,最优值为15。
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题回溯法
背包问题回溯法背包问题回溯法是一种用于解决背包问题的算法。
背包问题是一个经典的组合优化问题,在许多领域都有广泛的应用。
它的基本形式是在给定一组物品和一个容量为C的背包的情况下,选择将哪些物品放入背包中,以使得放入背包中物品的总价值最大。
回溯法是一种通过搜索所有可能的解空间来求解问题的算法。
在背包问题中,回溯法通过递归地尝试将物品放入背包或不放入背包来寻找最优解。
具体而言,回溯法从问题的初始状态开始,根据问题的约束条件和目标函数的要求,逐步生成问题的解空间,并通过剪枝策略来减少搜索空间的规模,直到找到问题的最优解或无解。
在使用回溯法解决背包问题时,需要定义一个递归函数来实现搜索过程。
该函数的输入参数包括当前已选择的物品、当前已选择物品的总价值、当前已选择物品的总重量、剩余物品的可选范围、剩余背包容量等等。
在函数的实现中,首先需要判断当前选择的物品是否满足约束条件,如果满足则继续递归地对剩余的物品进行选择;如果不满足,则进行剪枝操作,即回溯到上一层递归函数继续搜索其他可能的解。
当递归函数搜索完所有可能的解空间时,返回问题的最优解或无解。
背包问题回溯法的关键是如何定义约束条件和剪枝策略。
在背包问题中,约束条件包括物品的重量不能超过背包的容量,物品的总价值不能超过已选择的物品的总价值。
而剪枝策略可以根据问题的具体情况来进行设计,例如可以根据当前已选择物品的总价值和剩余物品的可选范围来进行剪枝,减少搜索空间的规模,提高算法的效率。
背包问题回溯法的时间复杂度取决于问题的规模和剪枝策略的设计。
由于回溯法需要搜索所有可能的解空间,所以在最坏情况下,时间复杂度为指数级别。
为了提高算法的效率,可以引入一些优化技巧,例如动态规划和贪心策略,来减少搜索空间的规模并加速算法的执行速度。
总之,背包问题回溯法是一种用于解决背包问题的经典算法。
通过搜索所有可能的解空间,并根据约束条件和剪枝策略来寻找最优解,可以求解出背包问题的最优解或无解。
回溯法和分支限界法解决背包题
0-1背包问题计科1班朱润华 32方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。
由此得一个解为[1,,1,1],其相应价值为22。
尽管这不是一个可行解,但可以证明其价值是最优值的上界。
回溯法解决0-1背包问题
回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
0_1背包问题的多种解法
页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
由于程序过于简单,在这里就不再给出,用实例说明求解过程。
下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。
01背包问题c语言代码回溯法
以下是使用C语言实现01背包问题的回溯法代码:```c#include <stdio.h>#include <stdlib.h>// 初始化背包struct knapsack {int maxWeight; // 背包最大承重int *items; // 物品数组int n; // 物品数量};// 定义物品重量、价值和数量int weights[] = {2, 2, 6, 5, 4};int values[] = {6, 3, 5, 4, 6};int quantities[] = {3, 2, 2, 1, 1};// 初始化背包最大承重和当前承重int maxWeight = 10;int currentWeight = 0;// 初始化最大价值为0int maxValue = 0;// 遍历物品数组void traverseItems(struct knapsack *knapsack, int index) { // 对于每个物品,遍历其数量for (int i = 0; i < knapsack->quantities[index]; i++) {// 如果当前物品可以放入背包装且当前承重不超过背包最大承重,计算放入该物品后的总价值,并更新最大价值if (currentWeight + weights[index] <= knapsack->maxWeight) {int currentValue = values[index] * knapsack->quantities[index];if (currentValue > maxValue) {maxValue = currentValue;}}// 回溯,将当前物品从背包装中移除,递归地尝试下一个物品knapsack->quantities[index]--;if (index < knapsack->n - 1) {traverseItems(knapsack, index + 1);}knapsack->quantities[index]++; // 恢复物品数量,以便下次遍历尝试放入其他物品}}// 主函数int main() {// 初始化背包装和物品数组struct knapsack knapsack = {maxWeight, weights, 5};knapsack.items = (int *)malloc(sizeof(int) * knapsack.n);for (int i = 0; i < knapsack.n; i++) {knapsack.items[i] = values[i] * quantities[i]; // 根据价值和数量计算物品价值,并存储在物品数组中}knapsack.n = quantities[4]; // 由于最后一个物品的数量为1,因此只需遍历前n-1个物品即可得到所有可能的结果// 使用回溯法求解01背包问题,返回最大价值traverseItems(&knapsack, 0);printf("The maximum value is %d.\n", maxValue);free(knapsack.items); // 释放内存空间return 0;}```希望以上信息能帮助到你。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
