华师版八年级上学期期末数学检测卷没答案
2021-2022年华师大版八年级数学上册期末测试(含参考答案与解析)
![2021-2022年华师大版八年级数学上册期末测试(含参考答案与解析)](https://img.taocdn.com/s3/m/7d2fc269dd88d0d232d46ac7.png)
2021-2022年华师大版八年级数学上册期末测试数学卷一、选择题(每小题3分,共30分)1.的立方根为()A.2B.C.D.2.估算在()A.5与6之间B.6与7之间C.7与8之间D.8与9之间3.下列运算正确的是()A. B.C. D.4.如下图,在下列条件中,不能直接证明的是()A. B.C. D.5.下列命题是假命题的是()A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等6.满足下列条件的中,不是直角三角形的是()A. B. C. D.7.小红同学将自己5月份的各项消费情况制作成扇形统计图(如下图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况8.如下图,平分为上一点,分别在上,且满足,若,则的度数是()A.40°B.50°C.60°D.70°9.如下图,在中,是边上的动点,过点作于点于点,则的长是()A.4.8B.6C.3.8D.510.如下图.,点,在射线上,点,……在射线上.,,……均为等边三角形,若,则的边长为()A. B. C. D.二、填空题(每小题3分,共15分)11.某校对1200名女生的身高进行测量,身高在这一小组的频率为0.25,则该组的人数为________名.12.计算:________.13.如果的乘积中不含项,则为________.14.在中,,点是边的中点,则中线的长度的取值范围是________.15.在中,边上的高为8,则的面积为________.三、解答题(共75分)16.(1)计算:.(2)先化简,再求值:,其中:.17.已知:如下图,,射线上一点.求作:等腰,使线段为等腰的底边,点在内部,且点到两边的距离相等.18.已知的三边长满足条件:.试判断的形状.19.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有________名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.20.如下图的图形取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如下图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为,较长的直角边为,试求的值.21.如下图,在中,,点分别在边上,且.(1)求证:是等腰三角形;(2)当时,求的度数.22.(1)问题:如下图1,在中,为边上一点(不与点重合),连接,过点作,并满足,连接.则线段和线段的数量关系是________,位置关系是________.(2)探索:如下图2,当点为边上一点(不与点重合),与均为等腰直角三角形,.试探索线段之间满足的等量关系,并证明你的结论;(3)拓展:如下图3,在四边形中,,若,请直接写出线段的长.23.如下图,在中,在上,且,过点作射线(与在同侧),若动点从点出发,沿射线匀速运动,运动速度为,设点运动时间为秒.(1)经过________秒时,是等腰直角三角形?(2)当于点时,求此时的值;(3)过点作于点,已知,请问是否存在点使是以为腰的等腰三角形?对存在的情况,请求出的值,对不存在的情况,请说明理由.2021-2022年华师大版八年级数学上册期末测试数学卷参考答案与解析一、1.【答案】B【解析】解:的立方等于,的立方根等于.故选:B.2.【答案】D【解析】解:,,在8与9之间.故选:D.3.【答案】C【解析】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选:C.4.【答案】D【解析】解:,A.当时,利用证明,故正确;B.当时,利用证明,故正确;C.当时,利用证明,故正确;D.当时,符合的位置关系,不能证明,故错误.故选:D.5.【答案】B【解析】解:A.同旁内角互补,两直线平行,是真命题;B.若两个数的绝对值相等,则这两个数相等或互为相反数,是假命题;C.平行于同一条直线的两条直线也互相平行,是真命题;D.全等三角形的周长相等,是真命题;故选:B.6.【答案】D【解析】解:A.,故能组成直角三角形,不符合题意;B.,故能组成直角三角形,不符合题意;C.,故能组成直角三角形,不符合题意;D.,故不能组成直角三角形,符合题意.故选:D.7.【答案】A【解析】解:A.从图中能够看出各项消费占总消费额的百分比,故A正确;B.从图中不能确定各项的消费金额,故B错误;C.从图中不能看出消费的总金额,故C错误;D.从图中不能看出增减情况,故D错误.故选:A.8.【答案】A【解析】解:作于于,是平分线上一点,,,在和中,,,,又,,的度数,故选:A.9.【答案】A【解析】解:过点作于,连结,如下图.中,,,中,.,,,.故选:A.10.【答案】B【解析】解:,是等边三角形,,,,,同理:,……均为等边三角形,……则的边长为.故选:B.二、11.【答案】300【解析】解:根据题意知,该组的人数为,故答案为:300.12.【答案】1【解析】解:原式,故答案为:113.【答案】【解析】解:乘积中不含项,,解得.故答案为:.14.【答案】【解析】解:延长到,使,连接,是的中线,,在和中,,,,,,.故答案为:.15.【答案】36或84【解析】解:在中,根据勾股定理得,,在中,根据勾股定理得,,如下图1,当在三角形的内部时,,所以的面积为:;如下图2,当在三角形的外部时,,所以的面积为:,故答案为:36或84.三、16.【答案】解:(1)原式,,;(2)原式,,,,原式.17.【答案】解:点到两边的距离相等,点在的平分线上;线段为等腰的底边,,点在线段的垂直平分线上,点是的平分线与线段的垂直平分线的交点,如下图所示:18.【答案】解:,,,,则或,当时,为等腰三角形;当时,为直角三角形.综上所述,为等腰三角形或直角三角形.19.【答案】(1)100(2)补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为人.【解析】解:(1)参与问卷调查的学生人数为人,故答案为:100;(2)读4本的女生人数为人,读2本人数所占百分比为,20.【答案】解:大正方形的面积是13,小正方形的面积是1,直角三角形的斜边的平方为13,直角三角形较短的直角边为,较长的直角边为,,大正方形的面积减去小正方形的面积等于四个直角三角形的面积,,即,.21.【答案】解:(1)证明:,,在和中,,,是等腰三角形;(2),,,,,.22.【答案】解:(1)问题:在中,,,,,即,在和中,,,故答案为:;(2)探索:结论:,理由是:如下图2中,连接.,,在和中,,,,,,;(3)拓展:如下图3,将绕点逆时针旋转90°至,连接,则是等腰直角三角形,,,,同理得:,,中,,,是等腰直角三角形,.23.【答案】(1)6(2)当时,,,又,,在和中,,,,,经过8秒时,.(3)存在.理由:根据勾股定理得,的最小值为8,,,当时,在和中,,,则,当是以为腰的等腰三角形时,.【解析】解:(1)当是等腰直角三角形时,,,故答案为:6.。
(华师大版)初中数学八年级上册 期末测试试卷03及答案
![(华师大版)初中数学八年级上册 期末测试试卷03及答案](https://img.taocdn.com/s3/m/0938392bf342336c1eb91a37f111f18583d00c39.png)
期末测试一、选择题(本大题共12个小题,每小题4分,共48分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(4分)16的算术平方根是( )A .4B .4-C .4±D .82.(4分)实数0,1-p 中,无理数有( )A .1个B .2个C .3个D .4个3.(4分)在期末体育考核中,成绩分为优秀、合格、不合格三个档次,初一(1)班有48名学生,达到优秀的有15人,合格的有21人,则这次体育考核中,不合格人数的频率是( )A .0.125B .0.215C .0.25D .1.254.(4分)下列命题中是假命题的是( )A .相等的角是对顶角B .同位角相等,两直线平行C .若0ab =,则0a =或0b =D .两点之间,线段最短5.(4分)下列各式中,正确的有( )A .325a a a +=B .()33m m x x x =C .824a a a ¸=D .()23624a a -=6.(4分)等腰三角形的边长为2和3,那么它的周长为( )A .8B .7C .8或7D .以上都不对7.(4分)若()2125x a x +-+是一个完全平方式,则a 值为( )A .9-B .9-或11C .9或11-D .118.(4分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设( )A .三角形中每个内角都大于60°B .三角形中至少有一个内角大于60°C .三角形中每个内角都大于或等于60°D .三角形中每一个内角都小于或等于60°9.(4分)如下图,已知12Ð=Ð,要说明ABD ACD △≌△,还需从下列条件①ADB ADC Ð=Ð,②B C Ð=Ð,③DB DC =,④AB AC =中选一个,则正确的选法个数是( )A .1个B .2个C .3个D .4个10.(4分)由下列条件不能判断ABC △是直角三角形的是( )A .::3:4:5A B C ÐÐÐ=B .::3:4:5AB BC AC =C .A B C Ð+Ð=ÐD .222AB BC AC =+11.(4分)若225m n -=,则()()22m n m n +-的值是( )A .25B .5C .10D .1512.(4分)棱长分别为3cm 和2cm 的两个正方体如下图放置,点A BE ,,在同一直线上,顶点G 在棱BC 上,点P 是棱11EF 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A cmB .cmC .cmD .)1cm 二、填空题(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)13.(4分)因式分解:33312a b ab -=________.14.(4分)若2310a a --=,则()32a a -+=________.15.(4分)如下图,在ABC R t △中,90B °Ð=,分别以A C 、为圆心,大于AC 的一半的长度为半径画弧,四弧交于两点M N 、,作直线MN ,交AC 于点D ,交BC 于点E .已知32C °Ð=,则BAE Ð的度数为________度.16.(4分)若3327a b =g ,()33b a =,则22a b +=________.17.(4分)已知如下图,在射线AB 上依次作正方形1121A B B C 、正方形2232A B B C 、正方形3343A B B C …,点123A A A ,,,…在射线OA 上,点123B B B ,,,…在射线OB 上,若1111AB A B ==,则正方形1n n n n A B B +ð的边长为________.18.(4分)定义一种新运算“※”,21a b a ab =-+※,例:22322311=-´+=-※,下列给出了关于这种运算的几个结论:①()122-=※,②()1539=-※※,③()()()22m n n m m n +=-+※※,④()()()()21a b a b a b a b a b ab -=-++-※※※※其中,正确的有________.三、解答题:(本大题共7个小题,共78分).解答应写出相应的文字说明、证明过程或演算步骤.19.(8分)(1)计算:()22-;(2)计算:()322228242a a a a a +-ùëû¸ég .20.(10分)先化简,再求值:()()()()22m m n m n m n m n -++-+-,其中1m n =-=,.21.(10分)如下图,A F E B 、、、四点共线,AF BE AC BD AC BD ==,∥,.求证:DF CE =.22.(12分)某中学为了丰富学生的课外生活,根据实际情况开设特色活动课,有A :合唱团,B :话剧社,C :舞蹈,D :美术四种项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下图所示的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)这次调查中总共抽取了________人,在扇形统计图中,表示B 话剧社所对应的圆心角是________度;(2)把条形统计图补充完整.(3)已知该校有2 000人,估计全校喜欢话剧的人数是多少?23.(12分)如下图,已知90AOB OM °Ð=,是AOB Ð的平分线,将三角尺的直角顶点P 放在射线OM 上,两直角边分别与OA OB ,交于点C D ,.(1)证明:PC PD =.(2)若4OP =,求OC OD +的长度.24.(12分)四边形ABCD 是长方形,将长方形ABCD 折叠,如下图①所示,点B 落在AD 边上的点E 处,折痕为FG ,将图②折叠,点C 与点E 重合,折痕为PH .(1)在图②中,证明:EH EP =;(2)若6810EF EH FH ===,,,求长方形ABCD 的面积.25.(14分)在ABC △中AB AC =,在BC 边上有两动点D E 、,满足2DAE BAC Ð=Ð,将AEC △绕A 旋转,使得AC 与AB 重合,点E 落到点E ¢.(1)求证DAE DAE ¢Ð=Ð;(2)当20BE D °¢Ð=时,求DEA Ð的度数;(3)当12BD EC BE D ¢==,,△又为直角三角形时,求BAC Ð的度数.期末测试答案解析一、1.【答案】A【解析】解:4∵的平方是16,16∴的算术平方根是4.故选:A .2.【答案】B【解析】解:在实数0,1-,,p 中,无理数有p 共2个.故选:B .3.【答案】C【解析】解:∵初一(1)班有48名学生,达到优秀的有15人,合格的有21人,∴不合格人数的为:48152112--=,∴这次体育考核中,不合格人数的频率是:120.2548=.故选:C .4.【答案】A【解析】解:A .相等的角不一定为对顶角,所以A 选项为假命题;B .同位角相等,两直线平行,所以B 选项为真命题;C .若0ab =,则0a =或0b =,所以C 选项为真命题;D .两点之间,线段最短,所以D 选项为真命题.故选:A .5.【答案】D【解析】解:A .32a a +,无法合并,故此选项错误;B .()331m m x x x +=,故此选项错误;C .826a a a ¸=,故此选项错误;D .()23624a a -=,正确.故选:D .6.【答案】C【解析】解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C .7.【答案】B【解析】解:()()22212515x a x x a x +-+=+-+是完全平方式,则()125a x x -=±g g ,解得:9a =-或11.故选:B .8.【答案】A【解析】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:A .9.【答案】C【解析】解:12AD Ð=Ð∵,公共,①如添加ADB ADC Ð=Ð,利用ASA 即可证明ABD ACD △≌△;②如添加B C Ð=Ð,利用AAS 即可证明ABD ACD △≌△;③如添加DB DC =,因为SSA ,不能证明ABD ACD △≌△,所以此选项不能作为添加的条件;④如添加AB AC =,利用SAS 即可证明ABD ACD △≌△;故选:C .10.【答案】A【解析】解:A .::3:4:5A B C ÐÐÐ=∵,且180A B C °Ð+Ð+Ð=,可求得90C °Ð¹,故ABC △不是直角三角形;B .不妨设345AB x BC x AC x ===,,,此时222225AB BC x AC +==,故ABC △是直角三角形;C .A B C Ð+Ð=Ð,且180A B C °Ð+Ð+Ð=,可求得90C °Ð=,故ABC △是直角三角形;D .222AB BC AC =+,满足勾股定理的逆定理,故ABC △是直角三角形;故选:A .11.【答案】A【解析】解:225m n -=∵,()()()2222225m n m n m n +-=-=∴,故选:A .12.【答案】A 【解析】解:如下图,有两种展开方法:方法一:cm PA ==,方法二:cm PA ==.cm .故选:A .二、13.【答案】()()322ab a b a b +-【解析】解:原式()()()2234322ab a b ab a b a b =-=+-,故答案为:()()322ab a b a b +-.14.【答案】3【解析】解:()223232313033a a a a a a -+=-+=--+=+=,故答案为:3.15.【答案】26°【解析】解:由作法得ED 垂直平分AC ,EA EC =∴,32EAC C °Ð=Ð=∴,90323226BAE °°°°Ð=--=∴.故答案为26°.16.【答案】7【解析】解:3333273a b a b +===g ∵,3a b +=∴,()33b a =∵,1ab =∴,()22222327a b a b ab +=+-=-=∴.故答案为:7.17.【答案】12n -【解析】解:1111AB A B ==∵,222452A AB A B °Ð===∴,,∴正方形1121A B B C 的边长为012=、正方形2232A B B C 的边长为122=,正方形3343A B B C 的边长为242=…∴正方形1n n n n A B B +ð的边长为12n -故答案为:12n -18.【答案】②③④【解析】解:根据题中的新定义化简得:①()125211-++==※,不符合题意;②()()15312515111111119=-+==-+=-※※※※,符合题意;③()()()222112m n n m m mn n mn m n +=-++-+=-+※※,符合题意;④()()a b a b a b -※※※※()()2211a b ab b a ab =-+--+※※()()22221111a ab ab b b a ab =--++-+-+-()()21a b a b ab =-++-,符合题意,故答案为:②③④.三、19.【答案】解:(1)原式1143122=+-=;(2)原式()43216842a a a a +-¸=,=32842a a a +=-.20.【答案】解:原式()2222222m mn m mn n m n +=-+--+22222m n m n =+-+222m n =+当1m n =-=,时,原式()2221+´=-14=+5=.21.【答案】证明:AF BE =∵,AE BF =∴,AC BD ∵∥,A B Ð=Ð∴,在ACE △和BDF △中,AE BF A B AC BD =ìïÐ=Ðíï=î,()ACE BDF SAS ∴△≌△,DF CE =∴.22.【答案】(1)100 72(2)样本中B 人数为:10020%20´=人,补全条形统计图如下图所示:(3)∵参加话剧社的占20%200020%400´=∴(人)答:估计全校有400人喜欢话剧.【解析】解:(1)88%100¸=人,()360144%28%8%36020%72°°°´---=´=,故答案为:100,7223.