向量共线的条件与轴上向量坐标运算(精选)
高一数学人教B版必修4课件:2-2-3 用平面向量坐标表示向量共线条件
[解析]
由已知得:ka+b=(k-3,2k+2),
a-3b=(10,-4),∵ka+b 与 a=3b 平行, 1 ∴(k-3)×(-4)-10(2k+2)=0,解得 k=-3. 1 2 1 此时 ka+b=(-3-3,-3+2)=-3(a-3b), 1 ∴当 k=-3时,ka+b 与 a-3b 平行,并且反向.
2x+2=-3x 所以 2y-4=-6-3y
,
2 x=-5 解得 y=-2 5 故D
.
2 2 点坐标为-5,-5.
(2)要注意用坐标表示两向量平行的条件, a1b2-a2b1=0 具 a1 a2 有一般性,而 = 只有当 b1≠0,b2≠0 时才适用. b1 b2
• [例1] 已知a=(1,2),b=(-3,2),当k为
何值时,ka+b与a-3b平行?平行时它们 是同向还是反向? • [分析] 由a,b可以用坐标表示ka+b,a -3b,然后由向量共线的条件便可以求出 k的值.而向量是否同向,可以由λ的符号 确定.
• 2.2.3 用平面向量坐标表示
向量共线条件
• 1.向量共线条件的坐标表示: • 选择基底{e1,e2},如果a=(a1,a2),b=
b2- (b1,b2),a a1∥ ba ,则有 ; 2b1=0 a∥b a1b2-a2b1=0,则 反之,若 . • 当b不与坐标轴平行时,条件a1b2-a2b1=0 可化为 ,即两个向量平行的条 件是相应坐标成比例. • 2.向量长度的坐标表示 • 设a=(a1,a2)的位置向量 ,则由两点 间距离公式有|a|=| |= .
,
[例 4]
已知 a=(2,3),b=(-1,2),若 ma+b 与 a-2b
平行,则 m=________. 9 A.- 10 1 C.2 2 B. 11 1 D.-2
共线的条件及轴上向量坐标运算
么存在唯一一个实数λ ,使得a=λb.
这样我们给出的这个平行向量的根本定理, 根据它就可以判断两个向量是否共线了,实际 上, 给出的这种判断方法是一种代数的判断方 法, 后面在学习了坐标后我们在判断是否共线 时也是根据这种方法来判断的.
2 A
M
N
B
C
例2. a=3e,b=-2e,试问向量a,b是否平行?
并求|a|:|b|.
1 解:由b=-2e,得e=-2 b,代入a=3e,得
a=-
3 2
b,
因此,a与b平行且|a|:|b|= 3 .
2
2. 轴上向量的坐标及其运算
规定了方向和长度单位的直线叫做轴.
轴l,取单位向量e, 使e的方向与l同方向, 根据向量平行的条件,对轴上任意向量a,一定 存在唯一实数x,使a=xe.
如a=2b,那么a//b;c=-2b,那么c//b.
(2) 单位向量:
给定一个非零向量a,与a同方向且长度等于1 的向量,叫做向量a的单位向量.
如果a的单位向量记作a0, 由数乘向量的定义
可知: a=|a|·a0或 a 0
|
a a
|
例1. 如图MN是△ABC的中位线,求证: MN= 1 BC,且MN//BC.
在数轴x上, 点A的坐标为x1,点B的坐标为
x2.
由公式(1)得 AB=AO+OB =-OA+OB =x2-x1 .
公式(3): |AB|=|x2-x1|
例1. 已知数轴上三点A,B,C的坐标分别是4,
-2, -6,
C
BO
A
-6
向量知识点与公式总结
向量知识点与公式总结向量知识点与公式总结篇1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面向量的垂直关系。
命题形式重要以选择、填空题型显现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点掌握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。
重点考查定义和公式,重要以选择题或填空题型显现,难度一般。
由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若显现在解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,实现了高考中试题的掩盖面的要求。
命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的.交汇平面向量与函数交汇的问题,重要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。
高中数学人教B版必修四讲义:第二章 2.1 2.1.5 向量共线的条件与轴上向量坐标运算 Word版含答案
向量的线性运算2.1.5向量共线的条件与轴上向量坐标运算预习课本P90~93,思考并完成以下问题(1)平行向量基本定理是怎样表述的?(2)轴上向量的坐标是怎样表示的?(3)轴上向量的坐标运算法则是什么?[新知初探]1.平行向量基本定理(1)平行向量基本定理如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a =λb.(2)单位向量.给定一个非零向量a,与a同方向且长度等于1的向量,叫做向量a的单位向量,如果a的单位向量记作a0,则a=|a|a0或a0=a |a|.[点睛]对定理两个方面的说明(1)第一个方面“若a=λb,则a∥b”中没有b≠0的要求,当b=0时a=0对任意的实数λ都能使a∥b.(2)第二方面“若a∥b且b≠0,则存在唯一一个实数λ使a=λb”中必须有b≠0,否则a =0时λ不唯一,a≠0时,λ不存在.2.轴上向量的坐标及其运算(1)轴上向量的坐标(2)轴上向量的坐标运算|AB [点睛]AB是一个向量,既有大小,也有方向.而AB表示AB的坐标,它是一个实数.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)平行向量基本定理,条件b≠0可以去掉.()(2)若|a|-|b|=|a-b|,则a与b是共线向量.()(3)若a与b共线,则存在唯一实数λ,使b=λa成立.答案:(1)×(2)√(3)×2.数轴上三点A,B,C的坐标分别为-1,2,5,则()A.AB=-3B.BC=3C.AC=6 D.AB=3 答案:B3.