七年级上数学第一次月考9

合集下载

七年级数学上册第一次月考试卷(附答案)

七年级数学上册第一次月考试卷(附答案)

1. ﹣1 的相反数是( )3A.1B.﹣1C.3D.﹣33 32.某地连续四天每天的平均气温分别是1℃, ﹣1℃, 0℃, 2℃, 则平均气温中最低的是( )A.1℃B.﹣1℃C.0℃D.2℃3.将算式﹣5-(﹣3)+ (﹣4)写成省略加号的和的形式,正确的是( )A.5+3-4B.﹣5﹣3-4C.﹣5+3-4D.﹣5-3+44.一个数是11 0000,这个数用科学记数法表示为().A.11×104B.1.1×105C.1.1×104D.0.11×1065.下列式子成立的是( )A.﹣|﹣5|>4B.﹣3<|﹣3|C.﹣|﹣4|=4D. |﹣5.5|<56.下列四个图形中能围成正方体的是( )A. B. C. D.7.用一个平面截长方体,五棱柱,圆柱和圆锥,不能截出三角形的是( )A.长方体B.无棱柱C. 圆柱D. 圆锥8.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. |a |>|b|B.ab<0C.b-a>0D.a+b<0(第8 题图)(第9题图)9.一个几何体的三视图如图所示,这个几何体是( )A.三棱锥B.三棱柱C. 圆柱D.长方体10.用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③11.如图是小明收支明细,则小明当天的收支情况是( )A.收入128 元B.收入32 元C.支出128 元D.支出32 元(第11 题图)(第12 题图)12.a,b 在数轴上位置如图所示,把a ,﹣a,b ,﹣b 按照从小到大的顺序排列,正确的是( )A.﹣b<﹣a<a<bB.﹣a<﹣b<a<bC.﹣b<a<﹣a<bD.﹣b<b<﹣a<a13.如果水位升高2m 时记作+2m,水位下降2m 记作.14.一个正n 棱柱,它有18 条棱,则该棱柱有个面,个顶点.15.若( )-(﹣2)=3,则括号内的数是.16.小明同学到学到领n 盒粉笔,整齐摞在讲桌上,其三视图如图,则n 的值是.(第16 题图)17.若|a|=3 ,|b|=5,且a-b<0,则a+b 的值是.18.规定一种新运算,对于任意有理数a ,b 有a☆b=2a-b+1,请计算1☆[2☆(﹣3)]的值是.19.(12 分)计算:(1)(﹣11)+7-(﹣14)(2)(﹣5.3)+ (﹣3.2)-(﹣5.3)(3)﹣100÷4×(﹣1)520.(15 分)计算题.(1)(+8)-(﹣15)+ (﹣9)-(﹣12)(2)﹣3×2+ (﹣2)2-5(3)36×(﹣2+1 --5)9 3 1221.(6 分)如图是由6 个相同的小正方体组成的几何体,请在指定的位置画出从正面看,左面看,上面看到的这个几何体的形状图.22.(6 分)如图,数轴上有三个点 A ,B ,C ,完成下列问题.(1)A 点表示的数是 ,B 点表示的数是 ,C 点表示的数是(2)将点 B 向右移动 5 个单位长度到点 D ,D 点表示的数是 . (3)在数轴上找点 E ,使点 E 到 B ,C 两点距离相等, E 点表示的数是 (4)将点 E 移动 2 个单位长度后到 F ,点 F 表示的数是 ,23.(6 分) 一个长方形的长为4cm ,宽为 3cm ,将其绕它的一边所在的直线旋转一周,得到一 个立体图形.(1)得到的几何图形的名称为 ,这个现象用数学知识解释为 . (2)求此几何体的体积.24.(6 分)已知 a 是最大的负整数, b 是﹣2 的相反数, c 和 d 互为倒数,求 a+b -cd 的值.25.(9 分)当你把纸对折一次时,就得到 2 层,对折 2 次时,就得 4 层,照这样折下去. (1)计算当对折 5 次时,层数是 .(2)对折 n 次时,层数 m 和折纸的次数 n 的关系是 . (3)如果纸的厚度是 0.1mm ,对折 8 次时,总厚度是 .26.(9 分)某粮食仓库管理员统计 10 袋面粉的总质量,以 100 千克为标准,超过的记为正, 不足记为负,通过称量记录如下: +3 ,+4.5,﹣0.5,﹣2,﹣5,﹣1 ,+2 ,+1,﹣4 ,+1,请回 答下列问题.,.(1)第几袋面粉最接近100 千克.(2)面粉总计超过或不足多少千克.(3)这10 袋面粉总质量是多少千克.27.(9 分)某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示)(1)这天冷库的冷冻食品比原来增加了还是减少了,请说明理由.(2)根据实际情况,有两种方案:方案一:运进每吨冷冻食品费用500 元,运出每吨冷冻食品费用800 元.方案二:不管运进还是运出每吨冷冻食品费用都是600 元,从节约运费的角度考虑,选用哪一种方案比较合适.1. A2.B3.C4.B5.B6.C7.C8.D9.B10.B11.D12.C13.如果水位升高 2m 时记作+2m ,水位下降 2m 记作 ﹣2m .14.一个正 n 棱柱,它有 18 条棱,则该棱柱有 8 个面, 12 个顶点. 15.若( )-(﹣2)=3,则括号内的数是 1 .16.小明同学到学到领 n 盒粉笔,整齐摞在讲桌上,其三视图如图,则 n 的值是 7 .(第 16 题图)17.若|a|=3 ,|b|=5,且 a -b <0,则 a+b 的值是 8 或 2 .18.规定一种新运算, 对于任意有理数 a ,b 有 a ☆b=2a -b+1,请计算 1☆[2☆(﹣3)]的值是 ﹣ 5 . 三.解答题。

七年级上第一次月考数学试卷【含答案】

七年级上第一次月考数学试卷【含答案】

七年级上第一次月考数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 任何一个自然数都可以分解为几个质数的乘积。

()2. 两个锐角相加一定大于90度。

()3. 长方体的六个面都是长方形。

()4. 分子和分母都是整数的分数叫做最简分数。

()5. 2的倍数都是偶数。

()三、填空题(每题1分,共5分)1. 1千米等于______米。

2. 两个因数相乘等于0,那么这两个因数至少有一个是______。

3. 等边三角形的三个角都是______度。

4. 如果一个数既是4的倍数,又是6的倍数,那么这个数至少是______。

5. 5的立方是______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 什么是三角形的高?如何计算?3. 请解释比例尺的意义。

4. 如何将一个分数化简为最简分数?5. 请简述长方体和正方体的区别。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。

3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,求这个长方体的表面积。

4. 如果一个数的3倍加上5等于26,求这个数。

5. 一个班级有40名学生,其中男生占3/5,求这个班级的女生人数。

七年级数学(上)第一次月考数学试卷(9月份)(B卷)

七年级数学(上)第一次月考数学试卷(9月份)(B卷)

七年级数学(上)第一次月考数学试卷(9月份)(B卷)一.选择题(本大题共8小题,每小题3分,共24分。

在每小题所给的四个选项中,只有一项是正确的。

)1.﹣的相反数是()A.B.3C.﹣D.﹣32.下列所给数据中,能反映出一瓶矿泉水重量的是()A.500毫克B.500克C.500千克D.500吨3.下列各组数中,具有相反意义的量是()A.盈利40元和运出货物20吨B.向东走4千米和向南走4千米C.身高180cm和身高90cmD.收入500元和支出200元4.把算式(﹣8)﹣(+4)+(﹣6)﹣(﹣4)写成省略括号的和的形式()A.﹣8+4﹣6﹣4B.8+4﹣6﹣4C.﹣8﹣4﹣6+4D.8﹣4﹣6+45.如图,有一个直径为1个单位长度的圆片,把圆片上的点放在数轴上﹣1处,然后将圆片沿数轴向右滚动一周,点A到达点A'位置,则点A'表示的数是()A.﹣π+1B.C.π+1D.π﹣16.下列说法正确的个数有()①绝对值等于本身的数是正数;②0除以任何数都得0;③如果两个数相除,商是负数,那么这两个数异号;④几个有理数相乘,当负因数的个数为奇数个时,其积的符号为负;⑤两个数相减,所得的差一定小于被减数.A.0个B.1个C.2个D.3个7.点A在数轴上表示+2,从A点沿数轴向左平移3个单位到点B,则点B所表示的数是()A.﹣1B.3C.5D.﹣1 或38.北京与西班牙的时差为7个小时.比如,北京时间中午12点是西班牙的凌晨5点,2022年2月4日晚8时北京冬奥会开幕式正式开始,在西班牙留学的嘉琪准时观看了直播,直播开始的当地时间为()A.凌晨1点B.凌晨3点C.17:00D.13:00二.填空题(本大题共8小题,每小题3分,共24分)9.|﹣2|=.10.计算:(﹣1)÷(﹣9)=.11.A、B为同一数轴上两点,且AB=3,若点A所表示的数是﹣1,则点B所表示的数是.12.若a<0,且|a|=4,则a+1=.13.比较大小:﹣(﹣1)﹣|﹣1.35|.(填“<”、“>”或“=”)14.南通市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是℃.15.若x、y互为相反数,2022x+2022y=.16.某居民的身份证如图所示,则该居民的出生年份是.三.解答题(共11小题,记102分)17.计算:(1)(﹣1.8)+(+4.7)+(﹣4.7);(2)()+|﹣5|+();(3)()×(﹣60);(4)﹣7×()+13×()﹣8×();(5);(6)|﹣7+|+(﹣15)+|﹣2|.18.用简便方法计算:(1);(2)﹣6.28×17.6+3.14×(﹣46.6)﹣1.57×36.4.19.将下列各数在相应的集合里.﹣,﹣20%,,4.3,,4,0,﹣3,,﹣1.121121112整数集合:{ …}正分数集合:{ …}无理数集合:{ …}.20.定义运算“*”为:a*b=a×b﹣(a+b),求2*5,(﹣3)*(﹣8).21.已知|x|=5,|y|=2,且xy<0,x+y<0,求x﹣y的值.22.画一条数轴,并在数轴上表示:3.5和它的相反数,﹣和它的倒数,绝对值等于3的数,并把这些数由小到大用“<”号连接起来.23.若a,b互为相反数,c,d互为倒数,且x的绝对值是5,求x﹣(a+b+cd)+|(a+b)﹣4|+|3﹣cd|的值.24.9月5日是“中华慈善日”,某出租车司机在这天献爱心免费接送乘客.在家门口东西走向的友爱路上他连续免费接送5位乘客,行驶路程记录如下(规定向东为正,向西为负).第一位第二位第三位第四位第五位5km2km﹣4km﹣3km10km (1)接送完第5位乘客后,该出租车在家门口边,距离家门口km;(2)该出租车在这个过程中行驶的路程是多少?如果每km耗油0.1升,那么共耗油多少升?25.如图1,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为:A→B(+1,+3);从C到D记为:C→D(+1,﹣2).其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→A(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)假如这只甲虫从A处去甲虫P处的行走路线依次为(+2,+3),(+1,﹣1),(﹣2,+3),(+4,﹣5)请在图2中标出P的位置.26.生活与数学.(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是28,那么第一个数是;(2)玛丽也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则这四个数中最大的数是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某年的10月份有5个星期日,这5个星期日的和是75,则这个月中最后一天是星期;(5)若干个偶数按每行8个数排成下图:①图中方框内的9个数的和与中间的数有的关系是;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,通过计算得到斜框内9个数的和为450,你认为他计算的结果可能吗?说明你的理由.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20.(1)写出数轴上点B表示的数;(2)|5﹣3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.试探索:①:若|x﹣8|=2,则x=.②:|x+12|+|x﹣8|的最小值为;(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t为时A,P两点之间的距离为2.。

2019-2020学年成都七中七年级(上)第一次月考数学试卷(9月份)(含解析)

2019-2020学年成都七中七年级(上)第一次月考数学试卷(9月份)(含解析)

