高中数学:空间点、直线、平面之间的位置关系 (1)
高中数学必修《点直线平面之间的位置关系》知识点
高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。
这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。
下面将详细介绍该知识点的内容。
一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。
2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。
(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。
(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。
(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。
二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。
2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。
(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。
(3)如果P在线段AB上,则距离为0。
三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。
2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。
3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。
高中数学总复习:空间点、直线、平面之间的位置关系
练后悟通
共面、共线、共点问题的证明方法
目录
高中总复习·数学(提升版)
空间两条直线的位置关系
考向1 空间两条直线位置关系的判断
【例1】 (1)已知α,β,γ是三个平面,α∩β= a ,α∩γ= b ,β∩γ
= c ,且 a ∩ b = O ,则下列结论正确的是(
)
A. 直线 b 与直线 c 可能是异面直线
1, F 四点共面.
目录
高中总复习·数学(提升版)
(2) CE , D 1 F , DA 三线共点;
证明:∵ EF ∥ CD 1, EF < CD 1,
∴ CE 与 D 1 F 必相交,
设交点为 P ,如图所示.
则由 P ∈ CE , CE ⊂平面 ABCD ,
得 P ∈平面 ABCD .
同理 P ∈平面 ADD 1 A 1.
D. 没有公共点
解析: 直线 m 与平面α平行,且直线 a ⊂α,则直线 m 和直线 a 的
位置关系可能平行,可能异面,即没有公共点,但不可能相交,故
选C.
目录
高中总复习·数学(提升版)
2. 如果直线 a ⊂平面α,直线 b ⊂平面β,且α∥β,则 a 与 b (
)
高中总复习·数学(提升版)
2. 在三棱锥 A - BCD 的边 AB , BC , CD , DA 上分别取 E , F , G , H
四点,如果 EF ∩ HG = P ,则点 P (
)
A. 一定在直线 BD 上
B. 一定在直线 AC 上
C. 在直线 AC 或 BD 上
D. 不在直线 AC 上,也不在直线 BD 上
)
目录
高中总复习·数学(提升版)
高中数学必修2《点、直线、平面之间的位置关系》知识点
第二章点、直线、平面之间的地点关系空间点、直线、平面之间的地点关系一、平面1、平面及其表示2、平面的基天性质①公义 1:A lB llAB②公义 2:不共线的三点确立一个平面③公义 3:Pl 则 P lP二、点与面、直线地点关系1、 A1、点与平面有 2 种地点关系2、 B2、点与直线有1、 A l2 种地点关系l2、 B三、空间中直线与直线之间的地点关系1、异面直线2、直线与直线的地点关系订交共面平行异面3、公义 4 和定理公义 4:l1 Pl3l1 Pl 2l 2 Pl3定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补。
4、求异面直线所成角的步骤:① 作:作平行线获得订交直线;② 证:证明作出的角即为所求的异面直线所成的角;③ 结构三角形求出该角。
提示: 1、作平行线常有方法有:直接平移,中位线,平行四边形。
2、异面直线所的角的范围是000 ,90。
四、空间中直线与平面之间的地点关系地点关系直线 a在平面内直线 a与平面订交直线 a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a a IA a P图形表示五、空间中平面与平面之间的地点关系地点关系两个平面平行两个平面订交公共点没有公共点有一条公共直线符号表示P I a图形表示直线、平面平行的判断及其性质一、线面平行1、判断:ba b Pb Pa(线线平行,则线面平行)2、性质:a Pa a Pbb(线面平行,则线线平行)二、面面平行1、判断:aba b P Pa Pb P(线面平行,则面面平行)2、性质 1:PI a a PbI b(面面平行,则线面平行)性质 2:Pm Pm(面面平行,则线面平行)说明( 1)判断直线与平面平行的方法:① 利用定义:证明直线与平面无公共点。
② 利用判断定理:从直线与直线平行等到直线与平面平行。
③ 利用面面平行的性质:两个平面平行,则此中一个平面内的直线必平行于另一个平面。
(2)证明面面平行的常用方法①利用面面平行的定义:此法一般与反证法联合。
点线面之间的位置关系的知识点总结
高中空间点线面之间位置关系知识点总结第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母a、B、Y等表示,如平面a、平面B等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABCD等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为公理1作用:判断直线是否在平面内(2)公理2 :过不在一条直线上的三点,有且只有一个平面。
符号表示为:AB、C三点不共线=> 有且只有一个平面a, 使A€a、B€a、C€a。
公理2作用:确定一个平面的依据。
(3)公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P€aQB => aPp =L,且P€ L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:f相交直线:同一平面内,有且只有一个公共点; 共面直线 Yl平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与0的选择无关,为简便,点0 —般取在两直线中的一条上;②两条异面直线所成的角(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a丄b;a//b2公理4:平行=>a //c④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角2.1.3 —2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内一一有无数个公共点(2 )直线与平面相交一一有且只有一个公共点(3)直线在平面平行一一没有公共点指岀:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示―a a a Qa =A a Ila2.2.直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系
空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。
高中数学必修2点、直线、平面之间的位置关系(1)
1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。
2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。
空间点、直线、平面之间的位置关系 高中数学例题课后习题详解
8.4空间点、直线、平面之间的位置关系8.4.1平面练习1.判断下列命题是否正确,正确的画“√”,错误的画“×”.(1)书桌面是平面.(2)平面α与平面β相交,它们只有有限个公共点.(3)如果两个平面有三个不共线的公共点,那么这两个平面重合.【答案】(1)×;(2)×;(3)√.【解析】【分析】根据平面性质可知(1)错误,根据公理2知(2)错误,根据公理3可判断(3)正确.【详解】(1)由平面性质知,平面具有无限延展性,所以桌面只是平面一部分,不是平面;(2)根据公理2可知,若两个平面有一个共点,则有过该点的唯一交线,可知有无限个公共点,且在一条直线上,故判断错误;根据公理3,不共线的三个点确定一个平面,因此两个平面有三个不共线的公共点,那么这两个平面重合,正确.【点睛】本题主要考查了平面的基本性质,属于容易题.2.下列命题正确的是()A.三点确定一个平面B.一条直线和一个点确定一个平面C.梯形可确定一个平面D.圆心和圆上两点确定一个平面【答案】C【解析】【分析】根据公理2对选项逐一分析,由此确定正确选项.【详解】对于A选项,三个不在同一条直线上的点,确定一个平面,故A选项错误.对于B选项,直线和直线外一点,确定一个平面,故B选项错误.对于C选项,两条平行直线确定一个平面,梯形有一组对边平行,另一组对边不平行,故梯形可确定一个平面,所以C选项正确.对于D选项,圆的直径不能确定一个平面,所以若圆心和圆上的两点在直径上,则无法确定一个平面.所以D 选项错误.故选:C【点睛】本小题主要考查公理2的理解和运用,属于基础题.3.不共面的四点可以确定几个平面?请画出图形说明你的结论.【答案】4个【解析】【分析】画出空间四边形,可以得到确定的平面个数.【详解】可确定4个平面,如图:由不共线的三个点确定一个平面可知,不共线的四个点可确定平面ABC ,平面ACD ,平面ABD ,平面BCD ,共4个平面.【点睛】本题主要考查了不共线的三个点确定一个平面,属于容易题.4.用符号表示下列语句,并画出相应的图形:(1)点A 在平面α内,点B 在平面α外;(2)直线a 经过平面α外的一点M ;(3)直线a 既在平面α内,又在平面β内.【答案】(1),A B αα∈∉,如图.(2),M M a α∉∈,如图.(3),a a αβ⊂⊂,如图.【解析】【分析】根据点线面的关系,借用集合符号,表示即可.【详解】(1),A B αα∈∉,如图:(2),M M a α∉∈,如图:(3),a a αβ⊂⊂或=a αβI ,如图:【点睛】本题主要考查了空间几何中的符号语言,属于容易题.8.4.2空间点、直线、平面之间的位置关系例1:如图8.4-16,用符号表示下列图形中直线、平面之间的位置关系.分析:根据图形,先判断直线、平面之间的位置关系,然后用符号表示出来.解:在(1)中, l αβ= ,a A α= ,a B β⋂=.在(2)中,l αβ= ,a α⊂,b β⊂,a l P = ,b l P = ,a b P = .例2:如图8.4-17,AB B α⋂=,A αÏ,a α⊂,B a ∉.直线AB 与a 具有怎样的位置关系?为什么?解:直线AB 与a 是异面直线.理由如下.若直线AB 与直线a 不是异面直线,则它们相交或平行.设它们确定的平面为β,则B β∈,a β⊂.由于经过点B 与直线a 有且仅有一个平面α,因此平面α与β重合,从而AB α⊂,进而A α∈,这与A αÏ矛盾.所以直线AB 与a 是异面直线.练习5.如果两条直线a 与b 没有公共点,那么a 与bA.共面B.平行C.异面D.平行或异面【答案】D【解析】【分析】根据空间中直线与直线的位置关系的定义即可判断出直线a 与b 的位置关系.【详解】如果两条直线没有公共点,则这两条直线平行或异面,则a 与b 平行或异面.故选:D.【点睛】本题考查空间中两直线位置关系的判断,属于基础题.6.设直线a b ,分别是长方体的相邻两个面的对角线所在的直线,则a 与b ()A.平行B.相交C.是异面直线D.可能相交,也可能是异面直线【答案】D【解析】【分析】按直线的三种位置关系分析.【详解】如图,长方体ABCD A B C D ''''-中,当'A B 所在直线为a ,BC '所在直线为b 时,a 与b 相交;当'A B 所在直线为a ,B C '所在直线为b 时,a 与b 异面.故选:D.【点睛】本题考查空间两条直线间的位置关系,属于基础题.7.如图,在长方体ABCD A B C D ''''-中,判定直线AB 与AC ,直线AC 与A C '',直线A B '与AC ,直线A B '与C D '的位置关系.【答案】见解析【解析】【分析】按直接的三种位置关系判断.【详解】解:直线AB 与AC 相交;直线AC 与A C ''平行;直线A B '与AC 异面;直线A B '与C D '异面.【点睛】本题考查空间两条直线间的位置关系,属于基础题.8.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)若直线l 上有无数个点不在平面α内,则//l α.()(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.()(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.()(4)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.()【答案】(1)×(2)×(3)×(4)√【解析】【分析】(1)举反例说明;(2)分析三种位置关系的可能性.由线面平行的性质定理得平行线,平面内与这平行相交的直线,与平面外的那条直线异面;(3)把与平行平行的直线平移,观察与平面的位置关系;(4)由线面平行的定义判断.【详解】(1)当直线1与平面α相交时,直线1上也有无数个点不在平面α内;(2)也可能异面;(3)也可能直线在平面内;(4)∵1∥a ,∴l 与α没有公共点,∴l 与α内任意一条直线都没有公共点.答案:(1)×(2)×(3)×(4)√【点睛】本题考查线面平行的定义与性质.掌握线面平行的定义是解题基础.9.已知直线,a b ,平面,αβ,且a α⊂,b β⊂,//αβ.