在四边形ABCD中,若AB=-12CD,则此四边形是()A.平行四边形B.菱形C.梯形D.矩形答案:C4.已知A,B,C三点在数轴上,且点B的坐标x B=3,AB=5,AC=2,则点C的坐标为________.答案:0轴上向量的坐标运算[典例]已知数轴上A,B两点的坐标为x1,x2,根据下列题中的已知条件,求点A的坐标x1.(1)x2=-5,BA=-3;(2)x2=-1,|AB|=2.[解](1)因为BA=x1-(-5)=-3,所以x1=-8.(2)因为|AB|=|-1-x1|=2,所以x1=1或x1=-3.轴上向量的坐标及长度计算的方法(1)轴上向量的坐标的求法:先求出(或寻找已知)相应点的坐标,再计算向量的坐标.(2)轴上向量的长度的求法:先求出向量的坐标,再计算该向量的长度.[活学活用]已知数轴上三点A,B,C的坐标分别是-8,-3,7,求AB,BC,CA的坐标和长度.解:AB=(-3)-(-8)=5,|AB|=|5|=5;BC=7-(-3)=10,|BC|=|10|=10;CA=(-8)-7=-15,|CA|=|-15|=15.共线向量定理的应用题点一:判断或证明点共线1.已知两个非零向量a 与b 不共线,AB =a +b ,BC =2a +8b ,CD =3(a -b ),求证:A ,B ,D 三点共线.证明:∵AB =a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB . ∴AB ,BD 共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. 题点二:利用向量共线确定参数2.设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线?解:d =λ(2e 1-3e 2)+μ(2e 1+3e 2)=(2λ+2μ)e 1+(3μ-3λ)e 2, 要使d 与c 共线,则存在实数k ,使得d =kc , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2ke 1-9ke 2.由⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ. 故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题点三:几何图形形状的判定3.如图所示,正三角形ABC 的边长为15,AP =13AB +25AC ,BQ =15AB +25AC . 求证:四边形APQB 为梯形.证明:因为PQ =PA +AB +BQ =-13AB -25AC +AB +15AB +25AC =1315AB ,所以PQ ∥AB .又|AB |=15,所以|PQ |=13,故|PQ |≠|AB |,于是四边形APQB 为梯形.用向量共线的条件证明两条直线平行或重合的思路(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行;(2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若向量AB=λAC ,则AB ,AC 共线,又AB 与AC 有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.层级一 学业水平达标1.已知数轴上两点M ,N ,且|MN |=4.若x M =-3,则x N 等于( ) A .1 B .2 C .-7D .1或-7解析:选D |MN |=|x N -(-3)|=4, ∴x N -(-3)=±4,即x N =1或-7.2.已知O 是△ABC 所在平面内一点,D 为边BC 的中点,且2OA +OB +OC =0,则( )A .AO =ODB .AO =2ODC .AO =3ODD .2AO =OD解析:选A ∵在△ABC 中,D 为边BC 的中点,∴OB +OC =2OD ,∴2(OA +OD )=0,即OA +OD =0,从而AO =OD .3.点P 满足向量OP =2OA -OB ,则点P 与AB 的位置关系是( ) A .点P 在线段AB 上 B .点P 在线段AB 的延长线上 C .点P 在线段AB 的反向延长线上 D .点P 在直线AB 外解析:选C ∵OP =2OA -OB ,∴OP -OA =OA -OB , ∴AP =BA ,∴点P 在线段AB 的反向延长线上,故选C.4.在△ABC 中,点P 是AB 上一点,且CP =23CA +13CB ,又AP =t AB ,则t 的值为( )A.13 B.23 C.12D.53解析:选A 由题意可得AP =CP -CA =23CA +13CB -CA =13(CB -CA )=13AB ,又AP =t AB ,∴t =13.5.设e 1,e 2不共线,b =e 1+λe 2与a =2e 1-e 2共线,则实数λ的值为( ) A.12 B .-12C .1D .-1解析:选B 设a =kb (k ∈R), 则2e 1-e 2=ke 1+kλe 2.∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧k =2,kλ=-1,∴λ=-12.6.在数轴x 上,已知OA =-3e (e 为x 轴上的单位向量),且点B 的坐标为3,则向量AB ―→的坐标为________.解析:由OA =-3e ,得点A 的坐标为-3, 则AB =3-(-3)=6,即AB 的坐标为6. 答案:67.下列向量中a ,b 共线的有________(填序号). ①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2.解析:①中,a =-b ;②中,b =-2e 1+2e 2=-2(e 1-e 2)=-2a ;③中,a =4e 1-25e 2=4⎝⎛⎭⎫e 1-110e 2=4b ;④中,当e 1,e 2不共线时,a ≠λb .故填①②③. 答案:①②③8.已知M ,P ,N 三点在数轴上,且点P 的坐标是5,MP =2,MN =8,则点N 的坐标为________.解析:设点M ,N 的坐标分别为x 1,x 2,∵点P 的坐标是5,MP =2,MN =8,∴⎩⎪⎨⎪⎧ 5-x 1=2,x 2-x 1=8,解得⎩⎪⎨⎪⎧x 1=3,x 2=11.