安培环路定理
2安培环路定理
v B1
v B2
v d l1
r1
dα
v dl2
θ1
I
●
r2
2
o θ
L
v v µ0I B2 ⋅ dl2 = − dα 2π
v µ0I v B 1 ⋅ d l1 = dα 2π v v µ0I B2 ⋅ dl2 = − dα 2π
v B1
v B2
L1
L
µ0 I
0
(闭合回路包围电流) 闭合回路包围电流) 闭合回路不包围电流) (闭合回路不包围电流)
表明:沿闭合环路的线积分,等于穿过以闭合环路 表明:沿闭合环路的线积分, 为边界的所围曲面的所有电流的代数和乘以 为边界的所围曲面的所有电流的代数和乘以 代数和
µ0
如果闭合回路不在垂直长直电流平面内, 如果闭合回路不在垂直长直电流平面内, 情况又如何? 情况又如何?
r r ∫ B ⋅ d l ≠ 0 说明稳恒磁场不是保守场
L
——磁场是“有旋场” 磁场是“有旋场” 磁场是
例:如图,流出纸面的电流为 2I , 如图, 流进纸面的电流为 I , 则下述各式中那一个是正确的? 则下述各式中那一个是正确的 r r r r (B) ∫ L 2 B ⋅ d l = µ 0 I (A) ∫ L B ⋅ d l = 2µ0 I r r r r (C) ∫ L B ⋅ d l = − µ0 I (D) ∫ L B ⋅ d l = − µ 0 I
如图, 如图,闭合曲线 L 不在垂直直电流的平面内
L
o
v dl||
v dl
v dl⊥
v v v dl = dl|| + dl⊥
L⊥
安培环路定理
无限长圆柱面电流,圆柱外磁场分布与电流集中在轴线上的 直线电流产生的磁场相同;圆柱内处处磁场为0。 B分布曲线为:
I
B
0 I 2R
R
1
r
B0
0 I 1 B 2r r
2
r
L
o
R
r
例 15.7 一环形载流螺绕环,匝数为
N ,螺绕环轴线半径为R ,通有电 流 I ,求管内磁感应强度。
分析对称性,作积分回路如图 计算环流
Bdl I
0 l
i
B
空间所有电流共同产生 在场中任取的一闭合线 L绕行方向上的任一线元 环路所包围的电流 与L套连的电流
L dl
I3
I1
Ii
L
I 2 dl
电流分布
比较
静电场
?
l
磁 场
E dl 0
l
Bdl I
0 i
i
电场有保守性,它是 保守场,或有势场.
环管内截面上宽为dr、高为h的一窄条面积通过的磁通量为:
0 NIh d Bhdr dr 2r
0 NIh R 1 0 NIh R2 dr ln 全部截面的磁通量为: d R 2 r 2 R1
2 1
本次课结束
课后作业
15.7 15.15
谢谢!
15.15 在长直导线近旁放一矩形线圈与其共面,线圈各边分别平 行和垂直于长直导线。线圈长度为l,宽为b,近边距长直导线距 离为a,长直导线中通有电流I。当矩形线圈中通有电流I1时,它受 到的磁力的大小和方向如何?它又受到多大的磁力矩?
磁场没有保守性,它是 非保守场,或无势场.
1 E d S qi 0 S
安培环路定理
I )=0
二、 环路定理的应用
1. 载流长直螺线管内的磁场
. . . . . . . . . . . . . a d b c B
∫ l B. dl = ∫abB . dl + ∫bc B . dl + ∫cd B . dl+ ∫daB . dl = ∫abB . dl + 0 + 0 + 0 = ∫abB dl cos 0
由几何关系得: 由几何关系得:
L
O
r dϕ = dl cos θ µoI B= 2 r π
.