2019-2020学年成都七中七年级(上)第一次月考数学试卷(考试时间:120分钟满分:120分)一、选择题(共12小题,共36分)1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2 C.3 D.42.在数轴上表示﹣2的点与表示3的点之间的距离是()A.5 B.﹣5 C.1 D.﹣13.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.﹣的相反数是()A.B.﹣C.2017 D.﹣20175.下列几何体的截面形状不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱6.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣17.下列平面图形中不能围成正方体的是()A.B.C.D.8.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2013﹣2014的结果是()A.﹣1007 B.﹣2014 C.0 D.﹣19.已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣110.一组数2,1,1,x,1,y,…,满足“从第三个数起,每个数都等于它前面的两个数之差”,那么这组数中y表示的数为()A.﹣1 B.3 C.5 D.﹣511.如图,数轴上的A,B,C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点B与点C之间(靠近点C)或点C的右边12.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17二、填空题(共6小题;共24分,每小题4分)13.观察图中的立体图形,分别写出它们的名称.14.计算:|﹣2|=.15.如果a与1互为相反数,则|a+2|等于.16.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c=.17.如图在正方体的展开图上编号,请你写出相对面的号码:3的相对面是,4的相对面是,5的相对面是.18.|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2014|的最小值为,此时x的取值为.三、解答题(共6小题;共60分)19.(8分)化简:(1)﹣[﹣(+4)];(2).20.(8分)计算:(1)(﹣23)+(+58)+(﹣17);(2)(﹣2.8)+(﹣3.6)+3.6;(3).21.(8分)画出数轴,在数轴上表示下列有理数,并用“<”号连接起来.|﹣1.5|,﹣,0,﹣22,﹣(﹣3),﹣2.5.22.(8分)已知a=3,b=﹣5,c=﹣7,求a﹣b﹣c的值.23.(10分)计算:(1);(2).24.(10分)一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.参考答案与试题解析1.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.2.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选:A.3.【解答】解:如图所示:这个几何体是四棱锥.故选:A.4.【解答】解:﹣的相反数是:.故选:A.5.【解答】解:棱柱无论怎么截,截面都不可能有弧度,自然不可能是圆,故选:D.6.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选:B.7.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选:C.8.【解答】解:原式=(1﹣2)+(3﹣4)+(5﹣6)+(7﹣8)+(9﹣10)+(11﹣12)+…+(2011﹣2012)+(2013﹣2014)=﹣1007故选:A.9.【解答】解:根据实数a,b在数轴上的位置,可得a<﹣1<0<1<b,∵1<|a|<|b|,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.10.【解答】解:∵每个数都等于它前面的两个数之差,∴x=1﹣1=0,∴y=x﹣1=0﹣1=﹣1,即这组数中y表示的数为﹣1.故选:A.11.【解答】解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴在点B与点C之间,且靠近点C的地方或点C的右边,故选:D.12.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选:D.13.【解答】解:它们的名称分别为:球体,直六棱柱,圆锥体,正方体,直三棱柱,圆柱体,四棱锥,长方体.14.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.15.【解答】解:∵a与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.故答案为1.16.【解答】解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.17.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴3的相对面是6,4的相对面是1,5的相对面是2.故答案为:6,1,2.18.【解答】解:原式可转化为在数轴上找一个点到1,2,3,…,2014对应的点的距离和最小,故当1007≤x≤1008时,距离和最小,可取x=1007,则此时距离和为:1006+1005+1004+…+0+1+2+…+1006+1007=2×(1+2+3+…+1006)+1007=1014049,即原式的最小值为1014049;当x=1008时,最小值也为1014049,故1007≤x≤1008.故答案为:1014049,1007≤x≤1008.19.【解答】解:(1)﹣[﹣(+4)]=4;(2).20.【解答】解:(1)(﹣23)+(+58)+(﹣17)=[(﹣23)+(﹣17)]+(+58)=(﹣40)+(+58)=18(2)(﹣2.8)+(﹣3.6)+3.6=(﹣2.8)+[(﹣3.6)+3.6]=﹣2.8+0=﹣2.8(3)=[+(﹣)]+[(﹣)+(+)]=﹣+=﹣21.【解答】解:如图:,﹣22<﹣2.5<﹣<0<|﹣1.5|<﹣(﹣3).22.【解答】解:当a=3,b=﹣5,c=﹣7时,a﹣b﹣c=3﹣(﹣5)﹣(﹣7)=8+7=1523.【解答】解:(1)=﹣4(2)=4.5+(﹣54)=﹣49.524.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒。

2023-2024学年(上)校际联盟第一学期第一次月考七年级数学试卷及答案

2023-2024学年(上)校际联盟第一学期第一次月考七年级数学试卷及答案

第 1 页 共 4 页2023-2024学年(上)校际联盟第一次月考七年级数学试题(满分:100分 时间:90分钟 )学校: 班级: 姓名: 座号 (友情提示:请将解答写在答题卷上) 一、选择题(每小题3分,共30分)1.若气温为零上20°C记作+20°C,则−3°C表示气温为( ) A .零上3°CB .零下3°CC .零上17°CD .零下17°C2.下列各选项中的图形,绕虚线旋转一周,所得的几何体是圆锥的是( )A .B .C .D .3.下列图形中,不是三棱柱的表面展开图是( )A .B .C .D .5.用一个平面去截一个几何体,截面可能是长方形的几何体是( )A .①③B .②③C .①②D .②④6.“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( ).A .文B .明C .典D .范第 2 页 共 4 页7.下列由4个大小相同的正方体搭成的几何体,从正面看到的形状图不同的是( )A .0是最小的数B .最大的负有理数数是-1C .任何有理数的绝对值都是正数D .如果两个数互为相反数,那么它们的绝对值相等.9.某社区的志愿者收到一批防疫物资,这批防疫物资用同样的正方体箱子包装,摆放的位置从上面和正面看到的都是,这批防疫物资最多有( )箱.A .4B .5C .6 D.710.表示有理数a ,b 的点在数轴上的位置如图所示,以下四个式子中正确的是( )A .a +b >0B .a −b >0C .a +1>0D .a −b <0二、填空题(每小题3分,共18分)11、直升机的螺旋桨转起来形成一个圆形的面,这说了 . 12、比较大小(用“>”或“<”表示):−45 −3413、如图,下列几何体,是柱体的有 (填序号)14.一个直棱柱有九个面,所有侧棱长的和为21cm,则每条侧棱的长是 cm 15.若|x +3|与|y +2|互为相反数,x - y = . 16.计算:1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021= .第 3 页 共 4 页三、解答题(总共七题,共52分)17、.计算题(每小题4分,共16分,请写出计算过程,直接写结果不得分) (1)(−12)+17+(−18); (2) (−30)−8−|−2|(3)(−3.75)+2+(−114) (4)(−323)−(−234)−(−123)18.(6分)把下列各数序号..填入相应的大括号里:①-(+5),②−0.5,③13,④0, ⑤−98%,⑥|−3|整数集合:{____ ___…}; 非负数集合:{_____ ___…}; 分数集合:{____ ____…}.19.(6分)在数轴上表示3,−|−3.5|,113, −2这几个数,并比较它们的大小,将它们按从小到大的顺序用“<”连接.20.(6分)用若干个棱长为1厘米的小立方块搭一个几何体,从上面看到这个几何体的形状图如图所示.(1)请画出从正面看和从左面看到的这个几何体的形状图.从正面看2 23 31从左面看从上面看21.(6分)登山队员王叔叔以某营地为基准,向距该营地500米的顶峰冲击,由于天气骤变,攀岩过程中不得不几次下撤躲避强高空风记王叔叔向上爬升的海拔高度为正数,向下撤退时下降的海拔高度为负数,这次登山的行进过程记录如下:(单位:米)+260,﹣50,+90,﹣20,+80,﹣25,+105.(1)这次登山王叔叔有没有登上顶峰?若没有,最终距顶峰还有多少米?(2)这次登山过程中,每上升或下降1米,平均消耗8千卡的能量,求王叔叔这次登山过程中共消耗了多少能量?x−的几何意义是数轴上表示x的点与表示______的点之间的距离,(1)4第4 页共4 页2023-2024学年(上)校际联盟第一学期第一次月考七年级数学标准答案数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数.⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题3分,满分30分)1.B2.B3.D4.B 5.A6.B7.C8.D9.C10.D二.填空题(共6小题,满分18分,每小题3分)11.线动成面12. <13.①②⑥14. 3 15.-1 16. 2021三.解答题(共8小题,满分52分)17.(每小题各4分,共16分)①(-12)+17+(-18)② (-30)-8-|-2|= 5+(-18)-------2分=(-30)-8-2 -------1分= -13 ------- 4分= -38-2 -------2分= -40 -------4分③ -3.75+2+(−114)④(−323)−(−234)−(−123)= -3.75 +2+(-1.25) ------1分=(−323)+(234)+123------1分= -5+2 -------2分=(−323)+123+(234)-------2分= -3 -------4分= -2+(234)--- ----3分= 34-------4分数学试题参考答案及评分说明第 1 页共 3 页数学试题参考答案及评分说明 第 2 页 共 3 页18.(6分)解:整数集合:{①,④,⑥ …};----------------------2分 分数:{③,④,⑥…};----------------------4分 非负数:{②,③,⑤...}.----------------------6分 19解:如图所示:---------------------4分-|-3.5|< -2< 1<3-------------6分20.每图3分,解:如图所示:从正面看从左面看 21.解:(1)260﹣50+90﹣20+80﹣25+105=440(米).500﹣440=60(米).答:这次登山王叔叔没有登上顶峰,最终矩顶峰还有60米.------------------------3分 (2)|+260|+|﹣50|+|+90|+|﹣20|+|+80|+|﹣25|+|+105|=630(米),630×8=5040(千卡).答:所以王叔叔这次登山过程中共消耗5040千卡的能量.----------------------6分31-4 -3 -2 -1 0 1 2 3 4-|-3.5| -2 13 3122.解:(1)解:18-(-12)=30(辆)答:产量最多的一天比产量最少的一天多生产30辆;----------------------2分(3)解:+4-2-5+12-12+18-9=6,(1400+6)×60+6×15=84450(元).答:这一周工厂工人的工资总额是84450元.----------------------4分23.解(1)4 ;-1 ----------------------2分(2)-2或4 ----------------------4分(3)3050----------------------6分数学试题参考答案及评分说明第 3 页共 3 页。

2024—2025学年华东师大版七年级上册数学第一次月考模拟试卷

2024—2025学年华东师大版七年级上册数学第一次月考模拟试卷

2024—2025学年华东师大版七年级上册数学第一次月考模拟试卷一、单选题1.2021-的相反数是()A .2021-B .2021C .12021D .12021-2.计算:﹣2﹣5的结果是()A .﹣7B .﹣3C .3D .73.在数2-,0,7.11-,π-,6+,59-中,负数有()A .1个B .2个C .3个D .4个4.飞机上升为正,下降为负.若原来飞机在距离地面10000米处,后来两次的活动记录分别为1000+米、1500-米,则现在飞机在距地面()米的位置.A .11000B .8500C .9500D .105005.已知||5a =,||4b =,且0a b +<,则a b -的值是()A .-9或-1B .-9或1C .9或-1D .9或16.下列说法错误的是()A .相反数等于本身的数只有0B .平方后等于本身的数只有0、1C .立方后等于本身的数是1±、0D .绝对值等于本身的数只有17.如果0a b ->,且0a b +<,那么一定正确的是()A .a 为正数,且||b a >B .a 为正数,且b a <C .b 为负数,且||b a >D .b 为负数,且b a<8.若a a =-,则a 是()A .0B .负数C .非正数D .非负数9.如果a b c 、、是非零有理数,且0a b c ++=,那么||||||||a b c abc a b c abc ++-的所有可能的值为()A .0B .1或1-C .0或2-D .2或2-10.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上画出一条长2020cm 的线段AB ,则线段AB 盖住的整点个数是()A .2020B .2021C .2020或2021D .2019或2020二、填空题11.郑州市冬季里某一天的气温为56- ℃℃,则这一天的温差是℃.12.已知202220210m n ++-=,则2023m n ++=.13.数字0.064精确到了位.14.若、b 互为相反数,c 、d 互为倒数,且2m =,则代数式()432022cd a b m -++的值为.15.A 、B 为同一数轴上两点,且3AB =,若点A 所表示的数是1-,则点B 所表示的数是.16.观察与思考:222211⨯=+,333322⨯=+,444433⨯=+,…若1010a ab b ⨯=+(a 、b 都是正整数)满足上述规律,则--=a b .三、解答题17.简便计算:(1)(﹣48)×0.125+48×()1154884+-⨯(2)(5319418-+)×(﹣36)18.把下列各数:2,0,3-,122,在数轴上表示出来,并按从小到大的顺序用“<”连接起来.19.现定义新运算“⊕”,对于任意有理数a ,b ,规定a b ab a b ⊕=+-.例如:1212121⊕=⨯+-=.(1)求3(4)⊕-的值;(2)求3)[(2)1](-⊕-⊕的值.20.有理数a 、b 在数轴上如图,(1)在数轴上表示a b --、;(2)试把a 、b 、0、a b --、这五个数按从小到大的顺序排列.(3)用>=、或<填空:||a a ,||b b .21.新郑大枣来啦!新郑大枣是河南的一大特产,现有30筐新郑大枣,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值/千克2.5-2- 1.5-013筐数/筐256458(1)这30筐大枣中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量比较,这30筐大枣总计多少千克?(3)若大枣每千克市场售价10元,现在由于要减少库存,厂家搞活动按八折出售,则这30筐大枣全部卖完可卖多少元?22.若有理数x 、y 满足5x =,2y =.(1)求x 与y 的值;(2)若x y x y -=-,求x y +的值,23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:111122334++⨯⨯⨯11111122334=-+-+-13144=-=.(1)猜想并写出:1(1)n n =+________.(2)直接写出结果:111112233420182019++++=⨯⨯⨯⨯ ___________.(3)计算111124466820182020++++⨯⨯⨯⨯ .24.我们知道,数轴上表示数a 的点A 和表示数b 的点B 之间的距离AB 可以用a b -来表示.例如:5-1表示5和1在数轴上对应的两点之间的距离.(1)在数轴上,A 、B 两点表示的数分别为a 、b ,且a 、b 满足21(4)0a b ++-=,则a =________,b =________,A 、B 两点之间的距离为________.(2)点M 在数轴上,且表示的数为m ,且147m m ++-=,求m 的值.(3)若点M 、N 在数轴上,且分别表示数m 和n ,且满足20222023m n --=,20242025n m ++=,求M 、N 两点的距离.25.已知:数轴上点A ,C 对应的数分别为a ,c ,且满足720a c ++-=,点B 对应的数为3-.(1)a =________,c =________.(2)若在数轴上有两动点P 、Q 分别从A ,B 同时出发向右运动,点P 的速度为2个单位长度/秒,点Q 的速度为1个单位长度/秒,求经过多长时间P ,Q 两点的距离为3.(3)若在数轴上找一个点P ,使得点P 到点A 和点C 的距离之和为15,请求出点P 所对应的值.(要求写详细解答过程)。