判断直线,a b 的位置关系,并说明理由.【答案】它们是平行直线或异面直线;答案见解析.【解析】【分析】利用反证法,根据两条直线交点的个数,可判断其位置关系;【详解】直线,a b 的位置关系是平行直线或异面直线;理由如下:由//αβ,直线,a b 分别在平面α,β内,可知直线,a b 没有公共点.因为若,a b 有公共点,那么这个点也是平面α,β的公共点,这与是平面α,β平行矛盾.因此直线,a b 不相交,它们是平行直线或异面直线.习题8.4复习巩固10.画出满足下列条件的图形:(1),,,a b a b A c A ααα⊂⊂⋂=⋂=;(2),,,//,//l AB CD AB l CD lαβαβ⋂=⊂⊂【答案】见解析【解析】【分析】由题意直接画图即可.【详解】如图【点睛】本题主要考查的是空间图形的画法,直线和平面的位置关系,基本知识的考查,是基础题.11.经过同一条直线上的3个点的平面A.有且只有一个B.有且只有3个C.有无数多个D.不存在【答案】C【解析】【分析】根据平面的性质,直接判定即可得出结果.【详解】经过一条直线可以作无数多个平面.故选:C.【点睛】本题主要考查由线确定平面的数量,熟记基础题型.12.若直线a 不平行于平面α且a α⊄,则下列结论成立的是A.平面α内的所有直线与a 异面B.平面α内不存在与a 平行的直线C.平面α内存在唯一的直线与a 平行D.平面α内的直线与a 都相交【答案】B【解析】【分析】由题意知直线a 与平面α相交,依次判断选项即可.【详解】解:由条件知直线a 与平面α相交,则平面α内的直线与a 可能相交,也可能异面.不可能平行故选:B.【点睛】本题考查判断直线与平面相交,属于基础题.13.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”(1)两两相交且不共点的三条直线确定一个平面.()(2)四边形可以确定一个平面.()(3)若a ,b 是两条直线,,αβ是两个平面,且,a b αβ⊂⊂,则a ,b 是异面直线.()【答案】①.√②.×③.×【解析】【分析】根据空间中的平面公理与推理,以及异面直线的定义,对命题进行判断即可.【详解】对于(1),两两相交且不共点的三条直线确定一个平面,如三角形所在的三边确定一个平面,(1)正确;对于(2),当四边形是空间四边形时不能确定一个平面,(2)错误;对于(3),若a ,b 是两条直线,,αβ是两个平面,且,a b αβ⊂⊂,则a ,b 是平行、相交、异面直线,(3)错误.【点睛】本题主要考查的是平面公理与推论的应用问题以及异面直线的判定,是基础题.14.填空题(1)如果a 、b 是异面直线,直线c 与a 、b 都相交,那么这三条直线中的两条所确定的平面共有_______个;(2)若一条直线与两个平行平面中的一个平面平行,则这条直线与另一个平面的位置关系是________;(3)已知两条相交直线a 、b ,且//a 平面α,则b 与α的位置关系是__________.【答案】①.2②.直线平行于平面或直线在平面内③.//b α或b 与α相交【分析】(1)根据两相交直线可确定一个平面可得解;(2)利用图形可判断直线与平面的位置关系;(3)利用图形可判断b 与α的位置关系.【详解】(1)因为a 、b 是异面直线,直线c 与a 、b 都相交,则c 与a 、c 与b 可分别确定一个平面,故这三条直线中的两条所确定的平面共有2个;(2)若一条直线与两个平行平面中的一个平面平行,则这条直线在这个平面内或这条直线与平面平行,如下图所示:已知//αβ,//a α,则//a β(如图1),a β⊂(如图2).(3)已知两条相交直线a 、b ,且//a 平面α,如下图所示:如图3所示,可知//b α,如图4所示,b 与α相交.故答案为:(1)2;(2)直线与平面平行或直线在平面内;(3)//b α或b 与α相交.15.正方体各面所在平面将空间分成几部分?【答案】27个部分【分析】根据题意画出图形即可得出答案.【详解】如图,图中画出了正方体最上层把空间分成9个部分,同理中层、下层也分别把空间分成9个部分,因此共将空间分成27个部分.【点睛】本题主要考查的是平面基本性质,正确理解确定平面的几个公理及由题意画出图形且有较强的空间想象能力是解题的关键,是中档题.综合运用16.如果一条直线与两条平行直线都相交,那么这三条直线共面吗?请说说你的理由.【答案】共面,理由见解析【解析】【分析】先说明两条平行直线确定一个平面,再证第三条直线在这个平面内即可.【详解】共面.两条平行直线确定唯一的平面,又第三条直线与两条平行直线都相交,第三条直线有两个点在此平面内,则第三条直线也在这个平面内,所以这三条直线共面.【点睛】本题主要考查的线共面的判定,以及学生对平面基本性质的理解和应用,是基础题.17.如图,三条直线两两平行且不共面,每两条直线确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?【答案】三条直线两两平行且不共面,一共可以确定三个平面;如果三条直线相交于一点,则最多可以确定三个平面.【解析】【分析】这三条直线象三棱柱的三条侧棱根据平面的基本性质可以确定3个平面,得到结果;满足相交于一点的三条直线能够确定一个平面或三个平面,从而得出其最多可以确定几个平面.【详解】①三条直线两两平行,这三条直线象三棱柱的三条侧棱,其中每两条直线可以确定一个平面,则可以确定3个平面;②三条直线两两相交每两条确定一个平面,当这三条直线在同一个平面时则可以确定1个平面;当这三条直线不在同一个平面时,则可以确定3个平面;这三条直线能够确定一个平面或三个平面,最多可以确定3个平面.【点睛】本题考查查平面的基本性质及其应用,考查进行简单的合情推理,本题是一个推论应用问题,是一个基础题.18.已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示,求证:P,Q,R三点共线.【答案】证明见解析【解析】【分析】推导出P,Q,R都在平面ABC与平面α的交线上,即可证明.【详解】证明:法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由基本事实3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.拓广探索19.如图是一个正方体的展开图,如果将它还原为正方体,那么在AB,CD,EF,GH这四条线段中,哪些线段所在直线是异面直线?【答案】直线EF和直线HG,直线AB和直线HG,直线AB和直线CD.【解析】【分析】首先将正方体的展开图还原成正方体,由经过平面外一点和平面内一点的直线和平面内不经过该点的直线是异面直线,进行判断.【详解】还原正方体如图,由经过平面外一点和平面内一点的直线和平面内不进过该点的直线是异面直线可得,AB,CD,EF,GH这四条线段所在直线是异面直线为:直线EF和直线HG,直线AB和直线HG,直线AB和直线CD.【点睛】本题考查的是异面直线的判定,将正方体的展开图还原成正方体,再利用异面直线的判定定理判断是解题的关键,是基础题.20.在本节,我们学习了平面,了解了它的基本特征以及一些利用点、直线、平面等组成立体图形的基本元素刻画这些特征的方法,类似地,直线有什么基本特征?如何刻画直线的这些基本特征?【答案】答案见解析.【解析】【分析】写出直线的特点:直的,无限延伸,无粗细,不可以测量长度,再指出直线的对称性即可.【详解】直线的基本特征:直线是直的,没有粗细,没有端点,可以向两端无线延展、不可以测量长度;刻画直线的基本特征:直线是轴对称图形,它有无数条对称轴,直线本身以及与它垂直的直线都是它的对称轴.变式练习题21.如图,在空间四边形ABCD中,E,F分别为AB,BC的中点,点G,H分别在边CD,DA上,且满足12CG GD,DH=2HA.求证:四边形EFGH为梯形.【答案】证明见解析【解析】【分析】利用条件证明,EF HG互相平行,且不相等即可证得四边形为梯形.【详解】证明:因为E,F分别为AB,BC的中点,所以EF12AC = .又21DHHA=,21DGGC=,所以DH DGHA GC=,从而HG23AC=,所以EF∥HG且EF≠HG,故四边形EFGH为梯形.22.在正方体ABCD-A1B1C1D1中,P,Q,M,N分别为AD,AB,C1D1,B1C1的中点.求证:A1P∥CN,A1Q∥CM,且∠PA1Q=∠MCN.【答案】证明见解析【解析】【分析】根据平行四边形的性质及等角定理,即可得到答案;【详解】证明:如图,取A1B1的中点K,连接BK,KM.易知四边形MKBC为平行四边形,所以CM∥BK.因为A1K∥BQ且A1K=BQ,所以四边形A1KBQ为平行四边形,从而A 1Q ∥BK .由基本事实4有A 1Q ∥CM .同理可证A 1P ∥CN .因为∠PA 1Q 与∠MCN 对应边分别平行,且方向相反,所以∠PA 1Q =∠MCN .23.如图,P 是△ABC 所在平面外一点,D ,E 分别是△PAB 和△PBC 的重心.求证:D ,E ,A ,C 四点共面且DE =13AC .【答案】证明见解析【解析】【分析】如图,连接PD ,PE 并延长,分别交AB ,BC 于点M ,N ,连接MN ,证明DE ∥MN 且DE =23MN ,原题即得证.【详解】证明:如图,连接PD ,PE 并延长,分别交AB ,BC 于点M ,N ,因为D ,E 分别是△PAB ,△PBC 的重心,所以M ,N 分别是AB ,BC 的中点,连接MN ,则MN ∥AC 且MN =12AC .在△PMN 中,因为23PD PE PM PN ==,所以DE ∥MN 且DE =23MN .所以DE ∥AC 且DE =23×12AC =13AC .则D ,E ,A ,C 四点共面.24.如图,在四面体ABCD 中,E ,G 分别为BC ,AB 的中点,点F 在CD 上,点H 在AD 上,且有DF ∶FC =1∶3,DH ∶HA =1∶3.求证:EF ,GH ,BD 交于一点.【答案】证明见解析【解析】【分析】利用基本事实4和基本事实2可证三线共点.【详解】证明连接GE ,HF .因为E ,G 分别为BC ,AB 中点,所以1//2GE AC .因为DF ∶FC =1∶3,DH ∶HA =1∶3,所以1//3HF AC .从而GE ∥HF 且GE HF ≠,故G ,E ,F ,H 四点共面且四边形EFHG 为梯形,因为EF 与GH 不能平行,设EF ∩GH =O ,则O ∈平面ABD ,O ∈平面BCD .而平面ABD ∩平面BCD =BD ,所以EF ,GH ,BD 交于一点.25.在长方体1111ABCD A B C D -中,(1)直线1A B 与直线1D C 的位置关系是___________;(2)直线1A B 与直线1B C 的位置关系是_______________;(3)直线1D D 与直线1D C 的位置关系是______________;(4)直线AB 与直线1B C 的位置关系是______________.【答案】①.平行.②.异面.③.相交.④.异面.【解析】【分析】(1)根据题意得出四边形11A BCD 为平行四边形,即可得出结论;(2)根据异面直线的定义判断即可;(3)直线1D D 与直线1D C 相交于一点,则直线1D D 与直线1D C 的位置关系是相交;(4)根据异面直线的定义判断即可.【详解】(1)在长方体1111ABCD A B C D -中,11//A D BC ,四边形11A BCD 为平行四边形.11//A B D C ∴.(2)直线1A B 与直线1B C 不同在任何一个平面内,所以直线1A B 与直线1B C 的位置关系是异面.(3)直线1D D 与直线1D C 相交于点1D ,所以直线1D D 与直线1D C 的位置关系是相交.(4)直线AB 直线1B C 不同在任何一个平面内,所以直线AB 与直线1B C 的位置关系是异面.故答案为:(1)平行;(2)异面;(3)相交;(4)异面【点睛】本题主要考查了判断直线与直线的位置关系,属于基础题.26.如图所示,G 是正方体1111ABCD A B C D -的棱1DD 延长线上的一点,E ,F 是棱AB ,BC 的中点,试分别画出过下列各点、直线的平面与正方体表面的交线.(1)过点G 及AC .(2)过三点E ,F ,1D .【答案】(1)答案见解析;(2)答案见解析.【解析】【分析】(1)连接GA 交11A D 于点M ,连接GC 交11C D 于点N ;连接MN ,AC ,由图可得交线;(2)根据公理,连接EF 分别交DC 、DA 的延长线于点P ,Q ,连接1D P 交1CC 于点M ,连接1D Q 交1AA 于点N ;连接MF ,NE 由图可得交线.【小问1详解】连接GA 交11A D 于点M ,连接GC 交11C D 于点N ;连接MN ,AC ,则MA ,CN ,MN ,AC 为所求平面与正方体表面的交线.如图①所示.【小问2详解】连接EF 交DC 的延长线于点P ,交DA 的延长线于点Q ;连接1D P 交1CC 于点M ,连接1D Q 交1AA 于点N ;连接MF ,NE ,则1D M ,MF ,FE ,EN ,1ND 为所求平面与正方体表面的交线.如图②所示.。
2021_2022年高中数学第二章点直线平面之间的位置关系1