故点N 的坐标为11. 答案:119.已知数轴上A ,B ,C 三点.(1)若AB =2,BC =3,求向量AC ―→的坐标; (2)若AB =BC ,求证:B 是AC 的中点.解:(1)AC =AB +BC =5,即向量AC ―→的坐标为5. (2)∵AB =BC ,∴b -a =c -b , ∴b =a +c 2,故B 是AC 的中点.10.已知:在四边形ABCD 中,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,求证:四边形ABCD 为梯形.证明:如图所示.∵AD =AB +BC +CD =(a +2b )+(-4a -b )+(-5a -3b ) =-8a -2b =2(-4a -b ), ∴AD =2BC .∴AD 与BC 共线,且|AD |=2|BC |. 又∵这两个向量所在的直线不重合, ∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.层级二 应试能力达标1.已知向量AB =a +3b ,BC =5a +3b ,CD =-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线解析:选B BD =BC +CD =2a +6b =2(a +3b )=2AB ,由于BD 与AB 有公共点B ,因此A ,B ,D 三点共线.2.在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线交DC 于点F ,若AB =a ,AD =b ,则AF =( )A.13a +b B.12a +bC .a +13bD .a +12b解析:选A 由已知条件可知BE =3DE ,∴DF =13AB ,∴AF =AD +DF =AD +13AB =13a +b .3.已知向量a ,b 不共线,若AB =λ1a +b ,AC =a +λ2b ,且A ,B ,C 三点共线,则关于实数λ1,λ2一定成立的关系式为( )A .λ1=λ2=1B .λ1=λ2=-1C .λ1λ2=1D .λ1+λ2=1解析:选C ∵A ,B ,C 三点共线,∴AB =k AC (k ≠0). ∴λ1a +b =k (a +λ2b )=ka +kλ2b . 又∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ1=k ,1=kλ2,∴λ1λ2=1. 4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足PA +PB +PC =0,若实数λ满足AB +AC =λAP ,则λ的值为( )A .2 B.32C .3D .6解析:选C 如图,取BC 的中点为D ,则PB +PC =2PD . 又PA +PB +PC =0,∴2PD =-PA ,∴A 、P 、D 三点共线且|PA |=2|PD |, ∴AP =23AD .又∵AB +AP =2AD ,∴AB +AP =3AP ,即λ=3.5.已知向量a ,b 是两个不共线的向量,且向量ma -3b 与a +(2-m )b 共线,则实数m 的值为________.解析:因为向量ma -3b 与a +(2-m )b 共线且向量a ,b 是两个不共线的向量,所以存在实数λ,使得ma -3b =λ[a +(2-m )b ],即(m -λ)a +(mλ-2λ-3)b =0,因为a 与b 不共线,所以⎩⎪⎨⎪⎧m =λ,mλ-2λ-3=0,解得m =-1或m =3. 答案:-1或36.设e 1,e 2是两个不共线的向量,若向量ke 1+2e 2与8e 1+ke 2方向相反,则k =______. 解析:∵ke 1+2e 2与8e 1+ke 2共线, ∴ke 1+2e 2=λ(8e 1+ke 2)=8λe 1+λke 2. ∴⎩⎪⎨⎪⎧k =8λ,2=λk ,解得⎩⎪⎨⎪⎧ λ=12,k =4或⎩⎪⎨⎪⎧λ=-12,k =-4.∵ke 1+2e 2与8e 1+ke 2反向, ∴λ=-12,k =-4.答案:-47.已知数轴上四点A ,B ,C ,D 的坐标分别是-4,-2,c ,d . (1)若AC =5,求c 的值; (2)若|BD |=6,求d 的值;(3)若AC =-3AD ,求证:3CD =-4AC . 解:(1)∵AC =5,∴c -(-4)=5,∴c =1. (2)∵|BD |=6,∴|d -(-2)|=6, 即d +2=6或d +2=-6, ∴d =4或d =-8.(3)证明:∵AC =c +4,AD =d +4,又AC =-3AD ,∴c +4=-3(d +4),即c =-3d -16. 3CD =3(d -c )=3d -3c =3d -3(-3d -16)=12d +48, -4AC =-4c -16=-4(-3d -16)-16=12d +48, ∴3CD =-4AC .8.如图,已知△OCB 中,点A 是BC 的中点,D 是将OB 分成2∶1的一个内分点,DC 和OA 交于点E ,设OA =a ,OB =b .(1)用a ,b 表示向量 OC ,DC ; (2)若OE =λOA ,求λ的值.解:(1)由A 是BC 的中点,则有OA =12(OB +OC ),从而OC =2OA -OB =2a -b .由D 是将OB 分成2∶1的一个内分点,得OD =23OB ,从而DC =OC -OD =(2a -b )-23b =2a -53b .(2)由于C ,E ,D 三点共线,则EC =μDC , 又EC =OC -OE =(2a -b )-λa =(2-λ)a -b ,DC =2a -53b ,从而(2-λ)a -b =μ⎝⎛⎭⎫2a -53b , 又a ,b 不共线,则⎩⎪⎨⎪⎧2-λ=2μ,1=53μ,解得λ=45.。
空间向量及运算
高考调研 ·高三总复习·数学(理)
【答案】 (1)a+c+12b (2)-a+b+12c (3)32a+12b+32c
第22页
高考调研 ·高三总复习·数学(理)
★状元笔记 用已知向量表示某一向量的方法
用已知不共面的向量表示某一向量时,应结合图形,将已知 向量和未知向量转化至三角形或平行四边形中,然后利用三角形 法则或平行四边形法则,把所求向量用已知向量表示出来.