七年级数学第一次月考卷(沪科版2024)(解析版)【测试范围:第一章】

七年级数学第一次月考卷(沪科版2024)(解析版)【测试范围:第一章】

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选10题,填空6题,解答8题。

2.测试范围:第一章(沪科版2024)。

第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B .3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P :―23+209=149=159,或―23+203=183=6.故P 站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x ―(a +b +cd )+a +b cd=2―(0+1)+0=2―1=1;当x =―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n――2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k ―1)―(2k +1)+3×(2k ―1)=―101,解得:k =―49,当k 为偶数时,根据题意得,(2k +1)+(2k ―3)―3(2k ―1)=―101,解得,k =51(舍去),综上,k =―49.24.如图,数轴上有A ,B ,C 三个点,分别表示数―20,―8,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),PQ =2,MN =4,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。

2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。

人教版数学七年级上册第一次月考数学试卷及答案解析

人教版数学七年级上册第一次月考数学试卷及答案解析

人教版数学七年级上册第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.25.|﹣|等于()A.2B.﹣2C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)=.13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2=.15.若|x+2|+|y﹣3|=0,则xy=.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A符号不同,数也不同,故A不是相反数;B数的绝对值不同,故B不是相反数;C符号相同,故C不是相反数;D只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2B.﹣2C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)=﹣2.【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2.【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=9900.【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4)×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车212辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【考点】绝对值;数轴.【分析】本题应从绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.【解答】解:(1)数轴上表示2和5两点之间的距离是|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;(2)根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;(3)根据绝对值的定义有:|x﹣1|+|x+3|可表示为点x到1与﹣3两点距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点评】本题考查学生的阅读理解能力及知识的迁移能力.。

华师大七年级上数学第一次月考试题及答案

华师大七年级上数学第一次月考试题及答案

华师大七年级数学第一次月考试题 姓名 分数新的学期开始了,新同学要以新的面貌、新的起色来对待学习。

祝同学们学习进步!一. 精心选一选。

(每小题3分,共30分)1、今年二月份某市一天的最高气温为11°C ,最低气温为-6°C ,那么这一天最高气温比最低气温高( )A. -17°CB. 17°CC. 5°CD. 11°C2、如图所示,表示a 、b 、c 在数轴上的位置,下列判断正确的是( )A. a >b >cB. c >a >bC. a >c >bD. c >b >a3、对于任何有理数a ,下列各式中一定为负数的是( )A 、-(-3+a) B 、-a C 、-|a+1| D 、-|a|-14、数轴上原点和原点左边的点表示的数是( )A.负数 B.正数 C.非负数 D.非正数5、下列说法不正确的是( )A. a 的相反数是-aB. 正整数和负整数统称为整数C. 在有理数中绝对值最小的数是零D. 在有理数中没有最大的数6、下列四个数的绝对值比2大的是( )A .-3 B .0 C .1 D .27、某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0时,10时以前为负,10时以后为正,例如9:15记为-1,10:45记为1等,依次类推,上午7:45应记为( )A. 3 B. -3 C. -2.5 D. -7.458、下列说法正确的是( ) A .一个数前面加上“-”号,这个数就是负数; B .零既不是正数也不是负数C .零既是正数也是负数;D .若a 是正数,则-a 不一定就是负数9、若a 的相反数是3,则a 的倒数是( )A. -31 B. -3 C. 31 D. 3 10、一个数x 在数轴上的位置如图所示,则( )A. |x |<-1 B. |x |<0 C.|x |>1 D. |x |=0二. 细心填一填。

(每空2分,其中21题2分,共36分)11、一潜艇所在的高度是-50m ,一条鲨鱼在潜艇的上方20m ,那么鲨鱼所在的高度为 。

24-25七年级数学第一次月考卷(全解全析)【测试范围:湘教版七上第1章有理数】

24-25七年级数学第一次月考卷(全解全析)【测试范围:湘教版七上第1章有理数】

2024-2025学年七年级数学上学期第一次月考卷(湘教版2024)(考试时间:90分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:湘教版2024七年级上册,第1章有理数。

5.难度系数:0.68。

第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2024的相反数是( )A .2024-B .12024C .12024-D .2024【答案】A【解析】2024的相反数是2024-A 2.下列图形中是数轴的是( )A .B .C .D .【答案】D【解析】A 、没有正方向,不是数轴,故本选项不符合题意;B 、负半轴的数据标注错误,不是数轴,故本选项不符合题意;C 、单位长度不等,不是数轴,故本选项不符合题意;D 、符合数轴的定义,是数轴,故本选项符合题意;故选D .3.地球上的海洋面积约为2361000000km ,用科学记数法可表示为( )A .723.6110km ´B .823.6110km ´C .820.36110km ´D .923.6110km ´【答案】B【解析】282361000000km 3.6110km ´=,故选B .4.已知下列说法:①绝对值等于它本身的数有无数个;②倒数等于它本身的数只有1;③相反数等于它本身的数是0; ④平方等于它本身的数有三个.其中正确的说法有( )A .1 个B .2 个C .3 个D .4 个【答案】B【解析】①绝对值等于它本身的数是0和正数有无数个,说法正确;②倒数等于它本身的数只有1和1-,说法错误;③相反数等于它本身的数只有0,说法正确;④平方等于它本身的数有0和1共两个,说法错误;综上所述,正确的有①③共2个.故选B .5.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd >C .0b c +>D .a b>【答案】D【解析】A .4a <- ,\结论A 错误;B .1b <- ,4d =,0bd \<,结论B 错误;C .21b -<<- ,01c <<,0b c \+<,结论C 错误;D .54a -<<- ,21b -<<-,a b \>,结论D 正确.故选D .6.计算:()154273927æö-´-+ç÷èø的结果为( )A .23B .2C .103D .10【答案】B【解析】原式()()()1542727273927=-´--´+-´9154=-+-2=,故选B .7.下列说法中正确的是( )A .任何数都不等于它的相反数B .互为相反数的两个数立方相等C .如果a b >,那么a 的倒数一定大于b 的倒数D .a 与b 两数和的平方一定是非负数【答案】D【解析】A 、0的相反数为0,所以A 选项错误;B 、互为相反数的两个数的立方也互为相反数,所以B 选项错误;C 、2大于1,而2的倒数12小于1的倒数1,所以C 选项错误;D 、a 与b 两数和的平方一定是非负数,所以D 选项正确.故选D .8.若xy >0,则||x x+||y y +1的值为( )A .﹣2B .3或﹣2C .3D .﹣1或3【答案】D【解析】因为xy >0,所以x >0,y >0,或x <0,y <0,①当x >0,y >0时,原式=1+1+1=3;②当x <0.y <0时,原式=﹣1+(﹣1)+1=﹣1,故选D .9.我们学过+、-、×、÷这四种运算,现在规定“*”是一种新的运算,*A B 表示:5A B -,如:4*354317=´-=,那么()7*6*5= ( ).A .5B .10C .15D .20【答案】B【解析】由题意知,6*556525=´-=,则()7*6*57*255725352510==´-=-=,故选B .10.数形结合是解决一些数学问题的重要思想方法,比如12x x -在数轴上表示数1x ,2x 对应的点之间的距离.现定义一种“H 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1-,1,2进行“H 运算”,得.下列说法:①对m ,1-1112126--+--+-=进行“H 运算”的结果是3,则m 的值是4-;②对n ,3-,5进行“H 运算”的结果是16,则n 的取值范围是35n -<<;③对a a b c ,,,进行“H 运算”,化简后的结果可能存在6种不同的表达式.其中正确的个数是( )A .0B .1C .2D .3【答案】B【解析】①因为对m ,1-进行“H 运算”的结果是3,所以13m +=,所以2m =或4m =-,故①错误;②因为对n ,3-,5进行“H 运算”的结果是16,所以()353516n n --+-+--=,所以()358n n --+-=,即数n 对应的点到3-和5对应的点的距离之和等于8,因为()538--=,所以数n 在3-和5之间,且可以和3-、5重合,所以35n -££,故②错误;③对a a b c ,,,进行“H 运算”得,22a a a b a c a b a c b c a b a c b c -+-+-+-+-+-=-+-+-,当a b c >>时,原式222243a b a c b c a b c =-+-+-=--;当a c b >>时,原式222243a b a c c b a b c =-+-+-=--;当b a c >>时,原式222233b a a c b c b c =-+-+-=-;当b c a >>时,原式222243b a c a b c a b c =-+-+-=-++;当c a b >>时,原式222233a b c a c b b c =-+-+-=-+;当c b a >>时,原式222243b a c a c b a b c =-+-+-=-++;所以化简后的结果可能存在6种不同的表达式,故③正确;所以正确的个数是1个,故选B .第二部分(非选择题 共90分)二、填空题:本题共8小题,每小题3分,共24分。

人教版数学七年级上学期第一次月考数学试卷(含答案)

人教版数学七年级上学期第一次月考数学试卷(含答案)

