数学人教版八年级上册全等三角形复习(1)精品PPT课件
合集下载
人教版 八年级数学上册第十二章:全等三角形复习课件(共15张PPT)
O
\ PD = PE
用途:证线段相等
E
角平分线性质的逆定理 到一个角的两边 的距离相等的点, 在这个角的平分线上。
∵ PD OA PE OB
PD = PE
\ OP 是 AOB 的平分线
用途:判定一条射线是角平分线
A C
P B
一、已知:如图∠B=∠DEF,BC=EF,补充条件 求证:ΔABC≌ ΔDEF (1)若要以“SAS”为依据,还缺条件 _A_B=_D_E _; (2) 若要以“ASA”为依据,还缺条件∠_A_CB_= _∠D;FE
E
O
B
C
6. 已知:BD⊥AM于点D,CE⊥AN于点E, BD、CE交于点F,CF=BF, 求证:点F在∠A的平分线上。
CM D
F
A
N EB
7、如图所示,DC=EC,AB∥CD,∠D=90°, AE⊥BC于E,求证:∠ACB=∠BAC.
8. 如图,四边形ABCD中,AC平分∠BAC, CE⊥AB于E,AD+AB=2AE, 求证:∠B与∠ADC互补。
2.如图(2),点D在AB上,点E在AC上, B
D
CD与BE相交于点O,且AD=AE,AB=AC.若 O
A
∠B=20°,CD=5cm,则 ∠C= 20°,BE= 5.说cm说理由.
E C 图(2)
3.如图(3),AC与BD相交于o,若
A
D
OB=OD,∠A=∠C,若AB=3cm3c,m 则
CD=
友情. 说提说示理:由公. 共边,公共角,B
(3) 若要以“AAS”为依据,还缺条件∠_A_=_∠__D ;
AD
B E CF
(4)若∠B=∠DEF=90°BC=EF,要以“HL” 为依据, 还缺条件_A_C=_D_F _
全等三角形的基本模型复习(正式经典)PPT课件
2021
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
2021
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
2021
2021
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
2021
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
2021
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
2021
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
2021
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.
人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐
:
标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△
≌
重合,则△△
,
;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐
:
标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△
≌
重合,则△△
,
;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.
数学八年级上人教版第十一章全等三角形复习课件
(A)∠DAB (B) ∠ DBA (C) ∠ DBC (D) ∠ CAD
三、解答题:
1 、 已 知 如 图 △ ABC≌△DFE , ∠A=96º,∠B=25º,DF=10cm。
求 ∠E的度数及AB的长。
A
D
B
CE
F
2 已知如图 CD⊥AB于D,BE⊥AC于E, △ ABE≌△ACD , ∠ C=20º, AB=10 , AD=4,G为AB延长线上的一点。 求 ∠EBG的度数及CE的长。
C E
F
A
D BG
3如图:已知△ABC≌△ADE,BC的延长 线 交 DA 于 F , 交 DE 于 G , ∠ ACB=105º, ∠CAD=10º,∠D=25º。 求 ∠EAC,∠DFE,∠DGB的度数。
D
G FC
E
A
B
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角, 最小的角是 对应角;
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC, D在AB上,E是AC延长线上一点,且 BD=CE,DE与BC交于点F. 求 证:DF=EF.
提示:此题辅助线作法 较多,如: ①作 DG∥AE交BC于G; ②作EH∥BA交BC的延 长线于H; 再通过 证三角形全等得DF= EF.
三角形中常见辅助线的作法
1.延长中线构造全等三角形
例1 如图1,已知△ABC中,AD 是△ABC的中线,AB=8,AC=6, 求AD的取值范围.
提示:延长AD至A',使 A'D=AD,连结 BA'.根据“SAS”易证 △A'BD≌△ACD,得AC =A'B.这样将AC转移 到△A'BA中,根据三角 形三边关系定理可解.
三、解答题:
1 、 已 知 如 图 △ ABC≌△DFE , ∠A=96º,∠B=25º,DF=10cm。
求 ∠E的度数及AB的长。
A
D
B
CE
F
2 已知如图 CD⊥AB于D,BE⊥AC于E, △ ABE≌△ACD , ∠ C=20º, AB=10 , AD=4,G为AB延长线上的一点。 求 ∠EBG的度数及CE的长。
C E
F
A
D BG
3如图:已知△ABC≌△ADE,BC的延长 线 交 DA 于 F , 交 DE 于 G , ∠ ACB=105º, ∠CAD=10º,∠D=25º。 求 ∠EAC,∠DFE,∠DGB的度数。
D
G FC
E
A
B
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角, 最小的角是 对应角;
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC, D在AB上,E是AC延长线上一点,且 BD=CE,DE与BC交于点F. 求 证:DF=EF.