I r dl
dϕ
P
r B
θ
r dl
∫ l B . dl = ∫l B cosθ
=
∫l B r dϕ
µoI µoI r dϕ = 2 π 2π r
=∫
∫0
2 π
d ϕ =µ o I
安培环路定理: 安培环路定理:磁感应强度矢量沿任意闭合 路径一周的线积分等于真空磁导率乘以穿过 穿过闭合 路径一周的线积分等于真空磁导率乘以穿过闭合 路径所包围面积的电流代数和 电流代数和。 路径所包围面积的电流代数和。
∫ l B . dl =µ Σ I
o
电流和回路绕行方向 构成右旋关系的取正值
电流 I 取负值 I
向 方 绕 行
I
向 行方
绕
I2
I1
I I
l2
I
l3
l1
(a) (a)
(b)
1
(b)
(c)
o
∫l B . dl = µ
∫l B . dl = 0
2
(I 1 I 2 )
(c)
∫l B . dl = µ
《大学物理》安培环路定理
根据安培环路定理得
B 2r
0
r2 R2
I
B
0I 2R
B
0 2
I R2
r
r
O
R
(r<R) 载流圆柱体的磁场分布曲线
ll.7 安培环路定理
例4 载流螺绕环的磁场分布。 所谓螺绕环,就是将细导线N匝密绕在内径为R1,
外径为R2的圆环上(如图所示)。接通稳恒电流I, 求环内外的磁场分布。
解 在圆环轴线所在平面内,
b B dl d B dl 0
d
c B dl 0
ll.7 安培环路定理
b
LB dl a B dl B l
穿过矩形环路的电流强度: Ii I n l
安培环路定理:
B dl L
o Ii
B l 0I nl
B 0nI
ll.7 安培环路定理
例2 计算无限长载流圆柱体的磁场。设圆柱体 导线的半径为R,轴向电流I均匀地通过导线横截面。
取半径为r的圆周L为环路,
方向如图。
(1)当 r>R2 (2) 当 r<R1 (3)当R1<r<R2
B=0 B=0
R2 R1 r
环路 L 磁感应线
ll.7 安培环路定理
B dl B dl B2r 0 NI
L
L
B 0 NI 2r
0
B
0 NI
2r
0
r R1 R1 r R2
r R2
i 1
ll.7 安培环路定理
2.环路L不围绕电流I
B dl B' dl ' B cosdl B' cos 'dl '
0I 2r
rd
大学物理10.4安培环路定理及其应用Xiao
实验设备与材料
01
02
磁场测量仪
用于测量磁场强度和方向。
导线
用于产生电流,形成磁场。
03
电源
为导线提供电流。
04
磁力计
用于测量磁力大小。
实验步骤与操作
步骤2
连接电源,使导线通电,产生 电流。
步骤4
使用磁力计测量导线受到的磁 力大小。
步骤1
将导线绕制成一定形状,如圆 形或矩形,并固定在实验台上。
步骤3
02
安培环路定理的数学表达式为: ∮B·dl = μ₀I,其中B表示磁场强度, dl表示微小线段,I表示穿过曲线的 电流,μ₀表示真空中的磁导率。
安培环路定理的推导过程
安培环路定理的推导基于电磁场的基 本理论,通过应用高斯定理和斯托克 斯定理,结合电流连续性和电荷守恒 定律,逐步推导出安培环路定理。
大学物理10.4安培环路定理及其 应用
目 录
• 安培环路定理的概述 • 安培环路定理的应用场景 • 安培环路定理在实践中的应用 • 安培环路定理的实验验证 • 安培环路定理的扩展与思考
01 安培环路定理的概述
安培环路定理的定义
01
安培环路定理是描述磁场与电流 之间关系的物理定理,它指出磁 场对电流的作用力与电流分布及 路径有关。
03
电磁场仿真
安培环路定理是电磁场仿真的基础之一,通过仿真软件实现安培环路定
理的算法,可以模拟电机的电磁场行为,预测电机的性能,并为实际电
机设计提供理论依据。
电磁场仿真软件的安培环路定理实现
有限元法(FEM)
有限元法是一种常用的电磁场仿真方法,通过将连续的电磁场离散化为有限个小的单元,并应用安培环路定理进行求 解。这种方法可以处理复杂的几何形状和边界条件,得到高精度的仿真结果。
安培环路
B d l B d cos l Brd 0I 0 I d B dl rd 2π 2πr
d
l
I
dl
B
r
I r1
r2
l
B d l B d l 0 1 1 2 2 结论: d l 0 B
l
(3) 多电流情况
I1
B 0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场为零.