七年级(上)第一次月考数学试卷一、填空题1.如果盈利700元记为+700元,那么﹣800元表示.2.在数轴上距离原点1.5个单位的点表示的数是.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过,最小不低于.4.用“>”、“<”、“=”号填空:(1)﹣0.02 1;(2)﹣﹣.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是℃.7.化简:﹣|﹣|= ,﹣(﹣2.3)= .8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= .9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2=.10.若|x﹣2|与(y+3)2互为相反数,则x+y= .二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.012.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+616.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.717.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和018.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ …}非正数集合{ …}负分数集合{ …}有理数集合{ …}.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = .(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题1.如果盈利700元记为+700元,那么﹣800元表示亏损800元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利700元记为+700元,∴﹣800元表示亏损800元.故答案为:亏损800元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在数轴上距离原点1.5个单位的点表示的数是±1.5 .【考点】数轴.【分析】在数轴上距离原点1.5个单位的点表示的数有两个:分别是﹣1.5、1.5.【解答】解:在数轴上距离原点1.5个单位的点表示的数是:±1.5;故答案为:±1.5.【点评】本题考查了数轴的有关知识,比较简单,明确所有的有理数都可以用数轴上的点表示,数轴上与原点的距离为a的点有两个,是互为相反数.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8.04 ,最小不低于7.96 .【考点】正数和负数.【分析】根据正数与负数表示相反意义的量得到8±0.04(m)的含义为最大不超过8+0.04m,最小不超过8﹣0.04m,然后回答问题.【解答】解:零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8+0.04=8.04m,最小不低于8﹣0.04=7.96m,故答案为8.04;7.96.【点评】本题考查了正数和负数:用正数与负数表示相反意义的量,此题基础题,比较简单.4.用“>”、“<”、“=”号填空:(1)﹣0.02 < 1;(2)﹣<﹣.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据两负数比较大小,绝对值大的反而小,可得答案.【解答】解:(1)﹣0.02<1;(2),﹣,故答案为:<,<.【点评】本题考查了有理数比较大小,(1)正数大于负数,(2)先比较绝对值,再比较两负数的大小.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【考点】规律型:数字的变化类.【专题】规律型.【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是 6 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据有理数的加减混合运算的运算方法,用南通市某天上午的温度加上中午又上升的温度,再减去夜间又下降的温度,求出这天夜间的温度是多少即可.【解答】解:8+5﹣7=13﹣7=6(℃)答:这天夜间的温度是6℃.故答案为:6.【点评】此题主要考查了有理数的加减混合运算,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.7.化简:﹣|﹣|= ﹣,﹣(﹣2.3)= 2.3 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据绝对值的含义和求法,以及相反数的含义和求法,逐一求解即可.【解答】解:﹣|﹣|=﹣,﹣(﹣2.3)=2.3.故答案为:﹣、2.3.【点评】此题主要考查了绝对值的含义和应用,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= 1.5 .【考点】代数式求值.【分析】依据互为相反数的两数之和为0可知a+b=0,互为倒数的两数的乘积为1求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=1.5×1+0=1.5,故答案为:1.5.【点评】本题主要考查的是求代数式的值,掌握倒数的定义和互为相反数的两数之和为0是解题的关键.9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= 1 .【考点】实数的运算.【专题】计算题;新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣3☆2=4﹣3=1.故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若|x﹣2|与(y+3)2互为相反数,则x+y= ﹣1 .【考点】相反数;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.0【考点】绝对值.【分析】根据绝对值的意义得到x≤0.【解答】解:∵|x|=﹣x,∴x≤0.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.12.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b【考点】有理数大小比较;数轴.【分析】根据数轴和相反数比较即可.【解答】解:因为从数轴可知:a<0<b,|a|>|b|,所以a<﹣b<b<﹣a,故选B.【点评】本题考查了数轴,相反数的,有理数的大小比较的应用,能根据数轴得出﹣a和﹣b的位置是解此题的关键.13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个【考点】有理数大小比较;绝对值.【分析】根据绝对值的意义,可得答案.【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.【点评】本题考查了有理数比较大小,到原点的距离小于3.5的整数.14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【考点】绝对值;有理数.【分析】根据绝对值的性质、整数的定义、正数和负数的定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、∵﹣1是整数,但﹣1<0,故A错误;B、∵|a|=|﹣a|,∴互为相反数的两个数的绝对值相等,故B正确;C、∵0也是有理数,故C错误;D、∵|﹣1|=|1|,但﹣1≠1,故D错误;【点评】此题主要考查整数的定义、正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a ≤0时,|a|=﹣a,是一道基础题.15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【考点】绝对值;数轴.【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.答案:B.【点评】考查了绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离),要求熟悉绝对值定义和数轴上数的规律.16.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.7【考点】有理数大小比较.【分析】根据有理数的大小比较法则求出﹣6.1和1之间的整数即可.【解答】解:比﹣5.1大,而比1小的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,共6个.故选:C.【点评】本题考查了有理数的大小比较法则的应用,能求出所有的整数是解此题的关键,题目比较好,难度不大.17.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.18.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|【考点】绝对值;相反数.【分析】分别化简各选项即可判断.【解答】解:A、﹣(﹣1.2)=1.2≠﹣1.2,此选项错误;B、+(﹣1.2)=﹣1.2,﹣(﹣1.2)=1.2,此选项错误;C、﹣(﹣1.2)=1.2,|﹣1.2|=1.2,此选项正确;D、﹣(﹣1.2)=1.2,﹣|﹣1.2|=﹣1.2,此选项错误,故选:C.【点评】本题主要考查相反数和绝对值,掌握相反数的表示方法及绝对值是解题的关键.19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz【考点】非负数的性质:绝对值;代数式求值.【分析】本题可根据非负数的性质解出x、y、z的值,再把x、y、z的值代入(x+1)(y﹣2)(z+3)中求解即可.【解答】解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得x=1,y=﹣2,z=3.∴(x+1)(y﹣2)(z+3)=﹣48.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②【考点】相反数.【专题】探究型.【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b=0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ +5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{ ﹣2.04,﹣…}有理数集合{ +5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…}.【考点】有理数;绝对值.【分析】根据大于零的整数是正整数,小于或等于零的数是非正数,小于零的分数是负分数,有限小数或无限循环小数是有理数,可得答案.【解答】解:正整数集合{+5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{﹣2.04,﹣…}有理数集合{+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…};故答案为:+5,﹣(﹣7);0,﹣2.04,﹣|﹣1|,﹣;﹣2.04,﹣;+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0..【点评】本题考查了有理数,利用有理数的分类是解题关键,注意不能重复,也不能遗漏.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.【考点】有理数大小比较;数轴.【分析】先画出数轴并在数轴上表示出各数,再按照数轴的特点从左到右用小于号把各数连接起来.【解答】解:画出数轴并在数轴上表示出各数:按照数轴的特点用小于号从左到右把各数连接起来为:【点评】本题考查的是有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算括号中的运算,再从左到右依次计算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式被除数与除数换过,求出倒数,即可确定出原式的值;(7)原式利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=6﹣6.25++﹣﹣=﹣;(2)原式=﹣×﹣×+×=﹣×(+﹣1)=﹣×=﹣;(3)原式=﹣14﹣40+18=﹣36;(4)原式=×(﹣)××=﹣;(5)原式=+2.5+1﹣2+1=﹣0.5;(6)∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴原式=﹣;(7)原式=﹣4.3﹣3.2+2.2﹣15.7=﹣23.2+2.2=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .【考点】规律型:数字的变化类.【专题】推理填空题.【分析】(1)观察题目所给等式,总结隐含的恒等变换,直接写出所求等式.(2)利用等式: =﹣将相邻两个正整数的积的倒数写成它们的倒数的差,然后计算出结果即可.【解答】解:(1)∵﹣=﹣=∴=﹣(2)①+++…+=1﹣+﹣+﹣+…+﹣=1﹣=②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=故答案为:(1)﹣;(2)①;②【点评】本题考查了数字的变化规律问题,解题的关键是能够总结出题目隐含的数字变换规律并加以运用七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.25.|﹣|等于()A.2 B.﹣2 C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)= .13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2= .15.若|x+2|+|y﹣3|=0,则xy= .16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选 D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 符号不同,数也不同,故A不是相反数;B 数的绝对值不同,故B不是相反数;C 符号相同,故C不是相反数;D 只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2 B.﹣2 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)= ﹣2 .【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2 .【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2= ﹣3 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy= ﹣6 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= 9900 .【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 .【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4 )×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车212 辆;(2)产量最多的一天比产量最少的一天多生产自行车26 辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.。

七年级上册数学第一次月考试题及答案

七年级上册数学第一次月考试题及答案

七年级上数学第一次月考试题及答案一.选择题(每题2分;共20分)1.-(–5)的绝对值是( )A 、5B 、–5C 、51 D 、51- 2. 在–2;;0;32-;–;11中.负分数有( ) A 、l 个 B 、2个 C 、3个 D 、4个3. 下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数4. -a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数5.一个数和它的倒数相等;则这个数是( )A 、1B 、1-C 、±1D 、±1和06. 如果a a -=||;下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a7. 小明今年在银行中办理了7笔储蓄业务:取出元;存进5元;取出8元;存进12无;存进25元;取出12.5元;取出2元;这时银行现款增加了( )A 、元B 、-元C 、10元D 、-12元8. 绝对值不大于11.1的整数有( )A 、11个B 、12个C 、22个D 、23个9. 下列说法中;错误的有( ) ①742-是负分数;②不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

A 、1个B 、2个C 、3个D 、4个10. l 米长的小棒;第1次截去一半;第2次截去剩下的一半;如此下去;第6次后剩下的小棒长为( )A 、121B 、321C 、641D 、1281 二、境空题(每题4分;共32分) 11. 在数+8.3、 4-、8.0-、 51-、 0、 90、 334-、|24|--中;正数是________________;不是整数有____________________________。

12.+2与2-是一对相反数;请赋予它实际的意义:___________________。

辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题

辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题

辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15- 2.如果零上5℃记作5+℃,那么零下3℃可记为( )A .3-℃B .3+℃C .2-℃D .2℃3.下列各式正确的是( )A .55=-B .55-=-C .55-=-D .55=-- 4.亚洲、欧洲、非洲和南美洲的最低海拔如下表所示表,其中最低海拔最小的大洲是( )A .亚洲B .欧洲C .非洲D .南美洲 5.在1318,9,0,12%,7.2,,24---π,7中,非负有理数有( ) A .6个 B .5个 C .4个 D .3个6.化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( ) A . B . C . D . 7.数轴上的点A 到原点的距离是5,则点A 表示的数为( )A .-5B .5C .5或-5D .2.5或-2.5 8.某校九年1班期末考试数学的平均成绩是82分,小明得了90分,记作8+分,若小亮的成绩记作4-分,表示小亮得了( )分.A .84B .76C .78D .749.如图,直径为1的圆上有一点A ,且点A 与数轴上表示1-的点重合,将这个圆在数轴上无滑动的滚动,当点A再次与数轴上的某个点重合,那么这个点的位置可能是()A.3与4之间B.6与7之间C.7-与6-之间D.5-与4-之间10.如图,A B C D,,,四个点将数轴上6-与5两点间的线段五等分,这四个等分点位置最靠近原点的是()A.点A B.点B C.点C D.点D二、填空题11.在4-,227,0,2π,3.14159,1.3,0.121121112⋯中,有理数有个.12.比较大小:8-9-(填“>”、“<”或“=”).13.化简14⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦.14.如图,在数轴上,点A表示的数为2,若将点A向左移动5个长度单位后,这时点A表示的数是.15.若式子3|2|4x--有最小值,则该最小值为.三、解答题16.把下列各数填在相应的大括号内:41935,0.1,,0,3,1,π,22,0.3,743----.整数集合{…}分数集合{…}正有理数集合{…}负有理数集合{…}17.画一条数轴,并在数轴上表示下列各数:()112,1, 3.5,22+--+-,并用“<”把这些数连接起来.18.近年来,国家越来越重视新能源汽车的发展,为积极响应国家推广节能减排的政策,王老师家买了一辆新能源汽车.王老师连续一星期记录了每天行驶的路程(每天以20km 为基准,超出记为正,不足记为负),如表:(1)该汽车行驶路程最多的一天是,这一天的实际行驶路程是km .(2)若该新能源汽车每行驶100km 耗电量为15度,每度电约为0.5元,求王老师这一星期开新能源汽车的电费.19.已知23a -与5b -互为相反数,求2b a -的值,20.对于一个数x ,我们用(]x 表示小于x 的最大整数,例如(]2.62=,(]34-=-.(1)填空:(]10=__________;(]202-=__________;17⎛⎤= ⎥⎝⎦___________. (2)若a ,b 都是整数,且(]a 和(]b 互为相反数,求a b +的相反数.21.如图1,电脑显示屏上画出了一条不完整的数轴,并标出了表示6-的点A .小明同学设计了一个电脑程序:点M ,N 分别从点A 同时出发,每按一次键盘,点M 向右平移2个单位长度,点N 向左平移1个单位长度.例如,第一次按键后,屏幕显示点M ,N 的位置如图2.(1)第______次按键后,点 M 正好到达原点;(2)第6次按键后,点M 到达的点表示的数字比点N 到达的点表示的数字大多少?(3)第n 次按键后,点M ,N 到达的点表示的数互为相反数,求n 的值.22.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道,a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A 、B ,分别用数a 、b 表示,那么A ,B 两点之间的距离为||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.若数轴上点A 表示数a ,请回答下列问题:(1)如果||5a =,那么a 的值是_____;(2)如果|3|5a -=,那么a 的值是_____;(3)满足|2||3|5a a ++-=整数a 有____个;(4)如果|2||3|8a a ++-=,那么a 的值是_____;(5)|1||2||3||4||5|a a a a a +++++++++的最小值是_____.23.设有理数a ,b 在数轴上所对应的点为A ,B ,记为()A a ,()B b ,将a b -称为点A ,B 的对称指标,记为(),A B μ,即(),A B a b μ=-.对于定点..A ,若动点..B 在线段MN 上,将(),A B μ的最大值...称为线段MN 关于点A 的对称指标,记为(),A MN μ. (1)点()1A ,()1B -,()3C -,()D d 在数轴上,①(),A B μ=__________,(),A C μ=__________.②若(),1C D μ=,则d =__________.(2)点()5E -,()M m ,()N n 在数轴上,m n <,4MN =,①当1m =时,(),E MN μ=__________.②当线段MN 在数轴上运动时,直接写出(),E MN μ的最小值及此时m 的值.。