Python基于回溯法子集树模板解决0-1背包问题实例
Python基于回溯法⼦集树模板解决0-1背包问题实例本⽂实例讲述了Python基于回溯法⼦集树模板解决0-1背包问题。
分享给⼤家供⼤家参考,具体如下:问题给定N个物品和⼀个背包。
物品i的重量是Wi,其价值位Vi ,背包的容量为C。
问应该如何选择装⼊背包的物品,使得放⼊背包的物品的总价值为最⼤?分析显然,放⼊背包的物品,是N个物品的所有⼦集的其中之⼀。
N个物品中每⼀个物品,都有选择、不选择两种状态。
因此,只需要对每⼀个物品的这两种状态进⾏遍历。
解是⼀个长度固定的N元0,1数组。
套⽤回溯法⼦集树模板,做起来不要太爽代码'''0-1背包问题'''n = 3 # 物品数量c = 30 # 包的载重量w = [20, 15, 15] # 物品重量v = [45, 25, 25] # 物品价值maxw = 0 # 合条件的能装载的最⼤重量maxv = 0 # 合条件的能装载的最⼤价值bag = [0,0,0] # ⼀个解(n元0-1数组)长度固定为nbags = [] # ⼀组解bestbag = None # 最佳解# 冲突检测def conflict(k):global bag, w, c# bag内的前k个物品已超重,则冲突if sum([y[0] for y in filter(lambda x:x[1]==1, zip(w[:k+1], bag[:k+1]))]) > c:return Truereturn False# 套⽤⼦集树模板def backpack(k): # 到达第k个物品global bag, maxv, maxw, bestbagif k==n: # 超出最后⼀个物品,判断结果是否最优cv = get_a_pack_value(bag)cw = get_a_pack_weight(bag)if cv > maxv : # 价值⼤的优先maxv = cvbestbag = bag[:]if cv == maxv and cw < maxw: # 价值相同,重量轻的优先maxw = cwbestbag = bag[:]else:for i in [1,0]: # 遍历两种状态 [选取1, 不选取0]bag[k] = i # 因为解的长度是固定的if not conflict(k): # 剪枝backpack(k+1)# 根据⼀个解bag,计算重量def get_a_pack_weight(bag):global wreturn sum([y[0] for y in filter(lambda x:x[1]==1, zip(w, bag))])# 根据⼀个解bag,计算价值def get_a_pack_value(bag):global vreturn sum([y[0] for y in filter(lambda x:x[1]==1, zip(v, bag))])# 测试backpack(0)print(bestbag, get_a_pack_value(bestbag))效果图更多关于Python相关内容感兴趣的读者可查看本站专题:《》、《》、《》及《》希望本⽂所述对⼤家Python程序设计有所帮助。
回溯法解决01背包问题
回溯法是一个既带有系统性又带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。
算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
运用回溯法解题通常包含以下三个步骤:∙针对所给问题,定义问题的解空间;∙确定易于搜索的解空间结构;∙以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;在0/1背包问题中,容量为M的背包装载。
从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。
最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。
约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。
在这个表达式中,需求出Xi的值。
Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。
∙即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n)∙目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤i<n)0/1背包问题是一个自己选取问题,适合于用子集树表示0/1背包问题的解空间。
在搜索解空间树时,只要左儿子节点是一个可行节点,搜索就进入左子树,在右子树中有可能包含最优解才进入右子树搜索,否则将右子树剪去。
程序分析:将物品个数,每个物品体积/价值输入,计算总物品体积S,输入背包体积V,如果V<0或者V>S则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。
假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件物品不合适,应将i拿出,继续从i+1及以后的物品中选取,如此重复,直到找到满足条件的解。
回溯法01背包问题
回溯法解决01背包问题
