2014六年级下册数学重点知识点整理
完整版)六年级数学下册总复习知识点整理版
完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。
2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。
3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。
4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。
5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。
6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。
7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。
8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。
二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。
2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。
3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。
4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。
人教版六年级下册数学知识点归纳
六年级下册数学知识点归纳如下:
1.整数
六年级下册数学学习起点是整数的概念和运算。
主要包括整数的读法
与表示、正数和负数的比较、负整数的加减法运算等。
2.分数
分数是六年级下册的另一个重点内容。
主要包括分数的概念和表示、
分数的大小比较、分数的加减法运算等。
3.数据统计
数据统计是六年级下册的重要内容之一、主要包括统计调查、频数表、统计图表(折线图、柱状图、饼图等)的读取和分析等。
4.几何图形与变换
六年级下册还涉及到一些几何图形的概念和变换。
主要包括正方形、
矩形、三角形、平行四边形等的特征和性质,以及平移、旋转和翻转等变
换运动。
5.表格与运算
六年级下册还包括一些与表格和运算相关的内容。
主要包括角的概念
和度数的读写、时间的读写与计算、四舍五入等运算法则等。
6.算法与应用
六年级下册的数学学习还包括一些算法与应用。
主要包括任意角的度
数计算、有理数的加减法与乘除法运算等。
以上是六年级下册数学的主要知识点归纳,通过对这些知识点的学习,学生能够在整数、分数、数据统计、几何图形与变换、表格与运算以及算
法与应用等方面得到全面的提升。
六年级数学下册重点知识归纳
人教版新课标六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
六年级下册数学书知识点
六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
六年级下册数学全册知识点
六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。
在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。
六年级数学下册知识点(整理6篇)
六年级数学下册知识点〔整理6篇〕篇1:六年级下册数学知识点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
假设一个数小于0,那么称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数假设一个数大于0,那么称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限6、比拟两数的大小:①利用数轴:负数篇2:六年级下册数学知识点第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是非常之几,也就是百分之几十。
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。
商品如今打八折:如今的售价是原价的80﹪商品如今打六折五:如今的售价是原价的65﹪2、成数:几成就是非常之几,也就是百分之几十。
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一局部缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来之一。
六年级数学下册(1~3单元)重点知识归纳
人教版新课标六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
六年级数学下册必背知识点归纳
六年级数学下册必背知识点归纳1、0既不是正数,也不是负数,它是正数和负数的分界。
0大于所有负数,小于所有正数。
负数比较大小,不考虑负号,数字大的数反而小。
2、“+”能够省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
0左边的数差不多上负数,0右边的数差不多上正数百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。
通称“打折”。
几折就表示十分之几,也确实是百分之几十。
例如八折就表示十分之八,确实是按原价的80﹪出售。
2、成数:“几成”确实是十分之几,也确实是百分之几十。