2、求无限长载流圆柱导体内外的磁场。设圆柱体半 径为R,面上均匀分布的总电流为I。 I
解:沿圆周L的B环流为
(L )
R
I d l B 2 r 0 内 B
dB
P
dB d B
当 r R 时 , I I B 2 r I 内 0 0I B 2 r I 2 当 r R 时 , I r 内 2 R r2 I 0 B2 r I B r 0 2 2 R 2 R
d l I 0 B
l
R
l
I
B
若电流反向时,则:
I 0 l B dl 2πRl dl 0I
对任意形状的回路 B 0 I 2 r
I
l 2 I 0 B d l d 结论: B d l I 0 l 0 l 2 0I 0 I (2) 闭合曲线不包围长直电流: B2 B1 B2 2 π r2 2 π r1 B1 μ μ 0I 0I B d l1 d φ B dφ l2 d φ 1 2 d dl 2 π 2 π 2 dl1
dB1
解 1)对称性分析 2)选取回路 设:面电流密度为j
d dB
P
安培环路定理
安培环路定理
安培环路定理,又称为安培定理或安培第二定理,是电磁学中的一条重要定理,描述了由电流所产生的磁场的性质。
它是由法国物理学家安德烈-玛丽·安培在19世纪初提出的。
安培环路定理是基于麦克斯韦方程组中的一个方程,可以用来计算磁场的强度。
根据该定理,通过电流所形成的磁场的磁感应强度H,沿着任意封闭曲线所围成的面积S的总磁通量Φ,与该封闭曲线所围成的电流之间的关系为:
∮H·dl = ∫∫S B·dS = Φ
其中,H是磁场的强度,dl是沿着闭合曲线的微元路径元素,B是磁感应强度,dS是平面面元素,Φ是通过该曲线所围成的面积的磁通量。
安培环路定理本质上是一个积分方程,可以通过对曲线的路径和曲面的选择来灵活地应用。
根据闭合曲线的选择不同,可以得到更方便的计算磁场的方法。
通常情况下,选择封闭曲线为简单的几何形状,例如圆形、矩形或直线,可以大大简化计算的过程。
安培环路定理的应用广泛,可以用于解决与电流所产生的磁场相关的问题。
例如,在电磁铁中,可以利用安培环路定理计算铁芯的磁场分布;在电感器中,可以通过该定理计算电感量。
此外,还可以利用安培环路定理推导出其他电磁学中的重要定理,如磁场的叠加定理和比奥-萨伐尔定律等。
综上所述,安培环路定理是电磁学中的一条基本定理,描述了电流所产生的磁场的性质。
通过应用安培环路定理,可以方便地计算出磁场的强度和分布,解决各种与电流和磁场相关的问题,为电磁学的研究和应用提供了重要的理论基础。
安培环路定理
(1)管内:取L矩形回路 abcda
边在轴上,两边与轴平行,另
aP b
两个边垂直于轴。
LB dl Bab ab Bcd cd Bab ab
e
Q
f
0I 0nI ab
d
c
∞
B内 onI 其方向与电流满足右手螺旋.
(2)管外 :
取回路efbae同理可证,无限长直螺线管外任一点的磁场为
A(rQ )
0I 2
ln
r Q
r P
A(rP )
A(rQ
)
0I 2
ln
r Q
r
-I
r P
P
两式相加,得:
A(rP )
A(rQ )
0I 2
ln
rQ rP
rP rQ
0I 2
ln
rP rP
A(rP )
A(rQ )
0I 2
ln
r P
r P
若选Q点的矢势为零,则
A(rP )
0I 2
ln
r P
r P
例2.一无限长载流圆柱导体,半径为R, 电流I均匀分布
ldr
0I 2
l
ln
rQ r
A(rP ) A(rQ )
0I 2
ln
rQ rP
+I
Q
若选Q点的矢势为零,则
A(rp
)
0I 2
ln
rQ rP
r P
注意:若选Q点在无穷远处或导线
上,磁矢势将无意义.
讨论:两根平行的载流直导线,电流大 小相等方向相反,求磁矢势.
选Q点在两直线电流之间垂线的中点处.
A(rP )
B dS 0
安培环路定理
小结
s B dS s BdS cos
二、磁场的高斯定理
S B dS S BdS cos 0
三、安培环路定理
B dl
L
0
Ii
i
四、利用安培环路定理求磁场
自己总结几种常见磁场公式(长直、圆环或盘、螺线管等)
B1
μ0 Jr 2
a
B1
J
B2 b O M O
dJ
B2 dl B2 2π(d r) 0π(d r)2 J
B2
μ0 J(d 2
r)
M点磁感强度为 B = B1+B2
B
B1
B2
μ0 Jd 2
方向垂直两轴线联线。从上式可见两轴联线上各点的
磁感强度B大小和方向均相同。
(2) 证明:设N为腔内任一点, 由安培环路定理分别求得
讨论: 如图所示一段导线可以用安培环路定理求出B吗?