【答案】证明:(1)如下图,过点P 作PE OA ^于点E PF OB ^,于点F ,90PEC PFD °Ð=Ð=∴.OM ∵是AOB Ð的平分线,PE PF =∴,9090AOB CPD °°Ð=Ð=∵,,3609090180PCE PDO °°°°Ð+Ð=--=∴.而180PDO PDF °Ð+Ð=,PCE PDFÐ=Ð∴在PCE △和PDF △中()PCE PDF AAS ∴△≌△PC PD =∴;(2)90AOB OM Ð=°∵,平分AOB Ð,POE ∴△与POF △为等腰直角三角形,OE PE PF OF ===∴,4OP =∵,OE =∴,由(1)知PCE PDF△≌△CE DF=∴2OC OD OE OF OE +=+==∴.24.【答案】(1)证明:如下图2,由折叠得:CHP EHP Ð=Ð,EG BC ∵∥,EPH CHP Ð=Ð∴,EHP EPH Ð=Ð∴,EP EH =∴;(2)解:6810EF EH FH ===∵,,,90FEH °Ð=∴,1242EFH S EF EH =´=△∴,由折叠得:68BF EF CH EH ====,,610824BC BF FH HC =++=++=∴,过E 作EM BC ^于M ,1242EFH S FH EM =´=△∴,48FH EM ´=∴,10FH =∵,4.8EM =∴,115.2ABCD S BC EM =´=矩形∴.25.【答案】(1)证明:∵将AEC △旋转得到AE B ¢△,E AB EAC ¢Ð=Ð∴,E AD EAC BAD ¢Ð=Ð+Ð∴,又2DAE BAC Ð=Ð∵,DAE DAE ¢Ð=Ð∴;(2)解:设DEA Ð的度数为x ,AEC ∵△旋转得到AE B ¢△,AE AE BAE CAE AE B AEC ¢¢¢=Ð=ÐÐ=Ð∴,,,2DAE BAC Ð=Ð∵,DAE DAE ¢Ð=Ð∴,又AD AD =∵,()ADE ADE SAS ¢∴△≌△,DE A DEA x °¢Ð=Ð=∴又20AE B AEC BE D °¢¢Ð=ÐÐ=∵,,()20AEC x °Ð=+∴,又180AEC AED °Ð+Ð=∵,()20180x x °°°++=∴,80DEA DE A °¢Ð=Ð=∴;(3)解:AEC ∵△旋转得到AE B ¢△,BE EC ¢=∴,又12BD BE ¢==∵,,BE D ¢Ð∴不可能是直角,①若E BD ¢Ð是直角时,如下图1,AB AC =∵,ABC C Ð=Ð∴,AEC ∵△旋转得到AE B ¢△,ABE C ¢Ð=Ð∴,E BD ¢Ð∵是直角,45ABC ABE °¢Ð=Ð=∴,90BAC °Ð=∴;②当E DB ¢Ð是直角时,如下图2,设AB 与DE ¢相交于P ,过P 作PF 垂直BE ¢于F ,ABC ABE ¢Ð=Ð∵,PD PF BD BF ==∴,,又12BD BE ¢==∵,,1BF FE ¢==∴,又PF ∵垂直BE ¢于F ,PE BP ¢=∴,PE B PBF ¢Ð=Ð∴,又ABC ABE E DB ¢¢Ð=ÐÐ∵,是直角,30ABC E BA PE B °¢¢Ð=Ð=Ð=∴,120BAC °Ð=∴,综上,90BAC °Ð=或120°.。
华师大版八年级上数学期末试卷及答案
![华师大版八年级上数学期末试卷及答案](https://img.taocdn.com/s3/m/e551caed900ef12d2af90242a8956bec0975a5b6.png)
华师大版八(Ba)年级上数学期末试卷及答案一、选择(Ze)题:1.在(Zai)0,, π,这四个数(Shu)中,是(Shi)无理数的是(Shi)()A.0 B.- C. π D. 92.下列乘法中,不能运用(Yong)平方差公式进行运算的是()A.(x+a)(x-a) B.(a+b)(-a-b) C.(-x-b)(x-b) D.(b+m)(m-b)3.在下列运算(Suan)中,计算正确的是()A. B. C. D.4. 如图,,点A与D,点B与E分别是对应顶点,BC=5cm,BF=7cm,则EC的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P(3,2)关于轴的对称点的坐标是()A.(3,-2) B.(-3,2) C.(-3,-2) D.(3,2)6.某同学网购一种图书,每册定价20元,另加书价的5%作为快递运费。
若购书x册,则需付款y (元)与x的函数解析式为()A.y=20x+1 B.y=21x C.y=19x D.y=20x-17.把多项式m3-4m分解因式的结果是()A.m(m2-4)B.m(m+2)(m-2)C.m(m-2)2D.m2(m-4)8如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE,(2)BC=EF,(3)AC=DF ,(4)∠A=∠D,(5)∠B=∠E,(6)∠C=∠F,以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3)C .(2)(3)(4)D .(4)(6)(1)9.下列图案是由斜边相等的等腰直角三角形按照一定的规律(Lv)拼接而成的.依(Yi)此规律,第8个图案中的三角形与(Yu)第一个图案中的三角形能够全等的共有( )个(Ge)。
A. 49B.64C.65D.8110、如(Ru)图, AD 是(Shi)的(De)中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE .下(Xia)列说法: ①△ABD 和△ACD 面积相等; ② ∠BAD=∠CAD ; ② △BDF ≌△CDE ;④ BF ∥CE ;⑤ CE =AE 。
2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)
![2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)](https://img.taocdn.com/s3/m/66a559eeab00b52acfc789eb172ded630b1c98c5.png)
2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。
华师大版八年级数学上册期末练习卷(含答案)
![华师大版八年级数学上册期末练习卷(含答案)](https://img.taocdn.com/s3/m/c11fcb53eefdc8d376ee32a5.png)
八年级数学上册期末练习卷一.选择题(满分28分,每小题2分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列说法中正确的是()A.的平方根是±9B.﹣5的立方根是﹣C.的平方根是D.﹣9没有立方根3.下列数中﹣3,,3.14,﹣3π,3.030030003……中,无理数的个数是()A.1B.2C.3D.44.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a25.若2x=5,2y=3,则22x﹣y的值为()A.25B.C.9D.756.已知m﹣n=,则代数式m2+n2+1﹣2mn的值是()A.8B.7C.6D.57.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3B.﹣3C.1D.﹣18.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个9.下列各组数中,以它们为边长的线段能够成直角三角形的是()A.1,2,3B.5,6,7C.5,12,10D.6,8,10 10.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°11.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是()A.10B.14C.16D.2012.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.213.如图,3×3方格中小方格的边长为1,图中的线段长度是()A.B.C.D.π14.如图,在等边三角形ABC中,点D、E分别在边BC,AC上,DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F,CD=2,则DF的长为()A.2B.3C.4D.5二.填空题(满分12分,每小题3分)15.若2+的小数部分为a,5﹣的小数部分为b,则a+b的值为.16.如图,两个正方形边长分别为a、b,如果a+b=20,ab=18,则阴影部分的面积为.17.如图,已知△ABC中,∠C=90°,AC=BC,AB=8cm,BD平分∠ABC交AC于点D,过D作DE⊥AB于点E,则△ADE的周长为cm.18.如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是.三.解答题19.(15分)王老师给学生出了一道题:求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=,b=﹣1,同学们看了题目后发表不同的看法.小张说:条件b=﹣1是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若x m等于本題计算的结果,试求x2m的值.20.(8分)分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.21.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为:A、B、C、D四个等级,并把测试成绩绘成如图所示的两个统计图表.请根据所给信息,解答下列问题:(1)本次被抽取参加英语口语测试的学生共有多少人?(2)求扇形统计图中C级的圆心角度数;(3)若该校七年级共有学生640人,根据抽样结果,估计英语口语达到B级以上(包括B级)的学生人数.七年级英语口语测试成绩统计表成绩/分等级人数x≥90A1275≤x<90B m60≤x<75C nx<60D922.(8分)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB、AC于点E、D,连结BD(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.(9分)(1)化简:;(2)如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D;③过C作CF∥AB交PQ于点F.求证:△AED≌△CFD.24.(12分)已知△ABC是等边三角形,BC=4cm.(1)如图1,点P在线段AB上从点A出发沿射线AB以1cm/s的速度运动,过点P作PE∥BC交线段AC于点E,同时点Q从点C出发沿BC的延长线以1cm/s的速度运动,连接BE、EQ.设点P的运动时间为t秒.①求证:△APE是等边三角形;②当点P不与点A、B重合时,求证:BE=EQ.(2)如图2,点K为BC的中点,作直线AK,点S为直线AK上一点,连接CS,将线段CS绕点C逆时针旋转60°得到CT,则点S在直线AK上运动的过程中,AT的最小值是多少?请说明理由.参考答案一.选择题1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:A、=9,9的平方根是±3,不符合题意;B、﹣5的立方根是﹣,符合题意;C、的平方根是±,不符合题意;D、﹣9的立方根是﹣,不符合题意,故选:B.3.解:﹣3,,3.14是有理数,无理数有:﹣3π,3.030030003……共2个.故选:B.4.解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.5.解:∵2x=5,2y=3,∴22x﹣y=(2x)2÷2y=52÷3=.故选:B.6.解:∵m﹣n=,∴m2+n2+1﹣2mn=(m2﹣2mn+n2)+1=(m﹣n)2+1=()2+1=7+1=8,故选:A.7.解:原式=x2+(a+3)x+3a,由结果不含x的一次项,得到a+3=0,解得:a=﹣3,故选:B.8.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.9.解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项不符合题意;B、∵52+62=61≠72,∴不能构成直角三角形,故本选项不符合题意;C、∵52+102=125≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵62+82=100=102,∴能够构成直角三角形,故本选项符合题意.故选:D.10.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.11.解:∵AC=AB=6,AD⊥BC,∴BC=2CD=8,∴△ABC的周长=AB+AC+BC=20,故选:D.12.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.13.解:由图可得,线段长度是=,故选:C.14.解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=30°,∵∠ACB=∠EDC=60°,∴△DEC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.故选:C.二.填空题15.解:∵4<6<9,∴2<<3,2<5﹣<3,∴a=﹣2,b=3﹣,则a+b=﹣2+3﹣=1,故答案为:116.解:∵a+b=20,ab=18,∴S=阴影====173故答案为:173.17.解:∵△ABC是等腰直角三角形,∴∠A=45°,BC=AC=AB=4.∵BD是∠ABC的平分线,DC⊥BC,DE⊥AB,∴DC=DE,BC=BE=4.所以AE=AB﹣BE=8﹣4.又△ADE是等腰直角三角形,所以AE=DE=DC.△ADE周长=AD+AE+DE=AC+AE=8.故答案为8.18.解:∵AD⊥BC,BE⊥AC,∴∠ADC=∠ADB=90°,∠BEA=90°,又∵∠FBD+∠BDF+∠BFD=180°,∠F AE+∠FEA+∠AFE=180°,且∠BFD=∠AFE,∴∠FBD=∠F AE,又∵∠ABC=45°,∠ABD+∠BAD=90°,∴∠BAD=45°,∴BD=AD,且∠ADC=∠BDF=90°,∠FBD=∠F AE,∴△ADC≌△BDF(ASA)∴BF=AC=9cm,故答案为:9cm.三.解答题19.解:(1)小张说的有道理.理由如下:(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)=(2a)2﹣b2+2(4a2﹣4ab+b2)+(﹣2b+8ab)=4a2﹣b2+8a2﹣8ab+2b2﹣b2+8ab=12a2∵化简的结果为12a2不含字母b∴条件b=﹣1是多余的,小张说的有道理(2)当a=时,12a2=12×()2=3由题意知x m=3∴x2m=(x m)2=32=9即x2m的值为920.解:(1)a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1);(2)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.21.解:(1)本次被抽取参加英语口语测试的学生共有9÷15%=60人;(2)∵A级所占百分比为×100%=20%,∴C级对应的百分比为1﹣(20%+25%+15%)=40%,则扇形统计图中C级的圆心角度数为360°×40%=144°;(3)根据题意得:640×(20%+25%)=288(人),答:英语口语达到B级以上(包括B级)的学生人数为288人.22.解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE垂直平分AB,∴AD=BD,∴∠DBA=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=36°;(2)由(1)得∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠C﹣∠DBC=72°,∴∠C=∠BDC,∴BC=BD,∵AD=BD,∴AD=BC=4.23.(1)解:原式==.(2)证明:由作图知:PQ为线段AC的垂直平分线,∴AD=C D,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,,∴△AED≌△CFD(AAS).24.解:(1)①∵△ABC是等边三角形,∴∠A=∠ABC=60°.∵PE∥BC,∴∠APE=∠ABC=60°.∴∠A=∠APE=60°.∴△APE是等边三角形.②如图1,∵△ABC是等边三角形,∴AB=AC,∠ACB=60°.∵△AFE是等边三角形,∴AP=PE=AE,∠APE=60°.∴AB﹣AP=AC﹣AE,∠BPE=∠ECQ=120°.∴BP=EC.∵AP=CQ=t,∴PE=CQ.∴△BPE≌ECQ(SAS).∴BE=EQ.(2)解:连接BT,如图2所示.∵△ABC为等边三角形,且AK为△ABC的对称轴,∴∠ACK=60°,∠SAC=30°∵∠SCT=60°,∴∠ACS=∠BCT.在△ACS和△BCT中,,∴△ACS≌△BCT(SAS),∴∠CBT=∠SAC=30°.∴点T在直线BT上,AT的最小值为4.1、三人行,必有我师。
(完整版)华东师大版八年级上册数学期末检测卷(一)附答案
![(完整版)华东师大版八年级上册数学期末检测卷(一)附答案](https://img.taocdn.com/s3/m/fa0aa3d7f5335a8102d220d3.png)