三成五确实是十分之三点五,也确实是35%3、应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率4、利息=本金×利率×存期5、满100元减50元,确实是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优待。
圆、圆柱、圆柱必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C ÷π3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆 =πr25、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)26、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s 侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。
7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。
小学六年级下册数学重点知识点整理完整版
小学六年级下册数学重点知识点整理HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
数学六年级下全部知识点
数学六年级下全部知识点数学是一门理科学科,对于学生来说,数学的学习既需要扎实的基础,又需要全面地掌握各个知识点。
下面将详细介绍数学六年级下的全部知识点。
一、小数1. 小数的读法及表示方法(例)读“0.5”的方法:“零点五”2. 小数的四则运算加法:小数的加法运算规则和整数的加法类似,先对齐小数点,然后从右往左逐位相加。
减法:小数的减法运算规则和整数的减法类似,先对齐小数点,然后从右往左逐位相减。
乘法:小数的乘法运算规则和整数的乘法类似,先按整数运算的乘法规则计算,最后确定小数点的位置。
除法:小数的除法运算规则和整数的除法类似,先将小数化为整数,然后按整数运算的除法规则计算,最后确定小数点的位置。
3. 小数的比较大小比较小数的大小时,首先比较整数部分的大小,整数部分相同再比较小数部分的大小。
二、分数1. 分数的基本概念分数是由分子和分母组成的形式,分子表示被分的份数,分母表示分成的总份数。
2. 分数的读法及表示方法(例)读“2/3”的方法:“二分之三”3. 分数的四则运算加法:分数的加法运算规则和整数的加法类似,先找到两个或多个分数的公共分母,再按整数运算的加法规则计算。
减法:分数的减法运算规则和整数的减法类似,先找到两个或多个分数的公共分母,再按整数运算的减法规则计算。
乘法:两个分数相乘时,将两个分数的分子和分母分别相乘,再简化分数。
除法:两个分数相除时,将除数倒置(即将除号改为乘号),再按乘法运算的规则计算。
4. 分数的化简将一个分数化为最简形式时,将分子和分母进行约分,即找到两者的最大公因数,然后将分子和分母同时除以最大公因数。
三、几何图形1. 平面图形的特点矩形:四条边两两相等且相互平行。
正方形:四条边相等且相互平行,四个内角为直角。
三角形:有三条边和三个内角,内角和为180度。
梯形:有两条平行边,被平行边分成的两个小三角形的内角和为180度。
圆形:由一个圆心和一条半径组成,圆心到圆上任意一点的距离都相等。
六年级下册数学知识点归纳
六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。
通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。
(2)分母不同时,先通分,再比较分子大小。
3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。
如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。
(2)相乘:把两个分数的分子和分母分别相乘即可。
(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。
二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。
通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。
2.小数的大小比较(1)相同位数,大小由高位数决定。
(2)位数不同时,以比较到的位数为准,不够0补齐。
3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。
(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。
(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。
三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。
一个数的倍数有无穷多个。
2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。
一个数的因数是有限多个。
四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。
2.整数的大小比较(1)一正一负,正数大。
(2)同号但绝对值不同时,绝对值大的数大。
(3)同号且绝对值相同时,大小相同。
3.绝对值表示一个数到原点的距离,用“|”表示。
六年级下册数学全册知识点
六年级下册数学全册知识点一、数与代数数与代数的学习内容包括数的认识、数的运算、常见的量、式与方程、正比例和反比例、探索规律等。
1.数的认识主要包括进一步理解和掌握整数、小数、分数、百分数的意义以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数、因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意识和能力,发展数感。