B dl
L
θ1 θ2 / 4
L
0I
4a
cos1
cos
2
dl
0I 2 2 2a
4a 2
I
2
a L 1
0 2I
2
0I
☆ 安培环路定理只适用于闭合的载流导线(或无限
长),对于任意设想的一段载流导线不成立!!
⑤安培环路定理揭示了磁场的基本性质,磁场是涡旋 的,而电流是磁场涡旋的中心。磁场是无源有旋场, 是非保守场,故不能引入势能的概念。
μ 0
I
2πr
r
B
如图示,当 r 时R
作积分回路如图
则B沿该闭合回路的环流为:
B
l
dl
Bdl
l
2πrB B
μ 0
I
11.4 安培环路定理
...............
a
I nabI
B 的环流为:
b
B
B外 0
d
c
B dl
b
a
B dl B dl B dl B dl
b c d
c
d
a
bc与da:
B dl , cos 0
...............
a
B dl B dl 0,
10.4
磁场的安培环路定理
安培 (Ampere, 1775-1836)
安培:法国物理学家,电动力学的创始 人。1805年担任法兰西学院的物理教授, 1814年参加了法国科学会,1818年担任 巴黎大学总督学,1827年被选为英国皇 家学会会员。他还是柏林科学院和斯德 哥尔摩科学院院士。 安培在电磁学方面的贡献卓著,发现了 一系列的重要定律、定理,推动了电磁 学的迅速发展。1827年他首先推导出了 电动力学的基本公式,建立了电动力学 的基本理论,成为电动力学的创始人。
b d
c
a
b
B
螺线管外B =0;
d
c
B dl 0
b
d
c
B dl B dl Bab 0 I 0nabI a
B 0nI
密绕载流直螺线管的磁场
例4:一环形载流螺线管,匝数 为N,内径为R1 ,外径为R2 ,通 有电流I,求管内磁场分布及螺绕 环内的磁通量。P80习题11.4
写成
Bdl cos B dl I
L
0
L
B
0 I
dl
要求环路上各点 B 大小相等,B 的方向与环 路方向一致, B // dl , cos 1 或垂直 B dl , cos 0
第二十讲:§6.4磁场的安培环路定律
第二十讲: §6.4磁场的安培环路定理一、安培环路定理;是磁场与电流之间相互作用的基本定律之一 1、表述:在稳恒磁场中,B 沿任意闭合回路的积分等于该闭合回路所包围的电流的代数和乘以0μ 。
2、表达式:∑⎰=⋅iI d B 0μ两点说明:①∑i I 虽是闭合回路内所环绕的电流,且满足右手螺旋法则。
但是B 是与闭合回路内外电流有关,即B 是闭合回路内外电流共同作用的结果。
环路外的电流对 d B L ⋅⎰无贡献。
②当B 无对称性时,安培环路定理仍成立,只是B 不能提到积分号外面来,所以,利用安培环路定理不能求解B ,必须利用比-萨定律及叠加原理来进行求解。
二、安培环路定理的应用1、无限长圆柱载流导体的磁场分布∑⎰=⋅iI d B 0μR r :20122122RIr B r RIr B πμππμπ=⇒=⋅Rr :rI B I rB πμμπ220202=⇒=⋅☆如果是无限长圆面载流导体的磁场分布∑⎰=⋅iI d B 0μR r :00211=⇒=⋅B r B πRr :rI B I rB πμμπ220202=⇒=⋅2、长直载流螺线管内的磁场分布∑⎰=⋅iI d B 0μd B d B d B d B d addccbba⋅+⋅+⋅+⋅=⋅⎰⎰⎰⎰⎰BnIB I ab n ab B abd B 00B μμ=⇒=⇒=⋅⎰电流数密度:单位长度的电流数。
3、载流环形螺线管内的磁场分布∑⎰=⋅iI d B 0μr 2B d B Lπ==⋅⎰⎰d BnII rN B NI r 00022B μπμμπ==⇒=小结:磁场的安培环路定理 作业:P253预习:§6.5 磁场对运动电荷和载流导线的作用第二十讲: §6.4磁场的安培环路定理 作业:P2536-15 (1)a r <,由安培环路定理可得201220122aIrB raI r B πμππμπ==(2)b r a <<rIB Ir B πμμπ220202==(3)c r b <<)(2)()()(222220302222222203b c r r c I B I b c rc b c b r I I r B --=--=⎥⎦⎤⎢⎣⎡---=πμμππμπ(4)0,4=>B c r6-16 (1)如图示,过P 点作一半径为r 的圆形回路,圆心为O ,由安培环路定律可得 rNIB NI u r B πμπ2,200==故绕线环内磁感强度B 的大小与径向距离r 成反比。