江苏省宜兴市实验教育集团2024-2025学年七年级上学期第一次月考数学试题

江苏省宜兴市实验教育集团2024-2025学年七年级上学期第一次月考数学试题

江苏省宜兴市实验教育集团2024-2025学年七年级上学期第一次月考数学试题一、单选题1.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100-元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元2.如图,在数轴上,手掌遮挡住的点表示的数可能是( )A .0.5-B .0.5C . 1.5-D . 2.5-3.一种面粉的质量标识为“250.25±千克”,则下列面粉中合格的( ). A .24.70千克B .25.30千克C .24.80千克D .25.51千克4.有94,,3,02--四个数,其中最小的是( )A .4B .92-C .3-D .05.将式子()()()()20357-++---+省略括号和加号后变形正确的是( ) A .20357-+-B .20357--++C .20357-++-D .20357--+-6.若m 与14⎛⎫-- ⎪⎝⎭互为相反数,则m 的值为( )A .4-B .14- C .14D .47.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5B .少10C .多5D .多108.下列说法:①符号相反的数互为相反数;②a -一定是一个负数;③正整数、负整数统称为整数;④一个数的绝对值越大,表示它的点在数轴上离原点越远;⑤若三个有理数中只有1个负数,则这三个有理数的乘积必为正数;其中正确的有( ) A .1个B .2个C .3个D .4个9.如图,一电子跳蚤在数轴的点P 0处,第一次向右跳1个单位长度到点P 1处,第二次向左跳2个单位长度到点P 2处,第三次向右跳3个单位长度到点P 3处,第四次向左跳4个单位长度到点P 4处,以此类推,当跳蚤第十次恰好跳到数轴原点,则点P 0在数轴上表示的数为( )A .﹣5B .0C .5D .1010.如图,将比2023-大的所有整数从小到大按照如图所示的位置顺序排列,则2024应在( )A .A 列B .B 列C .C 列D .D 列二、填空题11.比较两数大小:3--()3--(填“<”,“=”或“>”). 12.计算:(1)(3)4-+=;(2)54-⨯=.(3)()()48--=-.13.在数轴上,将表示2-的点先向左侈动4个单位后再向右移动1个单位长度,此时这个点表示的数是.14.有5袋苹果,以每袋50千克为基准,超过的千克数记为正数,不足的千克数记为负数,称重的纪录如下:4+,5-,3+,2-,6,则这5袋苹果的总重量为千克. 15.绝对值大于1.5不大于3的所有整数....的积是. 16.a 的相反数是它本身,b 是最大的负整数,c 是最小的自然数,则a b c -+的值是. 17.已知a 为有理数,{}a 表示不小于a 的最小整数,如211,3352⎧⎫⎧⎫=-=-⎨⎬⎨⎬⎩⎭⎩⎭,则计算{}5365164⎧⎫⎧⎫--⨯=⎨⎬⎨⎬⎩⎭⎩⎭. 18.在数轴上有一点A ,将点A 向左移动2个单位得到点B ,点B 向左移动4个单位得到点C ,点A 、B 、C 分别表示有理数a 、b 、c .若a 、b 、c 三个数的乘积为负数且这三个数的和与其中的一个数相等,则a 的值为.三、解答题 19.计算:(1)()()()28212+-+-+- (2)311016 2.25433⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭(3)()211146031215⎛⎫--⨯- ⎪⎝⎭(4)用简便方法计算:1519816-⨯ 20.在数轴上表示下列各数,并用“<”符号把它们按从小到大的顺序排列.(2)--,|5|-,( 1.5)-+,132+,2-__________<__________<__________<__________<__________<__________ 21.把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3-,②5+,③20%,④0,⑤27,⑥7-,⑦300%,⑧π. 整数集合:{__________________________________…}; 分数集合:{__________________________________…}; 非负有理数集合:{__________________________________…}. 22.已知||2,||3x y ==.(1)x =__________,y =__________. (2)若x y <,求x y -的值.23.数轴上从左到右的三个点A ,B ,C 所对应的数分别为a ,b ,c ,其中点A 与点B 之间的距离2020AB =,点B 与点C 之间的距离1000BC =,如图所示.(1)若以B为原点,则点A对应的数为__________,并计算a b c++的值.(2)若O是原点,且点O和点B之间的距离为18,求a b c+-的值.24.水果超市最近新进了一批橙子,每斤进价10元,9月29日每斤售价15元,国庆黄金周9月30日起试行机动价格,价格超出前一天的部分记为正,不足前一天的部分记为负,超市记录了国庆黄金周橙子的售价变化情况和售出情况:(1)10月4日超市售出的橙子的单价是多少元?(2)10月4日超市售出的橙子的收益如何?(盈利成亏损的钱数)(3)国庆黄金周水果超市出售此种接子的收益如何?25.把几个数用大括号括起来,中间用逗号断开,如:{1,2,8},{2,0,2019,7}-,我们称之为集合,其中的数称其为集合的元素,一个集合中没有相同的元素.如果一个集合满足:只要其中有一个元素m,使得||4m-也是这个集合的元素,这样的集合我们称为“条件集合”.例如集合{7,3},因为|7|43-=,而3恰好是这个集合的元素,所以{7,3}就是一个“条件集合”.(1)集合{8,12}-________(填“是”或“不是”)“条件集合”;(2)请说明集合121,2,133⎧⎫--⎨⎬⎩⎭是“条件集合”;(3)己知集合{,1}x是“条件集合”,求出所有符合条件的x的值;(4)集合{}m是“条件集合”,m=__________.26.数轴是一个非常置要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:(1)操作1:折叠纸带,若数轴上表示1的点与表示5的点重合,则与表示10的点重合的点表示的数是__________.此时表示数a的点与表示数__________的点重合.(2)操作2:若点A、B表示的数分别是1-、4,点P从点A出发,沿数轴以每秒2个单位长度的速度向左匀速运动;同时,点Q从点B出发,沿数轴以每秒4个单位长度的速度向左匀速运动.设运动时间为t秒,①在运动过程中,当t为何值时,点P与点Q之间的距离为2;②若点P在点Q的右侧且线段PQ上(含线段端点)恰好有3个整数点,则时间t的最小值是__________;(3)操作3:在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左对折,然后在重叠部分的某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:2:3,则折痕处对应的点表示的数可能是__________.。