已知E,F,G,H分别是空间四边形ABCD的边AB, BC,CD,DA的中点.
(1)求证:E,F,G,H四点共面; (2)求证:BD∥平面EFGH; (3)设M是EG和FH的交点. 求证:对空间任一点O,有O→M=14(O→A+O→B+O→C+O→D).
第27页
高考调研 ·高三总复习·数学(理)
【证明】 (1)在△ABD中,EH为△ABD的中位线, EH綊12BD,同理FG綊12BD. ∴EH綊FG,∴E,F,G,H四点共面.
第33页
高考调研 ·高三总复习·数学(理)
(2)已知 A,B,C 三点不共线,对平面 ABC 外的任一点 O, 若点 M 满足O→M=13(O→A+O→B+O→C).
①判断M→A,M→B,M→C三个向量是否共面; ②判断点 M 是否在平面 ABC 内.
第34页
高考调研 ·高三总复习·数学(理)
【解析】 ①由已知得O→A+O→B+O→C=3O→M, ∴O→A-O→M=(O→M-O→B)+(O→M-O→C). 即M→A=B→M+C→M=-M→B-M→C. ∴M→A调研 ·高三总复习·数学(理)
O→G=O→M+M→G=12O→A-16O→A+13O→B+13O→C =13O→A+13O→B+13O→C. 【答案】 M→G=-16O→A+13O→B+13O→C O→G=13O→A+13O→B+13O→C
向量坐标表示及运算
y
j
O
1 2
a
A(x, y)
a
(3)两个向量 a ( x1, y1 ), b ( x2 , y2 ) 相等的充要条件:a b x x
i
x
且y1 y2
(4)如图以原点O为起点作 OA a ,点A的位置 被 a 唯一确定. 此时点A的坐标即为 a 的坐标 (5)区别点的坐标和向量坐标 相等向量的坐标是相同的,但起点、终点的坐标可以不同
3.若 A(2,-1),B(4,2),C(1,5),则 AB +2 BC =________.
解析:∵A(2,-1),B(4,2),C(1,5), ∴ AB =(2,3), BC =(-3,3). ∴ AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
(x2-x1,y2-y1)
例1:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐 .
解: a b (2,1) (3,4) (1,5)
a b (2,1) (3,4) (5, 3)
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2、 1已知A(2,3), B (3,5), 求BA的坐标.
解: BA
2已知AB (1, 2), A(2,1), 求B的坐标.
解:设B x,y ,
2,3 3,5 5, 2.
AB 1, 2 x, y 2,1 ,
j
-4 -3
-1 -2
i1
2
3
4
x
c 2i 3 j ( 2, 3)
高中数学向量共线的条件与轴上向量坐标运算
高中数学向量共线的条件与轴上向量坐标运算教学目标:理解向量共线的条件与轴上向量坐标运算教学重点:向量共线的条件与轴上向量坐标运算教学过程一、复习引入:1. 向量的表示方法2. 向量的加法,减法及运算律3.实数与向量的乘法二、讲解新课:1.若有向量a (a ≠0)、b ,实数λ,使b =λa 则由实数与向量积的定义知:a 与b 为共线向量若a 与b 共线(a ≠0)且|b |:|a |=μ,则当a 与b 同向时b =μa , 当a 与b 反向时b =-μa从而得:向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ使b =λa2.若存在两个不全为0的实数μλ,使得0=+b a μλ,那么a 与b 为共线向量,零向量与任意向量共线3.与向量a 同方向的a 的单位向量为||a a e = 4.数轴上的基向量e 的概念5、轴上向量的坐标:轴上向量a ,一定存在一个实数x ,使得e x a =,那么x 称为向量a 的坐标6、设点A 、B 是数轴上的两点其坐标分别为1x 和2x ,那么向量AB 的坐标为12x x AB -=由此得两点A 、B 之间的距离为||||21x x AB -=7.例子例1 三角形两边中点的连线平行与第三边并且等与第三边的一半。
已知:如图3-1,ABC ∆中,D ,E 分别是边AB ,AC 的中点。
求证:BC DE //且BC DE 21=。
证明:因为D ,E 分别是边AB ,AC 的中点, 所以−→−−→−=AB AD 21,−→−−→−=AC AE 21。
所以−→−−→−−→−−→−−→−−→−=-=-=BC AB AC AD AE DE 21)(21, 再由D ,B 不共点,故BC DE //且BC DE 21=。
例2 如图3-2,平行四边形OACB 中,BC BD 31=,OD 与BA 相交于E 。
求证:BA BE 41=。
证明:设E ’是线段BA 上的一点,且BA BE 41'=,只要证E ,E ’重合即可。
向量的坐标表示及其运算