if(currentWeight+weight[i]<=c) { //将物品i放入背包,搜索左子树 bestAnswer[i] = 1; currentWeight += weight[i]; bestPrice += price[i]; Backtracking(i+1); //完成上面的递归,返回到上一结点,物 品i不放入背包,准备递归右子树 currentWeight -= weight[i]; bestPrice -= price[i]; } bestAnswer[i] = 0; Backtracking(i+1); }
回溯法解决01背包问题
0—1背包问题是一个子集选取问题,适合 于用子集树表示0—1背包问题的解空间。 在搜索解空间树是,只要其左儿子节点是 一个可行结点,搜索就进入左子树,在右 子树中有可能包含最优解是才进入右子树 搜索。否则将右子树剪去。
问题分析:
首先是将可供选择的物品的个数输入程序,将物品排成一列,计 算总物品的体积s,然后输入背包的实际体积V,如果背包的体积 小于0或者大于物品的总体积s,则判断输入的背包体积错误,否 则开始顺序选取物品装入背包,假设已选取了前i 件物品之后背包 还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装 入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩 余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包 的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后" 的物品中选取,如此重复,直至求得满足条件的解。 因为回溯求解的规则是"后进先出",所以要用到栈来存储符合条件 的解,在存储过程中,利用数组来存储各个物品的体积,然后用 深度优先的搜索方式求解,将符合条件的数组元素的下标存入栈 里,最后得到符合条件的解并且实现输出。
回溯法(二)——0-1背包问题
回溯法(⼆)——0-1背包问题 问题1、给定背包容量w,物品数量n,以及每个物品的重量wi,求背包最多能装多少多重的物品。
问题2、给定背包容量w,物品数量n,以及每个物品的重量wi、价值vi,求背包最多能装多少价值的物品。
这是⼀个基本的0-1背包问题,每个物品有两种状态(0:不装、1:装),总共有n步,所以可以⽤回溯法来解决,复杂度是O(2^n)。
C++版代码如下#include <iostream>#include <math.h>#include <cstring>using namespace std;#define MAXSIZE 256int maxWeight = -9999;// 回溯法解决0-1背包问题(其实可以暴⼒(n层for循环),回溯法也是n层for循环,即复杂度是O(2^n))void basePackage(int stuff[], int curState, int state, int curWeight, int weight){// 如果装满了(其实应该是接近装满了)或者已经“⾛完”所有物品if(curState == state || curWeight == weight){if(curWeight > maxWeight)maxWeight = curWeight;return ;}// 不装basePackage(stuff, curState + 1, state, curWeight + 0, weight);// 装if(curWeight + stuff[curState] <= weight)basePackage(stuff, curState + 1, state, curWeight + stuff[curState], weight);}// 回溯法解决0-1背包问题(其实可以暴⼒(n层for循环),回溯法也是n层for循环,即复杂度是O(2^n))// 背包升级问题回溯法解决(加⼊背包的价值)void secPackage(int weight[], int value[], int curV, int curW, int weightLimit, int curS, int n){// 如果背包总重量等于背包限制if(curW == weightLimit || curS == n){if(curV > maxWeight)maxWeight = curV;return ;}// 不装secPackage(weight, value, curV, curW, weightLimit, curS + 1, n);if(curW + weight[curS] <= weightLimit)// 装secPackage(weight, value, curV + value[curS], curW + weight[curS], weightLimit, curS + 1, n);}int main(int argc, char* argv[]){// 总重量,物品个数int w, n;cin>>w>>n;int a[MAXSIZE + 1];for(int i = 0; i < n; i++)cin>>a[i];basePackage(a, 0, n, 0, w);cout<<maxWeight<<endl;return 0;}。
0-1背包问题(回溯法)
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
用动态规划法与回溯法实现0-1背包问题的比较
m ≯ “ f
√f ) =
i
() 1 . 2
,时,时间复杂度为长O(n*数),长关 系 。此 时的需要对于状态空 间和决策 间 的维 数 的增 呈 指2 增计 算和存储量 计 算 时 间 和存 储 量 过 大 。 空
回溯 法 : 溯 法 需 要 为 问 题 定 义 一 个 解 空 间, 个 解 空 间必 须 至 回 这
O 1背包 问题 : 定 1种物 品 和一 背 包 。物 品 i 一 给 3 . 的重 量 是 W i其 价 。
将 第 i 物 品 装 入 背包 。 个