人教版2022-2023学年七年级数学上册第一次月考测试题含答案

人教版2022-2023学年七年级数学上册第一次月考测试题含答案

2022-2023学年七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在﹣(﹣8),﹣丨7丨,﹣丨0丨,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个2.(2分)最近“新型冠状病毒肺炎”在全球肆虐,截止到4月28日大约有3090000人感染病毒,将3090000用科学记数法可以表示为()A.3.09×106B.3.09×107C.30.9×105D.3.09×104 3.(2分)下列说法错误的是()A.柱体的上、下两个面形状是一样的B.圆柱、圆锥的底面都是圆C.棱柱的侧面不可能是三角形D.棱柱的棱长都相等4.(2分)空心六棱柱螺母按如图所示位置摆放,则它的左视图正确的图形是()A.B.C.D.5.(2分)|﹣2|的绝对值的相反数是()A.﹣2B.2C.﹣3D.36.(2分)数轴上的一个点向左移动3个单位长度,再向右移动7个单位长度,终点表示的数是﹣1,那么原来表示的数是()A.﹣6B.﹣5C.5D.67.(2分)如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A.4种B.5种C.6种D.7种8.(2分)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33=62,13+23+33+43=102,…,计算13+23+33+…+103的结果是()A.2025B.2500C.3025D.36009.(2分)对于有理数a、b,如果ab<0,a+b>0.则下列各式成立的是()A.a<0,b<0B.a>0,b<0且|b|<aC.a<0,b>0且a<|b|D.a>0,b<0且|b|>a10.(2分)能使式子|5+x|=|5|+|x|成立的数x是()A.任意一个非正数B.任意一个正数C.任意一个非负数D.任意一个负数二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)一个棱柱有10个面,且所有侧棱的和为40cm,则每条侧棱长为cm.12.(3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).13.(3分)如图是由相同大小的小正方体搭成的几何体从不同方向看到的形状图,搭这个几何体共用了个小正方体.14.(3分)如图是一个正方体的平面展开图,相对面上的两个数之和均为5,求x+y+z =.15.(3分)如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数和为.16.(3分)一个整数816600…0用科学记数法表示为8.166×1010,则原数中“0”的个数为.17.(3分)已知|a|=6,|b|=3,且a<b,则式子ab﹣a=.18.(3分)已知|a+2019|=﹣|b﹣2020|,a+b=.三、计算题(本大题共1小题,每小题24分,共24分)19.(24分)请回答下列问题:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)﹣(﹣2)+(﹣3)+()﹣丨﹣7丨;(3);(4)﹣(﹣1)+32÷(1﹣4)×2;(5)(﹣1)3﹣丨2﹣(﹣3)2丨÷();(6)﹣22×÷[4÷()2﹣1]+(﹣1)2.四、解答题(本大题共6小题,共52分)20.(10分)如图,一个棱长为10cm的正方体,在它的一个角上挖掉一个棱长是2cm的正方体,求出剩余部分的表面积和体积.21.(10分)把下列各数0,(﹣2)2,﹣|﹣4|,﹣,﹣(﹣1)在数轴上表示出来,并用“<”号把这些数连接起来.22.(10分)若x、y互为相反数,a、b互为倒数,c的绝对值是1,求的值.23.一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:m)如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地相对于商场出租车的位置在哪里?(2)这天上午出租车总共行驶了km.(3)已知出租车每行驶1m耗油0.08L,每升汽油的售价为6.5元.如果不计其它成本,出租车司机每m收费2.5元,那么这半天出租车盈利(或亏损)了多少元?24.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为个平方单位.(包括底面积)25.(12分)点A,B在数轴上分别表示有理数4,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=丨a﹣b丨,利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是,数轴上表示﹣12和﹣6的两点之间的距离是.(2)数轴上表示x和﹣4的两点之间的距离表示为.(3)当丨x﹣2丨+丨x+4丨取最小值为时,能使丨x﹣2丨+丨x+4丨取最小值的所有整数x的和是.(4)若数轴上两点A,B对应的数分别是﹣1,3,现在点A,点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,点A所对应的数是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】先计算各个数,再根据非负数的定义得结论.【解答】解:∵﹣(﹣8)=8,﹣丨7丨=﹣7,﹣丨0丨=0,(﹣2)2,=4,﹣32=﹣9,∴非负数有:﹣(﹣8),﹣丨0丨,(﹣2)2.故选:B.【点评】本题考查了有理数,掌握有理数的分类,乘方运算及相反数、绝对值的意义是解决本题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3090000=3.09×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据棱柱和圆柱以及圆锥的底面以及棱柱的棱长关系进而得出即可.【解答】解:A、柱体的上、下两个面形状是一样的,此选项正确,不合题意;B、圆柱、圆锥的底面都是圆,此选项正确,不合题意;C、棱柱的侧面不可能是三角形,此选项正确,不合题意;D、棱柱的棱长不一定都相等,此选项错误,符合题意.故选:D.【点评】此题主要考查了认识立体图形,熟练掌握各图形的形状是解题关键.4.【分析】左视图是从物体左面看,所得到的图形.【解答】解:从左面看,是一列两个正方形,两个正方形的中间有一条横向的虚线,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【分析】根据绝对值的性质求出|﹣2|,再根据相反数的定义解答.【解答】解:|﹣2|=2,所以,|﹣2|的绝对值的相反数是﹣2.故选:A.【点评】本题考查了绝对值的性质,相反数的定义,比较简单,熟记性质与概念是解题的关键.6.【分析】根据数轴上的点向左平移减、向右平移加,可得答案;【解答】解:设原来表示的数是x,x﹣3+7=﹣1解得:x=﹣5故选:B.【点评】本题考查了数轴,解决本题的关键是根据数轴上的点向左平移减、向右平移加.7.【分析】利用正方体的展开图即可解决问题,共四种.【解答】解:如图所示:共四种.故选:A.【点评】本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.【分析】根据13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,可得从1开始的连续自然数的立方和等于它们的和的平方,据此求出计算13+23+33+…+103的结果是多少即可.【解答】解:∵13=12,13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,∴13+23+33+…+103=(1+2+3+…+10)2=552=3025.故选:C.【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是注意总结出规律,并能应用总结出的规律解决实际问题.9.【分析】根据异号得负判断出a、b异号,再根据有理数的加法运算法则判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b>0,∴a>0,b<0且|b|<a.故选:B.【点评】本题考查了有理数的乘法,有理数的加法,熟记运算法则是解题的关键.10.【分析】根据题意利用特殊值的方法,即可判断出答案.【解答】解:当x=2时,|5+x|=|5+2|=7,而|5|+|x|=5+2=7,故A、D错误;当x=0时,|5+x|=|5+0|=5,而|5|+|x|=5+0=5,当x=﹣2时,|5+x|=|5+(﹣2)|=3,而|5|+|x|=5+2=7,故B错误,C正确;故选:C.【点评】此题主要考查了绝对值,关键是根据题意选择符合条件的数.二、填空题(本大题共8小题,每小题3分,共24分)11.【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为40cm,即可得出答案.【解答】解:∵这个棱柱有10个面,∴这个棱柱是8棱柱,有8条侧棱,∵所有侧棱的和为40cm,∴每条侧棱长为40÷8=5(cm);故答案为5.【点评】本题考查了立体图形,主要利用了棱柱面的个数与棱数的关系,是一道基础题.12.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.【点评】本题考查由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.13.【分析】根据俯视图得出最底层的个数,根据主视图和左视图得出第二层的个数,然后相加即可得出答案.【解答】解:由俯视图易得最底层有3个小正方体,第二层有1个小正方体,那么搭这个几何体共用了3+1=4个.故答案为:4.【点评】本题考查了几何体的三视图及空间想象能力.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再求出x、y、z,然后相加计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“﹣2”与“y”是相对面,“3”与“z”是相对面,“x”与“10”是相对面,∵相对面上的两个数之和为5,∴x=﹣5,y=7,z=2,∴x+y+z=﹣5+7+2=4.故答案为:4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.【分析】由数轴可知被污染的部分是﹣1.3至2.9.【解答】解:由数轴可知:设被污染的部分的数为x,∴﹣1.3≤x≤2.9∴x=﹣1或0或1或2,∴被污染的部分内含有的整数和:﹣1+0+1+2=2故答案为:2【点评】本题考查数轴,涉及有理数的加法.16.【分析】把8.166×1010写成不用科学记数法表示的原数的形式即可得.【解答】解:∵8.166×1010表示的原数为81660000000,∴原数中“0”的个数为7,故答案是:7.【点评】本题考查了把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向后移几位.17.【分析】根据绝对值和a<b可得a和b的值,进而可得式子ab﹣a的值.【解答】解:因为|a|=6,|b|=3,所以a=±6,b=±3,因为a<b,所以a=﹣6,b=±3,所以ab﹣a=±18﹣(﹣6)=﹣12或24.故答案为:﹣12或24.【点评】本题考查了有理数的混合运算、绝对值,解决本题的关键是掌握有理数的乘法和绝对值.18.【分析】直接利用绝对值的性质得出b的值,进而得出a的值,即可得出答案.【解答】解:∵|a+2019|=﹣|b﹣2020|,∴b﹣2020=0,∴b=2020,∴a=﹣2019,∴a+b=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.三、计算题(本大题共1小题,每小题24分,共24分)19.【分析】(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先去括号、化简绝对值,再根据有理数加法法则计算即可;(3)利用乘法分配律计算即可;(4)先算乘方与括号内的运算,再算乘除,最后算加减,同级运算,应按从左到右的顺序进行计算;(5)先算乘方与绝对值,再算除法,最后算加减即可;(6)先算乘方与括号内的运算,再算乘除,最后算加减即可.【解答】解:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7=﹣19;(2)﹣(﹣2)+(﹣3)+()﹣丨﹣7丨=2﹣3﹣﹣7=﹣8;(3)=×(﹣12)+×(﹣12)﹣×(﹣12)﹣×(﹣12)=﹣6﹣8+9+10=5;(4)﹣(﹣1)+32÷(1﹣4)×2=1+9÷(﹣3)×2=1﹣6=﹣5;(5)(﹣1)3﹣丨2﹣(﹣3)2丨÷()=﹣1﹣|2﹣9|×(﹣2)=﹣1﹣7×(﹣2)=﹣1+14=13;(6)﹣22×÷[4÷()2﹣1]+(﹣1)2=﹣4×÷(4×﹣1)+1=﹣4×÷(9﹣1)+1=﹣4×÷8+1=﹣+1=.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.四、解答题(本大题共6小题,共52分)20.【分析】在一个大正方体的上面的一个角上挖出一个棱长2cm的小正方体,那么它的表面积没有发生变化;用原大正方体的体积减去小正方体的体积就得到余下部分的体积.据此解答即可.【解答】解:余下部分的体积:10×10×10﹣2×2×2=1000﹣8=992(cm3);表面积:10×10×6=600(cm2);答:余下部分的体积是992cm3,表面积是600cm2.【点评】此题主要考查了几何体的表面积与体积求法,解答此题的关键是根据挖出立方体后的表面积不变,以及减少的体积;再利用长方体和正方体的表面积和体积公式即可解答.21.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣|﹣4|<﹣<0<﹣(﹣1)<(﹣2)2.【点评】本题考查了数轴和有理数的大小比较的应用,能熟记有理数大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.22.【分析】利用相反数,绝对值,以及倒数的性质求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:x+y=0,ab=1,c=±1,即c2=1,则原式=0﹣1+2=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.【分析】(1)根据有理数的加法运算,看其结果的正负即可判断其位置;(2)根据绝对值的定义列式计算即可;(3)根据题意列式计算即可.【解答】解:(1)+9+(﹣3)+(﹣5)+(+4)+(﹣8)+(+6)+(﹣3)+(﹣6)+(﹣4)+(+10)=0,所以将最后一名乘客送到目的地,出租车回到了商场处,答:将最后一名乘客送到目的地回到了商场处.(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=58.答:这天上午出租车总共行驶了58km.(3)58×2.5﹣58×0.08×6.5=114.84(元),答:那么这半天出租车盈利了114.86元.【点评】本题主要考查了有理数的加减乘除混合运算,注意正负数的意义,熟练掌握运算法则是解题的关键.24.【分析】(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.(3)要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.【解答】解:(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,图形分别如下:(2)由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,故可得表面积为:1×(3+3+4+4+5+5)=24.(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,表面积为:1×(3+3+5+5+5+5)=26.故答案为:24、26.【点评】此题考查了简单几何体的三视图及几何体的表面积的计算,解答本题的关键是掌握三视图的观察方法,在计算表面积时容易出错,要一个面一个面的进行查找,避免遗漏,有一定难度.25.【分析】(1)由两点之间的距离公式可得答案;(2)由两点之间的距离公式可得答案;(3)当丨x﹣2丨+丨x+4丨取最小值时,x的范围是﹣4≤x≤2;(4)设运动时间是t秒,可得|﹣1+2t﹣(3+0.5t)|=3,即可解得A表示的数是或.【解答】解:(1)数轴上表示1和3两点之间的距离是|1﹣3|=2,数轴上表示﹣12和﹣6的两点之间的距离是|﹣12﹣(﹣6)|=6,故答案为:2,6;(2)数轴上表示x和﹣4的两点之间的距离表示为|x﹣(﹣4)|=|x+4|,故答案为:|x+4|;(3)当丨x﹣2丨+丨x+4丨取最小值为|2﹣(﹣4)|=6时,能使丨x﹣2丨+丨x+4丨取最小值的所有整数x的和2+1+0+(﹣1)+(﹣2)+(﹣3)+(﹣4)=﹣7,故答案为:6,﹣7;(4)设运动时间是t秒,则运动后A表示的数是﹣1+2t,B运动后表示的数是3+0.5t,根据题意得|﹣1+2t﹣(3+0.5t)|=3,即1.5t﹣4=3或1.5t﹣4=﹣3,解得t=或t=,∴﹣1+2t=﹣1+2×=或﹣1+2t=﹣1+2×=,∴A表示的数是或.【点评】本题考查数轴上两点间的距离,解题的关键是读懂题意,能求出数轴上任意两点间的距离.。

2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)

2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)

2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、选择题1. −4的倒数是( )A.14B.−14C.4D.−42. 下列各数中是有理数的是( )A.π2B.πC.12D.0.1010010001⋯3. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10∘C记作+10∘C,则−2∘C表示气温为( )A.零上8∘C B.零下8∘C C.零上2∘C D.零下2∘C4. −114的倒数乘14的相反数,其结果是( )A.5B.−5C.15D.−155. 在下列各数:−(+2),−32,(−13)4,−225,−(−1)2023,−∣−3∣中,负数的个数是( )A.2个B.3个C.4个D.5个6. 如图,数轴上A,B两点所表示的两数的关系不正确的是( )A.两数的绝对值相等B.两数互为相反数C.两数互为倒数D.两数的平方相等7. 已知点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为( )A.−2或1B.−2或2C.−2D.18. 已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b<0B.a<0,b>0C.a−b<0D.a,b异号,且负数的绝对值较大9. 式子∣x−1∣−3取最小值时,x等于( )A.1B.2C.3D.410. 已知a,b,c为非零的实数,且不全为正数,则a∣a∣+ab∣ab∣+ac∣ac∣+bc∣bc∣的所有可能结果的绝对值之和等于( )A.4B.6C.8D.10二、填空题11. 南海海域面积约为3500000 km2,该面积用科学记数法应表示为km2.12. 用>,<,=号填空.−(+34)−∣−23∣,−227−3.14,−(−0.3)∣−13∣.13. 近似数2.30万精确到位.14. 若a,b互为相反数,c,d互为倒数,则a+b2+2cd=.15. 你会玩“二十四点”游戏吗?现有“2,−3,−4,5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):=24.16. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,得到的结果依次是−2,−3,3,5,从轻重的角度看,最接近标准的工件是第个.17. 点M表示的有理数是−1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.18. 如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出12+14+18+⋯+126的值.三、解答题(共5题)19. 观察下列各数,按要求完成下列各题5,−12,(−2)2,−5,∣−1.5∣,+(−2),0,−∣−0.5∣,−(−72)2(1) 将下列各数填在相应的括号里.整数集合:{ };分数集合:{ };正数集合:{ };负数集合:{ }.(2) 在数轴上表示出所有的分数.(3) 用“<”把各负数连接起来.20. 计算.(1) −20−(+14)+(−18)−(−13).(2) (14+16−12)×(−12).(3) −12024−6÷(−2)×∣−13∣.(4) [2−(1−0.5×23)]×[7+(−1)3].21. 阅读材料:计算 130÷(23−110+16−25).分析:利用通分计算 23−110+16−25 的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数是: =(23−110+16−25)÷130=(23−110+16−25)×30=23×30−110×30+16×30−25×30=10.故 原式=110.请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23).22. 某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5,+6.(1) 养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2) 养护过程中,最远处离出发点有多远?(3) 若汽车耗油量为 0.5 升/千米,则这次养护共耗油多少升?23. 如图,数轴上A,B两点分别对应有理数a,b;A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,如:∣5−(−2)∣实际上可理解为数轴上表示5与−2的两点之间的距离.利用数形结合思想回答下列问题.(1) ∣8−(−1)∣=.(2) 写出所有符合条件的整数x,使∣x+2∣+∣x−1∣=3成立.(3) 根据以上探索猜想,对于任何有理数x,∣x−3∣+∣x−8∣是否有最小值?如果有,指出当x满足什么条件时∣x−3∣+∣x−8∣取得最小值,并写出最小值,如果没有,请说明理由.答案一、选择题1. B2. C3. D4. C5. C6. C7. A8. D9. A10. C二、填空题11. 3.5×10612. <;<;<13. 百14. 215. 答案不唯一16. 117. −6或418. 6364三、解答题19.(1) 5,−12,(−2)2,+(−2),0;−5,∣−1.5∣,−(−72);25,(−2)2,∣−1.5∣,−(−72);−12,−52,+(−2),−∣−0.5∣(3) ∵∣−12∣=1,∣−52∣=52,∣+(−2)∣=2,∣−∣−0.5∣∣=0.5,∴∣−∣−0.5∣∣<∣−12∣<∣+(−2)∣<∣−52∣,∴−∣−0.5∣>−12>+(−2)>−52,∴−52<+(−2)<−12<−∣−0.5∣.20.(1) 原式=−20−14−18+13=−39.(2) 原式=−3−2+6=1.(3) 原式=−1+3×13=−1+1=0.(4) 原式=(2−1+13)×6=6+2=8.21. 原式的倒数是:(1 12−316+524+23)÷148=(112−316+524+23)×48 =4−9+10+32=37.故原式=137.22.(1) 17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米).答:养护小组最后到达的地方在出发点的北方距出发点5千米.(2) 第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5.答:最远距出发点17千米.(3) (17+∣−9∣+7+∣−15∣+∣−3∣+11+∣−6∣+∣−8∣+5+6)×0.5=87×0.5=43.5(升).答:这次养护共耗油43.5升.23.(1) 9(2) ∵∣x+2∣+∣x−1∣=3,∴x=−2,−1,0,1.(3) 对于任何有理数x,∣x−3∣+∣x−8∣有最小值.当3≤x≤8时,原式可以取得最小值,最小值为5.。