提示:此题辅助线作法 较多,如: ①作 DG∥AE交BC于G; ②作EH∥BA交BC的延 长线于H; 再通过 证三角形全等得DF= EF.
三角形中常见辅助线的作法
1.延长中线构造全等三角形
例1 如图1,已知△ABC中,AD 是△ABC的中线,AB=8,AC=6, 求AD的取值范围.
提示:延长AD至A',使 A'D=AD,连结 BA'.根据“SAS”易证 △A'BD≌△ACD,得AC =A'B.这样将AC转移 到△A'BA中,根据三角 形三边关系定理可解.
人教版八年级数学上册 第十二章 全等三角形复习 课件(共23张PPT)
A
O 在Rt△ABO和Rt△ACO中
OB=OC
C
AO=AO
∴ Rt△ABO≌Rt△ACO (HL)
∴ ∠BAO=∠CAO
∴ AO平分∠BAC
4、如图,AC和BD相交于点O,OA=OC,OB=OD
求证:DC∥AB
证明:在△ABO和△CDO中
D
C
OA=OC
O B
A
∠AOB= ∠COD OB=OD
∴ △ABO≌△CDO (SAS) ∴ ∠A= ∠C
1.请指出图中全等三角形的对应边和对应角
AB与CD、AD与CB、BD与DB
∠ABD与∠CDB、 ∠ADB与∠CBD、∠A与∠C
2、图中△ ABD ≌ △CDB, 则AB= CD ;AD= CB ;BD=BD ; ∠ABD=∠__CDB ; ∠ADB=_∠_C__B_D_ ; ∠A=_∠_C ;
3、如图△ABD≌ △EBC, AB=3cm,BC=5cm,求DE的长
BD:CD=3:2,则D1E2=
。
c D
A
E
B
2.如图, △ABC的角平分线BM,CN相交于点 P,求证:点P到三边AB、BC、CA的距离相等
证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F
∵BM是△ABC的角平分线,点P
在BM上,
A
ND
M
PF
∴PD=PE
B
E
C
(角平分线上的点到这个角的两边距离相等).
∠BCE=∠DCA
DC=EC
∴ △ACD≌△BCE (SAS)
文字证明题: 求证:有一条直角边和斜边上的高对应 相等的两个直角三角形全等。
分析:首先要分清题设和结论,然后按要求画出图形, 根据题意写出已知求证后,再写出证明过程。
数学人教版八年级上册121.1全等三角形1全等三角形(黄青)精品PPT课件
什么结论?
A
D
B
A
C EM
SF
C
O
O B
D
N
T
全等三角形的对应边相等, 全等三角形的对应角相等.
A
如图:∵△ABC≌ △DFE
B
C
∴ AB=DF, BC=FE, AC=DE
D
∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
先写出全等式,再指出
它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
F B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
C
D
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
E
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角. 5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角 A △ABC≌△ADE
人教版八年级数学上册全等三角形精品课件PPT
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
•
5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册第十二章全等三角形复习课(共25张PPT)
【思维模式】在证明线段相等或角相等的题目中,通常通过证明 这两条线段或角所在的三角形全等来得到线段相等或角相等,若这 两条线段或角在不可能全等的两个三角形中,还可寻求题目中的已 知条件或图形中的隐含条件通过等量代换来达到证明全等的目的.
例3: 第一节数学课后,老师布置了一道课后练习:如图,已知在Rt△ABC中 ,AB=BC,∠ABC=90°,BO⊥AC于点O.点P,D分别在AO和BC上,PB= PD,DE⊥AC于点E.
O,请写出图中一组相等的线段______________.
5. 如图,△ABC≌△DEF,请根据图中提供的信息,写出x=
_____.
20
AC=BD或BC=AD OD=OC或OA=OB.
考点3 等腰、等边三角形与全等的综合(考查频率:★★★☆☆) 命题方向:(1)等腰直角三角形与全等三角形的综合问题; (2)等边三角形与全等的综合问题.
D.1cm
例1:如图,AD是等腰直角三角形ABC的底角的平分线,∠C= 90°,求证:AB=AC+CD.
【思维模式】(1)不管是过点D作AB的垂线也 好,还是延长AC也好,实际上都是利用了角平分 线的轴对称性构造的全等三角形,得出一些相等 的线段或相等的角解决问题;(2)人教课本书 后习题给出了角平分线的另一条性质,即图中 CD∶BD=AC∶AB,这一结论在解决很多面积有 关问题的时候,也能带来方便.
6. 如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE =90°,D为AB边上一点.求证:BD=AE.