平面整体设计教学分析平面是最基本的几何概念,教科书以课桌面、黑板面、海平面等为例,对它只是加以描述而不定义.立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性.为了更准确地理解平面,教材重点介绍了平面的基本性质,即教科书中的三个公理,这也是本节的重点.另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换.三维目标1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.重点难点三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.课时安排1课时教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图 3.图2 图3 平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD (图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC (图5).图4 图5③下面我们总结点与直线、平面的位置关系如下表: 点A 在直线a 上(或直线a 经过点A )A∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ∉a 点A 在平面α内(或平面α经过点A ) A∈α 点A 在平面α外(或平面α不经过点A )A ∉α④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内. 这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a. 答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC 与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路.解:如图16所示,连接CB,∵C∈β,B∈β,∴直线CB⊂β.图16∵直线CB⊂平面ABC,∴β∩平面ABC=直线CB.设直线CB 与直线EF 交于D,∵α∩β=EF,∴D ∈α,D∈平面ABC.∵A∈α,A∈平面ABC ,∴α∩平面ABC=直线AD.变式训练1.如图17,AD∩平面α=B,AE∩平面α=C,请画出直线DE 与平面α的交点P ,并指出点P 与直线BC 的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC ,它与平面α的交线为直线BC ,DE 平面ABC ,∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N, ∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm ,∴PQ=10342121=+Q B P B cm. 点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线. 例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线. 解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β.又∵AB∩α=P,且AB ⊂β,∴点P 既在β内又在α内.设α∩β=l,则P ∈l,同理可证:Q ∈l,R ∈l,∴P、Q 、R 三点共线.变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点. 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行. 求证:l 1、l 2、l 3相交于一点.证明:如图20,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,图20∵l 1⊂β,l 2⊂β,且l 1、l 2不平行,∴l 1与l 2必相交.设l 1∩l 2=P ,则P ∈l 1⊂α,P∈l 2⊂γ,∴P∈α∩γ=l 3.∴l 1、l 2、l 3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3. 知能训练画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.解:如图21,图21∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1 A组5、6.11。
高中数学立体几何知识点总结大全
高中数学几何知识点总结一、空间点、直线、平面之间的位置关系 1.平面的基本性质 1如果一条直线上的两点在同一个平面内,那么这条直线在这个平面内2过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面⇒面,使推论3经过两条平行直线,有且只有一个平面3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,b P =αa ⊂,OA O A OB O B ''''∥∥则或.图(1) 图(2)3.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:(2)从是否共面的角度分类:4.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .5.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类AOB AOB ∠=∠'''180AOB AO B ∠+∠'''=︒⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线π(0,]2①按公共点个数分类:②按是否平行分类:③按直线是否在平面内分类:(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线.(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行. ②过直线外一点有且只有一个平面与已知直线垂直. ③过平面外一点有且只有一个平面与已知平面平行. ④过平面外一点有且只有一条直线与已知平面垂直. (2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 二、直线、平面平行的判定及其性质 1.直线与平面平行的判定定理⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行2.直线与平面平行的性质定理3.平面与平面平行的判定定理,b β=⇒b P =4.平面与平面平行的性质定理证明线线平行三、直线、平面垂直的判定及其性质,a b a γβγ==⇒∥1.直线与平面垂直的定义如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直.记作:l ⊥α.图形表示如下:定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语. 2.直线与平面垂直的判定定理⇒判断直线与平面垂直在应用该定理判断一条直线和一个平面垂直时,一定要注意是这条直线和平面内的两条相交直线垂直,3.直线与平面垂直的性质定理b P4.平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作.图形表示如下:5.平面与平面垂直的判定定理6.平面与平面垂直的性质定理αβ⊥7.直线与平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角..,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于;一条直线和平面平行,或在平面内,我们说它们所成的角等于.因此,直线与平面所成的角.........α.的范围是.....8.二面角(1)二面角的定义:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角....这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做这个二面角的平面角.(3)二面角的范围:.1.垂直问题的转化关系=llβα⎪⎪⇒⎬⊂⎪⎪⊥⎭90π[0,]2[0,π]2.常用结论(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线.(3)过空间任一点有且只有一条直线与已知平面垂直.(4)过空间任一点有且只有一个平面与已知直线垂直.(5)两平面垂直的性质定理是把面面垂直转化为线面垂直.(6)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.(7)如果两个平面互相垂直,那么过第一个平面内的一点且垂直于第二个平面的直线在第一个平面内.四、空间向量与立体几何1.空间直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系,如图所示.2.空间一点M 的坐标(1)空间一点M 的坐标可以用有序实数组来表示,记作,其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.(2)建立了空间直角坐标系后,空间中的点M 与有序实数组可建立一一对应的关系. 3.空间两点间的距离公式、中点公式 (1)距离公式①设点,为空间两点,则两点间的距离. ②设点,则点与坐标原点O 之间的距离为.(2)中点公式设点为,的中点,则. 4.共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 牢记两个推论:(1)对空间任意一点O ,点P 在直线AB 上的充要条件是存在实数t ,使或(其中).(2)如果l 为经过已知点A 且平行于已知非零向量的直线,那么对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使,其中向量叫做直线l 的方向向量,该式称为直线方程的向量表示式. 5.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使.牢记推论:空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y ),使;(,,)x y z (),,M x y z (,,)x y z 111(,,)A x y z 222(,,)B x y z ,AB ||AB =(),,P x y z (),,P x yz ||OP =(),,P x y z 1111,),(P x y z 2222,),(P x y z 121212222x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩(1)OP t OA tOB =-+OP xOA yOB =+1x y +=a OP OA t =+a a x y =+p a b AP xAB y AC =+或对空间任意一点O ,有.6.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中,{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.(1)空间任意三个不共面的向量都可构成基底.(2)基底选定后,空间的所有向量均可由基底唯一表示.(3)不能作为基向量.7.空间向量的运算(1)空间向量的加法、减法、数乘及数量积运算都可类比平面向量.(2)空间向量的坐标运算设,则,,,OP OA x AB y AC =++0123123(,,),(,,)a a a b b b ==a b 112233(,,)a b a b a b ±=±±±a b 123(,,)()a a a λλλλλ=∈R a 112233a b a b a b ⋅=++a b,,. 8.直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为.在平面内找出(或求出)两个不共线的向量,根据定义建立方程组,得到,通过赋值,取其中一组解,得到平面的法向量.9.利用空间向量表示空间线面平行、垂直设直线的方向向量分别为,平面的法向量分别为.(1)线线平行:若,则;线面平行:若,则;面面平行:若,则.(2)线线垂直:若,则;线面垂直:若,则;面面垂直:若,则.10.利用空间向量求空间角设直线的方向向量分别为,平面的法向量分别为.(1)直线所成的角为,则,计算方法:; 112233,,()b a b a b a λλλλλ⇔=⇔===∈R a b b a 1122330a b a b a b ⊥⇔⋅=++=a b a b ==a cos ,⋅==a b a b a b l l α⊥l α(,,)x y z =α123123(,,),(,,)a a a b b b ==a b 00⋅=⎧⎨⋅=⎩a b αα,l m ,l m ,αβ,αβ//l m ()λλ⇔=∈R l m l m //l α0⊥⇔⋅=l l αα//αβ()λλ⇔=∈R αβαβl m ⊥0⊥⇔⋅=l m l m l α⊥()λλ⇔=∈R l l αααβ⊥0⊥⇔⋅=αβαβ,l m ,l m ,αβ12,n n ,l m θπ02θ≤≤cos θ⋅=l m l m(2)直线与平面所成的角为,则,计算方法:; (3)平面所成的二面角为,则,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=.如图②③,分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 11.利用空间向量求距离(1)两点间的距离设点,为空间两点,则两点间的距离.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为.l αθπ02θ≤≤11sin θ⋅=l n l n ,αβθ0πθ≤≤,〈〉ABCD 12,n n 1212⋅n n n n 111(,,)A x y z 222(,,)B x y z ,A B ||||(AB AB x ==||||||AB BO ⋅=n n。
2021_2022年高中数学第二章点直线平面之间的位置关系1
• 因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公
理2的推理2知:经过两条相交直线,有且只有一个平面,所
以平面α与平面β重合,所以直线a,b,c和l共面.
• 规律总结:(1)证明点线共面的主要依据:公理1、公理2及其 推论.
• [证明] 如右图所示,
• ∵PA∩PB=P, • ∴过PA,PB确定一个平面α. • ∴A∈α,B∈α. • ∵A∈l,B∈l, • ∴l⊂α. • ∴PA,PB,l共面.
3. 证明多点共线问题
• 例题3 已知△ABC在平面α外,AB∩α=P,AC∩α=R,
BC∩α=Q,如图.求证:P、Q、R三点共线.
自主预习
1.平面
描述
几何里所说的“平面”是从生活中的一些物体抽象出 来的,是无限___延__展_____的
通常把水平的平面画成一个__平__行__四__边__形__,并且其锐 角画成45°,且横边长等于其邻边长的___2__倍,如图 1所示;如果一个平面被另一个平面遮挡住,为了增强 立体感,被遮挡部分用__虚__线___画出来,如图2所示
练习1
(1)若点 M 在直线 a 上,a 在平面 α 内, 则 M,a,α 间的关系可记为________.