2024-2025学年苏科版七年级数学上册第一次月考模拟试卷

2024-2025学年苏科版七年级数学上册第一次月考模拟试卷

2024-2025学年苏科版七年级数学上册第一次月考模拟试卷一、单选题1.4-的倒数是( ) A .4B .4-C .14D .14-2.一批货物总重1.2×107千克,下列可将其一次性运走的合适运输工具是( ) A .一辆板车B .一架飞机C .一辆大卡车D .一艘万吨巨轮3.数轴上表示132-的点在( )A .2-与3-之间B .3-与4-之间C .3与4之间D .2与3之间4.2024年上半年江苏省13个市的GDP 中淮安市排名第二.淮安市2024年上半年GDP 大约是258700000000元,用科学记数法表示为( ) A .120.258710⨯元 B .1025.8710⨯ C .102.58710⨯D .112.58710⨯5.如图,数轴上被墨水遮盖的数可能是( )A . 3.3-B . 4.4-C .4.4D . 5.5-6.下列运算正确的是( ) A .232434⎛⎫⎛⎫÷-⨯-= ⎪ ⎪⎝⎭⎝⎭B .()41113219327⎛⎫--⨯-=- ⎪⎝⎭C .()()()22545345⎡⎤-+⨯-⨯-=-⎣⎦D .()133 3.256 3.2532.544⨯--⨯=-7.在计算()157244126⎛⎫--⨯- ⎪⎝⎭时,运用下列哪种运算律可以避免通分( )A .乘法交换律B .乘法结合律C .乘法分配律D .加法结合律8.我国古代典籍《庄子•天下篇》中曾有:“一尺之棰,日取其半,万世不竭”.现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第100次截取后,此木杆剩下的长度为( )A .1100B .10012 C .100112-D .9912二、填空题 9.﹣2的相反数是10.已知下列各数:324-,5+,0,2-,12,则正数有11.小明的妈妈上个月工资收入5000元,记为5000+元;上个月小明妈妈为家庭伙食支出4000元,记为元.12.如图:点M 、N 在数轴上,线段MN 的长度为4,若点M 表示的数为-1,则点N 表示的数为.13.已知()4540a b ++-=,求()2024a b +=14.比较大小:54-65- 15.绝对值不大于3的所有非负整数的和为.16.一个动点P 从数轴上的原点O 出发开始移动,第1次向右移动1个单位长度到达点1P ,第2次向右移动2个单位长度到达点2P ,第3次向左移动3个单位长度到达点3P ,第4次向左移动4个单位长度到达点4P ,第5次向右移动5个单位长度到达点5P L L ,点P 按此规律移动,则移动158次后到达的点在数轴上表示的数是.三、解答题17.将下列各有理数按照分类填入下面对应的大括号内:2.25-,16+,14-,4-,3.14,0,227,π4,59-.有理数数集合:{ } 整数集合:{ }; 负数集合:{ }; 分数集合:{ };18.(1) 请你在数轴上表示下列有理数:12-,| 2.5|-,0,-2²,-(-4).(2) 将上列各数用“<”号连接起来:_______________________. 19.计算:(1)11133434⎛⎫⎛⎫++--+ ⎪ ⎪⎝⎭⎝⎭(2)()()2434--+-⨯-(3)()221315.5185772⎛⎫⎛⎫⎛⎫--+++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)3336.28 4.726555⎛⎫⎛⎫⨯-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭(5)()4864÷--⎡⎤⎣⎦(6)()14181314913⎛⎫⎛⎫⎛⎫-÷+⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如下表:(超过100册的部分记为正,少于100册的部分记为负)(1)上星期借书最多的一天比借书最少的一天多借出图书多少册? (2)上星期平均每天借出多少册书?21.如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少? A :;B :;C :.(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 .(3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等?22.若定义一种新的运算“⊗”,规定有理数2a b ab a ⊗=-,如43243420⊗=⨯⨯-=.(1)求()13-⊗的值; (2)求()()421-⊗⊗-⎡⎤⎣⎦的值.23.如图,已知数轴上点A 表示的数为4,点B 是数轴上在点A 左侧的一点,且A 、B 两点间的距离为8,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B 表示的数是; (2)运动1秒时,点P 表示的数是;(3)动点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,当点P 运动秒时,点P 与点Q 相遇. 24.探究:211112222122-=⨯-⨯=, 322222222122-=⨯-⨯=, 433332222122-=⨯-⨯=,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式; (3)计算:1232019202022222++++-L .25.观察下列两个等式:1122133-=⨯+,2255133-=⨯+ 给出定义如下:我们称使等式1a b ab -=+成立的一对有理数“a ,b ”为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭都是“共生有理数对”.(1)通过计算判断数对()1,2是不是“共生有理数对”;(2)若(),m n 是“共生有理数对”,则(),n m --__________“共生有理数对”(填“是”或“不是”); (3)如果(),m n 是“共生有理数对”,且4m n -=,求()5mn-的值.。

2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷附详细答案

2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷附详细答案

2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷ー、选择题(本大题共8小题,每小题3分,共24分) 1.−13的倒数是( )A.−3B.3C.−13D.132.下列几何体从上面和左面看到的图形完全相同的是( )3.如表是几种液体在标准大气压下的沸点: 则沸点最高的液体是( )A.液态氧B.液态氦C.液态氢D.液态二氧化碳 4.一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,水面形状不可能是( )A.圆形B.长方形C.椭圆D.三角形5.如图,有三个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置.请你判断数字1对面的数字是( ) A.2 B.3 C.4 D.66.有理数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )523 4 16 第5题图624B. C.D.A.|a|−|b|<0B.−b >−aC.a+b −c <0D.abc >07.如图,半径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点0到达点0´,则点O ´对应的数是( )A.πB.2πC.2+πD.2+2π8.底部为圆柱形的密封瓶子里装着一些水如左图所示,颠倒瓶子后如右图,则瓶子的容积( )A.24πB.32πC.36πD.40π 二、填空题(共6小题,每小题3分,共18分)9.比较大小:−45______−79(用“>”“=”或“<”连接).10.一个几何体的表面展开图如图所示,则这个几何体是______.11.在图中剪去1个小正方形,使得到的图形经过折叠能够围成一个正方体,则要剪去的正方形对应的数字是______.12.已知数轴上点A 表示的数字为2,点B 到点A 的距离为6个单位长度,C 为A ,B 的中点,则点C 表示的数为______.第10题图第11题图13 24第13题图第7题图第8题图第6题图13.如图,加工一个长8cm ,宽4cm ,高6cm 的长方体铁块,选择面积最小的一个面,从该面的正中间打一个直径为2cm 的圆孔,一直贯穿到对面做成一个零件.则这个零件的体积是______cm 3.(结果保留π)14.①若|a|=a ,则a >0;②若a=b ,则|a|=|b|;③0除以任何数都得0;④若a+b=0, 则a=b=0;⑤若ab=0,则a=b=0;⑥绝对值等于它本身的数是0;⑦相反数等于它本身的数是0;⑧倒数等于它本身的数是1.以上说法正确的有______(填写序号). 三、解答题(共7小题,共58分)15.(8分)计算:(1)(−2)+3+1+(−13)+2: (2)−(−2.5)−(+2.4)+(−312)−1.616.(8分)计算:(1)(−4)×(−213)÷16×(−67) (2)−45×(−123+25−115)17.(6分)如图是由10个小正方体组合成的简单几何体,请画出该几何体从三个方向看到的形状图.18.(6分)已知|a|=5,|b|=2,且ab >0,求a+b 的值.19.(8分)中秋节是我国的传统节日,临近中秋月饼的销量大幅增加,某月饼加工店为满足市场需求,计划每天销售月饼800块,实际每天的销量与计划相比有出入,下表是某一周的销量情况(超出为+,不足为−,单位:块):(1)销量最多的一天比销量最少的一天多销售多少块月饼? (2)本周实际销量是多少?20.(10分)根据科学测定,如果高度每加1千米,气温大约降低6℃,现在某地的地从正面看面气温是22℃.(1)某飞机正飞行在该地的上空6千米处,此时飞机所在的高度的气温是多少? (2)探测到高空时气球的气温为−2℃,求气球所在处的高度.21.(12分)在数轴上点A 对应的数为−10,点B 在点A 右侧距离A 点16个单位长度,0为原点.(1)A ,B 两点的中点是______.(2)若点B 以每秒2个单位长度的速度沿数轴负方向运动,则t 秒时,点B 走到的位置所对应的数是______(用含t 的代数式表示).(3)在(2)的条件下,若点A 同时以每秒3个单位长度的速度沿数轴正方向运动,t 秒时,A ,B ,O 中有一点是三点所在线段的中点,求t 的值.2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷ー、选择题(本大题共8小题,每小题3分,共24分) 1.−13的倒数是( )A.−3B.3C.−13D.131.解:互为倒数的乘积为1,故其倒数为1÷(−13)= −3,选A 。

七年级(上)第一次月考数学试卷 (含答题卡)

七年级(上)第一次月考数学试卷 (含答题卡)