⑴整数和小数都是采用十进制计数法,整理计数单位、相应的数位顺序、相邻计数单位之间的进率,再现整数、小数的数位顺序表。
结合数位顺序表,重点理解:数位、计数单位、进率以及位值原则。
⑵整数的读、写注意点包括:分级读、写,从高位到低位依次读、写,数中间“0”的读、写,数末尾“0”的读、写等。
小数的读、写要注意:先读整数部分、后读小数部分,而且整数部分的读法和小数部分的读法不同。
⑶数的改写与省略尾数求近似数,学生容易混淆,要注意其中的联系与区别:⑷奇数与偶数、质数与合数、公因数与公倍数等,都是“因数与倍数”范围里的概念。
这部分的知识较多,学生容易混淆。
建议要求孩子回顾相关知识点后,引导他们建构知识网络图,将知识结构化:⑸分母是10、100、1000……的分数可以用小数表示,小数是分母为10、100、1000……的特殊分数。
分数的基本性质是分子与分母乘或除以同一个不为零的数,大小不变;小数的基本性质简述为小数的末尾可以增减零,小数的大小不变,小数的这个性质也可以理解为分子与分母同时乘或除以相同的数,只是扩大与缩小的倍数是10倍、100倍……如0.3表示十分之三,0.30表示百分之三十。
去掉小数末尾的零即是分子与分母同时除以10。
所以说,分数的基本性质和小数的基本性质本质上是一致的,只是适用的范围不同。
⑹百分数是特殊的分数。
理解分数与百分数的意义,我们要弄清它们之间的联系和区别:小数、分数、百分数之间怎样进行互相改写呢?2.常见的量小学阶段我们学习过长度、面积、体积(容积)、时间、质量等单位。
六年级下册数学所有知识点
六年级下册数学所有知识点一、负数。
1. 负数的定义。
- 为了表示两种相反意义的量,如零上温度和零下温度、收入与支出等,我们引入了负数。
像 - 3、- 5.6、- (1)/(2)等带有负号的数叫做负数;以前学过的像3、5.6、(1)/(2)等正数前面加上“+”号(也可省略不写)。
0既不是正数也不是负数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
在数轴上,从左到右的顺序就是数从小到大的顺序。
所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。
3. 比较大小。
- 正数>0>负数;两个负数比较大小,负号后面的数越大,这个负数越小。
例如 - 3>-5。
二、百分数(二)1. 折扣。
- 几折就表示十分之几,也就是百分之几十。
例如,七五折就是指现价是原价的75%。
原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。
2. 成数。
- 成数表示一个数是另一个数的十分之几,通称“几成”。
例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。
3. 税率。
- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
应纳税额 = 各种收入×税率。
4. 利率。
- 单位时间内的利息与本金的比率叫做利率。
利息=本金×利率×存期;取回的钱= 本金+利息。
三、圆柱与圆锥。
1. 圆柱。
- 圆柱的认识。
- 圆柱有两个底面,是完全相同的两个圆;有一个侧面,是曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
圆柱有无数条高,高的长度都相等。
- 圆柱的表面积。
- 圆柱的表面积 = 侧面积+两个底面积。
圆柱的侧面积 = 底面周长×高,用字母表示为S_侧=Ch(C = 2π r或C=π d),S_底=π r^2,所以S_表=2π rh + 2π r^2。
(完整版)六年级数学下册整理和复习知识点(最新整理)
六年级数学下册第六单元整理和复习知识点
六年级数学下册第六单元整理和复习知识点 第六单元整理和复习知识点 数学概念整理 整数部分: 十进制计数法:一(个)、十、百、千、万……都叫做计数单位。其 中“一”是计数的基本单位。10 个 1 是 10,10 个 10 是 100……每相 邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数 法 整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾 0 都不读.其他数位一个或连续几个 0 都只读一个“零”。 整数的写法:从高位一级一级写,哪一位一个单位也没有就写 0。 四舍五入法:求近似数,看尾数最高位上的数是几,比 5 小就舍去, 是 5 或大于 5 舍去尾数向前一位进 1。这种求近似数的方法就叫做 四舍五入法。 整数大小的比较:位数多的数较大,数位相同最高位上数大的就大, 最高位相同比看第二位较大就大,以此类推。 小数部分: 把整数 1 平均分成 10 份、100 份、1000 份……这样的一份或几份是 十分之几、百分之几、千分之几……这些分数可以用小数表示。如 1/10 记作 0.1,7/100 记作 0.07。 小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫 百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位 是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几 位小数。如 0.36 是两位小数,3.066 是三位小数。 小数的读法:整数部分整数读,小数点读点,小数部分顺序读。 小数的写法:数点写在个位右下角。 小数的性质:小数末尾添 0 去 0 大小不变。 小数点位置移动引起大小变化:右移扩大左缩小,1 十 2 百 3 千倍。 小数大小比较:整数部分大就大;整数相同看十分位大就大;以此 类推.。