向量的坐标表示及其运算【知识概要】1. 向量及其表示1)向量:我们把既有大小又有方向的量叫向量(向量可以用一个小写英文字母上面加箭头来表示,如a 读作向量a ,向量也可以用两个大写字母上面加箭头来表示,如AB ,表示由A 到B 的向量. A 为向量的起点,B 为向量的终点).向量AB(或a )的大小叫做向量的模,记作AB (或a ).注:① 既有方向又有大小的量叫做向量,只有大小没有方向的量叫做标量,向量与标量是两种不同的量,要加以区别;② 长度为0的向量叫零向量,记作00的方向是任意的 注意0与0的区别③ 长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.例1 下列各量中不是向量的是( DA.浮力B.风速C.位移D.密度 例2 下列说法中错误..的是( A )A.零向量是没有方向的 B .零向量的长度为0C. D.例 3 把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( D ) A. B . C. D.2)向量坐标的有关概念① 基本单位向量: 在平面直角坐标系中,方向分别与x 轴和y 轴正方向相同的两个单位向量叫做基本单位,记为i 和j .② 将向量a 的起点置于坐标原点O ,作OA a =,则OA 叫做位置向量,如果点A 的坐标为(,)x y ,它在x 轴和y 轴上的投影分别为,M N ,则,.OA OM ON a OA xi y j =+==+③ 向量的正交分解在②中,向量OA 能表示成两个相互垂直的向量i 、j 分别乘上实数,x y 后组成的和式,该和式称为i 、j 的线性组合,这种向量的表示方法叫做向量的正交分解,把有序的实数对(,)x y 叫做向量a 的坐标,记为a =(,)x y .一般地,对于以点111(,)P x y 为起点,点222(,)P x y 为终点的向量12PP ,容易推得122121()()PP x x i y y j =-+-,于是相应地就可以把有序实数对2121(,)x x y y --叫做12PP 的坐标,记作12PP =2121(,)x x y y --. 3)向量的坐标运算:1122(,),(,)a x y b x y ==,R λ∈则1212121212(,);(,);(,)a b x x y y a b x x y y a x x λλλ+=++-=--=. 4) 向量的模:设(,)a x y =,由两点间距离公式,可求得向量a 的模()norm .22a x y =+.注:① 向量的大小可以用向量的模来表示,即用向量的起点与终点间的距离来表示; ② 向量的模是个标量,并且是一个非负实数.例4 已知点A 的坐标为(2,0),点B 的坐标为(3,0)-,且4,3AP BP ==,求点P 的坐标.解:点P 的坐标为612(,)55- 或 612(,)55--. 例5 已知2(4,3),2(3,4)a b a b +=--=,求a 、b 的坐标. 解:(1,2),(2,1)a b =-=-- 例6 设向量,,,,a b c R λμ∈,化简:(1)()()()()a b c a b c b c λμμλμλ+--+-+--; (2)2()(22)2a b c a b c λμλμλμμ+--++. 解:都为0.2. 向量平行的充要条件平行向量:方向相同或相反的非零向量叫平行向量(我们规定0与任一向量平行). 已知a 与b 为非零向量,若1122(,),(,)a x y b x y ==,则//a b 的充要条件是1221x y x y =,所以,向量平行的充要条件可以表示为:1221//().a b a b x y x y λλ⇔=⇔=其中为非零实数例7 已知向量(2,3)a =-,点(2,1)A -,若向量AB 与a 平行,且213AB =,求向量OB 的坐标.解:OB 的坐标为(6,7)- 或 (2,5)-.3. 定比分点公式1)定比分点公式和中点公式① 12,P P 是直线l 上的两点,P 是l 上不同于12,P P 的任一点,存在实数λ, 使P P 1=2PP λ,λ叫做点P 分21P P 所成的比,有三种情况:(内分) λ>0 (外分) λ<-1 (外分) -1<λ<0② 已知111(,)P x y 、222(,)P x y 是直线l 上任一点,且P P 1=2PP λ(,1)R λλ∈≠.P 是直线12P P 上的一点,令(,)P x y ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,这个公式叫做线段12P P 的定比分点公式,特别地1λ=时,P 为线段12P P 的中点,此时121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,叫做线段12P P 的中点公式.注:① 12PP PP λ=⋅可得12PP PP λ=±⋅;② 当1λ=-时,定比分点的坐标公式121x x x λλ+=+和121y y y λλ+=+显然都无意义,也就是说,当1λ=-时,定比分点不存在2)三角形重心坐标公式设ABC ∆的三个点的坐标分别为112233(,),(,),(,)A x y B x y C x y ,G 为ABC ∆的重心,则12312333G G x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩例8 在直角坐标系内12(4,3),(2,6)P P --,点P 在直线12P P 上,且122PP PP =,求出P 的坐标.解:当P 在12P P 上时,(0,3)P ;当P 在12P P 延长线上,(8,15)P -.例9 已知(3,1),(4,2)A B ---,P 是直线AB 上一点,若23AP AB =,求点P 的坐标. 解: 注意定比分点的定点,可得155(,)22P --.*方法提炼*几个重要结论1. 若,a b 为不共线向量,则a b +,a b -为以,a b 为邻边的平行四边形的对角线的向量;2. 22222()a b a b a b ++-=+;3. G 为ABC ∆的重心0GA GB GC ⇔++=123123(,)33x x x y y y G ++++⇔ 112233[(,),(,)(,)]A x y B x y C x y【基础夯实】1. 判断下列命题是否正确,若不正确,请简述理由. ①向量AB 与CD 是共线向量,则A 、B 、C 、D④四边形ABCD 是平行四边形的充要条件是AB =DC ⑤模为0⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.2.下列命题正确的是( CA.a与b共线,b与c共线,则a与cB.C.