安培环路定理
安培环路定理什么是安培环路定理?安培环路定理(Ampere’s Circuital Law),简称「安培定理」,是电磁学中的一个重要定理。
它描述了在电流通过的闭合回路周围所产生的磁场的性质。
安培环路定理是电磁学理论中的基础之一,为理解和推导电磁现象提供了重要的工具。
安培环路定理的表述安培环路定理可以用以下的数学表达方式来描述:∮ B · dl = μ₀ · I其中,左边是磁场强度(B)沿闭合回路的环路积分,右边是穿过该闭合回路的电流(I)乘以真空磁导率(μ₀)。
安培环路定理的原理安培环路定理的原理是基于磁场的环流与通过该闭合回路的电流之间的关系。
根据安培环路定理,磁场强度沿一个闭合回路的环路积分等于穿过该闭合回路的总电流。
这个原理可以通过法拉第定律和电流的产生方式来理解。
根据法拉第定律,变化的磁场会产生电流。
当通过一个闭合回路的电流发生变化时,它会产生一个变化的磁场。
根据安培环路定理,通过这个闭合回路的环流与产生的磁场有直接关系。
通过积分环路上的磁场求和,我们可以得到与通过闭合回路的总电流相等的结果。
安培环路定理的应用安培环路定理在电磁学中的应用非常广泛。
它可以用于解决许多关于磁场和电流之间相互作用的问题。
1. 计算特定位置的磁场强度通过安培环路定理,我们可以计算在给定位置的磁场强度。
通过选择一个合适的闭合回路,并测量通过该回路的电流,可以通过安培环路定理计算出该位置的磁场强度。
2. 推导磁场分布通过运用安培环路定理和其他相关定理,我们可以推导出复杂电流分布下的磁场分布。
这对于设计和分析电磁装置,如电机和电感器,非常重要。
3. 求解电流分布在某些情况下,已知磁场分布和闭合回路上的磁场强度分布,我们可以使用安培环路定理求解闭合回路上的电流分布。
结论安培环路定理是电磁学中的一个基本定理,描述了闭合回路周围产生的磁场与通过该回路的电流之间的关系。
它广泛应用于计算特定位置的磁场强度、推导磁场分布和求解电流分布等领域。
10-4 安培环路定理
L
r
μ0 I 2 π rB 0 I , B 2πr 2 πr I 0 r R : l B d l 0 2 πR 2 0 r μ0 Ir 2 π rB 2 I , B 2 R 2π R
B
dB
I
.
dI
B
11
10.4 安培环路定理
B
第10章
稳恒磁场
r R, B d l 0 I
l
B0 0 I B 2π r
13
10.4 安培环路定理
例:求无限大平面电流的磁场。 解: 面对称。 B B dl ab dl bcB dl B dl B dl
10.4 安培环路定理
2 ) 选回路
第10章
稳恒磁场
L。
M N +++ + + + ++++++ L O P
磁场 B 的方向与
电流
B
I 成右螺旋。
MN NO
B d l B d l B d l B d l B d l
10.4 安培环路定理
第10章
稳恒磁场
I
o
B
r
若回路绕向变为逆时针时,则:
dl
L
μ0 I LB d l L 2πr dl
L 与 I 成左螺旋
0 I
2π
2π
0
d
0 I
dl rdθ
3
10.4 安培环路定理
第10章
稳恒磁场
包围电流正负的判断 : 即:右手拇指伸直,弯曲四指与闭合路径 L 的 方向一致时,拇指的指向即为电流的正方向。 I1 I2 L
大学物理——11.4安培环路定理
R1 ≈ R2 = R
r≈R
dHale Waihona Puke N B = µ0 I = µ 0 nI 2π R
注意:密绕细螺线管内部为匀强磁场。 注意:密绕细螺线管内部为匀强磁场。 匀强磁场
R
思考:钜形横截面的圆环形均匀密绕螺绕环? 思考:钜形横截面的圆环形均匀密绕螺绕环?