4、成数:几成就是十分之几。 二、分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、 带分数 三、分数和除法的关系及分数的基本性质 1、 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙 述为被除数相当于分子,而不能说成被除数就是分子。 2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可 得出分数的基本性质。 3、 分数的分子和分母都乘以或者除以相同的数(0 除外),分数的 大小不变,这叫做分数的基本性质,它是约分和通分的依据。 四、约分和通分 1、分子、分母是互质数的分数,叫做最简分数。 2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约 分。 3、约分的方法:用分子和分母的公约数(1 除外)去除分子、分母; 通常要除到得出最简分数为止。 4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
六年级下册知识点归纳总结数学
六年级下册知识点归纳总结数学
以下是六年级下册数学的一些重要知识点:
1. 负数:理解负数的概念,掌握比较负数大小的方法,能正确地读写负数。
2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。
3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱表面积、体积的计算方法,掌握圆锥体积的计算方法。
4. 正比例和反比例:理解正比例和反比例的概念,能正确判断成正比例的量和成反比例的量。
5. 统计:理解统计表和折线统计图的特点,掌握制作简单的统计表和折线统计图的方法,能根据统计图表进行简单的数据分析。
6. 解决问题的策略:能综合运用所学的数学知识、技能和方法解决一些简单的实际问题,增强应用意识,提高实践能力。
以上仅为基础知识点的大致概括,如需更详细的内容,建议查阅六年级下册数学教材或教辅书。
数学六年级下册重要知识点
数学六年级下册重要知识点数学作为一门科学,对于学生的思维能力和逻辑思维能力的培养有极大的帮助。
下面我们来总结一下数学六年级下册的重要知识点,帮助同学们更好地学习和理解数学知识。
一、整数运算1. 整数加减法:同号相加减,异号相减取相反数。
2. 整数乘法:同号得正,异号得负。
3. 整数除法:除数不为0,同号得正,异号得负。
二、分数1. 分数的表示法:分子、分母。
2. 分数的相等与化简。
3. 分数的比较大小:通分,比较分子大小。
4. 分数的加减法:通分,分子相加减。
5. 分数的乘除法:分子相乘除,分母相乘除。
三、百分数1. 百分数的表示法:百分数的定义。
2. 百分数的转化:转化为分数或小数。
3. 百分数与分数、小数的相互转化。
4. 百分数的加减法:通分,分子相加减。
5. 百分数的乘除法:先将百分数转化为小数,再进行运算。
四、平方与平方根1. 平方的定义与表示法:a的平方,平方的运算法则。
2. 平方根的定义与表示法:开平方的运算法则。
3. 完全平方数:求完全平方数的平方根,求一个数是否是完全平方数。
五、几何图形1. 平行线与垂直线:平行线的概念,判定平行线的条件;垂直线的概念,判定垂直线的条件。
2. 三角形:三角形的定义,三角形的分类(等边三角形、等腰三角形、直角三角形等),三角形的性质。
3. 正方形与矩形:正方形的性质与判断,矩形的性质与判断。
4. 圆:圆的定义,圆的性质,圆的判断。
5. 空间几何体:长方体、正方体的性质,圆柱体、圆锥体、球体的性质。
六、数据统计1. 数据的收集与整理:调查数据的方法,制作数据表。
2. 数据的处理和分析:数据的分类,数据的统计分析。
3. 直方图与折线图:直方图的制作,折线图的制作。
4. 中心倾向:平均数的计算,众数与中位数的计算。
七、列方程与解方程1. 列方程的过程:解决问题的步骤。
2. 一元一次方程的解:等式的性质,解方程的过程。
3. 解方程的应用:根据问题列方程,解方程得出答案。
六年级数学下册重点知识
六年级数学下册重点知识第一篇嘿,亲爱的小伙伴们!今天咱们来聊聊六年级数学下册那些超重要的知识呀!先来说说圆柱和圆锥。
这俩家伙可有趣啦!圆柱就像个直直的柱子,有两个圆圆的底面和一条长长的侧面。
计算它的表面积,就是把两个底面的面积和侧面的面积加起来。
体积嘛,就记住底面积乘高就行啦。
圆锥呢,长得尖尖的,只有一个底面。
它的体积是等底等高圆柱体积的三分之一,可别记错啦!还有比例的知识也很关键哟!比如说,如果两个比的比值相等,它们就能组成比例。
判断两个比能不能组成比例,就看它们的比值一不一样。
在解比例的时候,咱们就像玩解谜游戏一样,根据比例的性质找到答案。
正比例和反比例也得搞清楚。
正比例是两个量比值一定,反比例是乘积一定。
像速度一定,路程和时间就是正比例;面积一定,长和宽就是反比例。
数学里的统计图也很有用呢!条形统计图能清楚看出数量的多少,折线统计图能看出数量的变化趋势,扇形统计图能知道各部分占总数的比例。
怎么样,这些知识是不是很有意思呀?咱们一起加油学好它们!第二篇嗨喽,小伙伴们!今天来和你们讲讲六年级数学下册的重点知识哟!咱们先瞅瞅负数,这可是个新奇的玩意儿。
比 0 还小的数就是负数,像 1、2 这些。
在温度计上、海拔高度里经常能见到它们的身影。
百分数也很重要哦!它表示一个数是另一个数的百分之几。
比如说,及格率、出勤率都是用百分数来表示的。
计算百分数的时候,要注意找准单位“1”。
数学广角里的鸽巢问题也很有趣。
把 n+1 个东西放进 n 个抽屉里,至少有一个抽屉里会有两个或更多的东西。
还有数学里的那些解决问题的策略,像画图、列举、假设,都能帮咱们轻松搞定难题。
说到图形的运动,平移、旋转、轴对称可不能忘。