七年级(上)第一次月考数学试卷一、选择题:(本题共9小题,每小题2分,共18分)1.(2分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.(2分)﹣5的倒数是()A.B.﹣C.﹣5D.53.(2分)下面给出的四个图中,表示数轴正确的是()A.B.C.D.4.(2分)比﹣3小2的数是()A.﹣1B.﹣5C.5D.15.(2分)下列说法正确的是()A.﹣5是相反数B.互为相反数的两个数的和一定为0C.π的相反数是﹣3.14D.正数与负数的互为相反数6.(2分)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号的和的形式,正确的是()A.﹣5﹣2+3﹣9B.5﹣2﹣3﹣9C.5﹣2+3﹣9D.(+5)(+2)(﹣3)(﹣9)7.(2分)下列说法正确的是()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④有理数不是正数就是负数.A.1个B.2个C.3个D.4个8.(2分)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1 9.(2分)下列比较大小正确的是()A.﹣<﹣B.﹣(﹣21)<+(﹣21)C.﹣|﹣10|>8D.﹣|﹣7|=﹣(﹣7)二、填空题:(本题共14小题,每空1分,共24分)10.(2分)﹣2的相反数的是,倒数是.11.(2分)水位上升3米,记做+3米,水位下降2米,记作;如果运进粮食3吨记作+3吨,那么﹣4吨表示.12.(2分)化简:﹣(﹣5)=,﹣|﹣4|=.13.(1分)绝对值不大于4的所有正整数的和为.14.(1分)数轴上A点表示的数是﹣2,那么同一数轴上与A点相距3个单位的点表示的数是.15.(3分)比较两个数的大小:(1)0﹣1.8;(2);(3).16.(6分)直接写出答案:(1)|﹣3|﹣(﹣2)=(2)20﹣(﹣13)=(3)(﹣7)+(﹣16)=(4)8×0×(﹣49)=(5)42××2=(6)﹣9﹣1=.17.(1分)在0、﹣2、1、这四个数中,最大数与最小数的和是.18.(1分)若|x﹣3|+|y+2|=0,则x+y的值为.19.(1分)用科学记数法表示360000=.20.(1分)点A从原点出发,先向右移动6个单位,再向左移动5个单位,则此时点A表示的数为.21.(1分)若a和b互为相反数,c和d互为倒数,则的值是.22.(1分)观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…23.(1分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2017的点与圆周上表示数字的点重合.三、解答题:(本大题共4小题,共60分)24.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,﹣3;按照从小到大的顺序排列为.25.(36分)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)﹣﹣(﹣)+(﹣)(3)(﹣4)×2.15×(﹣2.5)(4)(﹣24)×(﹣+﹣)(5)(﹣32)÷4×(﹣8)(6)(﹣81)÷×÷(﹣16)26.(6分)对于有理数a、b,定义运算:a⊗b=a×b+(a+b),计算(﹣3)⊗4的值.27.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升?2018-2019学年江苏省徐州市铜山县马坡中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本题共9小题,每小题2分,共18分)1.(2分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.2.(2分)﹣5的倒数是()A.B.﹣C.﹣5D.5【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:B.3.(2分)下面给出的四个图中,表示数轴正确的是()A.B.C.D.【解答】解:(A)没有单位长度和原点,故A错误;(B)单位长度不一致,故B错误;(D)没有正方向,故D错误;故选:C.4.(2分)比﹣3小2的数是()A.﹣1B.﹣5C.5D.1【解答】解:﹣3﹣2=﹣5.故选:B.5.(2分)下列说法正确的是()A.﹣5是相反数B.互为相反数的两个数的和一定为0C.π的相反数是﹣3.14D.正数与负数的互为相反数【解答】解:A、应为﹣5是5的相反数,故本选项错误;B、互为相反数的两个数的和一定为0正确,故本选项正确;C、应为π的相反数是﹣π,故本选项错误;D、正数与负数是互为相反数错误,例如:+2与﹣1,故本选项错误.故选:B.6.(2分)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号的和的形式,正确的是()A.﹣5﹣2+3﹣9B.5﹣2﹣3﹣9C.5﹣2+3﹣9D.(+5)(+2)(﹣3)(﹣9)【解答】解:原式=(+5)+(﹣2)+(+3)+(﹣9)=5﹣2+3﹣9,故选:C.7.(2分)下列说法正确的是()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④有理数不是正数就是负数.A.1个B.2个C.3个D.4个【解答】解:同号两数相乘,积为正,故①错误;异号两数相乘,积取负号,故②正确;不等于0的互为相反数的两数相乘,积一定为负,故③错误;有理数不是正数就是负数,还有0,故④错误;即正确的有1个,故选:A.8.(2分)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1【解答】解:根据实数a,b在数轴上的位置,可得a<﹣1<0<1<b,∵1<|a|<|b|,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.9.(2分)下列比较大小正确的是()A.﹣<﹣B.﹣(﹣21)<+(﹣21)C.﹣|﹣10|>8D.﹣|﹣7|=﹣(﹣7)【解答】解:A、﹣<﹣;B、﹣(﹣21)=21>+(﹣21)=﹣21;C、﹣|﹣10|=﹣10<8;D、﹣|﹣7|=﹣7<﹣(﹣7)=7.故选:A.二、填空题:(本题共14小题,每空1分,共24分)10.(2分)﹣2的相反数的是2,倒数是﹣.【解答】解:﹣2的相反数的是2,倒数是﹣.故答案为:2;﹣.11.(2分)水位上升3米,记做+3米,水位下降2米,记作﹣2米;如果运进粮食3吨记作+3吨,那么﹣4吨表示运出粮食4吨.【解答】解:水位上升3米,记做+3米,水位下降2米,记作﹣2米;如果运进粮食3吨记作+3吨,那么﹣4吨表示运出粮食4吨;故答案为:﹣2米;运出粮食4吨12.(2分)化简:﹣(﹣5)=5,﹣|﹣4|=﹣4.【解答】解:﹣(﹣5)=5;﹣|﹣4|=﹣4.故答案为:5;﹣4.13.(1分)绝对值不大于4的所有正整数的和为6.【解答】解:因为绝对值不大于4的所有正整数为1、2、3,1+2+3=6,故答案为:614.(1分)数轴上A点表示的数是﹣2,那么同一数轴上与A点相距3个单位的点表示的数是1或﹣5.【解答】解:设同一数轴上与A点相距3个单位的点表示的数是x,则|x+2|=3,解得x=1或x=﹣5.故答案为:1或﹣5.15.(3分)比较两个数的大小:(1)0>﹣1.8;(2)<;(3)>.【解答】解:(1)零大于负数,得0>﹣1.8;(2)两个负数比较大小,绝对值大的数反而小,得<;(3)正数大于负数,得>,故答案为:>,<,>.16.(6分)直接写出答案:(1)|﹣3|﹣(﹣2)=5(2)20﹣(﹣13)=33(3)(﹣7)+(﹣16)=﹣23(4)8×0×(﹣49)=0(5)42××2=﹣14(6)﹣9﹣1=﹣10.【解答】解:(1)原式=3+2=5,故答案为:5;(2)原式=20+13=33,故答案为:33;(3)原式=﹣(7+16)=﹣23,故答案为:﹣23;(4)原式=0,故答案为:0;(5)原式=﹣14,故答案为:﹣14;(6)原式=﹣10,故答案为:﹣10.17.(1分)在0、﹣2、1、这四个数中,最大数与最小数的和是﹣1.【解答】解:在有理数0、﹣2、1、中,最大的数是1,最小的数是﹣2;它们的和为﹣2+1=﹣1.18.(1分)若|x﹣3|+|y+2|=0,则x+y的值为1.【解答】解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.19.(1分)用科学记数法表示360000= 3.6×105.【解答】解:用科学记数法表示360000=3.6×105.故答案为:3.6×105.20.(1分)点A从原点出发,先向右移动6个单位,再向左移动5个单位,则此时点A表示的数为1.【解答】解:由题意可得,0+6﹣5=1,故答案为:1.21.(1分)若a和b互为相反数,c和d互为倒数,则的值是﹣2016.【解答】解:根据题意得a+b=0、cd=1,则原式=0﹣2016=﹣2016,故答案为:﹣2016.22.(1分)观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.23.(1分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2017的点与圆周上表示数字0的点重合.【解答】解:由图可知,每4个数为一个循环组依次循环,∵2017÷4=504…1,∴表示﹣2017的点是第505个循环组的第1个数0重合,故答案为:0.三、解答题:(本大题共4小题,共60分)24.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,﹣3;按照从小到大的顺序排列为﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).【解答】解:如图所示:,则﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).故答案是:﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).25.(36分)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)﹣﹣(﹣)+(﹣)(3)(﹣4)×2.15×(﹣2.5)(4)(﹣24)×(﹣+﹣)(5)(﹣32)÷4×(﹣8)(6)(﹣81)÷×÷(﹣16)【解答】解:(1)原式=(﹣2)+(﹣3)+(﹣1)+6=﹣6+6=0;(2)原式=+﹣﹣=1﹣=;(3)原式=4×2.5×2.15=10×2.15=21.5;(4)原式=18﹣4+15=29;(5)原式=32÷4×8=64;(6)原式=81×××16=1296.26.(6分)对于有理数a、b,定义运算:a⊗b=a×b+(a+b),计算(﹣3)⊗4的值.【解答】解:∵a⊗b=a×b+(a+b),∴(﹣3)⊗4=(﹣3)×4+(﹣3+4)=(﹣12)+1=﹣11.27.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升?【解答】解:(1)﹣3+(﹣4)+7+(﹣5)+8+3+(﹣8)=﹣2(千米).答:最后一名老师送到目的地时,小王距出车地点的距离是2千米;(2)0.3×(3+4+7+5+8+3+8)=0.3×38=11.4(升).答:这天下午汽车共耗油11.4升.2018-2019学年江苏省徐州市铜山县马坡中学七年级(上)第一次月考数学试卷答题卡一、选择题:(本题共9小题,每小题2分,共18分)(请用2B铅笔填涂)二、填空题:(本题共14小题,每空1分,共24分)(请在各试题的答题区内作答)三、解答题:(本大题共4小题,共60分)(请在各试题的答题区内作答)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7(8分).各工程队完成某项工程天数和日工资如下表:
工程队
独做天数日工资(元)甲201800乙
30
1100

40
800
(1)请你选两个队合作完成这项工程,如工期很紧,想尽快完工,应选哪两个队,需几天?
(2)如果工期不很紧,而且想节省费用,应该选哪两个队,需几天完工?
8.(6分)出租车司机小李下午出车,沿东西方向行走,如果规定向东为正,向西为负,他这天下午行车里程(单位㎞)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6,-4
A、35 B、42C、30 D、无法确定
二.填空题(3×8=24分)
11.(___)÷6=6∶(____)=1 =(____)%
12.我校操场长120米,宽100米.在平面图上用10厘米的线段表示操场的宽,该图的比例尺是(_______),平面图上操场的长应画(______)厘米
13.今年植树节,同学们种植了180棵树,有20棵没有成活,后来大家补种了20棵,全部成活。今年同学们植树的成活率是(_______).
16.观察排列规律,填入适当的数: 第100个数是_________
17.某种细菌在培养过程中,每半小时分裂一次(由1个分裂成2个,2个分裂成4个……),若这种细菌由1个分裂成128个,那么这个过程需要经过_________小时
18.如果上升3米记作+3,那么下降3米记作,不升不降记作.
三解答题(共66分)
七年级上数学第一次月考
一.选择题(3×10=30分)
1. 的相反数是()
A B C D 2
2.下列说法中,正确的是()
A在数轴上表示 的点一定在原点的左边;
B两个有理数绝对值大的反而小;
C一个数的相反数一定小于或等于这个数;
D如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零.
3.如果 ,那么 之间的大小关系是()
A B C D
4.已知: 则 的值是()
A B C D 1或7
5.已知:A和B都在同一条数轴上,点A表示 ,又知点B和点A相距5个单位长度,则点B表示的数一定是( )
A 3B C 7或 D 或3
6在 中,负数共有( )
A 4个B 3个C 2个D 1个
7.有一批同样的地砖,长45cm,宽30cm,若铺成正方形地面,则至少用()块这样的地砖
14.小芳在用计算器计算“14.9×73”时,发现计算器的小数点键坏了,你还能用这个计算器把正确的结果算出来吗?请把你想到的方法用算式表示出来:______________________
15.已知A比B大;C比D大且比E小;D比B大;E比A小。这五个字母按从小到大的顺序排列是:___<___<____<____<____.
A 45B30C 6D 12
8.甲班人数的 等于乙班人数的 ,甲乙两班人数的比是().
A、 : B、9:8C、8:9 D、无法确定
9.右图中,瓶的下部是圆柱且瓶底的面积和锥形杯口的
面积相等,将瓶子中的液体倒入锥形杯子中,能倒满()杯。
A、2 B、3C、6 D、12
10.右图平行四边形的高是6厘米,它的面积是()平方厘米。
4(6分).学校去买桌椅。如果全买桌子可买15张;如果全买椅子可买20把,如果一张桌子2把椅子为一套,学校可买几套?
5(6分).请你把 这五个数按从小到大顺序,从左到右串个糖葫芦,把数填在“○”内,再把这五个数的相反数在数轴上表示出来.
6.(6分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。请利用数轴回答下列问题:
1.计算:(4×6=24分)
① ②
③ ④
⑤ ⑥求未知数x; : = :X
2.(5分)用汽车运一批货物,第一次运走总数的 ,第二次运走总数的 ,第三次运走75吨,还剩下15吨,这批货物共有多少吨?
3(5分).六年级(1)班参加义务劳动,计划派16名同学去植树,平均每人要植3棵,后来增加了一些同学,这时平均每人只需植树2棵。问增加了多少名同学?
(1)将最后一位乘客送到目的地时,小李离下午出发地有多远?
(2)若汽车的耗油量为一千米为0.25升,这天下午小李将最后一位乘客送到目的地后返回出发地共耗油多少升?
①如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A、B两点间的距离是_______
②如果点A表示数3,将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A、B两点间的距离是_______
③一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,请你猜想终点B表示的数是_______,A、B两点间的距离是_______
相关文档
最新文档