(2) 根 据 右 图 , 填 入 相 应 的 符 号 : A________平面 ABC,A________平面 BCD, BD________平面 ABC,平面 ABC∩平面 ACD =________.
• (2)公理2中“有且只有一个”的含义要准确理解,这里的“有 ”是说图形存在,“只有一个”是说图形唯一,强调的是存在 和唯一两个方面,因此“有且只有一个”必须完整地使用,不 能仅用“只有一个”来代替,否则就没有表达出存在性.确定 一个平面中的“确定”是“有且只有”的同义词,也是指存在 性和唯一性这两个方面,这个术语今后也会常常出现.
高中数学 点、直线、平面之间的位置关系
点、直线、平面之间的位置关系知识回顾1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.空间两条直线的位置关系(1)空间两条直线的位置关系有且只有三种:相交、平行、异面.(2)异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线.(3)异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).3. 线面、面面的位置关系1.一条直线a和一个平面α有且仅有a⊂α,a∩α=A或a∥α三种位置关系.(用符号语言表示)2.两平面α与β有且仅有α∥β或α∩β=l两种位置关系(用符号语言表示).题型讲解题型一概念例1、下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 M,宽是20 M;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为()A.1 B.2 C.3 D.4答案:A例2、若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β答案:B例3、如图所示正方体ABCD-A1B1C1D1中,E、F分别为CC1和AA1的中点,画出平面BED1F和平面ABCD的交线.解析:如图所示,在平面ADD1A1内延长D1F与DA,交于一点P,则P∈平面BED1F,∵DA⊂平面ABCD,∴P∈平面ABCD,∴P是平面ABCD与平面BED1F的一个公共点,又B是两平面的一个公共点,∴PB为两平面的交线.例4、空间四边形ABCD的两条对角线AC、BD相互垂直,顺次连接四边中点的四边形一定是()A.空间四边形 B.矩形C.菱形 D.正方形答案:B题型二异面直线例5、已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.答案:(1)60°(2)45°解析连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.例6、一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.答案:①③解析把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.题型三线面关系例7、已知直线a∥平面α,直线b⊂α,则a与b的位置关系是()A.相交 B.平行C.异面 D.平行或异面答案:D例8、三个互不重合的平面把空间分成6部分时,它们的交线有()A .1条B .2条C .3条D .1条或2条 答案:D例9、平面α∥β,且a ⊂α,下列四个结论: ①a 和β内的所有直线平行; ②a 和β内的无数条直线平行; ③a 和β内的任何直线都不平行; ④a 和β无公共点. 其中正确的个数为( )A .0B .1C .2D .3 答案:C跟踪训练1. 文字语言叙述“平面内有一条直线,则这条直线上的一点必在这个平面内”用符号表述是( )A .⎭⎪⎬⎪⎫A ⊂αA ⊂a ⇒A ⊂α B .⎭⎪⎬⎪⎫a ⊂αA ∈a ⇒A ∈α C .⎭⎪⎬⎪⎫a ∈αA ⊂a ⇒A ∈α D .⎭⎪⎬⎪⎫a ∈αA ∈a ⇒A ⊂α 答案:B2. 若直线a 、b 与直线l 相交且所成的角相等,则a 、b 的位置关系是( ) A .异面 B .平行C .相交D .三种关系都有可能答案:D3.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD)B .MN ≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)答案:D4.正方体AC 1中,E 、F 分别是面A 1B 1C 1D 1和AA 1DD 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90° 答案:B5.已知a 是一条直线,过a 作平面β,使β∥平面α,这样的β( ) A .只能作一个 B .至少有一个 C .不存在 D .至多有一个答案:D6.正方体ABCD -A 1B 1C 1D 1中,平面BA 1C 1和平面ACD 1的交线与棱CC 1的位置关系是________,截面BA 1C 1和直线AC 的位置关系是________.答案:平行 平行 解析:如图所示,。
高中数学中的空间解析几何位置关系
高中数学中的空间解析几何位置关系在高中数学中,空间解析几何是一个重要的内容。
通过解析几何,我们可以研究点、直线、平面以及它们之间的位置关系。
本文将介绍空间解析几何中的位置关系,并探讨一些常见的几何问题。
1. 点与直线的位置关系在三维空间中,一个点可以在直线上、在直线上的延长线上、不在直线上,这取决于点与直线之间的位置关系。
根据点在直线上的投影,可以将点与直线的位置关系分为三种情况:点在直线上、点在直线的某个延长线上、点在直线的某个截线上。
具体来说,如果一个点的坐标满足直线上的方程,那么这个点就在直线上。
如果一个点的坐标满足直线的方程但不满足直线上的方程,那么这个点就在直线的某个延长线上。
如果一个点的坐标不满足直线的方程,那么这个点就不在直线上。
2. 点与平面的位置关系与点与直线的位置关系类似,点与平面之间的位置关系也可以分为三种情况:点在平面上、点在平面的上方或下方、点不在平面上。
通过将点的坐标代入平面的方程,我们可以判断点与平面的位置关系。
如果点的坐标满足平面的方程,那么这个点在平面上。
如果点的坐标不满足平面的方程,那么这个点不在平面上。
如果点的坐标满足平面的方程但不满足平面上的方程,那么这个点在平面的上方或下方。
3. 直线与直线的位置关系在三维空间中,两条直线可以相交、平行或重合。
通过求解两条直线的交点,我们可以判断它们之间的位置关系。
如果两条直线有且仅有一个交点,那么它们相交。
如果两条直线没有交点且它们的方向向量平行,那么它们平行。
如果两条直线完全重合,那么它们重合。
4. 直线与平面的位置关系直线与平面的位置关系可以分为四种情况:直线在平面上、直线平行于平面、直线与平面相交但不在平面上、直线与平面没有交点。
通过直线的方程和平面的方程,我们可以判断直线与平面之间的位置关系。
具体而言,如果直线的方程同时满足平面的方程,那么这条直线在平面上。
如果直线的方程与平面的法向量平行,那么这条直线与平面平行。
高中数学高考第3节 空间点、直线、平面之间的位置关系 课件
主
回 顾
c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.
课 后
对于②,a与b可能异面垂直,故②错误.
限 时
集
课 堂
对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正
训
考
点 确.
探
究
返 首 页
41
课
前
自
主 回
(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M 课
顾
∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),
探
究 _有__且__只__有__一__条___过该点的公共直线.
返 首 页
5
课
前 自
(4)公理2的三个推论
主
回 顾
推论1:经过一条直线和这条直线外的一点,有且只有一个平 课 后
面.
限 时
集
课 堂
推论2:经过两条相交直线,有且只有一个平面.
训
考
点
推论3:经过两条平行直线,有且只有一个平面.
探
究
返 首 页
后 限
些点都是这两个平面的公共点,再根据基本公理3证明这些点都在
时 集
课
训
堂 考
交线上;②同一法:选择其中两点确定一条直线,然后证明其余点
点
探 也在该直线上.
究
返 首 页
25
课 前
(2)证明线共点问题:先证两条直线交于一点,再证明第三条直
自
主 线经过该点.
回
课
顾
(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,
探
究
返 首 页
43
1.下列结论中正确的是 ( )
2021_2022年高中数学第二章点直线平面之间的位置关系1
空间中直线与直线之间的位置关系基础巩固一、选择题1.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[答案] D[解析] 对于A,空间两条不相交的直线有两种可能,一是平行(共面),另一个是异面.∴A应排除.对于B,分别位于两个平面内的直线,既可能平行也可能相交也可异面,如右图,就是相交的情况,∴B应排除.对于C,如右图的a,b可看作是平面α内的一条直线a与平面α外的一条直线b,显然它们是相交直线,∴C应排除.只有D符合定义.∴应选D.规律总结:解答这类立体几何的命题的真假判定问题,一方面要熟练掌握立体几何中的有关概念和公理、定理;另一方面要善于寻找特例,构造相关特例模型,能快速、有效地排除相关的选择项.2.正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有( )A.3条B.4条C.6条D.8条[答案] C[解析] 画一个正方体,不难得出有6条.3.若a、b是异面直线,b、c是异面直线,则( )A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面[答案] D[解析] a、b、c的位置关系有下面三种情况,如图所示,由图形分析可得答案为D.4.空间两个角α、β的两边对应平行,若α=60°,则β为( )A.60° B.120°C.30° D.60°或120°[答案] D[解析] 由等角定理知α、β相等或互补.所以β=60°或120°.5.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD 所成的角为( )A.30° B.45°C.60° D.90°[答案] A[解析] 取AD的中点H,连FH、EH,在△EFH中∠EFH=90°,HE=2HF,从而∠FEH=30°,故选A.6.下列命题中,正确的结论有( )①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个[答案] B[解析] ②④是正确的.二、填空题7.如图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有________对.[答案] 3[解析] AP与BC异面、BP与AC异面、PC与AB异面.8.如图所示,六棱柱ABCDEF-A1B1C1D1E1F1中,底面是正六边形.(1)A 1F 1与BD 所成角的度数为________. (2)C 1F 1与BE 所成角的度数为________. [答案] 30° 60° 三、解答题9.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是棱CC 1,BB 1,DD 1中点.求证:∠BGC =∠FD 1E . [分析]利用平行公理证明两角对应的边平行,再利用等角定理证明两角相等.[解析] 因为E ,F ,G 分别是正方体的棱CC 1,BB 1,DD 1的中点,所以CE 綊GD 1,BF 綊GD 1.所以四边形CED 1G 与四边形BFD 1G 均为平行四边形.所以GC ∥D 1E ,GB ∥D 1F .因为∠BGC与∠FD 1E 的方向相同,所以∠BGC =∠FD 1E .10.如图,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.[分析] 根据异面直线所成角的定义,我们可以选择适当的点,分别引BE 与DC 的平行线,换句话说,平移BE (或CD ).设想平移CD ,沿着DA 的方向,使D 移向E ,则C 移向AC 的中点F ,这样BE 与CD 所成的角即为∠BEF 或其补角,解△EFB 即可获解.[解析] 取AC 的中点F ,连接BF 、EF ,在△ACD 中,E 、F 分别是AD 、AC 的中点, ∴EF ∥CD ,∴∠BEF 即为所求的异面直线BE 与CD 所成的角(或其补角). 在Rt △EAB 中,AB =1,AE =12AD =12,∴BE =52.在Rt △AEF 中,AF =12AC =12,AE =12,∴EF =22.在Rt △ABF 中,AB =1,AF =12,∴BF =52.在等腰△EBF 中,cos ∠FEB =12EF BE =2452=1010,∴异面直线BE 与CD 所成角的余弦值为1010. 能力提升一、选择题1.分别和两条异面直线都相交的两条直线的位置关系是( ) A .异面 B .相交 C .平行 D .异面或相交[答案] D[解析] 如图所示,a 、b 是异面直线,AB 、AC 都与a 、b 相交,AB 、AC 相交;AB 、DE 都与a 、b 相交,AB 、DE 异面.2.已知a 、b 、c 均是直线,则下列命题中,必成立的是( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .若a 与b 相交,b 与c 相交,则a 与c 也相交C .若a ∥b ,b ∥c ,则a ∥cD .若a 与b 异面,b 与c 异面,则a 与c 也是异面直线 [答案] C[解析] 由平行公理可知C 正确,而其他可举反例说明错误.3.