平移是沿着直线移动,旋转是绕着一个点转动,轴对称就是沿着对称轴两边完全一样。
数学的世界是不是很奇妙呀?咱们可不能怕这些知识,要勇敢地去探索,把它们都装进咱们的小脑袋瓜里!。
六年级下数学重要知识点
六年级下数学重要知识点在六年级下学期的数学学习中,有一些重要的知识点是我们需要掌握和理解的。
下面将介绍其中的几个知识点。
一、分数的运算在学习数学中,我们常常会遇到分数的运算。
分数的加减乘除都是我们需要学会的基本运算。
在进行分数的运算时,首先需要找到分母相同的公共分母,然后对分子进行相应的运算,最后将结果进行简化。
二、小数的计算另一个重要的知识点是小数的计算。
小数的加减乘除运算与整数的运算类似,需要我们按照相应的规则进行计算。
在小数的乘除法中,我们需要注意小数点的位置,并进行相应的调整。
三、几何图形的性质在六年级下学期,我们将学习许多几何图形的性质。
比如,长方形的面积等于长度乘以宽度,正方形的面积等于边长的平方,圆的面积等于半径的平方乘以π等等。
通过学习这些性质,我们可以更好地理解几何图形,并应用于解决实际问题。
四、平均数和中位数平均数和中位数是我们在统计与概率中会遇到的概念。
平均数指的是一组数值的总和除以数值的个数,中位数是一组数值按照大小排列后的中间值。
通过计算平均数和求解中位数,我们可以对一组数据的集中趋势有更清晰的认识。
五、倍数和约数在六年级下学期,我们还需要学习倍数和约数的概念。
倍数指的是一个数可以被另一个数整除,约数则是指一个数可以整除另一个数。
通过理解倍数和约数的关系,我们可以更好地进行数的分解与整除计算,解决一些实际问题。
六、面积和周长面积和周长是关于图形的重要概念。
面积指的是图形的内部空间的大小,周长是图形边界上所有边的长度之和。
在六年级下学期,我们会学习不同图形的面积和周长的计算方法,包括长方形、正方形、三角形等等。
总结起来,六年级下学期的数学重要知识点包括分数的运算、小数的计算、几何图形的性质、平均数和中位数、倍数和约数以及面积和周长的计算。
通过学习这些知识点,我们能够更好地理解和应用数学,提高数学解决问题的能力。
希望同学们能够认真学习,掌握这些重要的知识点,为未来的学习打下坚实的基础。
2014年小学生六年级数学下册知识点
2014年小学生六年级数学下册知识点
这篇关于2014年小学生六年级数学下册知识点,是特地为大家整理的,希望对大家有所帮助!
1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
以上就是小编为大家整理的2014年小学生六年级数学下册知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014六年级下册数学重点知识点整理小学频道为各位小学生同学整理了六年级下册数学重点知识点整理,供大家参考学习。
请关注小学频道。
一、负数:1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过“抽屉原理”的灵活应用感受数学的魅力。
六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。
能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是 13 亿。
3.四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约是 35 万。
省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大,3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除1. 把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
(五) 约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
小数1.小数的意义把整数1平均分成10份、100份、1000份,得到的十分之几、百分之几、千分之几,可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2.小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 , 3.1415926 ,无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:prod;循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:3.555 , 0.0333 , 12.109109 ,一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3.99 ,的循环节是“ 9 ” , 0.5454 ,的循环节是“ 54” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111 , 0.5656 ,混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 , 0.03333 ,写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如: 3.777 ,简写作 0.5302302 ,简写作。
分数1.分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2.分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用%来表示。
百分号是表示百分数的符号。
比例表示两个相等的式子叫做比例。
在比例里,两个外项的积等于两个内项。
这叫做《比例的基本性质》。