华东师大版八年级上册数学期末检测卷(一)附答案时间: 一、选择题(每小题3分,共30分)( 1 . 4的算术平方根是 ( ) A . 2B . — 22.下列实数中,有理数是 ( )120分钟 总分:120分)C . ±16A. ,:8B.3'4 nC.2 0.1010010013. 下列运算正确的是 A . a 3a 2= a 64. 下列各命题的逆命题成立的是 A .全等三角形的对应角相等C .两直线平行,同位角相等5. 我们知道 5是A . 1 与 26. 如图,边长为 A . 140 ( )B . (a 2b)3= a 6b 3(C . a 8^a 2= a 42a + a = a一个无理数,那么 B . 2 与 3 a , b 的长方形的周长为 B . 70 ITh)B . D .如果两个角都是 ■'5— 1在哪两个整数之间C . 3 与 414,面积为10,则C . 35如果两个数相等, 那么它们的绝对值相等 45 °那么这两个角相等( )D . 4 与 5 a 2b + ab 2的值为( )第6题图D . 24 7.如图,/ A =Z D , OA = OD ,/ DOC = 50 °,则/ A . 50 8 .设 a = 73X1412,A . c v b v a9.如图,点B , C , 的是(A .C .H亡第7题图 DBC 的度数为()D . 25 °则数a , b , c 的大小关系是 ()B . 30°C . 45b = 9322— 4802,c = 5152— 1912, C . b v c v a D . c v a v b △ ABC 与厶CDE 都是等边三角形,则下列结论中不一定成立 B . a v c v bE 在同一条直线上, )△ ACE ◎△ BCD △ DCG ◎△ ECF B . △ BGCAFC D . △ ADB CEFDAB C E 第9题图 :第10题图 10 .如图,AD 是厶ABC 的角平分线,DE 丄AC ,垂足为 E , BF // AC 交ED 的延长线于点 F ,若BC 恰 好平分/ ABF , AE = 2BF.给出下列四个结论:① DE = DF :②DB = DC :③AD 丄BC ;④AC = 3BF ,其中正 确的结论共有( ) A . 4个 B . 3个 C . 2个 D . 1个二、填空题(每小题3分,共24分) 11 .计算:(—a )2 (— a )3= . 12 .某等腰三角形的一个底角为 50°则它的顶角为 ______________ 13 .如图,已知 AC = AE ,/ 1 = / 2,要使△ ABC ◎△ ADE ,还需添加的条件是 _______________(只需填一个).14.若 a 2+ 2a = 1,贝V 3a 2+ 6a + 1 = 15 .如果x 2- Mx + 9是一个完全平方式,则M 的值是16. _________ 如图,已知 BD 丄AN 于B ,交AE 于点O , 0C 丄AM 于点C ,且OB = 0C ,如果/ 0AB = 25°则Z ADB = __________ .17. 如图,在等边厶 ABC 中,点D 为BC 边上的点,DE 丄BC 交AB 于E , DF 丄AC 于F ,则Z EDF 的 度数为18. ______________________________________________________________________ 如图,C 是厶ABE 的BE 边上一点,F 在AE 上,D 是BC 的中点,且 AB = AC = CE ,对于下列结 论:①AD 丄BC ;②CF 丄AE ;③Z 1=Z 2;④AB + BD = DE.其中正确的结论有 ___________________________________________________ ________ (填序号).三、解答题(共 66分)19. (每小题3分,共12分)计算:(2) ( - 2a 2b)2 (6ab)十-3b 2);(4) (3x - y)2- (3x + 2y)(3x - 2y).20. (每小题3分,共12分)因式分解: (1) - 3ma 2 + 12ma - 12m ;21. (7分)已知A = a -灯a + b + 36是a + b + 36的算术平方根,B = a - 2b 是9的算术平方根,求 A + B 的平方根.22. (7 分)已知 2x = 4y +1, 27y = 3x _1,求 x - y 的值.(3)[(x + y)2- (x - y)2]乞xy ; (2)n 2(m - 2) + 4(2- m);(3) 2022+ 202 X 196 + 982;(4)(a + 2b)2+ 2(a + 2b + 1)- 1.第18题图23. (8 分)如图,在四边形ABCD 中,AB// CD,/ 1 = Z 2, DB = DC.(1)求证:△ ABD◎△ EDC ;24. (10分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为m-n的正方形.(1) 请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙);(2) 请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;(3) 请直接写出(m+ n)2, (m- n)2, mn这三个代数式之间的等量关系;(4) 根据(3)中的等量关系,解决如下问题:若 a + b= 6, ab= 4,求(a- b)2的值.25. (10分)如图,在△ ABC中,AC= BC ,Z ACB = 90° D是AB的中点,点E是AB边上一点.(1) BF丄CE于点F,交CD于点G(如图①).求证:AE = CG;(2) AH丄CE,垂足为H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.i.i 2参考答案与解析I. A 2.D 3.B 4.C 5.A 6.B 7.D8. D 解析:a= 73X 1412 = 1412 X 343, b= (932 + 480)(932 —480) = 1412X 452, c= (515 + 191)(515 —191) = 706X 324= 1412 X 162. •/ 452>343>162 ,二1412X 452>1412 X 343>1412 X 162,即即b>a>c.故选D.9. D10. A 解析:T BF // AC, BC 平分/ ABF ,二/ ABC = Z CBF =Z C,「. AB = AC. •/ AD 平分/ BAC,/ CDE = Z BDF ,••• AD 丄BC , CD = BD.在厶CDE 和厶BDF 中, / C =Z CBF , /.△ CDE ◎△ BDF , A DE = DF , CE =CD = BD,BF.T AE = 2BF , • AC= AE+ CE = AE+ BF = 3BF,故①②③④全对.故选A.II. —a512.80 ° 13.AB= AD(答案不唯一)14. 4 15. ± 16.40 °17.60 ° 解析:•/△ ABC 是等边三角形,A=Z B= 60 °.v DE 丄BC 交AB 于E,DF 丄AC 于F,•/ BDE =Z AFD = 90° . •••/AED 是厶BDE 的外角,•/ AED = Z B + Z BDE = 60°+ 90°= 150°, EDF = 360° —Z A—Z AED —Z AFD = 360°—60°—150°—90°= 60°.故答案为60°.18. ①④ 解析:①T D是BC的中点,AB = AC,A AD丄BC,故①正确;②T F在AE上,不一定是AE的中点,AC= CE,•无法证明CF丄AE,故②错误;③无法证明Z 1 = Z 2,故③错误;④T D是BC的中点,• BD = DC. •/ AB = CE , • AB + BD = CE + DC = DE,故④正确.故其中正确的结论有①④ •故答案为①④.19. 解:(1)原式=5 —6—11 = —12; (3 分)(2) 原式=4a4b26ab^—3b2) = [4 X 6琨一3)]a4+ 1b2+1—2=—8a5b ;(6 分)(3) 原式=[x2+ 2xy+ y2—(x2—2xy+ y2)] 2^y= (x2+ 2xy+ y2—x2+ 2xy—y2) -2xy= 4xy 吃xy= 2 ;(9 分)(4) 原式=(9x2—6xy+ y2)—(9x2—4y2)= 9x2—6xy+ y2—9x2+ 4y2= —6xy+ 5y2.(12 分)20. 解:(1)原式=—3m(a —2)2;(3 分)(2) 原式=(m—2)(n + 2)(n —2) ;(6 分)(3) 原式=2022+ 2X 202 X 98 + 982= (202 + 98)2= 90000;(9 分)(4) 原式=(a+ 2b + 1)2.(12 分)一一a— b = 2, a=1,21. 解:由题意可得解得(4分)• A= 6, B = 3.A A + B= 9, A+ B的平方根为±3.(7a—2b= 3, b= —1.分)22. 解:•/2x = 4y +1, A 2x = 22y +2,「. x = 2y + 2•①(2 分)又T 27y = 3x _1,A 33y = 3x _1,A 3y = x - 1•②(4 分) 把①代入②,得 y = 1,A x = 4, (6 分)••• x -y = 3.(7 分)/ 1 = Z 2,23. (1)证明:T AB // CD ,•/ ABD = Z EDC.(1 分)在厶 ABD 和厶 EDC 中, DB = CD ,/ ABD = Z EDC ,• △ ABD 也厶 EDC (ASA) ; (4 分)(2)解:I/ ABD = Z EDC = 30 ° / A = 135 ° 1 = Z 2 = 15 °6 分)•/ DB = DC , DCB = 24•解:(1)如图所示;(2分)(2) 方法 1: (m — n )2+ 2m 2n = m 2— 2mn + n 2 + 4mn = m 2 + 2mn + n 2= (m + n)2; 方法 2: (m + n) (m + n)= (m + n)2; (6 分) (3) (m + n)2= (m — n)2+ 4mn ; (8 分)(4) (a — b)2= (a + b)2— 4ab = 62— 4 x 4= 36 — 16= 20.(10 分)25 . (1)证明:T BF 丄 CE ,•/ BCE + Z CBF = 90 ° 又T Z ACE + Z BCE = 90 ° ACE =Z CBG.(1 分)•/ AC = BC ,Z ACB = 90° A Z A = 45° •/ D 为 AB 的中点,•/ BCG = 45° .(2 分)在厶 ACE 与厶 CBG 中,AC = CB , •/ Z A =Z BCG ,•••△ ACE ^A CBG , • AE = CG ; (5 分)Z ACE =Z CBG ,(2)解:BE = CM .(6 分)证明如下:T AC = BC ,Z ACB = 90 ° A Z CAB =Z CBA = 45 ° Z ACH + Z BCF =90°T CH 丄 AM , A Z ACH +Z CAH = 90° A Z BCF = Z CAH .(8 分)又T AC = BC , D 是 AB 的中点,• CDZ BCE = Z CAM ,平分Z ACB.A Z ACD = 45°A Z CBE =Z ACM = 45°.•在厶 BCE 与厶 CAM 中, BC = CA ,BCEZ CBE =Z ACM ,◎ △ CAM .A BE = CM .(10 分)180BDC _2 = =75 • Z BCE = / DCB — / 2 = 75° - 15° = 60°.(8 分)n tn。
华师大版八年级上册数学期末测试题及答案
![华师大版八年级上册数学期末测试题及答案](https://img.taocdn.com/s3/m/13c68f19bb1aa8114431b90d6c85ec3a87c28b78.png)
华师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共24分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6 B.带根号的数都是无理数C.27的立方根是±3 D.立方根等于﹣1的实数是﹣12.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a23.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N5.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等6.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④ B.①②③C.④ D.②③8.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.4.8 B.8 C.8.8 D.9.8二、填空题(每小题3分,共21分)9.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A= 时,ED恰为AB的中垂线.10.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.11.分解因式:2a3﹣4a2b+2ab2= .12.如图,△ACB中,∠C=90°,BD平分∠ABC交AC于点D,若AB=12,CD=6,则S△ABD为.13.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC的面积= .15.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.三、解答题(共75分)16.计算题(1)﹣+(2)﹣3x2•(﹣2xy3)2(3)a2(a﹣1)+(a﹣5)(a+5)(4)[(ab+1)(ab﹣1)﹣2a2b2+1]÷(﹣ab)17.已知:a﹣b=﹣2015,ab=﹣,求a2b﹣ab2的值.18.先化简,再求值:(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=﹣1.19.如图,某公司举行开业一周年庆典时,准备在公司门口长13米、高5米的台阶上铺设红地毯.已知台阶的宽为4米,请你算一算共需购买多少平方米的红地毯.20.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.佳佳同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)在图②中画△DEF,使DE、EF、DF三边的长分别为、、,并判断这个三角形的形状,说明理由.21.某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表进球数(个)8 7 6 5 4 3人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.22.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.23.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q 在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD 与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6 B.带根号的数都是无理数C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1【考点】立方根;平方根;无理数.【分析】根据平方根及立方根的定义,结合各选项进行判断即可.【解答】解:A、(﹣6)2=36,36的平方根是±6,原说法错误,故本选项错误;B、带根号的数不一定都是无理数,例如是有理数,故本选项错误;C、27的立方根是3,故本选项错误;D、立方根等于﹣1的实数是﹣1,说法正确,故本选项正确;故选D.2.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、幂的乘方及同底数幂的除法法则,分别进行各选项的判断即可.【解答】解:A、a3•a2=a5,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、a8÷a2=a6,故本选项错误;D、a+a=2a,故本选项错误.故选B.3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形的判定定理解得即可.【解答】解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b﹣2c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.4.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【考点】估算无理数的大小;实数与数轴.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C5.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等【考点】全等三角形的判定.【分析】熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.【解答】解:A、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;B、一条斜边对应相等的两个直角三角形,只有两个元素对应相等,不能判断全等,故选项错误;C、顶角和底边对应相等的两个等腰三角形,确定了顶角及底边,即两个等腰三角形确定了,可判定全等,故选项正确;D、两个等边三角形,三个角对应相等,但边长不一定相等,故选项错误.故选C.6.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.7.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④ B.①②③C.④ D.②③【考点】角平分线的性质.【分析】根据在角的内部到角的两边距离相等的点在角的平分线上对各小题分析判断即可得解.【解答】解:∵点P到AE、AD、BC的距离相等,∴点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P在∠BAC,∠CBE,∠BCD的平分线的交点上,故④正确,综上所述,正确的是①②③④.故选A.8.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.4.8 B.8 C.8.8 D.9.8【考点】轴对称-最短路线问题.【分析】若AP+BP+CP最小,就是说当BP最小时,AP+BP+CP才最小,因为不论点P在AC上的那一点,AP+CP都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP 的最小值可求.【解答】解:从B向AC作垂线段BP,交AC于P,设AP=x,则CP=5﹣x,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,∴52﹣x2=62﹣(5﹣x)2解得x=1.4,在Rt△ABP中,BP===4.8,∴AP+BP+CP=AC+BP=5+4.8=9.8.故选D.二、填空题(每小题3分,共21分)9.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A= 30°时,ED恰为AB的中垂线.【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.【分析】求出∠CBA,求出∠EBA=∠A=30°,得出BE=AE,根据三线合一定理求出BD=AD,即可得出答案.【解答】解:当∠A=30°时,ED恰为AB的中垂线,理由是:∵BE平分∠CDA,∴∠CBE=∠DBE,∵∠C=90°,∠A=30°,∴∠CBA=60°,∴∠EBD=∠CBE=∠CBA=30°,即∠A=∠EBA,∴BE=AE,∵ED⊥AB,∴BD=AD,即当∠A=30°时,ED恰为AB的中垂线,故答案30°.10.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.11.分解因式:2a3﹣4a2b+2ab2= 2a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】根据因式分解的方法即可求出答案.【解答】解:原式=2a(a2﹣2ab+b2)=2a(a﹣b)2故答案为:2a(a﹣b)212.如图,△ACB中,∠C=90°,BD平分∠ABC交AC于点D,若AB=12,CD=6,则S△ABD为36 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角的平分线上的点到角的两边的距离相等,得DE=DC=4,再根据三角形的面积计算公式得出△ABD 的面积.