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( )A .梯形B .矩形C .平行四边形D .正方形 [答案] D[解析] ∵E 、F 、G 、H 分别为中点,如图. ∴FG 綊EH 綊12BD ,HG 綊EF 綊12AC ,又∵BD ⊥AC 且BD =AC ,∴FG ⊥HG 且FG =HG ,∴四边形EFGH 为正方形.4.点E 、F 分别是三棱锥P -ABC 的棱AP 、BC 的中点,AB =6,PC =8,EF =5,则异面直线AB 与PC 所成的角为( )A .60°B .45°C .30°D .90°[答案] D[解析] 如图,取PB 的中点G ,连结EG 、FG ,则EG 綊12AB ,GF 綊12PC ,则∠EGF (或其补角)即为AB 与PC 所成的角,在△EFG 中,EG =12AB =3,FG =12PC =4,EF =5,所以∠EGF =90°.二、填空题5.如图正方体ABCD -A 1B 1C 1D 1中,与AD 1异面且与AD 1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.[答案] 1[解析] 与AD 1异面的面对角线分别为:A 1C 1,B 1C ,BD ,BA 1,C 1D ,其中只有B 1C 和AD 1所成的角为90°.6.如图所示,E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、BC 、CD 、DA 的中点,若BD =2,AC =4,则四边形EFGH 的周长为________.[答案] 6[解析]⎭⎪⎬⎪⎫EH 綊12BDFG 綊12BD ⇒EH =FG =12BD =1, 同理EF =GH =12AC =2,∴四边形EFGH 的周长为6. 三、解答题7.如图,在空间四边形ABCD 中,AD =BC =2,E 、F 分别是AB 、CD 的中点,若EF =3,求异面直线AD 、BC 所成角的大小.[解析] 如图,取BD 的中点M ,连接EM 、FM .因为E 、F 分别是AB 、CD 的中点,所以EM 綊12AD ,FM 綊12BC ,则∠EMF 或其补角就是异面直线AD 、BC 所成的角.AD =BC =2,所以EM =MF =1,在等腰△MEF 中,过点M ,作MH ⊥EF 于H , 在Rt △MHE 中,EM =1,EH =12EF =32,则sin ∠EMH =32,于是∠EMH =60°, 则∠EMF =2∠FMH =120°.所以异面直线AD 、BC 所成的角为∠EMF 的补角,即异面直线AD 、BC 所成的角为60°. 8.如图,两个三角形ABC 和A ′B ′C ′的对应顶点的连线AA ′,BB ′,CC ′交于同一点O ,且AO OA ′=BO OB ′=CO OC ′=23. (1)求证:AB ∥A ′B ′,AC ∥A ′C ′,BC ∥B ′C ′; (2)求S △ABCS △A ′B ′C ′的值.[分析]用平面几何知识可以证明两条直线平行;用等角定理可以证明两个角相等,从而可以证明两个三角形相似.[解析] (1)证明:因为AA ′与BB ′交于点O ,且AO OA ′=BO OB ′=23,所以AB ∥A ′B ′.同理AC ∥A ′C ′,BC ∥B ′C ′.(2)解:因为A ′B ′∥AB ,AC ∥A ′C ′,且AB 和A ′B ′,AC 和A ′C ′方向相反. 所以∠BAC =∠B ′A ′C ′.同理∠ABC =∠A ′B ′C ′,所以△ABC ∽△A ′B ′C ′,且AB A ′B ′=AO OA ′=23. 所以S △ABCS △A ′B ′C ′=(23)2=49.[点评] 空间等角定理是空间几何体中衡量角的关系的依据,考查时方向有二:一是直接利用定理判断角的关系;二是利用角的相等证明三角形相似.解答时要注意角的两边是否平行及角的方向,其中方向容易被忽略,证明时要特别注意回答时要作出说明.。
必修二2.1.空间点、直线、平面之间的位置关系(教案)
人教版新课标普通高中◎数学 2 必修(A 版)第二章点、直线、平面之间的位置关系2. 1空间点、直线、平面之间的位置关系教案 A第 1 课时教学内容: 2. 1. 1平面教学目标一、知识与技能1.利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图;2.掌握平面的基本性质及作用,提高学生的空间想象能力.二、过程与方法在师生的共同讨论中,形成对平面的感性认识.三、情感、态度与价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1.平面的概念及表示;2.平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面基本性质的掌握与运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进行理解,清楚其用途.教法与学法导航教学方法:探究讨论,讲练结合法.学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.教学准备教师准备:投影仪、投影片、正(长)方形模型、三角板.学生准备:直尺、三角板.教学过程教学教学内容师生互动设计过程意图创设什么是平面?师:生活中常见的如黑板、情境一些能看得见的平面实桌面等,给我们以平面的印象,形成平导入例 .你们能举出更多例子吗?那么面的概新课平面的含义是什么呢?这就是念我们这节课所要学习的内容 .1教师备课系统──多媒体教案续上表1.平面含义随堂练习判定下列命题是否正确:主题① 书桌面是平面;探究② 8 个平面重叠起来要比合作 6 个平面重叠起来厚;交流③ 有一个平面的长是50m,宽是 20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念 .师:以上实物都给我们以平面的印象,几何里所说加强对知的平面,就是从这样的一些识的理解物体中抽象出来的,但是,培养,自几何里的平面是无限延展觉钻研的的 .学习习惯 . 数形结合,加深理解 .2.平面的画法及表示师:在平面几何中,怎(1)平面的画法:水平放样画直线?(一学生上黑板置的平面通常画成一个平行四画)边形,锐角画成 45°,且横边之后教师加以肯定,解说、画成邻边的 2 倍长(如图).类比,将知识迁移,得出平面的画法:D CαA B如果几个平面画在一起,主题当一个平面的一部分被另一个探究平面遮住时,应画成虚线或不合作画(打出投影片).交流(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC 、平面 ABCD等.(3)平面内有无数个点,平面可以看成点的集合 .点 A 在平面α内,记作:A ∈ α ; 点B 在平面α外,记作: Bα.β通过类比α探索,培养学生知识迁移能β力,加强知识的系统性 .α·B·Aα2续上表人教版新课标普通高中◎数学 2 必修(A 版)3.平面的基本性质公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.A Bα· C··教师引导学生思考教材P41 的思考题,让学生充分发表自己的见解 .师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理主题探究合作交流符号表示为A ∈ LB∈ L? L ? α.A ∈ αB∈ α公理 1:判断直线是否在平面内.公理 2:过不在一条直线上的三点,有且只有一个平面 .A· Bα·L符号表示为: A 、B、C 三点不共线 ? 有且只有一个平面α,使A ∈ α、 B∈ α、 C∈ α.公理 2 作用:确定一个平面的依据 .公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .βPα·L符号表示为: P∈ α∩β? α∩β =L,且P∈ L .公理 3 作用:判定两个平面是否相交的依据 .1.教师引导学生阅读教材P42 前几行相关内容,并加以解析.师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等.通过类比引导学生归纳出公理探索,培2.养学生知教师用正(长)方形识迁移能模型,让学生理解两个平力,加强面的交线的含义.知识的系注意:( 1)公理中“有统性 .且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“ 有且只有一个平面”也可以说成“确定一个平面 . ”引导学生阅读P42 的思考题,从而归纳出公理3.3教师备课系统──多媒体教案续上表拓展 4. 教材 P43 例 1教师及时评价和纠正同创新通过例子,让学生掌握图形学的表达方法,规范画图和巩固应用中点、线、面的位置关系及符号符号表示 .提高.提高的正确使用 .1.平面的概念,画法及表示方法 .培养学2.平面的性质及其作用.生归纳3.符号表示.整合知4.注意事项.学生归纳总结、教师给识能小结力,以予点拨、完善并板书 .及思维的灵活性与严谨性 .课堂作业1.下列说法中,(1)铺得很平的一张白纸是一个平面;( 2)一个平面的面积可以等于 6cm 2;( 3)平面是矩形或平行四边形的形状. 其中说法正确的个数为().A . 0 B . 1 C. 2 D . 32.若点 A 在直线 b 上,在平面内,则 A, b,之间的关系可以记作().A . A b B. A b C. A b D . A b3.图中表示两个相交平面,其中画法正确的是().A B C D4.空间中两个不重合的平面可以把空间分成()部分.答案: 1. A 2. B 3. D 4. 3 或 4第 2 课时教学内容2.1. 2 空间中直线与直线之间的位置关系教学目标一、知识与技能1.了解空间中两条直线的位置关系;4人教版新课标普通高中◎数学 2 必修(A 版)2.理解异面直线的概念、画法,提高空间想象能力;3.理解并掌握公理 4 和等角定理;4.理解异面直线所成角的定义、范围及应用.二、过程与方法1.经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法.2.体会平移不改变两条直线所成角的基本思想和方法.三、情感、态度与价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1.异面直线的概念 .2.公理 4 及等角定理 .教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法 .教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法与学法导航教学方法探究讨论法.学习方法学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板.学生准备三角板 .教学过程详见下表 .教学教学内容师生互动设计环节意图创设通过身边实物,相互设疑激情境异面直线的概念:不同在任何一个交流异面直线的概念.趣点出导入平面内的两条直线叫做异面直线.师:空间两条直线有主题.新课多少种位置关系?1. 空间的两条直线的位置关系教师给出长方体模多媒体5教师备课系统──多媒体教案相交直线:同一平面内,有且只有型,引导学生得出空间的演示提一个公共点;两条直线有如下三种关高上课平行直线:同一平面内,没有公共系.效率 .探索点;异面直线:不同在任何一个平面内,教师再次强调异面直新知没有公共点 .线不共面的特点.师生互异面直线作图时通常用一个或两个动,突平面衬托,如下图:破重点 .2. 平行公理师:在同一平面内,例 2 的思考:长方体ABCD-A'B'C'D' 中,如果两条直线都与第三条讲解让BB' ∥AA', DD' ∥AA',那么 BB' 与直线平行,那么这两条直学生掌DD' 平行吗?线互相平行 . 在空间中,是握了公否有类似的规律?理 4 的运用.生:是.强调:公理 4 实质上探索是说平行具有传递性,在新知公理 4:平行于同一条直线的两条平面、空间这个性质都适直线互相平行 .用.符号表示为:设a、b、c 是三条直线如果 a//b, b//c,那么 a//c.例 2 空间四边形ABCD 中, E、 F、G、 H 分别是AB 、BC 、 CD 、 DA 的中点.求证:四边形 EFGH 是平行四边形 .续上表3. 思考:在平面上,我们容易证明让学生观察、思考:等角定“如果一个角的两边与另一个角的两边理为异探索分别平行,那么这两个角相等或互补”.面直线新知空间中,结论是否仍然成立呢?所成的等角定理:空间中如果两个角的两角的概边分别对应平行,那么这两个角相等或念作准6人教版新课标普通高中◎数学 2 必修(A 版)互补 .∠ ADC与A'D'C' 、备.∠ ADC与∠ A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ ADC = A'D'C' ,∠ ADC +∠ A'B'C' = 180°4.异面直线所成的角如图,已知异面直线 a、b,经过空探索间中任一点 O 作直线 a'∥ a、b'∥ b,我新知们把 a'与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角).教师画出更具一般性的图形,师生共同归纳出如下等角定理.师:① a'与 b'所成的角的以教师大小只由 a、b 的相互位置讲授为来确定,与 O 的选择无关,主,师为了简便,点 O 一般取在生共同两直线中的一条上;交流,② 两条异面直线所成的导出异角θ∈( 0,π);面直线2所成的③ 当两条异面直线所成角的概探索的角是直角时,我们就说念 .新知这两条异面直线互相垂例 3 让直,记作 a⊥ b;学生掌④ 两条直线互相垂直,有握了如共面垂直与异面垂直两种何求异情形;面直线⑤ 计算中,通常把两条异所成的例 3(投影)面直线所成的角转化为两角,从条相交直线所成的角 .而巩固了所学知识 .