矩形截面
无限长载流直螺线管内的磁场. 例11.8 无限长载流直螺线管内的磁场
+++ + + + ++++++ N O M
2) 选回路 L
L
P
B = µ 0 nI
如图所示, 例11.9 如图所示,一无限大导体薄平板垂直于纸 面放置,其上有方向指向读者的电流, 面放置,其上有方向指向读者的电流,面电流密度 即通过与电流方向垂直的单位长度的电流) (即通过与电流方向垂直的单位长度的电流)到处均 求其磁场分布. 匀,大小为 I ,求其磁场分布.
解:
ab = cd = l
a b c d
∫
L
v v b v v c v v d v v av v B ⋅ dl = ∫ B ⋅ dl + ∫ B ⋅ dl + ∫ B ⋅ dl + ∫ B ⋅ dl = µ0lI
∴
2 Bl = µ0lI
1 B = µ0I 2
以上结果说明: 以上结果说明:在无限大均匀平面电流两侧的磁场 结果说明 是匀强磁场,且大小相等、方向相反. 是匀强磁场,且大小相等、方向相反.其磁感应线在 无限远处闭合,与电流亦构成右螺旋关系. 无限远处闭合,与电流亦构成右螺旋关系.
L 包围的电流指穿过以 L 为边界的任意曲面的电流。 包围的电流指穿过以 为边界的任意曲面的电流 的电流。 S3 S2 S1 L
安培环路定理
结论
所以有: 从载流直导线中心O出发,可以作许多条射线,将环路分割成许多成对的线元,磁感强度对每对线元的标量 积之和,都有上式的结果,故即环路不包围电流时,B的环流值为零。 安培环路定理反映了磁场的基本规律。和静电场的环路定理相比较,稳恒磁场中B的环流,说明稳恒磁场的 性质和静电场不同,静电场是保守场,稳恒磁场是非保守场。
微分形式
根据开尔文-斯托克斯定理,这方程也可以写为微分形式。只有当电场不含时间的时候,也就是说,当电场 对于时间的偏微分等于零的时候,这方程才成立。采用国际单位制,这方程表示为
。 磁场的旋度等于(产生该磁场的)传导电流密度。
缺点
缺点
原版安培定律只适用于静磁学。在电动力学里,当物理量含时间,有些细节必须仔细检查。思考安培方程, ;
简介
积分形式
微分形式
ห้องสมุดไป่ตู้分形式
电流I在一个曲面上的通量,等于B场沿着的边缘闭合回路的路径积分。采用国际单位制,原版安培定律的积 分形式可以写为:
。
请注意到这方程有些模糊之处,需要特别澄清: 第一,边界曲线的正向与曲面的侧符合右手规则。 第二,(固定 )定理之成立与以为边界的的选择无关。
安培定律可由毕奥-萨伐尔定律和磁场的叠加性证明(请参阅毕奥-萨伐尔定律)。在静磁学中,安培定律的 角色与高斯定律在静电学的角色类似。当系统组态具有适当的对称性时,我们可以利用这对称性,使用安培定律 来便利地计算磁场。例如,当计算一条直线的载流导线或一个无限长螺线管的磁场时,可以采用圆柱坐标系来匹 配系统的圆柱对称性。
证明方法
对称环路 任意环路
不包围电流 结论
对称环路
在垂直于长直载流导线的平面内,以载流导线为圆心作一条半径为r的圆形环路l, 则在这圆周上任一点的磁感强度H的大小为 其方向与圆周相切.取环路的绕行方向为逆时针方向,取线元矢量dl,则H与dl间的夹角,H沿这一环路 l 的环流为 式中积分是环路的周长。 于是上式可写成为 从上式看到,H沿此圆形环路的环流只与闭合环路所包围的电流I有关,而与环路的大小、形状无关。
安培环路定理
r
l
(4)
dl
l
B dl B 2 π r
I
i
i
I
(5)
B 2 π r 0 I
0 I B 2πr
太原理工大学大学物理
例1 求无限长载流圆柱面的磁场 解:(1)对称性分析
将圆柱面分为无限多窄条,每 个窄条可看作电流dI的无限长直 导线 p点的磁场的大小与r有关, 方向与r垂直。 (2)选合适的环路:在垂直于 轴线的平面内,选择半径r的圆形 L1 环路L,环路正方向如图。 太原理工大学大学物理
2π R
B
o R
r
B—r曲线如图。 太原理工大学大学物理