【解答】解:如图,过点D作DE⊥AB于点E,∵BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴DE=DC=4,∴△ABD的面积=•AB•DE=×12×6=36.故答案为:36.13.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC的面积= 50 .【考点】角平分线的性质.【分析】作OE⊥BC于E,OF⊥AC于F,如图,根据角平分线的性质得到OE=OF=OD=5,然后根据三角形面积公式和S△ABC=S△OAB+S△OBC+S△OAC得到S△ABC=(AB+BC+AC),再把△ABC的周长为20代入计算即可.【解答】解:作OE⊥BC于E,OF⊥AC于F,如图,∵点O是△ABC三条角平分线的交点,∴OE=OF=OD=5,∴S△ABC=S△OAB+S△OBC+S△OAC=OD•AB+OE•BC+OF•AC=(AB+BC+AC)=×20=50.故答案为:50.15.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用 2.5 秒钟.【考点】平面展开-最短路径问题.【分析】把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.【解答】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB==cm;(2)展开底面右面由勾股定理得AB==5cm;所以最短路径长为5cm,用时最少:5÷2=2.5秒.三、解答题(共75分)16.计算题(1)﹣+(2)﹣3x2•(﹣2xy3)2(3)a2(a﹣1)+(a﹣5)(a+5)(4)[(ab+1)(ab﹣1)﹣2a2b2+1]÷(﹣ab)【考点】实数的运算;整式的混合运算.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果;(3)原式利用单项式乘以多项式,以及平方差公式化简,去括号合并即可得到结果;(4)原式中括号中利用平方差公式化简,合并后利用单项式乘以单项式法则计算即可得到结果.【解答】解:(1)原式=0.5﹣+=0.5﹣1.5=﹣1;(2)原式=﹣3x2•4x2y6=﹣12x4y6;(3)原式=a3﹣a2+a2﹣25=a3﹣25;(4)原式=(a2b2﹣1﹣2a2b2+1)÷(﹣ab)=(﹣a2b2)÷(﹣ab)=ab.17.已知:a﹣b=﹣2015,ab=﹣,求a2b﹣ab2的值.【考点】因式分解-提公因式法.【分析】首先把代数式因式分解,再进一步代入求得数值即可.【解答】解:∵a2b﹣ab2=ab(a﹣b),∴ab(a﹣b)=(﹣2015)×(﹣)=2016.18.先化简,再求值:(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=﹣1.【考点】整式的混合运算—化简求值.【分析】根据平方差公式和单项式除单项式的法则化简,然后代入数据计算求值.【解答】解:(a﹣2b)(a+2b)+ab3÷(﹣ab),=a2﹣4b2﹣b2,=a2﹣5b2,当a=,b=﹣1时,原式=()2﹣5×(﹣1)2=2﹣5=﹣3.19.如图,某公司举行开业一周年庆典时,准备在公司门口长13米、高5米的台阶上铺设红地毯.已知台阶的宽为4米,请你算一算共需购买多少平方米的红地毯.【考点】勾股定理的应用.【分析】首先可利用勾股定理解图中直角三角形得台阶的地面长度为12米,则通过观察梯子可知需买红地毯的总长度为12+5=17米.【解答】解:依题意图中直角三角形一直角边为5米,斜边为13米,根据勾股定理另一直角边长: =12米,则需购买红地毯的长为12+5=17米,红地毯的宽则是台阶的宽4米,所以面积是:17×4=68平方米.答:共需购买68平方米的红地毯.20.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.佳佳同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)在图②中画△DEF,使DE、EF、DF三边的长分别为、、,并判断这个三角形的形状,说明理由.【考点】作图—复杂作图;二次根式的应用;勾股定理的逆定理.【分析】(1)用一个矩形的面积分别减去三个三角形的面积可求出△ABC的面积;(2)利用勾股定理和网格特点分别画出△DEF,然后根据勾股定理的逆定理证明此三角形为直角三角形.【解答】解:(1)△ABC的面积=3×3﹣×1×3﹣×2×1﹣×2×3=;故答案为;(2)如图2,△DEF为所作,△DEF为直角三角形.理由如下:∵DE=,EF=,DF=,∴DE2+EF2=DF2,∴△DEF为直角三角形.21.某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表进球8 7 6 5 4 3数(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 5 ;(2)选择长跑训练的人数占全班人数的百分比是10% ,该班共有同学40 人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.【考点】扇形统计图;统计表.【分析】(1)根据加权平均数的求解方法列式进行计算即可得解;(2)根据各部分的百分比总和为1,列式进行计算即可求解,用篮球的总人数除以所占的百分比进行计算即可;(3)设训练前人均进球数为x,然后根据等式为:训练前的进球数×(1+25%)=训练后的进球数,列方程求解即可.【解答】解:(1)===5;(2)1﹣60%﹣10%﹣20%=10%,(2+1+4+7+8+2)÷60%=24÷60%=40人;(3)设参加训练前的人均进球数为x个,则x(1+25%)=5,解得x=4,即参加训练之前的人均进球数是4个.22.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.【解答】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.23.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q 在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD 与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP 全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ 时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.华师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共24分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6 B.带根号的数都是无理数C.27的立方根是±3 D.立方根等于﹣1的实数是﹣12.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a23.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N5.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等6.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④ B.①②③C.④ D.②③8.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.4.8 B.8 C.8.8 D.9.8二、填空题(每小题3分,共21分)9.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A= 时,ED恰为AB的中垂线.10.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.11.分解因式:2a3﹣4a2b+2ab2= .12.如图,△ACB中,∠C=90°,BD平分∠ABC交AC于点D,若AB=12,CD=6,则S△ABD为.13.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC的面积= .15.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.三、解答题(共75分)16.计算题(1)﹣+(2)﹣3x2•(﹣2xy3)2(3)a2(a﹣1)+(a﹣5)(a+5)(4)[(ab+1)(ab﹣1)﹣2a2b2+1]÷(﹣ab)17.已知:a﹣b=﹣2015,ab=﹣,求a2b﹣ab2的值.18.先化简,再求值:(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=﹣1.19.如图,某公司举行开业一周年庆典时,准备在公司门口长13米、高5米的台阶上铺设红地毯.已知台阶的宽为4米,请你算一算共需购买多少平方米的红地毯.20.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.佳佳同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)在图②中画△DEF,使DE、EF、DF三边的长分别为、、,并判断这个三角形的形状,说明理由.21.某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表进球数(个)8 7 6 5 4 3人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.22.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.23.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q 在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD 与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
华师版八年级数学上册期末测试卷附答案
![华师版八年级数学上册期末测试卷附答案](https://img.taocdn.com/s3/m/712642b369eae009591bec1a.png)
华师版八年级数学第一学期期末测试卷一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.9的平方根是( )A .±3B .±13C .3D .-32.下列运算正确的是( )A .x 3·x 4=x 12B .(x 3)4=x 7C .x 8÷x 2=x 6D .(3b 3)2=6b 63.将下列长度的三根木棒首尾顺次相连,不能组成直角三角形的是( )A .8、15、17B .7、24、25C .3、4、5D .2、3、74.∠AOB 的平分线的作图过程如下:(1)如图,在OA 和OB 上分别截取OD ,OE ,使OD =OE ;(2)分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C ;(3)作射线OC ,OC 就是∠AOB 的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是( )A .边角边B .角边角C .角角边D .边边边5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是( )A .汽车尾气约为建筑扬尘的3倍B .表示建筑扬尘的占7%C .表示煤炭燃烧对应的扇形圆心角度数为126°D .煤炭燃烧的影响最大6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°7.下列分解因式正确的是()A.-ma-m=-m(a-1)B.a2-1=(a-1)2C.a2-6a+9=(a-3)2D.a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,∠A=40°,BE=DC,CF=BD,则∠EDF的度数为()A.60°B.70°C.80°D.90°9.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. 3 B. 5 C. 6 D.710.根据等式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x +1)=x4-1,(x-1)(x4+x3+x2+x+1)=x5-1,…的规律,则可以推算得出22021+22020+22019+…+22+2+1的末位数字是()A.1 B.3 C.5 D.7二、填空题(本题共6小题,每小题4分,共24分)11.在实数-7.5、15、4、3-125、15π、⎝⎛⎭⎪⎫222中,有a个有理数,b个无理数,则ba=________.12.已知x2n=5,则(3x3n)2-4(x2)2n的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应角的平分线相等.其中逆命题是假命题的是________.15.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过O作EF∥BC分别交AB、AC于E、F.若△ABC的周长比△AEF的周长大12 cm,O到AB 的距离为3.5 cm,则△OBC的面积为________cm2.16.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=________.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)49-327+|1-2|+⎝⎛⎭⎪⎫1-432;(2)4(x+1)2-(2x-5)(2x+5);18.(8分)先化简,再求值.(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.19.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点在格点上.(1)在△ABC中,AB的长为________,AC的长为________;(2)在网格中,直接画出所有与△ABC全等的△DBC.20.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理并绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,a=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的扇形的圆心角为________.22.(10分)如图,一个牧童在小河MN的南4 km的A处牧马,而他正位于他的小屋B的西8 km北7 km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事所走的最短路程是多少?23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).24.(12分)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如,可用图①来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图②完成因式分解:2a2+2ab=2a(________);(2)现有足够多的正方形和长方形卡片(如图③),试在图④的虚线框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2.要求:每两张卡片之间既不重叠,也无空隙,拼成的图中必须保留拼图的痕迹,并利用你所画的图形面积对a2+3ab+2b2进行因式分解:a2+3ab+2b2=______________.25.(14分)线段AB⊥直线l于点B,点D在直线l上,分别以AB,AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE-CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,不需要证明;(3)在(1)(2)的条件下,若BD=2BF,EF=6,则CF=________.答案一、1.A 2.C 3.D 4.D 5.C6.A点拨:∵AD∥BC,∴∠C=∠1=70°.∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°-∠B-∠C=180°-70°-70°=40°.7.C8.B9.B10.B二、11.212.1 02513.1014.①③④15.21点拨:∵∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC.∵△ABC的周长比△AEF的周长大12 cm,∴(AB+BC+AC)-(AE+EF+AF)=12 cm,∴BC=12 cm.∵O到AB的距离为3.5 cm,且O在∠ABC的平分线上,∴O到BC的距离也为3.5 cm,∴△OBC的面积是12×12×3.5=21(cm2).16.2.5三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=4(x2+2x+1)-4x2+25=4x2+8x+4-4x2+25=8x+29. 18.解:(a+b)(a-b)+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab.当a=2,b=1时,原式=22-2×2×1=0.19.解:(1)5;2 5(2)如图,△D1BC、△D2BC、△D3BC即为所求.20.(1)证明:在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD=90°,BE=BD,∴△ABE≌△CBD(S.A.S.).(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°.∵∠CAE=30°,∴∠AEB=∠ACB+∠CAE=45°+30°=75°.由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=75°.21.解:(1)50;24(2)C级的人数为50-12-24-4=10.补全条形统计图如图所示.(3)72°22.解:如图,作点A关于MN的对称点A′,连结A′B交MN于点P,连结AP,则AP+PB的长度就是最短路程.在Rt△A′DB中,由勾股定理,得A′B=DA′2+DB2=(7+4+4)2+82=17(km).答:他要完成这件事所走的最短路程是17 km.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠BCE.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)a+b(2)如图所示.(答案不唯一)(a+b)(a+2b)25.