向量a与b不共线,则a与bD.有相同起点的两个非零向量不平行3. 在下列结论中,正确的结论为( D (1)a ∥b 且|a |=|b |是a =b(2)a ∥b 且|a |=|b |是a =b(3)a 与b 方向相同且|a |=|b |是a =b(4)a 与b 方向相反或|a |≠|b |是a ≠bA. (1)(3)B. (2)(4)C. (3)(4)D. (1)(3)(4) 4. 已知点A 分有向线段BC 的比为2,则在下列结论中错误的是( D )A. 点C 分AB 的比是-31B.点C 分BA 的比是-3C 点C 分AC 的比是-32D 点A 分CB 的比是25. 已知两点1(1,6)P --、2(3,0)P ,点7(,)3P y -分有向线段21P P 所成的比为λ,则λ、y的值为( C )A -41,8 B.41 C -41,-8 D 4,816. △ABC 的两个顶点A(3,7)和B(-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是( A )A (2,-7)B (-7,2)C (-3,-5)D (-5,-3)7. “两个向量共线”是“这两个向量方向相反”的 条件. 答案:必要非充分8. 已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 . 答案:不共线9. 已知点A(x,2),B(5,1),C(-4,2x)在同一条直线上,那么x=答案:2或2710. △ABC 的顶点A(2,3),B(-4,-2)和重心G(2,-1),则C 点坐标为 答案:(8,-4)11. 已知M 为△ABC 边AB 上的一点,且18AMC ABC S S ∆∆=,则M 分AB 所成的比为 答案:71【巩固提高】12. 已知点(1,4)A =--、(5,2)B ,线段AB 上的三等分点依次为1P 、2P ,求1P 、2P 点的坐标以及,A B 分21P P 所成的比λ.解:P 1(1,-2),P 2(3,0),A 、B 分21p p 所成的比λ1、λ2分别为-21,-213. 过1(1,3)P 、2(7,2)P 的直线与一次函数5852+=x y 的图象交于点P ,求P 分21P P 所成的比值解:12514. 已知平行四边形ABCD 一个顶点坐标为A(-2,1),一组对边AB 、CD 的中点分别为M(3,0)、N(-1,-2),求平行四边形的各个顶点坐标 解:B(8,-1),C(4,-3),D(-6,-1)15. 设P 是ABC ∆所在平面内的一点,2BC BA BP +=,则( B ) (A). 0PA PB += (B). 0PC PA += (C). 0PB PC += (D). +0PA PB PC +=16. 若平面向量,a b 满足1,a b a b +=+平行于x 轴,(2,1)b =-,则(1,1)(3,1)a =--或.17.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点.若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-6,21)B .(-2,7)C .(6,-21)D .(2,-7)解析:选A.AC →=2AQ →=2(PQ →-PA →)=(-6,4),PC →=PA →+AC →=(-2,7),BC →=3PC →=(-6,21).18.已知O 为坐标原点,向量(2,),(,1),(5,1).OA m OB n OC =-==-若A,B,C 三点共线,且2m n =,求实数,m n 的值19.已知点A(3,0),B(-1,-6), P 是直线AB 上一点,且1||||3AP AB =,求点P 的坐标.20. 已知向量(cos ,sin )m θθ=和(2sin ,cos ),(,2)n θθθππ=-∈,且8||25m n +=,求cos()28θπ+的值。
2018学年高中数学人教B版必修4课件:2-1-5 向量共线的条件与轴上向量坐标运算 精品
向量共线问题
[探究共研型]
探究1 已知m,n是不共线向量,a=3m+4n,b=6m-8n,判断a与b是否 共线?
【提示】 要判断两向量是否共线,只需看是否能找到一个实数λ,使得a= λb即可.
若a与b共线,则存在λ∈R,使a=λb,即3m+4n=λ(6m-8n). ∵m,n不共线,∴6-λ=8λ3=,4. ∵不存在λ同时满足此方程组,∴a与b不共线.
【解】
(1)根据向量求和的多边形法则,有
→ AD
= A→B + B→C +
→ CD
=(e+2f
)+
(-4e-f )+(-5e-3f )=(1-4-5)e+(2-1-3)f =-8e-2f .
(2)证明:因为A→D=-8e-2f =2(-4e-f )=2B→C,即A→D=2B→C.
所以A→D∥ B→C,且A→D的长度为B→C 的长度的2倍,所以在四边形ABCD中,AD
【自主解答】 (1)∵AC=5, ∴c-(-4)=5,∴c=1. (2)∵|BD|=6,∴|d-(-2)|=6, 即d+2=6或d+2=-6, ∴d=4或d=-8.
(3)因为C→D=C→A+A→D=-A→C+A→D, 而A→C=-3AD, 所以C→D=-(-3A→D)+A→D=4A→D,所以3C→D=12A→D, 又-4A→C=-4×(-3A→D)=12A→D, 故3C→D=-4A→C.
4.向量 A→B 的坐标常用AB表示,则 A→B =ABe. A→B 表示向量,而AB表示数量,且 有AB+BA=0.
5.轴上向量的坐标:在数轴x上,已知点A的坐标为x1,点B的坐标为x2,则AB = x2-x1 ,即轴上向量的坐标等于向量终点的坐标减去始点的坐标.
6.数轴上两点的距离公式:在数轴x上,点A的坐标为x1,点B的坐标为x2,则 |AB|= |x2-x1| .