考点4 角平分线的性质与判定(考查频率:★★★☆☆) 命题方向:(1)直接考查角平分线基本图形能得到的一些基本结论;(2)角平 分线与其它知识(如中位线、等腰、垂直平分线等)的综合(后面再列举).
例3: 第一节数学课后,老师布置了一道课后练习:如图,已知在Rt△ABC中 ,AB=BC,∠ABC=90°,BO⊥AC于点O.点P,D分别在AO和BC上,PB= PD,DE⊥AC于点E.
O,请写出图中一组相等的线段______________.
5. 如图,△ABC≌△DEF,请根据图中提供的信息,写出x=
_____.
20
AC=BD或BC=AD OD=OC或OA=OB.
考点3 等腰、等边三角形与全等的综合(考查频率:★★★☆☆) 命题方向:(1)等腰直角三角形与全等三角形的综合问题; (2)等边三角形与全等的综合问题.
D.1cm
例1:如图,AD是等腰直角三角形ABC的底角的平分线,∠C= 90°,求证:AB=AC+CD.
【思维模式】(1)不管是过点D作AB的垂线也 好,还是延长AC也好,实际上都是利用了角平分 线的轴对称性构造的全等三角形,得出一些相等 的线段或相等的角解决问题;(2)人教课本书 后习题给出了角平分线的另一条性质,即图中 CD∶BD=AC∶AB,这一结论在解决很多面积有 关问题的时候,也能带来方便.
6. 如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE =90°,D为AB边上一点.求证:BD=AE.
考点4 角平分线的性质与判定(考查频率:★★★☆☆) 命题方向:(1)直接考查角平分线基本图形能得到的一些基本结论;(2)角平 分线与其它知识(如中位线、等腰、垂直平分线等)的综合(后面再列举).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、斜边、直角边:斜边 和一条 直角边分别相等的两 个直角三角形全等(可以简写成“斜边、直角边”或 “HL”)。注:HL定理是 直角 三角形所独有的,对于 一般三角形不成立.
(二)实战训练
1、如图,△ABC≌△DEB,AB=DE,
∠E=∠ABC,则∠C的对应角为 ∠DBE,
BD的对应边为 CA .
知识点二、全等三角形的性质
全等三角形的对应边 相等 、
全等三角形的对应角 相等
.
知识点三、两个三角形全等的判定定理
1、边边边:三边分别相等的两个三角形全等(可以简 写成“边边边”或“SSS”). 2、边角边: 两边和它们的 夹角 分别相等的两个三 角形全等(可以简写成“边角边”或“SAS”).
3、角边角: 两角 和它们的 夹边分别相等的两个三角 形全等(可以简写成“角边角”或“ASA”). 4、角角边:两角分别相等且其中一组等角的 对边 相 等的两个三角形全等(可以简写成“角角边”或 “AAS”).
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
2、易错点提醒
(1) : 要正确区分“对应边”与“对边”,“对应 角”与 “对角”的不同含义;
(2):表示两个三角形全等时,表示对应顶点的字 母要写在对应的位置上;
(3):要记住“有三个角对应相等”或“有两边及 其中一边的对角对应相等”的两个三角形不一定全 等;
(4):时刻注意图形中的隐含条件,如 “公共 角” 、“公共边”、“对顶角”
3、已知:点B、E、C、F在同一直线上, AB=DE,∠A=∠D,AC∥DF.
求证:⑴ △ABC≌△DEF; ⑵ BE=CF.
4、如图,AB//CD,AD//BC,求证: AB=CD.
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
(三)总结归纳
1、答题方法技巧:
(一)证明三角形全等的一般步骤及注意的问题 (1)先指明在哪两个三角形中研究问题. (2)按边、角的顺序列出全等的 条件,并用大 括号括起来. (3)写出结论,让两个全等三角形中表示对应 顶点的字母顺序对齐. (4)在证明中要步步有根据. (二)三角形全等的一个应用 证明分别属于两个三角形的线段相等或者角相等 的问题,常常通过证明两个三角形全等来解决。
三、当堂检测
1、下列判定直角三角形全等的方法,不正确的 是( ) A、两条直角边对应相等 B、斜边和一锐角对应相等 C、斜边和一C,与△ABC全等的三 角形有一个角是100°,那么在△ABC中与这 100°角对应相等的角是( ) A.∠A B.∠B C.∠C D.∠B或∠C
(1)互相重合的顶点叫做 对应顶点 ,互相重合的 边叫做对应边,互相重合的角叫做 对应角 .
(2)在写两个三角形全等时,通常把 对应顶点 的 字母写在对应位置上,这样容易写出对应边、对应 角.例如,△ABC与△DFE全等,点A与点 D , 点B与点 F ,点C与点 E 是对应顶点,记作 △ABC≌△DFE.