(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ACB=∠ABC=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(S.A.S.),∴BD=CE,∠ABD=∠ACE.∵AB⊥直线l,∴∠ABD=90°,∴∠ACE=90°,∠CBF=30°.∵点E,C,F在同一条直线上,∠ACB=60°,∴∠BCF=30°,∴∠CBF=∠BCF,∴BF=CF.∵BD=DF+BF,∴BD=DF+CF=CE,即DF=CE-CF.(2)解:题图②中,DF=CF-CE,题图③中,DF=CE+CF.(3)2或6八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x 2x -1+11-x的结果是( )A .x +1 B.1x +1C .x -1D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( ) A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D ∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A ∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 根据题意可得12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16=(2 016×2 022)2+16 =4 076 352+4=4 076 356.(2)2n (2n +2)(2n +4)(2n +6)+16 =2n (2n +6)+4 =4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度. (上述等量关系,任选一个就可以) (3)选冰冰的方程:38-29x +2x =1, 去分母,得36+18=9x , 解得x =6,经检验,x =6是原分式方程的解. 答:小红步行的速度是6 km/h ; 选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ), 解得y =13,经检验,y =13是原分式方程的解,∴小红步行的速度是2÷13=6(km/h). 答:小红步行的速度是6 km/h. (对应(2)中所选方程解答问题即可) 26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm , ∴BP =5 cm , ∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ . ∴∠C =∠BPQ .易知∠C +∠APC =90°, ∴∠APC +∠BPQ =90°, ∴∠CPQ =90°, ∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ , ∴5=7-2t ,2t =xt , 解得x =2,t =1; ②若△ACP ≌△BQP , 则AC =BQ ,AP =BP , ∴5=xt ,2t =7-2t , 解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
华师大版八年级(上)期末数学试卷及答案1
![华师大版八年级(上)期末数学试卷及答案1](https://img.taocdn.com/s3/m/b5727f7bd4d8d15abf234e6e.png)
华师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共24分)1.(3分)4的算术平方根是()A.﹣2 B.±2 C.2 D.162.(3分)下列是无理数的是()A.B.C.D.3.(3分)下列运算正确的是()A.x2+x2=x4B.(a﹣1)2=a2﹣1 C.a2•a3=a5D.3x+2y=5xy4.(3分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.255.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b26.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°7.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、B C.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°8.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24 B.30 C.40 D.48二、填空题(每小题3分,共18分)9.(3分)计算:3a•(﹣2a)2=.10.(3分)写出“全等三角形的面积相等”的逆命题.11.(3分)某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为人.12.(3分)若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为.13.(3分)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=.14.(3分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.三、解答题(本大题共12小题,共78分)15.(5分)计算:﹣.16.(5分)因式分解:ab2﹣2ab+a.17.(5分)在正方形网格图①、图②中各画一个等腰三角形,要求:每个等腰三角形的一个顶点为格点A,其余顶点为格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.18.(5分)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中x=﹣.19.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(5分)如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.21.(6分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA 的度数.22.(6分)如图,已知AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.23.(8分)某市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:跳绳,B:跑操,C:舞蹈,D:健美操共四项活动,为了了解学生最喜欢哪一种活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将条形统计图补充完整.(3)求出扇形统计图中A项目对应的圆心角的度数.24.(8分)探究:如图①,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的同侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.求证:DE=AD+BE.应用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的异侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.直接写出线段AD、BE、DE之间的相等关系.25.(10分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.26.(10分)如图,已知四边形ABCD中,∠B=60°,边AB=BC=8cm,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是每秒1cm,点Q运动的速度是每秒2cm,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.解答下列问题:(1)AP=,BP=,BQ=.(用含t的代数式表示,t≤4)(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)4的算术平方根是()A.﹣2 B.±2 C.2 D.16【解答】解:∵22=4,∴4算术平方根为2,故选:C.2.(3分)下列是无理数的是()A.B.C.D.【解答】解:,,是有理数,是无理数,故选:B.3.(3分)下列运算正确的是()A.x2+x2=x4B.(a﹣1)2=a2﹣1 C.a2•a3=a5D.3x+2y=5xy【解答】解:A、错误,应为x2+x2=2x2;B、错误,应为(a﹣1)2=a2﹣2a+1;C、正确;D、错误,3x与2y不是同类项,不能合并.故选:C.4.(3分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【解答】解:如图所示:AB==5.故选:A.5.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.6.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65° C.80°D.65°【解答】解:当底角为50°时,则底角为50°,当顶角为50°时,由三角形内角和定理可求得底角为:65°,所以底角为50°或65°,故选:B.7.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、B C.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°【解答】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.故选:C.8.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24 B.30 C.40 D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.二、填空题(每小题3分,共18分)9.(3分)计算:3a•(﹣2a)2=12a3.【解答】解:3a•(﹣2a)2=3a×4a2=12a3.故答案为:12a3.10.(3分)写出“全等三角形的面积相等”的逆命题面积相等的三角形全等.【解答】解:“全等三角形的面积相等”的题设是:两个三角形全等,结论是:面积相等,因而逆命题是:面积相等的三角形全等.故答案是:面积相等的三角形全等.11.(3分)某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为640人.【解答】解:根据题意知该组的人数为1600×0.4=640(人),故答案为:640.12.(3分)若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为6.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的一次项,得到m﹣6=0,解得:m=6,故答案为:613.(3分)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=17.【解答】解:∵S1=5,∴BC2=5,∵S2=12,∴AC2=12,∴在Rt△ABC中,BC2+AC2=AB2=5+12=17,∴S3=AB2=17.故答案为:17.14.(3分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.三、解答题(本大题共12小题,共78分)15.(5分)计算:﹣.【解答】解:﹣=2﹣=1.16.(5分)因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.17.(5分)在正方形网格图①、图②中各画一个等腰三角形,要求:每个等腰三角形的一个顶点为格点A,其余顶点为格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.【解答】解:如图△ACE,△ADE即可等腰三角形.18.(5分)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中x=﹣.【解答】解:当x=时,原式=x2+2x+1﹣x2+4=2x+5=﹣1+5=419.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=FC+EF,即BF=EC,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠A=∠D.20.(5分)如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.【解答】解:(1)设木杆断裂处离地面x米,由题意得x2+52=(25﹣x)2,解得x=12.答:木杆断裂处离地面12米;(2)△ABC的面积=AC•AB=30平方米.21.(6分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA 的度数.【解答】解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=35°,又∵AB∥CD,∴∠CMA=∠BAM=35°.22.(6分)如图,已知AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.【解答】解:BC的垂直平分线交AB于点D,∴DB=DC,∵△ACD的周长是14,∴AD+AC+CD=14,即AC+AB=14,则,解得,AB=8cm,AC=6cm.23.(8分)某市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:跳绳,B:跑操,C:舞蹈,D:健美操共四项活动,为了了解学生最喜欢哪一种活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将条形统计图补充完整.(3)求出扇形统计图中A项目对应的圆心角的度数.【解答】解:(1)这次被调查的学生共有140÷28%=500人,故答案为:500;(2)A项目的人数为500﹣(75+140+245)=40(人),补全条形图如下:(3)扇形统计图中A项目对应的圆心角的度数为360°×=28.8°.24.(8分)探究:如图①,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的同侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.求证:DE=AD+BE.应用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的异侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.直接写出线段AD、BE、DE之间的相等关系.【解答】证明:①∵AD⊥DE,BE⊥DE,∠ACB=90°,∴∠ADC=∠ACB=∠BEC=90°,∴∠DAC+∠DCA=90°,∠DCA+∠ECB=180°﹣90°=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD,即DE=AD+BE.②AD=BE﹣DE,理由如下:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°﹣∠EC B.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,又∵CE=CD﹣DE,∴AD=BE﹣DE.25.(10分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE=AB=2.5.26.(10分)如图,已知四边形ABCD中,∠B=60°,边AB=BC=8cm,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是每秒1cm,点Q运动的速度是每秒2cm,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.解答下列问题:(1)AP=t,BP=8﹣t,BQ=2t.(用含t的代数式表示,t≤4)(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.【解答】解:(1)由题意得,AP=t,BP=8﹣t,BQ=2t,故答案为:t;8﹣t;2t;(2)PQ⊥AB,理由如下:连接AC,∵∠B=60°,AB=BC,∴△ABC为等边三角形,∵点Q到达点C时,BQ=BC=8cm,AP=4,∴P为AB的中点,∴PQ⊥AB;(3)△BPQ能称为等边三角形,∵∠B=60°,∴当BP=BQ时,△BPQ能称为等边三角形,此时,8﹣t=2t,解得,t=.。
华师大版八年级上册数学期末考试试题及答案
![华师大版八年级上册数学期末考试试题及答案](https://img.taocdn.com/s3/m/ef94e7b0c850ad02df804135.png)