可 以 用树 的形 式 将 解 空 间 表 达 出来 。树 中从 第 i 到第 i1层 的 层 + 边 上 的 值 表示 解 向量 中 X 的取 值 , 假 定 第 i 的左 子 树 描 述 第 i i 并 层 个
,
∑魄, {
4
总结
的 最 优值 为 m(,) 即 m(,) 背 包 容 量 为 j 可 悬 着 物 品 为 i+ ij , ij是 , , i 动态规划算法求解背包问题时对子过程用枚举法求解。 而且 约 束 l… . , , o 1 包 问题 的最 优 值 。 n时 - 背 由于 。 1背 包 问 题 的最 优 子 结 构 性 一 条件越多, 决策 的搜 索 范 围越 小 , 求解 也 越 容 易 。但 是对 于规 模 较 大 的 质 , 以建 立 计 算 m(, 的 如下 递 归 式 : 可 i) j 问 题 它 并 不 是 一 个 理想 的 算 法 。从 二 维 数 组 m『1 1 以 看 出当 c 2 n『 可 c >n
【 摘
武汉
4 07 ) 3 0 3
要 】- 背包问题是运筹学 中的著名问题 。 01 也是计算机 算法中的一个经典问题 。 本文采用动态规 划法和 回溯法对该问题进行求解 , 对
回溯算法原理和几个常用的算法实例
回溯算法原理和几个常用的算法实例回溯算法是一种通过不断尝试和回退的方式来进行问题求解的算法。
它的基本思想是在过程中,当发现当前的选择并不符合要求时,就进行回退,尝试其他的选择,直到找到符合要求的解或者遍历完所有可能的选择。
回溯算法通常用于问题求解中的和排列组合问题,比如求解八皇后问题、0-1背包问题、数独等。
下面将介绍几个常用的回溯算法实例。
1.八皇后问题:八皇后问题是指在一个8×8的国际象棋棋盘上,放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一斜线上。
可以通过递归的方式依次尝试每一行的位置,并判断当前位置是否满足条件。
如果满足条件,则进入下一行尝试;否则回溯到上一行,并尝试其他的位置,直到找到解或遍历完所有的可能。
2.0-1背包问题:0-1背包问题是指在给定一组物品和一个容量为C的背包,每个物品都有自己的重量和价值,求解在不超过背包容量时,如何选择物品使得背包中物品的总价值最大。
可以通过递归的方式依次考察每个物品,并判断是否选择当前物品放入背包。
如果放入当前物品,则背包容量减小,继续递归考察下一个物品;如果不放入当前物品,则直接递归考察下一个物品。
直到遍历完所有物品或背包容量为0时,返回当前总价值。
3.数独问题:数独是一种通过填充数字的方式使得每一行、每一列和每一个九宫格内的数字都满足一定条件的谜题。
可以通过递归的方式依次尝试填充每一个空格,并判断当前填充是否符合条件。
如果符合条件,则继续递归填充下一个空格;如果不符合条件,则回溯到上一个空格,并尝试其他的数字,直到找到解或遍历完所有的可能。
回溯算法的时间复杂度一般较高,通常为指数级别。
因此,在实际应用中,可以结合剪枝等优化策略来提高算法的效率。
此外,回溯算法也可以通过非递归的方式进行实现,使用栈来存储当前的状态,从而避免递归带来的额外开销。
总之,回溯算法是一种非常有效的问题求解方法,通过不断尝试和回退,可以在复杂的空间中找到符合要求的解。
0-1背包问题(分支限界法)
分支限界法——01背包问题12软工028 胡梦颖一、问题描述0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
二、问题分析分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。
一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。
分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。
为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
这种方式称为分支限界法。
人们已经用分支限界法解决了大量离散最优化的问题。
三.源代码#include <stdio.h>#include<malloc.h>#define MaxSize 100 //结点数的最大值typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode;typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空{if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b) //入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;} qnode DeQueue(SqQueue &sq) //出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild) {qnode b;if (i==n) //可行叶子结点{ if (vt==bestv){ bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列} EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq))break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("最大价值为:%.1f\n",bestv);}void main(){int c;float ewv[MaxSize];printf("请输入背包的最大容量v:");scanf("%d",&c);printf("请输入物品总数n:");scanf("%d",&n);printf("请输入物品的重量和单位重量价值:\n");for(int i=1;i<=n;i++){printf("第%d件物品:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];}maxLoading(w,v,c);}五.实验结果。