续上表充分调动学拓展生动手创新教材 P49 练习 1、 2.生完成练习,教师当的积极应用堂评价 .性,教提高师适时7教师备课系统──多媒体教案给予肯定 .本节课学习了哪些知识内容?小结知2.计算异面直线所成的角应注意什学生归纳,然后老师补识,形小结么?充、完善.成整体思维.课堂作业1. 异面直线是指().A.空间中两条不相交的直线B.分别位于两不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.如右图所示,在三棱锥 P-ABC 的六条棱所在的直线中,异面直线共有().A. 2 对 B . 3 对 C. 4 对 D. 6 对3.正方体 ABCD-A 1B1C1D1中与棱AA1平行的棱共有().A. 1 条 B . 2 条 C. 3 条 D. 4 条4.空间两个角、,且与的两边对应平行,若=60 °,则的大小为()..答案: 1. D 2.B 3. C 4. 60 °或 120°第 3 课时教学内容8人教版新课标普通高中◎数学 2 必修(A 版)2. 1. 3 空间中直线与平面之间的位置关系 2. 1. 4 平面与平面之间的位置关系教学目标一、知识与技能1.了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系;2.提高空间想象能力 .二、过程与方法1.通过观察与类比加深了对这些位置关系的理解、掌握;2.利用已有的知识与经验归纳整理本节所学知识.三、情感、态度与价值观感受空间中图形的基本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学关键借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系.教法与学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺.教学过程详见下表 .教学教学内容师生互动设计过程意图创设问题1:空间中直线和直线有几生 1:平行、相交、异复习9教师备课系统──多媒体教案情境种位置关系?面;回顾,导入问题 2:一支笔所在的直线和一生 2:有三种位置关系:激发新课个作业本所在平面有几种位置关(1)直线在平面内;学习系?(2)直线与平面相交;兴趣 .(3)直线与平面平行.师肯定并板书,点出主题 .1.直线与平面的位置关系 .师:有谁能讲出这三种( 1)直线在平面内——有无数位置有什么特点吗?个公共点 .生:直线在平面内时二( 2)直线与平面相交——有且者有无数个公共点 .仅有一个公共点 .直线与平面相交时,二( 3)直线在平面平行——没有者有且仅有一个公共点 .公共点 .直线与平面平行时,三其中直线与平面相交或平行的者没有公共点(师板书).情况,统称为直线在平面外,记作师:我们把直线与平面加强a.相交或直线与平面平行的对知直线 a 在面内的符号语言是情况统称为直线在平面外 .识的a. 图形语言是:师:直线与平面的三种理解位置关系的图形语言、符号培养,主题语言各是怎样的?谁来画自觉探究图表示一个和书写一下 .钻研合作学生上台画图表示 .的学交流直线 a 与面相交的 a∩ = A.师;好 . 应该注意:画习习图形语言是符号语言是:直线在平面内时,要把直线惯,数画在表示平面的平行四边形结形内;画直线在平面外时,合,加应把直线或它的一部分画深理在表示平面的平行四边形解 .外 .直线 a 与面平行的符号语言是a∥. 图形语言是:10人教版新课标普通高中◎数学 2 必修(A 版)续上表2.平面与平面的位置关系师:下面请同学们思考以( 1)问题 1:拿出两本书,看下两个问题(投影).作两个平面,上下、左右移动和翻生:平行、相交 .转,它们之间的位置关系有几种?师:它们有什么特点?( 2)问题 2:如图所示,围成生:两个平面平行时二者长方体 ABCD –没有公共点,两个平面相交A′B′C′D′的六个时,二者有且仅有一条公共直通过面,两两之间的线(师板书).类比位置关系有几师:下面请同学们用图形探索,种?和符号把平面和平面的位置培养主题关系表示出来⋯⋯学生( 3)平面与平面的位置关系探究——没有公师:下面我们来看几个例知识平面与平面平行合作子(投影例 1).迁移共点 .交流能力 .平面与平面相交——有且只有一条公共直线 .加强平面与平面平行的符号语言知识是∥ . 图形语言是:的系统性 .11教师备课系统──多媒体教案续上表拓展创新应用提高例 1 下列命题中正确的个数是( B ).①若直线 l 上有无数个点不在平面内,则 l∥ .②若直线l 与平面平行,则l与平面内的任意一条直线都平行 .③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行 .④若直线 l 与平面平行,则 l 与平面内的任意一条直线没有公共点 .A . 0B . 1 C. 2 D. 3例 2 已知平面∥,直线a,求证 a∥ .证明:假设 a 不平行,则 a在内或 a 与相交 .∴ a 与有公共点 .又 a.∴ a与有公共点,与面∥面矛盾 .∴∥ .学生先独立完成,然后讨例 1 通论、共同研究,得出答案. 教师过示范利用投影仪给出示范 .传授学师:如图,我们借助长方体生一个模型,棱 AA 1所在直线有无数点通过模在平型来研面究问题ABCD的方外,但法,加棱 AA 1深对概所在直线与平面ABCD 相交,所念的理以命题①不正确; A1B1所在直线解. 例 2平行于平面 ABCD ,A1B1显然不目标训平行于 BD,所以命题②不正确;练学生A1 B1∥AB,A1B1所在直线平行于思维的平面 ABCD ,但直线 AB平灵活,面 ABCD ,所以命题③不正确;并加深l 与平面平行,则 l 与无公对面面共点, l与平面内所有直线都平行、没有公共点,所以命题④正确,线面平应选 B .行的理师:投影例2,并读题,先解.让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解 .1.直线与平面、平面与平培养学面的位置关系 .生整合2.“正难到反”数学思想知识能与反证法解题步骤 .学生归纳总结、教师给予点力,以小结拨、完善并板书 .及思维3. “分类讨论”数学思想.的灵活性与严谨性 . 12人教版新课标普通高中◎数学 2 必修(A 版)课堂作业1.直线与平面平行的充要条件是这条直线与平面内的().A .一条直线不相交B.两条直线不相交C.任意一条直线都不相交 D .无数条直线都不相交【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C.2. “平面内有无穷条直线都和直线l 平行”是“l //”的().A.充分而不必要条件 B .必要而不充分条件C.充分必要条件 D .即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选 B.3.如图,试根据下列要求,把被遮挡的部分改为虚线:( 1)AB 没有被平面遮挡;( 2)AB 被平面遮挡.答案:略4.已知,,直线a,b,且∥,a,b,则直线 a 与直线 b 具有怎样的位置关系?【解析】平行或异面.5.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内 .已知: l ∥,点P∈,P∈ m,m∥ l,求证: m.证明:设 l 与 P 确定的平面为,且= m′,则 l ∥ m′.又知 l ∥ m, m m P ,由平行公理可知,m 与 m′重合 .所以 m.13教师备课系统──多媒体教案教案 B第 1 课时教学内容: 2. 1. 1 平面教学目标1.了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2.理解公理一、二、三,并能运用它们解决一些简单的问题;3.通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形.教学难点:公理三,由抽象图形认识空间模型.学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行 .实践活动:1.仔细观察教室,举出空间的点、线、面的实例.2.只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块.3.请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题. 今后我们将研究空间中的点、线、面之间的关系.图 1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系.练习一:试画出下列各种位置的平面.1.水平放置的平面2.竖直放置的平面14人教版新课标普通高中◎数学 2 必修(A 版)图 2( 1)图2(2)3.倾斜放置的平面图 34.请将以下四图中,看得见的部分用实线描出.图 4(1)图4(2)图4(3)图4(4)小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图 5.平行四边形的锐角通常画成45o,且横边长等于其邻边长的 2 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图 6.βFA DA DααB E CB C图 5图 6图 7平面常用希腊字母, ,等表示(写在代表平面的平行四边形的一个角上),如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图 5 的平面,也可表示为平面ABCD ,平面 AC 或平面BD .前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系?15教师备课系统──多媒体教案显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系.从集合的角度,点 A 在平面内,记为A;点B在平面外,记为B (如图 7).再来研究一下直线与平面的位置关系.将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系?由“两点确定一条直线”这一公理,我们不难理解如下结论:公理 1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内 .A l ,B l , 且 A, B,l.A l Bα图8例1 分别用符号语言、文字语言描述下列图形.AA aa图 9( 1)图 9( 2)图 9( 3)例 2 识图填空(在空格内分别填上, , ,).A____ a;A____ α,B____ a; B____ α,Aa____ α;a____ α = B,B bb____ α;B____ b.a图 10图 11问题情景:制作一张桌子,至少需要多少条腿?为什么?公理 2 经过不在同一条直线上的三点,有且只有一个平A面 .CB实践活动:取出两张纸演示两个平面会有怎样的位置关α图 12系,并试着用图画出来 .图 12试问:如图13 是两个平面的另一种关系吗?(相对于同学们得出的关系)由平面的无限延展性,不难理解如下结论:公理 3如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点16人教版新课标普通高中◎数学 2 必修(A 版)的直线 .βP l 且P l.αP l图 13例 3如图14用符号表示下列图形中点、直线、平面之间的位置关系.l【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.【解析】在(1)中,l , a A , a B .l , a, b, a l P , B l P .在( 2)中,三、巩固练习教材 P43 练习 1— 4.四、课堂小结(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?(3)判断共面的方法 .五、布置作业P51 习题 A 组 1, 2.第 2 课时教学内容: 2. 1. 2 空间中直线与直线之间的位置关系教学目标:一、知识目标1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,培养学生的空间想象能力;3.理解并掌握公理 4.二、能力目标1.让学生在观察中培养自主思考的能力;17教师备课系统──多媒体教案2.通过师生的共同讨论培养合作学习的能力.三、情感、态度与价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点: 1.异面直线的概念; 2.公理 4.教学难点:异面直线的概念.学法与教学用具1.学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标;2.教学用具:多媒体、长方体模型、三角板.教学过程一、复习引入1.平面内两条直线的位置关系有(相交直线、平行直线).相交直线(有一个公共点);平行直线(无公共点).2.实例 . 十字路口——立交桥.立交桥中,两条路线 AB , CD 既不平行,又不相交(非平面问题).六角螺母DCA B二、新课讲解1.异面直线的定义不同在任何一个平面内的两条直线叫做异面直线.练习:在教室里找出几对异面直线的例子.注1:两直线异面的判别一 : 两条直线既不相交、又不平行.两直线异面的判别二 : 两条直线不同在任何一个平面内.合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行.空间两直线的位置关系:按平面基本性质分(1)同在一个平面内:相交直线、平行直线;( 2)不同在任何一个平面内:异面直线.按公共点个数分( 1)有一个公共点 : 相交直线;( 2)无公共点:平行直线、异面直线.2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托. 18。
高中数学必修2第二章-空间点、直线、平面之间的位置关系
分类的依据是什么?