华师大版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1 )A .7B .﹣1C .1D .﹣72.下列计算不正确的是( )A .(-a)3 • (-a)4 • (-a)=a 8B .(x 3)5 = (x 5)3C .(x+3y) (x-3y) =x 2-3y 2D .m 4÷m = m 33.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 24.()()22a b a b --+是下列哪一个多项式因式分解的结果( )A .4a 2—b 2B .4a 2+b 2C .-4a 2-b 2D .-4a 2+b 25.老师对本班80名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( )A .32 人B .28 人C .8 人D .12 人6.若a + b = 3,a 2-b 2=6,则a - b 等于( )A .1B .2C .-2D .-17.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )A .B .C .D . 8.如图,AD 平分∠BAC ,AB =AC ,则图中全等三角形的对数是( )A.2对B.3对C.4对D.5对9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.如图,四边形ABCD是长方形,把ΔACD沿AC翻折到ΔACD',AD'与BC交于点E,若AD=4,DC=3,则BE的长是()A.58B.23C.78D.1?二、填空题11.-5是________的立方根.12.已知BD丄AN于点B,交AE于点O,OC丄AM于点C,且OB= OC,如果∠OAB=25°,则∠ADB=________.13.在一个边长为12.75?cm的正方形内挖去一个边长为7.25?cm的正方形,则剩下部分的面积为______2cm.BC的14.如图,在已知的ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连结CD,若CD= AC,∠A=50°,则∠B=________.15.如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,连结AC.若AC=8,则四边形ABCD的面积为_________.三、解答题16.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.17.已知a+b=3,ab = 2,求代数式a3b+2a2b2+ab3的值.18.已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.19.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.20.为了绿化环境,北京临川学校七年级部分同学积极参加植树活动,今年植树节时,该年级同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)七年级参加植树的共有多少名同学?(2)条形统计图中,m=,n=.(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.21.用尺规作图:任意画一个锐角∠AOB,如图.在OB上任取一点C.过点C作CM//OA,CN OA于乂(不必写出作法,但要保留作图痕迹)22.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1) 观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2) 若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.23.如图,在RtΔABC 中,∠ABC=90°,AB=20,BC=15,A D为AC边上的动点,点D 从点C出发,沿边CA往A运动,当运动到点A时停止,设点D运动的时间为t秒,速度为每秒2个单位长度.(1)当t为何值时,ΔCBD是直角三角形;(2)若ΔCBD是等腰三角形,求t的值.参考答案1.A【解析】根据算术平方根的计算即可得到结论.【详解】,故选A .【点睛】本题主要考查算术平方根,比较基础.2.C【分析】根据同底数幂的乘法,幂的乘方和积的乘方,同底数幂的除法以及平方差公式求出每个式子的值,再得出选项即可.【详解】解:A 、(-a)3 • (-a)4 • (-a)=a 8,计算正确,故本选项不符合题意;B 、(-x 2)5=-a 10,计算正确,故本选项不符合题意;C 、(x+3y) (x-3y) =x 2-9y 2,计算错误,故本选项符合题意;D 、m 4÷m = m 3,计算正确,故本选项不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,同底数幂的除法以及平方差公式等知识点,能求出每个式子的值是解此题的关键.3.C【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2.又∵原矩形的面积为4mn ,∴中间空的部分的面积=(m+n )2-4mn=(m-n )2.故选C .4.D【分析】把每个能分解因式的选项分解因式,即可得到答案.【详解】解:()()22422,a b a b a b -=+- 故A 错误;224a b +不能分解因式,故B 错误;224a b --不能分解因式,故C 错误;()()()22224422.a b a b a b a b -+=--=-+- 故D 正确;故选D .【点睛】本题考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.5.A【分析】根据频数和频率的定义求解即可.【详解】解:本班A 型血的人数是800.4=32⨯(人)故选:A .【点睛】本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键. 6.B【分析】根据平方差公式将a 2-b 2=6进行变形,再把a+b=3代入求值即可.【详解】解:∵a+b=3,∴a 2-b 2=(a+b )(a-b )=3(a-b )=6,∴a-b=2,故选:B .【点睛】此题主要考查了因式分解的应用,熟练掌握平方差公式是解答此题的关键.7.C【分析】求证是否为直角三角形,这里给出三边的长,根据两小边的平方和等于最长边的平方逐一验证即可得到答案.【详解】解:A 、22222222272425,152024,222025,+=+≠+≠故A 不正确;B 、22222272425,152024,+=+≠故B 不正确;C、222222+=+=故C正确;72425,152025,D、22222272025,152425,+≠+≠故D不正确.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足222a b c,那么这个三角形是直角三角形.+=8.B【分析】根据角平分线的性质及全等三角形的判定可求得图中的全等三角形有3对,分别是:△ABD≌△ACD,△BED≌△CED,△ABE≌△ACE.【详解】∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB=AC,AD=AD,AE=AE,∴△ABD≌△ACD,△ACE≌△ABE(SAS),∴BD=CD,∠BDE=∠CDE,∵DE=DE,∴△CED≌△BED(SAS),所以共有3对全等三角形,故选B.【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.9.C【详解】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.10.C【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理建立方程可计算出BE 的长度.【详解】解:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD ∥BC ,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC ,∵AD ∥BC ,∴∠DAC=∠ACB ,∴∠D′AC=∠ACB ,∴AE=EC ,设BE x =,则4EC x =-,=4AE x -,在Rt ABE ∆中,由勾股定理得:222AB BE AE +=,即:()22234x x +=-, 解得:78x =,即:BE 的长度为78, 故选:C .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;也考查了矩形的性质和勾股定理;牢记折叠的性质是解决本题的关键.11.125.-【分析】由立方与立方根互为逆运算,所以由()35-可的答案.【详解】-=-解:()35125,-的立方根,∴-是1255-故答案为:125.【点睛】本题考查的是立方根的含义,掌握立方根及求一个数的立方根是解题的关键.12.40°【分析】先根据DB⊥AN于B,OC⊥AM于点C,且OB=OC,得出AE平分∠MAN,再根据∠OAB=25°,得出∠MAN=50°,最后根据DB⊥AN于B,求得∠ADB即可.【详解】解:∵DB⊥AN于B,OC⊥AM于点C,且OB=OC,∴AE平分∠MAN,∵∠OAB=25°,∴∠MAN=50°,∵DB⊥AN于B,∴Rt△ABD中,∠ADB=40°.故答案为:40°【点睛】本题主要考查了角平分线的性质定理的逆定理,解决问题的关键是掌握:角的平分线上的点到角的两边的距离相等.13.110cm2【详解】根据题意可得:剩下的面积=2212.757.25-=(12.75+7.25)×(12.75-7.25)=20×5.5=110.考点:平方差公式的应用14.25︒【分析】先根据等腰三角形的性质可得50ADC A ∠=∠=︒,再根据三角形的外角性质可得B BCD ADC ∠+∠=∠,然后根据垂直平分线的性质可得CD BD =,最后根据等腰三角形的性质可得B BCD ∠=∠,由此即可得出答案.【详解】CD AC =,50A ∠=︒,50ADC A ∴∠=∠=︒,50B BCD ADC ∴∠+∠=∠=︒,由作图过程可知,直线MN 是BC 的垂直平分线,CD BD ∴=,B BCD ∴∠=∠,250B ∴∠=︒,解得25B ∠=︒,故答案为:25︒.【点睛】本题考查了等腰三角形的性质、垂直平分线的作图与性质等知识点,掌握垂直平分线的作图与性质是解题关键.15.32【分析】作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ,先证明△ABM ≌△ADN (AAS ),得到AM=AN ,△ABM 与△ADN 的面积相等,求出正方形AMCN 的面积即可解决问题.【详解】解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ,∵∠BAD=∠BCD=90°,∴四边形AMCN 为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN ,在△ABM 与△ADN 中,BAM DAN AMB AND AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ADN (AAS ),∴AM=AN ,∴△ABM 与△ADN 的面积相等,∴四边形ABCD 的面积=正方形AMCN 的面积,设AM=a ,由勾股定理得:222AC AM MC =+,∵AC=8,∴2264a =,∴232a =,故答案为:32.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,正方形的判定及性质,解题的关键是作辅助线,构造全等三角形.16.5【解析】试题分析:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.原式的第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,第三项先计算乘方运算,再计算除法运算,合并得到最简结果,最后把ab 的值代入化简后的式子计算即可求出值.试题解析:解:原式=4﹣a 2+a 2﹣5ab+3ab=4﹣2ab ,当ab=﹣12时,原式=4+1=5.考点:整式的混合运算—化简求值..17.2()ab a b +,18【分析】先把32232a b a b ab ++分解因式,再整体代入求值即可.【详解】解:32232a b a b ab ++()222ab a ab b =++2()ab a b =+.将3a b +=,2ab =代入得,原式22318=⨯=.【点睛】本题考查的是利用因式分解求代数式的值,掌握因式分解的方法:提公因式法,公式法是解题的关键.18.证明见解析.【分析】要证明∠B=∠ANM ,只要证明△BAD ≌△NAM 即可,根据∠BAC=∠DAM ,可以得到∠BAD=∠NAM ,然后再根据题目中的条件即可证明△BAD ≌△NAM ,本题得以解决.【详解】证明:∵∠BAC=∠DAM ,∠BAC=∠BAD+∠DAC ,∠DAM=∠DAC+∠NAM , ∴∠BAD=∠NAM .在△BAD 和△NAM 中,∵AB=AN ,∠BAD=∠NAM ,AD=AM ,∴△BAD ≌△NAM (SAS ),∴∠B=∠ANM .【点睛】本题考查全等三角形的判定和性质,根据题目条件选择适当的判定定理是关键.19.(1) AP=13cm ,OA=5cm (2) OP=12cm【分析】(1)、设AP=a ,OA=b ,根据图一和图二列出二元一次方程组,从而得出答案;(2)、根据Rt △OAP 的勾股定理得出答案.【详解】(1)设AP=a ,OA=b ,由题意818a b a b -=⎛ +=⎝, 解得135a b =⎛ =⎝, ∴AP=13cm ,OA=5cm .(2)当OA ⊥OP 时,在Rt △PAO 中,,∴OP=12cm .点睛:本题主要考查的是二元一次方程组的应用以及勾股定理的实际应用,属于基础题型.根据题意列出方程组是解决这个问题的关键.20.(1)50;(2)10,7;(3)72°.【解析】试题分析:(1)根据植4株的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n 的值;用总人数减去其他植树的人数,就是m 的值,从而补全统计图;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数. 试题解析:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50. (2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7(人).m=50﹣(4+18+11+7)=10(人).(3)所求扇形圆心角的度数为:360×1050=72°. 点睛:此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.21.详见解析【分析】利用尺规作图作∠MCB=∠O ,利用尺规作图过C 作AO 的垂线.【详解】如图所示,直线CM 和CN 即为所求..【点睛】本题考查了作图-基本作图,熟悉尺规作图是解题的关键.22.(1)AP=CQ,证明见解析(2)△PQC是直角三角形,证明见解析【分析】根据等边三角形的性质利用SAS判定△ABP≌△CBQ,从而得到AP=CQ;设PA=3a,PB=4a,PC=5a,由已知可判定△PBQ为正三角形从而可得到PQ=4a,再根据勾股定理判定△PQC 是直角三角形.【详解】(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC 中∵PQ 2+QC 2=16a 2+9a 2=25a 2=PC 2∴△PQC 是直角三角形.【点睛】此题考查勾股定理的逆定理,等边三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线23.(1) 4.5t =或12.5秒时,CBD 是直角三角形;(2)7.5t =或6.25或9秒时,CBD 是等腰三角形.【分析】(1)根据CD=速度×时间,得到CD ,利用勾股定理列式求出AC ,再分①∠CDB=90°时,利用△ABC 的面积列式计算即可求出BD ,然后利用勾股定理列式求解得到CD ,再根据时间=路程÷速度计算;②∠CBD=90°时,点D 和点A 重合,然后根据时间=路程÷速度计算即可得解;(2)分①CD=BC 时,CD=15;②CD=BD 时,根据等腰三角形的性质、直角三角形的性质可求CD ;③BD=BC 时,过点B 作BF ⊥AC 于F ,根据等腰三角形三线合一的性质可得CD=2CF ;依此解答.【详解】解:(1)由题意知2CD t =,90ABC ∠=︒,20AB =,15BC =,∴25AC =,252AD AC CD t =-=-.①90CDB ∠=︒时,1122ABC SAC BD AB BC =⋅=⋅,即1125201522BD ⨯⨯=⨯⨯, 解得12BD =,∴9CD ,则92 4.5t =÷=;②90CBD ∠=︒时,点D 和点A 重合,25212.5t =÷=. 综上所述, 4.5t =或12.5秒时,CBD 是直角三角形.(2)①CD BC =时,15CD =,∴1527.5t =÷=;②CD BD =时,C DBC ∠=∠.∵90C A DBC DBA ︒∠+∠=∠+∠=,∴D A BA ∠=∠,∴BD AD=,∴112.52CD AD AC===,∴12.52 6.25t=÷=;③BD BC=时,如图,过点B作BF AC⊥于F.根据等腰三角形三线合一的性质可知2CD CF=.则CF DF=,∵12BF=,∴9CF=,∴29218CD CF==⨯=,∴1829t=÷=.综上所述,7.5t=或6.25或9秒时,CBD是等腰三角形.【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,难点在于要分情况讨论,作出图形更形象直观.。
华师大版八年级上册数学期末测试卷(参考答案)
![华师大版八年级上册数学期末测试卷(参考答案)](https://img.taocdn.com/s3/m/eaf7560815791711cc7931b765ce050877327555.png)
华师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.等腰三角形的两个底角相等C.顶角相等的两个等腰三角形全等D.等腰三角形一边不可以是另一边的2倍2、下列计算正确的是()A. =±3B.a 0=1C.3 -2 =1D.2÷3× =3、下列说法正确的是()A.同位角相等B.矩形对角线垂直C.对角线相等且垂直的四边形是正方形D.等腰三角形两腰上的高相等4、下面各式计算正确的是()A. B. C. D.5、一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间6、 =()A. B. C. D.7、如图,已知等边三角形△ABC边长为a,等腰三角形△BDC中,∠BDC=120º,∠MDN=60º,角的两边分别交AB,AC于点M,N,连结MN.则△AMN的周长为()A. aB.2 aC.3 aD.4 a8、若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.4B.5C.4或5D.69、下列计算结果正确的是()A. B. C. ÷ D.10、下列等式成立的是()A. B. C. D.11、方程的根为()A. B. C. 或 D.以上都不对12、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =3,b=4,则该矩形的面积为( )A.20B.24C.D.13、若a2=4,b2=9,且ab<0,则a-b的值为()A.-2B.±5C.-5D.514、如图,在中,,以点为旋转中心,把顺时针旋转得,记旋转角为, 为,当旋转后满足时,与之间的数量关系为()A. B. C. D.15、如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2 <r<B. <r<3C. <r<5D.5<r<二、填空题(共10题,共计30分)16、计算:(﹣3xy2)2÷(2xy)=________.17、分解因式:2a2-a=________.18、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度为________.19、如图,在菱形ABCD中,,对角线,则菱形ABCD的面积为________.20、如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC=________,CD=________.21、如图,△ABC中,∠BAC=110°,AB、AC的垂直平分线分别交BC于点E、F,则∠EAF的度数为________.22、如图,商场(点M)距公路(直线l)的距离(MA)为3km,在公路上有一车站(点N),车站距商场(NM)为4km,公交公司拟在公路上建一个公交车站停靠站(点P),要求停靠站到商场与到车站的距离相等,则停靠站到车站的距离(NP)的长为________.23、如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD 的论断是________(限填序号).24、因式分解:9a3b-ab________.25、若a+ =3,则a﹣=________.三、解答题(共5题,共计25分)26、计算:.27、如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.28、“尊敬的老师:因为我家里有事了,所以向老师请假了,请假2天了,请老师准假了,谢谢了.”这是小明同学向老师写的请假条.老师见后,对此请假条马上批注,“小明同学:你的请假条中了字用了太多了,以后少用了,明白没有了现在准假了,就这样了.”问请假条和批语中“了”的频数各是多少?频率各是多少?是小明还是老师用“了”更频繁?29、如图,点C是AB的中点,AD=CE,CD=BE,求证:∠D=∠E.30、如图:在平行四边形ABCD中,对角线AC与BD交于点O,过点O的直线EF 分别与AD、BC交于点E、F,EF⊥AC,连结AF、CE.(1)求证:OE=OF;(2)请判断四边形AECF是什么特殊四边形,请证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、B6、A7、B8、C9、D10、C11、C12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