向量公式大全
向量公式大全向量是物理和数学中常用的重要概念,它可以用于描述力、速度、位移等物理量的大小和方向。
在数学中,向量可以用来表示空间中的点、线和平面等几何概念。
本文将为您介绍一些常用的向量公式和相关概念。
一、向量的基本概念和运算法则1.向量的表示方式向量通常用有向线段来表示,可以用线段的起点和终点表示。
2.向量的零元素对于向量a,存在一个特殊的向量0,使得a+0=a,称0为零向量。
3.向量的加法和减法向量的加法和减法遵循平行四边形法则:设a和b是两个向量,它们按照起点相连,那么a+b从起点到终点就是a和b相加的结果,a-b就是b的起点和a的终点连接而成的。
4.向量的数量乘法设k为一个实数,k乘以向量a,得到的向量ka,其大小为,ka,=,k,a,方向与a相同(当k为正数时),或者与a相反(当k为负数时)。
5.向量的数量除法设k为一个非零实数,向量a除以k,得到的向量a/k,其大小为,a/k,=,a,/,k,方向与a相同(k为正数)或者与a相反(k为负数)。
6.黎曼球面上的数量除法向量除以零是未定义的,但可以将这个向量限制到黎曼球面上,黎曼球面上的数量除法遵循“将除数和被除数投影到黎曼球面上,再进行数量除法”的原则。
7.向量的数量积向量a和b的数量积(也称内积、点积)表示为a·b=,a,b,cosθ,其中,a,和,b,分别表示a和b的大小,θ为它们之间的夹角,cosθ称为向量夹角的余弦值。
二、向量的坐标表示和坐标运算8.二维向量的坐标表示二维向量可以用有序数对(x,y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
9.二维向量的加法和减法设向量a和b的坐标表示分别为(a₁,a₂)和(b₁,b₂),它们的和为(a₁+b₁,a₂+b₂),差为(a₁-b₁,a₂-b₂)。
10.二维向量的数量乘法设向量a的坐标表示为(a₁, a₂),实数k的坐标表示为(k, k),则ka的坐标表示为(ka₁, ka₂)。
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。
高一数学人必修课件向量共线的条件与轴上向量坐标运算
计算分子间的相互作用力
03
利用向量的点积等运算,可以计算分子间的相互作用力,如范
德华力、氢键等。
向量在经济学中应用
描述经济变量的变化趋势
向量可以表示经济变量的变化趋势,如价格、产量等的变化方向 和幅度。
进行经济预测和决策分析
利用向量的运算和分析方法,可以对经济变量进行预测和决策分析 ,如回归分析、时间序列分析等。
轴的正方向。
03
标记坐标
空间中的任意一点P可以用一个有序实数组(x, y, z)来表示,其中x、y、
z分别称为点P的横坐标、纵坐标和竖坐标。
空间向量在坐标系中表示方法
确定向量的起点和终点
在空间直角坐标系中,向量可以用起点和终点两个点来确定。起点为向量的始点 ,终点为向量的终点。
向量的表示方法
向量可以用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向 表示向量的方向。同时,向量也可以用坐标形式来表示,即向量的坐标等于终点 坐标减去起点坐标。
案例二
已知向量a=(2, 1, -1)和向量b=(1, -2, 3),求向量a与向量b的和。根据空间向量的加法运算规则,可 得a+b=(2+1, 1+(-2), (-1)+3)=(3, -1, 2)。
04
向量共线与坐标运算综合 应用
平面向量与空间向量关系
平面向量是二维空间中的向量,可以 用有序数对表示,而空间向量是三维 空间中的向量,可以用有序三元组表 示。
高一数学人必修课件
向量共线的条件与轴
上向量坐标运算 汇报人:XX
20XX-01-21
目录
• 向量共线条件及性质 • 轴上向量坐标运算方法 • 空间向量在坐标系中表示方法 • 向量共线与坐标运算综合应用
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
向量坐标知识点总结
解析几何复习知识点总结第一章向量与坐标第一节向量的概念:空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模(moduius)。
规定,长度为0的向量叫做零向量,记为0.模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。
1共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=a x+b y3空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
1.2 向量的加法三角形定则解决向量加减的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,向量的加法结果为公共起点的对角线。
平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。
(平行四边形定则只适用于两个非零非共线向量的加减。
)坐标系解向量加减法:在直角坐标系里面,定义原点为向量的起点.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,A(X1,Y1) B(X2,Y2),则A+B=(X1+X2,Y1+Y2),A-B=(X1-X2,Y1-Y2)简单地讲:向量的加减就是向量对应分量的加减。
类似于物理的正交分解。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
6.2平面向量共线定理的坐标表示
授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。
向量
向量百科名片向量在数学与物理中,既有大小又有方向的量叫做向量(亦称矢量),与标量相对目录向量的定义向量的来源向量的表示向量的模和向量的数量特殊的向量向量的运算其他向量的定义向量的来源向量的表示向量的模和向量的数量特殊的向量向量的运算其他向量的表示向量的定义数学中,既有大小又有方向的量叫做向量(亦称矢量)。
注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。
α=(a 1,a2,…,an)称为n维向量.其中ai称为向量α的第i个分量。
("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。
向量的来源向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
向量的坐标表示及其运算
1向量的坐标表示及其运算一、知识点(一)向量及其表示:1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使OA a =.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)i j ===.(3)模:向量的长度叫向量的模,记作|a|或|AB|.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.(5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(7)相等的向量:长度相等且方向相同的向量叫相等的向量.2向量坐标的有关概念(1)基本单位向量(2)位置向量(3)向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j,如图,称以原点O为起点的向量为位置向量,如下图左,OA即为一个位置向量.如上图右,设如果点A的坐标为(),x y,它在小x轴,y轴上的投影分别为M,N,那么向量OA能用向量OM与ON来表示吗?(依向量加法的平行四边形法则可得OA OM ON=+),OM与ON 能用基本单位向量,i j来表示吗?(依向量与实数相乘的几何意义可得,OM xi ON y j==),于是可得:OA OM ON xi y j=+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA都能表示成两个相互垂直的基本单位向量,i j的线性组合,这种向量的表示方法我们称为向量的正交分解.向量的坐标运算:设),(),(),(),,(1121212211yxayyxxbayxbyxaλλλλ=±±=±ℜ∈==,,3.向量的摸:22yxa+=(二)向量平行的充要条件:1向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥a⇔b=λa(a≠0).2设a=(x1,y1),b=(x2,y2)则b∥a⇔1221yxyx=练习2:1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________;2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( ) ① 存在一个实数λ,使a =λb 或b =λa ; ②2121y yx x =;③(a +b )//(a -b ) A 、0个 B 、1个 C 、2个 D 、3个3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号为 ;问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ [说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线.*法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线. 问题二:定比分点公式:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.