01背包问题
01背包问题一、问题描述一个正在抢劫商店的小偷发现了n个商品,第i个商品价值V i美元,重Wi磅,V i和Wi都是整数;这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳W磅的商品,W是一个整数。
我们称这个问题是01背包问题,因为对每个商品,小偷要么把它完整拿走,要么把它留下;他不能只拿走一个商品的一部分,或者把一个商品拿走多次。
二、解决方案背包问题作为NP完全问题,暂时不存在多项式时间算法1.动态规划2.回溯法3.分支界限法三、方案详解3.1动态规划动态规划(Dynamic programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划常常适用于有重叠子问题和最优子结构性质的问题。
概述:动态规划在查找有很多重叠子问题的情况的最优解时有效。
它将问题重新组合成子问题。
为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。
因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。
动态规划只能应用于有最优子结构的问题。
最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。
简单地说,问题能够分解成子问题来解决。
特征:1、问题存在最优子结构2、问题的最优解需要在子问题中作出选择3、通过查表解决重叠子问题,避免重复计算动态规划的设计:1.刻画一个最优解的结构特征;2.递归地定义最优解的值;3.计算最优解的值,通常采用自底向上的方法;4.利用计算的信息构造一个最优解。
问题分析最优子结构:(1)问题分析:令f(i,j)表示在前i(0≤i<n)个物品中能够装入容量为j(0≤j≤W)的背包中的物品的最大价值,则可以得到如下的动态规划函数:(2)f[i,j]=0(i=0 OR j=0)f[i,j]=f[i-1,j] j<w i ①f[i,j]=max{f[i-1,j] ,f[i-1,j-wi] +vi } j>wi ②①式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi的背包中的价值加上第i个物品的价值vi;(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。
01背包回溯
0—1背包问题一、实验目的学习掌握回溯思想。
二、实验内容用回溯求解0—1背包问题,并输出问题的最优解。
0—1背包问题描述如下:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化。
五、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始结点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的活结点,并成为当前扩展结点。
如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。
换句话说,这个结点不再是一个活结点。
此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。
回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
六、详细设计/** BackTrace.java** Created on 2007年6月2日, 下午6:09** To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;import java.util.Date;public class BackTrace {/*** @param args*/public static void main(String[] args) {double w[]={2,2,6,5,4};double v[]={6,3,5,4,6};int n=5;double c=10;knapsack(v,w,c);System.out.println(bestp);}//比较两个元素大小的类private static class Element implements Comparable{int id;double d;private Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}static double c; //背包容量static int n;//物品数static double[]w;//物品重量数组static double[]p; //物品价值数组static double cw;//当前重量static double cp;//当前价值static double bestp; //当前最优值static int [] x;//解static int [] sortX;//排好序之后的解static int [] bestX;//最有解static Date date = null; // @jve:decl-index=0:public static double knapsack(double[]pp,double[]ww,double cc){ c=cc;n=pp.length-1;cw=0.0;cp=0.0;bestp=0.0;Element[]q=new Element[n];//q为单位重量价值数组for(int i=1;i<=n;i++)q[i-1]=new Element(i,pp[i]/ww[i]);MergeSort.mergeSort(q);p=new double[n+1];w=new double[n+1];x=new int[n+1];sortX=new int[n+1];bestX=new