华师大版八年级上册数学期末考试试题附答案
![华师大版八年级上册数学期末考试试题附答案](https://img.taocdn.com/s3/m/0097d9ebcc7931b764ce15ed.png)
华师大版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.9的算术平方根是( )A.3 B.9 C.±3 D.±92.如图,BC丄OC,CB =1,且OA = OB,则点A在数轴上表示的实数是()A.B.C.-2 D3.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有()A.1个B.2个C.3个D.4个4.下列运算中,结果是a5的是()A.a2• a3B.a10÷a2C.(a2)3D.( - a)55.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+66.用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B'''∠=∠的依据是()A.SAS B.SSS C.ASA D.AAS7.如图,已知BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF 的是( )A.AB=DE B.AC∥DF C.∠A=∠D D.AC=DF8.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确9.如图,ABC 中,∠C=90°,AC=3,AB = 5,点D 是边BC 上一点,若沿将ACD 翻折,点C刚好落在边上点E处,则BD等于()A.2 B.52C.3 D.10310.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.4二、填空题11.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.12.因式分解:3x—12xy2 =__________.13.若等腰三角形的顶角为100,则它腰上的高与底边的夹角是________度.14.如图,ΔABC的面积为8 cm2,AP垂直∠B的平分线BP于P,则ΔPBC的面积为________.15.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P 的运动时间为t秒,当t的值为__秒时,△ABP和△DCE全等.三、解答题16.计算:[xy(3x—2)—y(x2—2x)]÷xy.17.若△ABC 的三边a、b、c 满足|a —15 | +(b—8)2.试判断△ABC的形状,并说明理由.18.先化简,再求值:2(2)2()()()a a b a b a b a b +++--+,其中1,12a b =-=.19.学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求该校七年一班此次预选赛的总人数;(2)补全条形统计图,并求出书法所在扇形圆心角的度数;(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?20.如图,已知△ABC ,利用尺规..,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ; (2)作BD 的垂直平分线交AB 于E ,交BC 于F ;(3)在(1)、(2)条件下,连接DE ,线段DE 与线段BF 的关系为 .21.已知:如图,在△ABC 中,AD ⊥BC ,垂足是D ,E 是线段AD 上的点,且AD =BD ,DE =DC .⑴ 求证:∠BED =∠C ;⑵ 若AC =13,DC =5,求AE 的长.22.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.23.如图,ABC 中,AB = AC=2,∠B = 40°,点D 在线段BC上运动(点D不与B,C 重合),连结AD,作∠ADE=40°,DE 交线段AC于E.(1)当∠BAD=20°时,∠EDC= °;(2) 请你回答:“当DC等于时,ABD≅DCE”,并把“DC等于”作为已知条件,证明ABD≅DCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE 是等腰三角形.(直接写出结果,不写过程)参考答案1.A【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【详解】∵32=9,∴9的算术平方根是3.故选A.【点睛】此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.2.B【分析】根据数轴上的点,可知OC=2,且BC=1,BC⊥OC,根据勾股定理可求OB长度,且OA=OB,故A点所表示的实数可知.【详解】解:根据数轴上的点,可知OC=2,且BC=1,BC⊥OC,根据勾股定理可知:又∵∴A表示的实数为故选:B.【点睛】本题考查了实数与数轴的表示、勾股定理,解题的关键在于利用勾股定理求出OB的长度.3.C【详解】①一个正数有两个平方根,它们互为相反数,和为0,故①正确;②立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,故②正确;③无限不循环小数是无理数,无限循环小数是有理数,故③错误;④实数和数轴上的点一一对应,故④正确,所以正确的有3个,故选C.4.A【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方、及乘方的意义逐项计算即可.【详解】A. a2• a3=a5,故正确;B. a10 a2=a8,故不正确;C. (a2)3=a6,故不正确;D. ( - a)5=-a5,故不正确;故选A.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘.5.C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.6.B【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交O A 、OB 于点D 、C ;②任意作一点O ′,作射线O ′B ′,以O ′为圆心,OC 长为半径画弧,交O ′B ′于点C ′; ③以C ′为圆心,CD 长为半径画弧,交前弧于点D ′; ④过点D ′作射线O ′A ′.所以∠A ′O ′B ′就是与∠AOB 相等的角; 作图完毕.在△OCD 与△O ′C ′D ′,''''''OC O C OD O D CD C D =⎧⎪=⎨⎪=⎩, ∴△OCD ≌△O ′C ′D ′(SSS ), ∴∠A ′O ′B ′=∠AOB , 显然运用的判定方法是SSS . 故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键. 7.D 【分析】根据全等三角形的判定定理分别进行分析即可. 【详解】A .∵BF =CE ,∴BF -CF =CE -CF ,即BC =EF .∵∠B =∠E ,AB =DE ,∴∆ABC ≌∆DEF (SAS ),故A 不符合题意. B .∵AC ∥DF ,∴∠ACE =∠DFC ,∴∠ACB =∠DFE (等角的补角相等)∵BF =CE ,∠B =∠E ,∴BF -CF =CE -CF ,即BC =EF ,∴∆ABC ≌∆DEF (ASA ),故B 不符合题意.C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.故选D.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.A【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.9.B 【分析】根据勾股定理,求出BC 的长度,设 BD=x ,则DC= 4-x ,由折叠可知:DE= 4-x ,BE=2,在 Rt BDE 中,222BD =BE DE +,根据勾股定理即可求出x 的值,即BD 的长度. 【详解】∵∠C= 90°,AC=3,AB=5∴BC=,设BD=x ,则DC= 4-x ,由折叠可知:DE=DC=4-x ,AE=AC=3,∠AED= ∠C=90°, ∴ BE= AB -AE = 2.在 Rt BDE 中,222BD =BE DE +, 即:222x =2(4-x)+, 解得:x=52,即BD=52,故选:B . 【点睛】本题主要考查了折叠的性质、勾股定理,解题的关键在于写出直角三角形BDE 三边的关系式,即可求出答案. 10.B 【解析】 有两种情况:①当∠A 为顶角时,如图1,此时AE =AF =5cm .②当∠A 为底角时,如图2,此时AE =EF =5cm .故选B .11.8【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路, 故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.12.()()31212x y y +-【分析】提取公因式3x 后,剩下的式子符合平方差公式的特点,可以继续分解.【详解】解:23x 12xy -=23x(14y )-=3x(12y)(12y)-+,故答案为:3x(12y)(12y)-+.【点睛】本题考查因式分解,解题的关键是掌握提取公因式和平方差公式.13.50【分析】已知给出了等腰三角形的顶角为100°,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解.∵等腰三角形的顶角为100°∴根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半; ∴高与底边的夹角为50°.故答案为50.【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解.14.24cm【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,如图所示:∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP=∠EBP ,∠APB=∠BPE=90°,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP , ∴△APB ≌△EPB (ASA ),∴S △APB =S △EPB ,AP=PE ,∴△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴S △PBC =S △PBE +S △PCE =12S △ABC =4cm 2,故答案为4cm 2.本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE =12S △ABC .15.1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB =CD ,若∠ABP =∠DCE =90°,BP =CE =2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP =2t =2,所以t =1,因为AB =CD ,若∠BAP =∠DCE =90°,AP =CE =2,根据SAS 证得△BAP ≌△DCE , 由题意得:AP =16﹣2t =2,解得t =7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.16.2x .【分析】根据整式的除法和加减法法则即可得.【详解】原式()()2322xy y x y x x x y x ÷--÷=-,()322x y x xy x --÷=-,()322x x =---,322x x =--+,2x =.【点睛】本题考查了整式的除法和加减法,熟记整式的运算法则是解题关键.17.直角三角形,理由见解析【分析】根据绝对值、平方、二次根式的非负性即可列出式子求出a 、b 、c 的值,再根据勾股定理的逆定理即可判断三角形形状.【详解】解:根据2a-15(b-8)0+中,绝对值、平方、二次根式的非负性,即可得出a=15,b=8,c=17,发现22217=158+, 根据勾股定理的逆定理,即可得出ABC 是直角三角形.【点睛】此题主要考查勾股定理逆定理的应用,解题的关键是根据非负性求出各边的长. 18.2223a b -,52-. 【解析】试题分析: 根据整式的乘法去括号,再合并同类项,最后代入求出即可.试题解析:a (a+2b )+2(a+b )(a-b )-(a+b )2=a 2+2ab+2a 2-2b 2-a 2-2ab-b 2=2223a b -,当a=-12,b=1时,原式=2(-12)2-3×12=52-. 19.(1)七年一班此次预选赛的总人数是24人;(2)120︒,图见解析;(3)本次比赛全学年约有40名学生获奖【分析】(1)用七年一班版画人数除以版画的百分数即可求得七年一班的参赛人数;(2)用七年一班总的参赛人数减去版画、独唱、独舞的参赛人数即可求得书法的参赛人数,再用七年一班书法的参赛人数除以七年一班总的参赛人数再乘以360°即可求得七年一班书法所在扇形圆心角的度数,根据求得的数据补全统计图即可;(3)用参赛总人数除以七年一班的参赛人数,再乘以2即可求解.【详解】(1)625%24÷=(人),故该校七年一班此次预选赛的总人数是24人;(2)书法参赛人数=246468---=(人),书法所在扇形圆心角的度数=824360120÷⨯︒=︒;补全条形统计图如下:(3)480242202÷⨯=⨯40=(名)故本次比赛全学年约有40名学生获奖.【点睛】本题考查了条形统计图与扇形统计图的知识,解题的关键是读懂两种统计图,从两种统计图中找到相关数据进行计算.20.(1)详见解析;(2)详见解析;(3)平行且相等.【解析】【分析】(1)先BD 平分∠ABC 交AC 于D;(2)作EF 垂直平分BD,交AB 于点E,交BC 于点F;(3)由于EF 垂直平分BD,则EB=ED,而BD 平分∠EBF ,则可判断△BEF 为等腰三,角形,所以BE=BF,所以有DE=BF.设EF 与BD 交点为M,因为EF 垂直平方BD ,所以BM=DM,∠BMF 和∠EMD=90°,DE=BF 所以三角形MED ≌△BFM ,∠DBF=∠EDB ,所以DE 和BF 平行且相等.【详解】解:(1)如图,BD 为所作;(2)如图,EF 为所作;(3)DE 和BF 平行且相等.【点睛】本题考查了作图-复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.7【分析】(1)可以通过证明△ADC ≌△BDE 可得∠BED =∠C ;(2)先根据勾股定理求出AD ,由上一问△ADC ≌△BDE 可得ED =EC ,AD =BD ,即可求出AE .【详解】证明:(1)∵ AD ⊥BC, ∴ ∠BDE =∠ADC =90°,∵在△ADC 和△BDE 中,BD AD BDE ADC DE DC =⎧⎪∠∠⎨⎪=⎩=,∴△ADC ≌△BDE ,∴ ∠BED =∠C .(2)∵ ∠ADC =90°,AC =13,DC =5, ∴AD =12∵ △BDE ≌△ADC , DE =DC =5∴ AE =AD -DE =12-5=7.【点睛】题目中出现较多的角相等,边相等可以考虑用三角形全等的方法解决问题.22.(1)AD=BE .(2)成立,见解析;(3)∠APE=60°.【分析】(1)直接写出答案即可.(2)证明△ECB ≌△ACD 即可.(3)由(2)得到∠CEB=∠CAD ,此为解题的关键性结论,借助内角和定理即可解决问题.【详解】解:(1)∵△ACE 、△CBD 均为等边三角形,∴AC=EC ,CD=CB ,∠ACE=∠BCD ,∴∠ACD=∠ECB ;在△ACD 与△ECB 中,AC ECACD ECB CD CB=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECB (SAS ),∴AD=BE ,故答案为AD=BE .(2)AD=BE 成立.证明:∵△ACE 和△BCD 是等边三角形∴EC=AC ,BC=DC ,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB ,即∠ECB=∠ACD ;在△ECB 和△ACD 中,EC ACECB ACD BC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ACD (SAS ),∴BE=AD .(3))∠APE 不随着∠ACB 的大小发生变化,始终是60°.如图2,设BE 与AC 交于Q ,由(2)可知△ECB ≌△ACD ,∴∠BEC=∠DAC又∵∠AQP=∠EQC ,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.23.(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD ≌△DCE ;(3)分类谈论,①若AD=AE 时;②若DA=DE 时,③若EA=ED 时,即可解题.【详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB = AC=2,∴∠B=∠C ,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB ,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB ,∴∠BAD=∠CDE .在△ABD 和△DCE 中,B CBAD EDC AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△DCE (AAS );(3)∵AB=AC ,∴∠B=∠C=40°,①若AD=AE 时,则∠ADE=∠AED=40°,∵∠AED >∠C ,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=1(180°-40°)=70°,2∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴当∠BAD=30°或60°时,△ADE是等腰三角形.【点睛】本题考查了全等三角形的判定,三角形外角的性质,等腰三角形的判定和性质.运用分类讨论解本题是解题的关键.。