例、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.例、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP P P= 32 ,所以λ=-32 .3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+ 所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j =+±+()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±± ()()11111111(,),a x y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积. 例.如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标; (2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=- ()()()13,322,1BC =----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB = 设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---= 又 ()()32,215,1AB =---=- 故 ()()1,35,1D D x y ---=- 由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;DC(-1,3)A(2,1)B(-3,2)yxO若其起点坐标是(2,1),则其终点的坐标是 . 3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-二、典型例题例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少?例2 下列哪些是向量?哪些是标量?(1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ∆ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ∆重心,求GA 的坐标例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()反向的单位向量求与AB 1 ()()的坐标,求点,若E BE 522-= ()3若a BD AC a 求,-=()三点不共线,,求证:C B A 4 ()CD BD AD AC AB ++来表示,以5()()坐标三点共线,求点,,且若P P B A x P 3,6()如图7所示,若点M 分BA 的比λ为3:1,点N 在线段BC 上,且ABC AMNC S S ∆=32,求点N 点的坐标例5若ABCD 为正方形,E 是CD 的中点,且AB =a ,AD =b ,则BE 等于 A.b +21a B.b -21a C.a +21b D.a -21b 例6.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1例7.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______.例8 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6. 例11若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?例12.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有A.a ∥b 且a 、b 方向相同B.a =bC.a =-bD.以上都不对例13.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形例15.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围..例16已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?例17.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知BC =a ,BD =b ,试用a 、b 分别表示DE 、CE 和MN .AB CDMN E例18在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示AE .A BCMNE1.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 A.(-3,6) B.(3,-6)C.(6,-3)D.(-6,3) 2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34D.-343已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-31.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH AG +D .GH BG +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 4 4.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =-C .d a b =-D .b a c =- 6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R o b a b a ∈=+μλμλ不共线则( )A .o b o a ==,B .o o a ==μ,C .o b o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量.其中正确的是 ( )A .①②B .②③C .①③D .①②③ 11.若2121,,PP P P b OP a OP λ===,则OP 等于 ( )A .b a λ+B .b a +λC .b a )1(λλ-+D .b a λλλ+++111 12.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||4||||22AB BD AC =+ 2其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共16分,答案填在横线上)13.21,e e 不共线,当k= 时,2121,e k e b e e k a +=+=共线. 14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 15.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .16.已知c b a ,,的模分别为1、2、3,则||c b a ++的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、 B 、D 三点共线,求k 的值.19.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线?20.如图,在△ABC 中,P 是BC 边上的任一点,求证:存在,1)1,0(,2121=+∈λλλλ且使AC AB AP 21λλ+=.1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( ) (A)(3,3),(3,-3) (B)(3,3),(1,-3) (C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( ) (A)(-2,-7) (B)(2,7) (C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是.5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a m n b mn =+=,且.a b =求,.m n 的值.。
向量的共线问题 证明共线问题常用的方法
t的范围.
【审题指导】题目中给出向量的夹角以及|
rr
u e
r|=2和|
1
eu|ur=2 1
等条件,由公式cosθ= ra b可r 得θ若为钝角,则cosθ<
||a | b|
0且cosθ≠-1,即
r a
< br 0.同时也应注意向量的共线反向这
一情况.
【规范解答】由已知
ur uur ur e1e2e1
【例6】如图,在△ABC中,M是BC的中点,
N在AC上且AN=2NC,AM与BN交于点P,
求AP∶PM的值.
【审题指导】题目中给出了M点是△ABC
的边BC的中点,AC边上的点N满足AN=2NC,欲求
AP∶PM的值,
uuur uuur AP,PM,
可A uuP ur适当P u选uM ur取,基底表示出
向量的共线问题
证明共线问题常用的方法.
(1)向量
rr r a、 ( ba0)
存在唯一实数λ,使
rr b a;
(2)向量
r a
=(x1,y1),
r b
=(x2,y2)
x1y2-x2y1=0;
(3)向量
r a
与
r b
rr rr ab a b;
(4)向量
r a
与
r b
r rr
1a2b0.
要分清两向量垂直的条件和两向量平行的条件坐标表 示的区别.
【例3】设两个向量
ur uur e1与 e 2
,满足|
ur e1
|=2,|
u ur e2
|=1,
ur uur e1与 e 2
的夹角为
3
,若向量 2 te u r 1 7 e u u r 2 与 e u r 1 te u u r 2的夹角为钝角,求实数