3.载流长直密绕螺线管内的磁场 已知:螺线管载流I,单位长度匝数n 求:管内B大小 a b 解: (1)分析磁场 d ‘ b ‘ ++++++++++++ L c 长直螺线管内 B ∥轴线, d 螺线管外 B 0 。 (2)过场点作一矩形回路L,且L与I成右手螺旋关系。 (3)计算
同理:当
rR
时
I
r
L
R
I I 2 2 Ii 2 π r 2 r πR R i
0 r 2 B2πr 2 I R
0 Ir 2 π R2 B 0 I 2 π r
0 Ir B 2π R 2
故均匀载流长圆柱体的磁场
(r R) (r R)
0 I
0 NI B 2πr
(r R1 , r R2 ) 0 故载流密绕螺绕环磁场 B 0 NI ( R1 r R2 ) 2πr 讨论:
1)若R2- R1=d<<r,环内各点 B近似相等,则n=N/2πr
安培环路定理
线密绕
B外 0
无限长:1 、2 面上对应点 等价,
// 轴任一直线上各点 B
大小相等,方向沿轴 16
I12
B
作矩形安培环路如图,
b
a
c
d
规定: +
2
§11.4 安培环路定理
一.安培环路定理的表述
1、以无限长直电流的磁场为例分步验证
a: 在垂直于长直载流导线的平面内,取以导线与平面交
点o为圆心,r为半径的圆周路径L,其指向与电流成
右旋关系。
LB
dl
L
0
2
I r
dl
Байду номын сангаас
cos0
I 0
2 r
2
0
r
dl
I 0
I
L
( I穿过L) ( I不穿过L)
I L dL
O dL dL〃
O'
L'
dL〃
6
f: 推广:
长直电流
任意形状的稳恒电流
空间存在若干个闭合稳恒电流时,由磁场叠加原理
LB dl
L(
B 1
B 2
B n
)
dl
LB1 dl LB2 dl LBn dl
12
[例一] 无限长均匀载流圆柱体 I , R 内外磁场.
IR
o r P
L
dB'
L
o
dIr dI'
dB
P
对称性分析:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凡有电荷的地方,必有电场线从那里发出或汇聚 安培环路定理反映了电流以涡旋的方式激发磁场,凡
有电流地方,其周围必围绕着闭合的磁感应线
静电场
E dl 0
l
电场有保守性,它是 保守场,或有势场
E
S
dS
1
ε 0
解 (1) 导体中的电流密度为
J I π (a2 b2)
a
B1
J
B2 b O M O
dJ
利用补偿法
半径为a的实心圆柱体在M点产生的磁感强度为B1,半 径为b的实心圆柱体在M点产生的磁感强度为B2,其上 通过的电流方向相反,电流密度相同。
磁感强度用安培环路定理计算
r
设M点到O点的距离为r,
a
B1
vv
11.6 安培环路定理
11.6.1 安培环路定理 11.6.2 安培环路定理的应用
一、安培环路定理
在真空中的稳恒电流磁场中,磁感应强度B 沿任意 闭合曲线的线积分(也称B 的环流),等于穿过该积分 回路的所有电流强度的代数和的 倍0 。
B dl 0I 与环路成右旋关系的电流取正
L
例:
I4
B dl μ0(I1 I2 2I3)
3)计算 r
I ri
Ñ 4)由
B dl
L
0
I 求B i
1:“无限长”载流圆柱导体内外磁场的分布 已知:I 、R,电流沿轴向在截面上均匀分布
电流及其产生的磁场具有轴对称分布
I
作积分回路如图
R
r R
则B沿该闭合回路的环流为:
B dl Bdl 2πrB
l
l
根据安培环路定理:
B
dl
μ 0
I
l
则:B
μ 0
I
2πr
r
B
如图示,当 r 时R
作积分回路如图
则B沿该闭合回路的环流为:
B
l
dl
Bdl
l
2πrB B
μ 0
I
根据安培环路定理: 2πR
B
dl
μ 0
I
l
μI 0πR
πr
2
2
则:B
μ 0
Ir
2πR 2
0I Bo
2π R
oR
I
R
I
r
R
r
讨论:无限
长圆柱面电
流I 的磁场
r
练习题:同轴的两无限长 筒状导线通有等值反向的 电流I,求其磁场分布。
讨论: 如图所示一段导线可以用安培环路定理求出B吗?