华师大版八年级上册数学期末质量检测试题(附答案)
![华师大版八年级上册数学期末质量检测试题(附答案)](https://img.taocdn.com/s3/m/ad68316cdd3383c4bb4cd2c8.png)
华师大版八年级上册数学期末质量检测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题)A.正方形的半径等于正方形的边心距的2倍;B.三角形任意两边的垂直平分线的交点是三角形的外心;C.用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D.过三点能且只能作一个圆.2.有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A.0个 B.1个 C.2个 D.3个3.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形4.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A B.C. D.5.计算6m3÷(﹣3m2)的结果是()A.﹣3m B.﹣2m C.2m D.3m6.下列运算正确的是()A.3x﹣2x=x B.2x3x=6x C.x+3x=4x2 D、6x÷2=3x7.下列命题中,是假命题的是()A.互补的两个角不能都是锐角B.所有的直角都相等C.乘积是1的两个数互为倒数D.若a⊥b,a⊥c则b⊥c8.小明调查了本班同学最喜欢的课外活动项目,并作出如图所示的扇形统计图,则从图中可以直接看出的信息是().A.全班总人数B.喜欢篮球活动的人数最多C.喜欢各种课外活动的具体人数D.喜欢各种课外活动的人数占本班总人数的百分比9.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A .B .C .D .10.在下列各数中可以用来证明命题“质数一定是奇数”是假命题的反例是( ) A 、2 B 、3 C 、4 D 、5 11.下列运算错误的是)( )A .22()()a b b a =1 B .1a b b a C .0.55100.20.323a ba b a b a b D .a bb aa b b a评卷人 得分二、填空题12.如图,四边形ABCD 中,AB=6cm ,BC=8cm ,CD=24cm ,DA=26cm ,且∠ABC=90°,则四边形ABCD 的面积是( )cm 2。
华师大版八年级上册数学期末考试试题及答案
![华师大版八年级上册数学期末考试试题及答案](https://img.taocdn.com/s3/m/000acedd0408763231126edb6f1aff00bed57081.png)
华师大版八年级上册数学期末考试试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)4的平方根是()A.±2 B.﹣2 C.2 D.162.(4分)在实数0,2,,3中,最大的是()A.0 B.2 C. D.33.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D 4.(4分)“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.5.(4分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12 D.a2•a3=a66.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17 B.16 C.8 D.47.(4分)因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)8.(4分)下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:210.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米11.(4分)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组12.(4分)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)因式分解:x2﹣6x+9= .(4分)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF= .14.15.(4分)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.16.(4分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M 为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)4的平方根是()A.±2 B.﹣2 C.2 D.16【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.(4分)在实数0,2,,3中,最大的是()A.0 B.2 C. D.3【解答】解:2<<3,实数0,2,,3中,最大的是3.故选D.3.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D 【解答】解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.4.(4分)“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.5.(4分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12 D.a2•a3=a6【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.6.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17 B.16 C.8 D.4【解答】解:A、17是奇数不是偶数,B、16是偶数,并且是8的2倍,C、8是偶数,并且是8的1倍,D、4是偶数,是8的,所以,不是8的倍数,所以可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是4.故选D.7.(4分)因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.8.(4分)下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个【解答】解:①0是绝对值最小的有理数,正确;②无限小数是无理数,错误;③数轴上原点两侧的数互为相反数,错误;④a,0,都是单项式,错误;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1,正确;所以正确的有①⑤,共2个;故选A.9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选B.10.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米【解答】解:如图,连接AC.依题意得:∠ABC=90°,AB=4000米,BC=3000米,则由勾股定理,得AC===5000(米).故选:B.11.(4分)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.12.(4分)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)因式分解:x2﹣6x+9= (x﹣3)2.【解答】解:x2﹣6x+9=(x﹣3)2.14.(4分)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF= 70°.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.15.(4分)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是25n2.【解答】解:∵m2﹣10mn+■是一个二项式的平方,∴■=(5n)2=25n2,故答案为:25n2.16.(4分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为20cm .【解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).【解答】解:(1)原式==3+1=4(2)原式=x9+x10﹣x9=x10(3)原式=a2+2ab﹣b2﹣(a2﹣b2)=a2+2ab﹣b2﹣a2+b2=2ab18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.【解答】解:(1)A=(x+1)2﹣(x2﹣4y)=x2+2x+1﹣x2+4y=2x+1+4y;(2)∵x+2y=1,由(1)得:A=2x+1+4y=2(x+2y)+1∴A=2×1+1=3.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【解答】解:(1)如图,DE为所作;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∵∠AEC=∠EAB+∠B∴∠AEC=50°+50°=100°.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.【解答】解:(1)这次调查的居民总数为:18÷15%=120(人);(2)关注程度为“很强”的居民占被调查居民总数的百分比是:.(3)关注程度为“较强”的人数是:120×45%=54(人),补全的条形统计图为:21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【解答】解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M 为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.【解答】解:(1)证明:∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).(2)连接MN.由(1)知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.(3)由(2)知,△ABC的费尔马点在线段EC上,同理也在线段BF 上.因此线段EC与BF的交点即为△ABC的费尔马点.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
华师大八年级上数学期末测试题卷含答案(K12教育文档)
![华师大八年级上数学期末测试题卷含答案(K12教育文档)](https://img.taocdn.com/s3/m/d31dda1afab069dc51220156.png)
华师大八年级上数学期末测试题卷含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华师大八年级上数学期末测试题卷含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华师大八年级上数学期末测试题卷含答案(word版可编辑修改)的全部内容。
华师8年级数学期末测试题(时间90分钟,满分100分)一、选择题(每题3分,共30分) 1.4的平方根是( ) A 。
8 B. 2C. ±2D 。
±22.下列运算正确的是( )A.1243x x x =• B 。
1243)(x x = C 。
326x x x =÷ D.743x x x =+ 3.(-3x +1)(-2x ) 2等于( )A .-6x 3-2x 2B .6x 3-2x2C .6x 3+2x2D .-12x 3+4x 24.下列说法:①有理数和数轴上点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根,其中正确的有( ) A .1个B .2个C .3个D .4个5.若a 15=-,则代数式(5a -4)(6a -7)-(3a -2)(10a -8)的值为( )A .15B .22C .-15D .96。
在平行四边形ABCD 中,∠B-∠A=30°,则∠A 、∠B 、∠C 、∠D 的度数分别是( ) A 。
95°,85°,95°,85° B. 85°,95°,85°, 95° C. 105°,75°,105°,75° D 。
华东师大版八年级数学上册期末考试卷(参考答案)
![华东师大版八年级数学上册期末考试卷(参考答案)](https://img.taocdn.com/s3/m/94208818fe00bed5b9f3f90f76c66137ee064faf.png)
华东师大版八年级数学上册期末考试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.若a =7+2、b =2﹣7,则a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、B5、C6、B7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、22()1y x =-+3、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、8三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、1a b-+,-1 3、8k ≥-且0k ≠.4、(1)略;(2)4.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师版八年级上学期期末数学检测卷
一、认真填一填,你一定能轻松过关!(每题2分,共24分)
1.16的平方根是
2.计算:327
=______________.
3.2的相反数是__________.
4.计算:3x2y·(-2xy3)=
5.填空:a2+6a+ =(a+ )2
6.如图,正五角星绕着它的中心至少旋转______度后能与原图形重合.
7. ABCD中,∠A=130°,则∠B= 度,∠C= 度
A D A E D
B C B C
(第 6题) (第9题)(第10题)
8.已知菱形ABCD的边AB长5cm,则菱形ABCD的周长为
9.如图,BD是正方形ABCD的对角线,则∠BDC= 度
10.如图,矩形ABCD中,AB=4,BC=6,E是边AD上一点,则ΔBCE的面积为
11.如图是用长、宽分别为a、b的四个相同的矩形围成的,用不同的式子表示中间空白部分的面积,可验证一个恒等式。
请你写出这个恒等式是
a b A Q D
b
a M P
a
b
b a B N C
(第11 题) (第12 题)
12、如图,矩形ABCD中,AB=6cm,AD=4cm,点M、N、P、Q分别是AB、 BC、CD、
DA各边的中点,一只蚂蚁从点A出发沿A—B—C—D—A方向循环爬行,
当爬行了2008cm 时,它到达点______.
二、仔细挑选!品味正确!每小题有四个答案,其中有且只有一个答案是正确的。
(每小题3分,共18分) 13、下列实数:,
8,73
2
,16 ,1.2020020002……中,无理数共有( )
A 、1个
B 、2个
C 、3 个
D 、4个
14、下列计算正确的是……………………………………………………( )
A.a 2·a 3=a 6;
B.a 2+a 2=2a 4;
C. (a 3)2=a 6
D.;(-2x) 3=-6x 3
15、以下列各组数为一个三角形的三边长,能构成直角三角形的是( ). A 、2,3,4 B 、4,6,5 C 、14,13,12 D 、7,25,24
16. 如图所示的图案是我国几家银行标志,其中既是中心对称又是轴对称的有( )
A 、1个
B 、2个
C 、3个
D 、4个
17、如图,等腰梯形ABCD 中,AD ∥BC,AB=CD
∠A 比∠B 的2倍多15°, 则∠D=( )
A 、130°
B 、125°
C 、120°
D 、115° 18、给出五种图形:①矩形,②菱形,③等腰三角形(腰与底边
不相等),④等边三角形,⑤平行四边形(不含矩形,菱形).其中可用两块能完全重合的含有30°的三角板拼成的图形是( ).
A.①、②、③
B.②、④、⑤
C.①、③、④、⑤
D.①、②、③、④、⑤
三、解答题(认真解答,争取不出错哟!共58分) 19(本题4分) 分解因式:3x 3-12xy 2
解:
20.计算:(每小题5分,共10分)
⑴2a 2
·a 3
+3a 7
÷a 2
(2)(x+4)(2x-1)+(x+2)(x-2) 解:
21.(本题6分)先化简,再求值:)12(2)12(2--+a a a ,其中a=
2
1
解:
22.(本题6分) 如图,从电杆离地面4米的C 处向地面拉一条7米长的钢缆,求地面钢缆固定点A 到电杆底部B 的距离.(结果精确到0.1米) 解:
23、(6分)在下图的方格纸中有一个Rt △ABC (A 、B 、C 三点均为格点)∠C=90° (1)请你画出将Rt △ABC 绕点C 逆时针旋转90°后所得到的Rt △C B A ''',其中A 、
B 的对应点分别是A '、B '(不必写画法); (2)请你画出将Rt △AB
C 先向右移2格,再向下 移1格后图形Rt △A "B "C "。
其中A 、B 、C 的对 应点分别是A "、B "、C "(不必写画法);
24、(6分)如图,在
ABCD 中,AE 平分∠BAD 交CD 于E ,DE=4cm,CE=2cm, 求 ABCD 的周长。
解:
C
C A
B
25、(6分)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOD=120°,
AC=6cm,求AB的长。
解:
26.(本题6分)阅读材料,并回答下列问题:
如图1,以AB为轴,把ΔABC翻折180°,可以变换到ΔABD的位置;如图2,把ΔABC沿射线AC平移,可以变换到ΔDEF的位置。
像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换。
(1)请你写出一种全等变换的方法(除翻折、平移外)。
(2)如图2,ΔABC沿射线AC平移到ΔDEF,若平移的距离为2,且AC=3,则DC=
(3)如图3,D、E分别是ΔABC的边AB、AC上的点,把ΔADE沿DE翻折,当点A 落在四边形BCED内部变为F时,则∠F 和∠BDF+∠CEF之间的数量关系始终保持不变,请你直接写出它们之间的关系式。
A
A B E E
D
F
C D
B A D
C F B C
图1 图2 图3
27.(本题8分)如图,在Rt ABC
中,∠C=90°,BC=30cm,AC=40cm,点D在线段BA上从点B出发,向终点A运动。
(1)当D运动到线段AB的中点时,求CD的长;(2)在(1)的基础上,当点D继续向终点A运动,并使ΔBCD为等腰三角形时,求BD 的长。
(5分)
C
A D B。