公理3 如果两个不重合的平面有一个公共 点,那么它们有且只有一条过该点的公共直线.
两个平面平行或相交的画法及表示
m
//
=m
2.1
直线、平面平行的 判定及其性质
主要内容
平面内两条相交直线 空间中两条异面直线
已知两条异面直线a,b,经过空间任一点O作直
线 a // a, •b // b ,把 与a 所b 成的锐角(或直角)叫
做异面直线a与b所成的角.
b
a
b
b
O
a
O aa
异面直线所成的角
探究
我们规定两条平行直线的夹角为0°,那么 两条异面直线所成的角的取值范围是什么?
两条直线的位置关系
空间中的直线与直线之间有三种位置关系:
共面直线
相交直线: 同一平面内,有且只有一 个公共点;
平行直线: 同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
定理的应用
A
例1. 如图,空间四边形ABCD中, F
E、F分别是 AB,AD的中点. E
D
求证:EF∥平面BCD.
B
C
分析:要证明线面平行只需证明线线平行,
即在平面BCD内找一条直线 平行于EF,由已
知的条件怎样找这条直线?
定理的应用
A
例1. 如图,空间四边形ABCD中, F
高中数学必修二课件:空间点、直线、平面之间的位置关系
5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.
空间点、直线、平面之间的位置关系
2.空间中直线与平面的位置关系
直线CD与平面ABCD ——有无数个公共点; 直线AA1与平面ABCD ——有只且有一个公共点A; 直线D1C1与平面ABCD ——没有公共点.
D1 A1
D
A
C1
B1 C
B
直线在平面内 直线与平面相交 直线与平面平行
直线与平面的位置关系有且只有三种
直线在 平面外
(1)直线在平面内——有无数个公共点;
8.4.2 空间点、直线、平面之间的位置关系
数学
XXX
由上一小节“平面”的学习,我们认识了空 间中点、直线、平面之间的一些位置关系,如 点在平面内,直线在平面内,两个平面相交, 等等,空间中点、直线、平面之间还有其他位 置关系吗?
点线关系 线线关系 面面关系 点面关系 线面关系
在长方体ABCD-A1B1C1D1中:
观察:如图所示的长方体ABCD-A1B1C1D1中,直线与 直线之间有哪些不同的位置关系?
D1 A1
D
A
C1
B1 C
B
1.空间中直线与直线的位置关系
直线DC与AB在同一个平面ABCD内,它们 D1
没有公共点,它们是平行直线;
A1
直线DC与BC也是在同一个平面ABCD内, 它们只有一个公共点B,它们是相交直线;
CA
G DB
HE F
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,
哪些线段所在直线是异面直线?
CA
C G
A
E G
DB HE
F
H D
BF
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,
高中数学空间点、直线、平面之间的位置关系解析!
高中数学空间点、直线、平面之间的位置关系解析!一、空间点、直线、平面之间的位置关系1、平面的基本性质的应用① 公理1:公理1② 公理2:公理2③ 公理3:2、平行公理主要用来证明空间中的线线平行 .3、公理 2 三推论:① 一条直线和直线外一点唯一确定一个平面;② 两条平行直线唯一确定一个平面;③ 两条相交直线唯一确定一个平面 .4、点共线、线共点、点线共面问题① 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3 证明这些点都在这两个平面的交线上 .② 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上 .③ 证明点线共面问题的常用方法:方法一:先确定一个平面,再证明有关点、线在此平面内;方法二:先证明有关的点、线确定平面α ,再证明其余元素确定平面β,最后证明平面α,β 重合 .【例题1】如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD = ∠FAB = 90°,BC ∥且= ½ AD,BE ∥且= ½ FA,G , H 分别为 FA , FD 的中点 .(1) 证明:四边形 BCHG 是平行四边形;(2) C , D , F , E 四点是否共面?请说明理由 .例题1图【解析】(1) 证明:∵ G , H 分别为 FA , FD 的中点,∴ GH 是△FAD 的中位线,∴ GH ∥且= ½ AD ,又∵ BC ∥且= ½ AD,∴ GH ∥且 = BC,∴ 四边形 BCHG 是平行四边形 .(2) 证明:方法一:证明点 D 在 EF 和 CH 确定的平面内 .∵ BE ∥且= ½ FA,点 G 为 FA 的中点,∴ BE ∥且= FG,则四边形 BEFG 为平行四边形,∴ EF∥BG .由 (1) 可知BG∥CH,∴ EF∥CH,即 EF 与 CH 共面,又∵ D∈FH,∴ C , D , F , E 四点共面 .方法二:分别延长 FE 和 DC,交 AB 于点 M 和 M'',在证点 M 和 M’重合,从而 FE 和 DC 相交 .如上图所示,分别延长 FE 和 DC,交 AB 于点 M 和 M'',∵ BE ∥且= ½ FA,∴ 点 B 为 MA 的中点,∵ BC ∥且= ½ AD,∴ 点 B 为 M''A 的中点,∴ M 与 M'' 重合,即 FE 与 DC 相交于点 M (M'') ,∴ C , D , F , E 四点共面 .二、异面直线的判定(方法)1、定义法(不易操作);2、反证法先假设两条直线不是异面直线,即两直线平行或相交;再由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面 .假设法在异面直线的判定中会经常用到 .3、常用结论过平面外一点和平面内一点的直线,与平面内不过该点(A) 的直线是异面直线 .【例题2】如图所示,正方体 ABCD-A1B1C1D1 中,点 M , N 分别是 A1B1 , B1C1 的中点 .(1) AM 和 CN 是否是异面直线?请说明理由;(2) D1B 和 CC1 是否是异面直线?请说明理由 .例题2图【解析】(注:先给结论,再给理由,注意答题规范!)(1) AM 和 CN 不是异面直线 .理由:如图上图所示,分别连接 MN , A1C1 和 AC,∵ 点 M , N 分别是 A1B1 , B1C1 的中点,∴ MN∥A1C1 ,又∵ AA1∥且=CC1 ,∴ 四边形 AA1C1C 是平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ 点 A , M , N , C 在同一平面内,故 AM 和 CN 不是异面直线 .(2) D1B 和 CC1 是异面直线 .证明:∵ ABCD-A1B1C1D1 是正方体,∴ B , C , C1 , D1 四点不共面 .假设 D1B 和 CC1 不是异面直线,则存在平面α,使 D1Bㄷ平面α,CC1ㄷ平面α,∴ D1 , B , C , C1 ∈平面α,∴ 与ABCD-A1B1C1D1 是正方体矛盾,∴ 假设不成立,∴ D1B 和 CC1 是异面直线 .三、异面直线所成的角1、求异面直线所成角的方法关键是将其中一条直线平移到某个位置使其与令一条直线相交,或将两条直线同时平移到某个位置,使其相交 .2、求异面直线所成角的步骤① 通过作出平行线,得到相交直线;② 证明相交直线所成的角为异面直线所成的角;③ 通过解三角形求出该角的大小 .【例题3】如图所示,在空间四边形 ABCD 中,已知 AB = CD 且 AB 与 CD 所成的角为30°,点 E , F 分别是 BC 和 AD 的中点,求 EF 与 AB 所成角的大小 .例题3图【解析】要求 EF 与 AB 所成的角,可以经过某一点作两条直线的平行线,因为 E,F 都是中点,所以可以过点 E 或点 F 作 AB 的平行线找到异面直线所成的角 .取 AC 的中点,平移 AB 和 CD,使已知角和所求的角在同一个三角形中求解 .【解答过程】取 AC 的中点 G,分别连接 EG 和 FG ,则有EG∥AB,FG∥CD,∵ AB = CD ,∴ EG = FG ,∴ ∠GEF (或它的补角)为 EF 与 AB 所成的角,∠EGF (或它的补角)为 AB 与 CD 所成的角,又∵ AB 与 CD 所成的角为30°,∴ ∠EGF = 150° 或30°,由 EG = FG , 可知△GEF为等腰三角形,当∠EGF = 30° 时,∠GEF = 75°,当∠EGF = 150° 时,∠GEF = 15°,∴ EF 与 AB 所成的角为15° 或75° .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1平面2.1.2空间中直线与直线之间的位置关系知识导图学法指导1.研究几何问题,不仅要掌握自然语言、符号语言、图形语言的相互转换,也要学会用符号语言表示点、直线、平面之间的位置关系.用图形语言表示点、直线、平面之间的位置关系时,一定要注意实线与虚线的区别.2.学会用自然语言、符号语言描述四个公理的条件及结论,明确四个公理各自的作用.3.要理解异面直线的概念中“不同在任何一个平面内”的含义,即两条异面直线永不具备确定平面的条件.4.判断异面直线时,要更多地使用排除法和反证法.5.作异面直线所成的角时,注意先选好特殊点,再作平行线.高考导航1.平面及其基本性质是后面将要学习的内容的基础和证明的依据,需要牢固掌握,但高考中很少单独考查.2.高考经常考查两条直线位置关系的判定和公理4的应用,常以选择题、填空题的形式出现,有时也以解答题某一问的形式出现,分值5~7分.3.求异面直线所成的角,常与正、余弦定理(必修5中学习)综合考查,对于理科考生还需要掌握用空间向量法(选修2-1中学习)求角的大小.独立考查该知识的试题不多,有时以选择题、填空题的形式出现,有时以解答题的形式出现(一般作为第一问),分值5~7分.第1课时平面知识点一平面概念几何里所说的“平面”是从生活中的一些物体中抽象出来的,是无限延展的画法常常把水平的平面画成一个平行四边形,并且其锐角画成45°,且横边长等于邻边长的2倍,为了增强立体感,被遮挡部分用虚线画出来表示方法(1)一个希腊字母:如α,β,γ等;(2)两个大写英文字母:表示平面的平行四边形的相对的两个顶点;(3)四个大写英文字母:表示平面的平行四边形的四个顶点1.平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量;2.平面无厚薄、无大小,是无限延展的.1.直线在平面内的概念如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.2.一些文字语言、数学符号与图形的对应关系数学符号表示文字语言表达图形语言表达A∈l 点A在直线l上A∉l 点A在直线l外A∈α点A在平面α内A∉α点A在平面α外l⊂α直线l在平面α内l⊄α直线l在平面α外l∩m=A 直线l,m相交于点Aα∩β=l 平面α,β相交于直线l知识点二平面的基本性质公理内容图形符号公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l且A∈α,B∈α⇒l⊂α公理2过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α且P∈β⇒α∩β=l且P∈l1.公理1的作用:①用直线检验平面(常被应用于实践,如泥瓦工用直的木条刮平地面上的水泥浆);②判断直线是否在平面内(经常被用于立体几何的说理中).2.公理2的作用:①确定平面;②证明点、线共面.公理2中要注意条件“不在同一条直线上的三点”,事实上,共线的三点是不能确定一个平面的.同时要注意经过一点、两点或在同一条直线上的三点可能有无数个平面;过不在同一条直线上的四点,不一定有平面.因此,要充分重视“不在同一条直线上的三点”这一条件的重要性.3.公理3的主要作用:①判定两个平面是否相交;②证明共线问题;③证明线共点问题.公理3强调的是两个不重合的平面,只要它们有公共点,其交集就是一条直线.以后若无特别说明,“两个平面”是指不重合的两个平面.