int[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];sortX[i]=q[n-i].id;}backtrack(1);//回溯搜索return bestp;}private static void backtrack(int i){if(i>=n){if(cp>bestp){bestp=cp;for(int j=1;j<=n;j++){bestX[j]=x[j];}}return;}//搜索子树if(cw+w[i]<=c){//进入左子树x[sortX[i]]=1;cw+=w[i];cp+=p[i];backtrack(i+1);cw-=w[i];cp-=p[i];}if(bound(i+1)>bestp)x[sortX[i]]=0;backtrack(i+1);//进入右子树}//计算上界private static double bound(int i){double cleft=c-cw;double bound=cp;//以物品重量价值递减顺序装入物品while(i<=n&&w[i]<=cleft){cleft-=w[i];bound+=p[i];i++;}//装满背包if(i<=n)bound+=p[i]/w[i]*cleft;return bound;}public static String getX(){String solution=String.valueOf(bestX[1]);for(int i=2;i<bestX.length;i++){solution+=",";solution+=String.valueOf(bestX[i]);}return solution;}public static double getBestValue(){return bestp;}}主程序运行结果:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
if(FrontProcessValue(t-1) + Bound(t+1)> MaxValue)//剪枝函数
{//在一定剩余重量情况下剩下物品能够得到的最大价值比maxvalue要大
IsSelected[t]=false;
{
if(t == products.length)//到达叶节点
{
System.out.println("到达叶节点 ");
int tempvalue = 0;
int tempweight = 0;
for(int j=0;j<products.length;j++)
class Product {
public int No;
public int Weight;
public int Value;
public Product(int no,int weight,int value){
No = no;
Weight = weight;
backtrack_SubsetTree(t+1);//搜索右子树
}
}
}
private static int Bound(int i) {//在一定剩余重量情况下剩下物品能够得到的最大价值
//贪心算法 求更准确的上界
int temp = 0;
static boolean IsSelected[] = new boolean[products.length];
static int MaxWeight = 50;
static inቤተ መጻሕፍቲ ባይዱ MaxValue = 0;//整体最优解
static void backtrack_SubsetTree(int t)
if(IsSelected[j])
{
tempvalue += products[j].Value;
tempweight += products[j].Weight;
}
if(tempweight <= MaxWeight && tempvalue > MaxValue)
//java List 排序 Collections.sort() 对 List 排序
import parator;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
int temp = 0;
for(int j=0;j<=t;j++)
if(IsSelected[j])
{
temp += products[j].Value;
}
return temp;
}
public static void main(String[] args) {
backtrack_SubsetTree(0);
System.out.println("最优解:"+MaxValue);
}
}
for(int j=i;j<products.length;j++)
temp += products[j].Value;
return temp;
}
private static int FrontProcessWeight(int t) {
int temp = 0;
Value = value;
}
}
public class KnapTest {
static Product products[] = new Product[]{new Product(1,10,60),new Product(2,20,100),new Product(3,30,120)};
for(int j=0;j<=t;j++)
if(IsSelected[j])
{
temp += products[j].Weight;
}
return temp;
}
private static int FrontProcessValue(int t) {
MaxValue = tempvalue;
return;
}
else
{
if(FrontProcessWeight(t-1)+products[t].Weight <= MaxWeight)//剪枝函数
{//剩余重量能够放得下第t个物品
IsSelected[t]=true;