全等三角形(复习1)
一、复习目标
1. 知道全等三角形的概念和性质,能够准 确地辨认全等三角形中的对应元素;
2. 牢记三角形全等的判定定理,能利用三 角形全等进行证明,记住综合法证明的格 式;
3. 能用三角形的全等解决实际问题。
二、复习过程 (一)考点知识梳理归纳
知识点一、全等三角形
1.能够完全 重合 的两个三角形叫做全等三角 形.
B
E
D
A
C
2、如图:AE=DE,BE=CE,AC和BD相交于 点E,求证:△ABE≌△DCE
3.要测量河两岸相对的两点A、B的距离 ,先在AB的垂线BF上取两点C、D,使 CD=•BC,再定出BF的垂线DE,使A、 C、E在一条直线上,可以证明 △EDC ≌△ABC, 得到ED=AB,因此测 得ED的长就是AB的长(如图),判定 △EDC≌△ABC的理由是( )
(二)实战训练
1、如图,△ABC≌△DEB,AB=DE,
∠E=∠ABC,则∠C的对应角为 ∠DBE,
BD的对应边为 CA .
知识点二、全等三角形的性质
全等三角形的对应边 相等 、
全等三角形的对应角 相等
.
知识点三、两个三角形全等的判定定理
1、边边边:三边分别相等的两个三角形全等(可以简 写成“边边边”或“SSS”). 2、边角边: 两边和它们的 夹角 分别相等的两个三 角形全等(可以简写成“边角边”或“SAS”).
3、角边角: 两角 和它们的 夹边分别相等的两个三角 形全等(可以简写成“角边角”或“ASA”). 4、角角边:两角分别相等且其中一组等角的 对边 相 等的两个三角形全等(可以简写成“角角边”或 “AAS”).
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
2、易错点提醒
(1) : 要正确区分“对应边”与“对边”,“对应 角”与 “对角”的不同含义;
(2):表示两个三角形全等时,表示对应顶点的字 母要写在对应的位置上;
(3):要记住“有三个角对应相等”或“有两边及 其中一边的对角对应相等”的两个三角形不一定全 等;
(4):时刻注意图形中的隐含条件,如 “公共 角” 、“公共边”、“对顶角”
3、已知:点B、E、C、F在同一直线上, AB=DE,∠A=∠D,AC∥DF.
求证:⑴ △ABC≌△DEF; ⑵ BE=CF.
4、如图,AB//CD,AD//BC,求证: AB=CD.
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
(三)总结归纳
1、答题方法技巧:
(一)证明三角形全等的一般步骤及注意的问题 (1)先指明在哪两个三角形中研究问题. (2)按边、角的顺序列出全等的 条件,并用大 括号括起来. (3)写出结论,让两个全等三角形中表示对应 顶点的字母顺序对齐. (4)在证明中要步步有根据. (二)三角形全等的一个应用 证明分别属于两个三角形的线段相等或者角相等 的问题,常常通过证明两个三角形全等来解决。
三、当堂检测
1、下列判定直角三角形全等的方法,不正确的 是( ) A、两条直角边对应相等 B、斜边和一锐角对应相等 C、斜边和一C,与△ABC全等的三 角形有一个角是100°,那么在△ABC中与这 100°角对应相等的角是( ) A.∠A B.∠B C.∠C D.∠B或∠C
(1)互相重合的顶点叫做 对应顶点 ,互相重合的 边叫做对应边,互相重合的角叫做 对应角 .
(2)在写两个三角形全等时,通常把 对应顶点 的 字母写在对应位置上,这样容易写出对应边、对应 角.例如,△ABC与△DFE全等,点A与点 D , 点B与点 F ,点C与点 E 是对应顶点,记作 △ABC≌△DFE.
全等三角形(复习1)
一、复习目标
1. 知道全等三角形的概念和性质,能够准 确地辨认全等三角形中的对应元素;
2. 牢记三角形全等的判定定理,能利用三 角形全等进行证明,记住综合法证明的格 式;
3. 能用三角形的全等解决实际问题。
二、复习过程 (一)考点知识梳理归纳
知识点一、全等三角形
1.能够完全 重合 的两个三角形叫做全等三角 形.
B
E
D
A
C
2、如图:AE=DE,BE=CE,AC和BD相交于 点E,求证:△ABE≌△DCE
3.要测量河两岸相对的两点A、B的距离 ,先在AB的垂线BF上取两点C、D,使 CD=•BC,再定出BF的垂线DE,使A、 C、E在一条直线上,可以证明 △EDC ≌△ABC, 得到ED=AB,因此测 得ED的长就是AB的长(如图),判定 △EDC≌△ABC的理由是( )