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)空间不同三点确定一个平面.()(2)空间两两相交的三条直线确定一个平面.()(3)和同一直线都相交的三条平行线在同一平面内.()☆答案☆:(1)×(2)×(3)√2.经过空间任意三点作的平面()A.只有一个B.只有两个C.有无数个D.只有一个或有无数个解析:当三点共线时,可作无数个平面;当三点不共线时,只能作一个平面.☆答案☆:D3.如果a⊂α,b⊂α,l∩a=A,l∩b=B,那么下列关系成立的是()A.l⊂αB.l∉αC.l∩α=A D.l∩α=B解析:∵l∩a=A又a⊂α,∴A∈l且A∈α.同理B∈l且B∈α.∴l ⊂α.☆答案☆:A4.如果空间四点A、B、C、D不共面,那么下列判断正确的是() A.A、B、C、D四点中必有三点共线B.A、B、C、D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行解析:A、B、C、D四点中若有三点共线,则必与另一点共面;直线AB与CD既不平行也不相交,否则A、B、C、D共面.☆答案☆:B类型一平面,例1下面四种说法:①平面的形状是平行四边形;②任何一个平面图形都可以表示平面;③平面ABCD的面积为10 cm2;④空间图形中,后引的辅助线都是虚线.其中正确的说法的序号为________.【解析】本题考查的是平面的概念及平面的画法与表示方法.平面是无限延展的,不计大小,不计面积,而平行四边形是平面的一部分,它是不能无限延展的.另外,在空间图形中,我们一般把能看得见的线画成实线,把被面遮住看不见的线画成虚线,目的是增强立体感,同几何体的三视图的画法类似,后引的辅助线也是如此,这与平面几何是有区别的.有时,根据具体的情况,可以用其他的平面图形,如矩形、圆、正多边形等表示平面,但不能说它是平面.综上,①③④错误,②正确.故填②.【☆答案☆】②平面是从现实中抽象出来的,它具有无限延展性,无比平整性、无大小、无轻重、无厚薄,平面和平面图形是完全不同的两个概念.方法归纳平面画法的四个关注点①通常画的平行四边形表示的是整个平面.需要时,可以把它延展开来,如同在平面几何中画直线一样,直线是可以无限延伸的,但在画直线时却只画一条线段(无端点)来表示.②加“通常”二字的意思是因为有时根据需要也可用其他平面图形表示,如用三角形、矩形、圆等平面图形来表示平面.③画表示平面的平行四边形时,通常把它的锐角画成45°,横边画成邻边的两倍.④画表示竖直平面的平行四边形时,通常把它的一组对边画成铅垂线.跟踪训练1如图所示的两个相交平面,其中画法正确的是()解析:对于①,图中没有画出平面α与平面β的交线,另外图中的实线、虚线也没有按照画法原则去画,因此①的画法不正确.同样的道理,可知②③的画法不正确,④中画法正确.☆答案☆:④利用平面的概念及平面的画法进行判断.类型二文字语言、图形语言、符号语言的转化例2(1)根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:①A∈α,B∉α;②A∈α,m∩α=A,A∉l,l⊂α;③P∈l,P∉α,Q∈l,Q∈α;(2)用符号语言表示下列语句,并画出图形:①三个平面α,β,γ相交于一点P,且平面α与平面β相交于P A,平面α与平面γ相交于PB,平面β与平面γ相交于PC;②平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.【解析】(1)①点A在平面α内,点B不在平面α内;②直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上;③直线l经过平面α外一点P和平面α内一点Q.图形分别如图①②③所示.(2)①符号语言表示:α∩β∩γ=P,α∩β=P A,α∩γ=PB,β∩γ=PC.图形表示如图④所示.②符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.图形表示如图⑤所示.本题考查数学抽象.在“A∈α,l⊂α”中A视为平面α(集合)内的点(元素),l(集合)视为平面α(集合)内的直线(子集).方法归纳(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着先用文字语言表示,再用符号语言表示.(2)要注意符号语言的意义,如点与直线的位置关系只能用“∈”或“∉”表示;直线与平面的位置关系只能用“⊂”或“⊄”表示.(3)根据已知符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.跟踪训练2根据如图所示,在横线上填入相应的符号或字母:A________平面ABC,A________平面BCD,BD________平面ABC,平面ABC∩平面ACD=________.☆答案☆:∈∉⊄AC根据符号的含义进行判断或转化.类型三平面性质的应用例3如图,△ABC在平面α外,AB∩α=P,AC∩α=Q,BC∩α=R.求证:P,Q,R三点共线.【证明】方法一∵AB∩α=P,∴P∈AB,P∈α.又AB⊂平面ABC,∴P∈平面ABC.由公理3可知点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上,∴P,Q,R三点共线.方法二∵AP∩AQ=A,∴直线AP与直线AQ确定平面APQ.又AB∩α=P,AC∩α=Q,∴平面APQ∩α=PQ.∵B∈平面APQ,C∈平面APQ,∴BC⊂平面APQ.∵R∈BC,∴R∈平面APQ,又R∈α,∴R∈PQ,∴P,Q,R三点共线.证明三点共线,可以证明三点都在两平面的交线上或第三点在两点所确定的直线上.方法归纳(1)证明三线共点常用的方法是先说明两条直线共面且相交于一点,然后说明这个点在以另一条直线为交线的两个平面内,即该点在另一条直线上,则可得三线共点.(2)证明点、线共面问题的理论依据是公理1和公理2,常用方法有:①先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入平面法”;②先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“辅助平面法”;③假设不共面,结合题设推出矛盾,用“反证法”.跟踪训练3如图,三个平面α、β、γ两两相交,α∩β=c,β∩γ=a,γ∩α=b,若直线a和b不平行,求证:a,b,c三条直线必过同一点.证明:∵α∩γ=b,β∩γ=a,∴a⊂γ,b⊂γ,∵a与b不平行,∴a 与b必相交,设a∩b=P,则P∈a,P∈b,∵a⊂β,b⊂α,∴P∈β,P∈α.又α∩β=c,∴P∈c,即交线c经过点P.∴a、b、c三条直线相交于同一点.,证明三线共点的基本方法是先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点. 常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.若点M在直线a上,a在平面α内,则M,a,α间的关系可记为()A.M∈a,a∈αB.M∈a,a⊂αC.M⊂a,a⊂αD.M⊂a,a∈α解析:根据点与直线、直线与平面之间位置关系的符号表示,可知B正确.☆答案☆:B2.给出下面四个命题:①三个不同的点确定一个平面;②一条直线和一个点确定一个平面;③空间两两相交的三条直线确定一个平面;④两条平行直线确定一个平面.其中正确的命题是()A.①B.②C.③D.④解析:对于①,三个不共线的点确定一个平面,故错;对于②,一条直线和直线外一个点确定一个平面,故错;对于③,空间两两相交的三条直线,且不能交于同一点,确定一个平面,故错;对于④,两条平行直线确定一个平面,正确.☆答案☆:D3.下面空间图形画法错误的是()解析:画立体图时,被平面遮住的部分画成虚线或不画.☆答案☆:D4.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0 B.1C.2 D.3解析:①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.☆答案☆:B5.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则()A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P∈平面ABC.因为平面ABC∩平面ADC=AC,由公理3可知点P一定在直线AC上.☆答案☆:B二、填空题(每小题5分,共15分)6.设平面α与平面β相交于直线l,直线a⊂α,直线b⊂β,a∩b =M,则点M与l的位置关系为________.解析:因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又平面α与平面β相交于直线l,所以点M在直线l上,即M∈l.☆答案☆:M∈l7.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.解析:空间中和一条直线都相交的两条直线不一定在同一平面内,故①错;若三条直线相交于一点时,不一定在同一平面内,如长方体一角的三条线,故②错;若两平面相交时,也可有三个不同的公共点,故③错;若三条直线两两平行且在同一平面内,则只有一个平面,故④错.☆答案☆:08.把下列符号叙述所对应的图形的序号填在题后的横线上:(1)A∉α,a⊂α:________.(2)α∩β=a,P∉α,且P∉β:________.(3)a⊄α,a∩α=A:________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O:________.☆答案☆:(1)③(2)④(3)①(4)②三、解答题(每小题10分,共20分)9.完成下列各题:(1)将下列文字语言转换为符号语言.①点A在平面α内,但不在平面β内;②直线a经过平面α外一点M;③直线l在平面α内,又在平面β内(即平面α和平面β相交于直线l).(2)将下列符号语言转换为图形语言.①a⊂α,b∩α=A,A∉a;②α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.解析:(1)①A∈α,A∉β.②M∈a,M∉α.③α∩β=l.(2)①②10.在正方体ABCD-A1B1C1D1中,点M、N、E、F分别是棱CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D、A、Q三点共线.证明:∵MN∩EF=Q,∴Q∈直线MN,Q∈直线EF,∵M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD,∴M、N∈平面ABCD,∴MN⊂平面ABCD,∴Q∈平面ABCD.同理,EF⊂平面ADD1A1,∴Q∈平面ADD1A1,又∵平面ABCD∩平面ADD1A1=AD,∴Q∈直线AD,即D,A,Q三点共线.[能力提升](20分钟,40分)11.用一个平面截正方体所得的截面图形不可能是()A.六边形B.五边形C.菱形D.直角三角形解析:可用排除法,正方体的截面图形可能是六边形、五边形、菱形,故选D.☆答案☆:D12.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个.☆答案☆:1或413.如图所示,已知直线a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l共面.证明:∵a∥b,∴a,b确定一个平面α.∵A∈a,B∈b,∴A∈α,B∈α.则a,b,l都在平面α内,即b在a,l确定的平面内.同理可证c在a,l确定的平面内.∵过a与l只能确定一个平面,∴a,b,c,l共面于a,l确定的平面.14.如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE,D1F,DA三线交于一点.证明:连接EF,D1C,A1B,因为E为AB的中点,F为AA1的中点,所以EF綊12A1B.又因为A1B綊D1C,所以EF綊12D1C,所以E,F,D1,C四点共面,可设D1F∩CE=P.又D1F⊂平面A1D1DA,CE⊂平面ABCD,所以点P为平面A1D1DA与平面ABCD的公共点.又因为平面A1D1DA∩平面ABCD=DA,所以据公理3可得P∈DA,即CE,D1F,DA三线交于一点.。