θ1 θ2 / 4
B dl
L
L
0I
4a
cos1
cos
2
dl
0I 2 2 2a
4a 2
I
2
a
L 1
0 2I
2
0I
☆ 安培环路定理只适用于闭合的载流导线(或无限
长),对于任意设想的一段载流导线不成立!!
⑤安培环路定理揭示了磁场的基本性质,磁场是涡旋 的,而电流是磁场涡旋的中心。磁场是无源有旋场, 是非保守场,故不能引入势能的概念。
qi
电场线起于正电荷、
止于负电荷。
静电场是有源场
稳恒磁场
B
dl
μ 0
I
i
l
磁场没有保守性,它是 非保守场,或无势场
B dS 0
S
磁感应线闭合、 稳恒磁场是无源
场
二、安培环路定理的应用
利用安培环路定理可以求解具有对称性稳恒电流的 磁场分布
解题要点:
1)分析磁场特点,选择适当的积分回路
vv
2)计算 ÑL B dl
单位长窄条,其面积为
dS 。
dS=1·dx
R
S
dx
窄条处的磁感应强度
B
0
2π
Ix R2
通过dS的磁通量为
1m
dΦ BdS
0
2π
Ix R2
dx
通过S的磁通量为
Φ dΦ R 0 Ix dx 0I
0 2π R2
4π
2:无限长直载流螺线管内的磁场分布 已知:I、n(单位长度线圈匝数)
...............
I1 I2
I3
l
L
关于安培环路定理的讨论: ①若电流方向与环路的正方向满足右旋关系,则:
I 0 否则 I 0
②
μ 0
中I
为I穿过环路总电流,环路外不计。
③磁感应强度的环流只与环路内的电流有关,但环路 上一点的磁强是由环路内、外电流共同产生的。
④此定理仅适用于稳恒电流产生的磁场,故定理仅适用 于闭合的或者无限长的载流导线,而对于回路中的某 一段导线或电流元是不成立的。
得: B μ0nI
无限长直载流螺线管内的磁场: B μ0nI
例3:环形载流螺线管内的磁场分布
已知:I 、N、R1、R2 N — 导线总匝数
.. . . .
.
.
磁感应线分布如图 作积分回路如图
. . .
o R1
则B沿该闭合回路的环流为:
B dl Bdl 2πrB
l
l
...
... .
.. .
( 1 ) r R2 , B 0
R2
I
(2)
R1
r
R2 ,
B
0I 2r
( 3 ) r R1 , B 0
R1
rI
例题11.6:一根长直圆柱形铜导体载有电流I,均匀分布 于截面上。在导体内部,通过圆柱中心轴线作一平面S。 试计算通过每米长导线内S平面的磁通量。
解 在距离导线中心轴线
为x与x+dx处,作一个
思考题:
L1
I1
r1 A
I2 r2
求 B dl ? L1
A点的磁感应强度B =?
例4:半径为a的无限长金属圆柱体内挖去一半径为 b(b<a)的无限长柱体,两柱体轴线平行,轴间距d ( d <(ab) )。空心导体沿轴向通有电流I并沿截面均匀分 布。(1) 求此二柱体轴线联线上任一点M的B;(2) 证明 腔内磁场是均匀磁场。
r
R2
. ..
.. . . . . . .
.
根据安培环路定理:
B
dl
μ 0
NI
l
B 0 NI 2r
若 R、1 R2 R2 R1
n N
2 r
则: B μ0nI
B
.. .
. .. .
. . .
o
R1
.
..
... .
.. .
r
R2
. ..
.. . . . . . .
.
o
R1
R2
r
关于安培环路定理的应用 1、注意应用范围:磁场具有某种空间对称性。 2、积分环路的选择: ①环路必须通过所求场点。 ②环路上各点B 的大小相等,B 的方向平行于线元dl
或一部分环路B 的方向垂直于线元dl,或某一部分 环路上B =0 。 ③闭合环路的形状尽可能简单,总长度可求。 3、注意环路方向与电流方向的右旋关系。
Ñ B1 dl B1 2πr 0πr2J
J
B2 b O M O
v
B1
v
μ0 Jr 2
B
I
分析对称性 管内磁感应线平行于管轴 管外靠近管壁处磁场为零
选择环路如图所示:
.............. B
则B沿该闭合回路的环流为: a
b
B dl
l
d
c
I
b
c
d
a
B dl B dl B dl B dl Bab
a
b
c
d
根据安培环路定理: B dl Bab μ0nabI l