2020年普通高等学校招生全国统一考试理科数学样卷(四)(wd无答案)
2020年高考理科数学样卷 (4)
三`解答题:共70分解答应写出文字说明`证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答.第22` 23题为选考题,考生根据要求作答. (-)必考题,共60分. 17. (本小题满分12分)
已知递增的等比数列{α″}满足:α2+α3+α4=28,且α3+2是α2,α4的等差中项. (1)求数列{α”}的通项公式; (2)若b厕=α厕log十α",S撇≡b1+b2+b3+…+b厕,对任意正整数″,S厕+(′′+m)α″+1<0恒成立’试求加的取值范围
A.(佰’2)
B。 (-3’2)
C·(1,2)
D. (佰,佰)
12.如图’抛物线y2=2户工(′>0)的焦点为F’过F作直线交抛物线于点A’B’交准线于C,若壶=2酝,且|FA|=3,则这个
抛物线的方程为
Aγ2=;“
Bγ2=92
cγ2≡;“
Dj′:=3“
第Ⅱ卷
二`填空题:本题共4小题,每小题5分,共20分把答案填在题中横线上
13.如图’几何体的三视图是三个直角边长为1的等腰直角三角形’则这个几何体的内切球的表面积
为
卜卜
M巳知“>0,b>0,若不等式:++≥5老万恒成立,则砸的最大值为
主视图左视图
l5巳知A,B,P是双曲线C,舞=1(α>M>0)上不阔的三点直线PA的斜率为腮』,直线PB的斜率俯司视阎
为h2’且龙l’龙2是关于工的方程4工2+…+3=0的两个实数根’若顶+硒=0’则双曲线C的离心率 第13题图
第18题图
D
理科数学样卷(三)
19.(本小题满分12分)
某中学设计一项综合学科的考查方案:考生从6道备选题中一次性随机抽取三道题,按照题目要求独立完成全部实验
操作,已知在6道备选题中,考生甲有4道题能正确完成,两道题不能正确完成『考生乙每道题正确完成的概率都是:,且每
2020年全国I卷理科数学高考试题及答案(word版)
2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若z=1+i,则|z2−2z|=A.0B.1C.√2D.22.设集合A={x|x2−4≤0},B={x|2x+a≤0},且A∩B={x|−2≤x≤1},则a=A.-4B.-2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.√5−14B.√5−12C.√5+14D.√5+124.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,...,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.y=a+bxB.y=a+bx2C.y=a+be xD.y=a+b ln x6.函数f(x)=x4−2x3的图像在点(1,f(1))处的切线方程为A.y=−2x−1B.y=−2x+1C.y=2x−3D.y=2x+1)在[−π,π]的图像大致如下图,则f(x)的最小正周期为7.设函数f(x)=cos(ωx+π6A.10π9B.7π6C.4π3D.3π2 8.(x +y 2x )(x +y)5的展开式中x 3y 3的系数为A.5B.10C.15D.209.已知α∈(0,π),且3cos 2α−8cos α=5,则sin α=A.√53B.23C.13D.√5910.已知A,B,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为A.64πB.48πC.36πD.32π11.已知⊙M:x 2+y 2−2x −2y −2=0,直线l:2x +y =0,p 为l 上的动点.过点p 作⊙M 的切线PA ,PB ,切点为A,B ,当|PM ||AB |最小时,直线AB 的方程为A.2x −y −1=0B.2x +y −1=0C.2x −y +1=0D.2x +y +1=012.若2a +log 2a =4b +2log 4b 则A. a >2bB.a <2bC. a >b 2D. a <b 2二、填空题:本题共4小题,每小题5分,共20分.13.若x,y 满足约束条件{2x +y −2≤0,x −y −1≥0,y +1≥0,则z =x +7y 的最大值为 114.设a,b 为单位向量,且|a +b |=1,则|a −b |= √315.已知F 为双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF垂直于x 轴,若AB 的斜率为3,则C 的离心率为____2____16.如图,在三棱锥P −ABC 的平面展开图中,AC =1,AB =AD =√3,AB ⊥AC ,AB ⊥AD ,∠CAE =30∘,则cos ∠FCB =___−14___三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.(1)q =−2;(2)S n =19−3n+19∙(−2)n . 18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE=AD,ΔABC 是底面的内接正三角形,P 为DO 上一点,PO =√66DO . (1)证明:P A⊥平面PBC ;(2)求二面角B-PC-E 的余弦值.(1){PA ⊥PC(勾股定理)PA ⊥PB(勾股定理)PB ∩PC =P⇒PA ⊥平面PBC(2)2√55(建立空间直角坐标系) 19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.(1)116; (2) 34; (3) 38.20.(12分)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB⃗⃗⃗⃗⃗ =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程(2)证明:直线CD 过定点(1)x 29+y 2=1;(2)(32,0)21.(12分)已知函数f (x )=e x +ax 2−x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.(1)增区间为(0,+∞),减区间为(−∞,0);(2)[7−e 24,+∞)(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 1的参数方程为{x =cos k t ,y =sin k t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ−16ρsin θ+3=0.(1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标.(1)以原点为圆心,1为半径的圆;(2)(14,14)23.[选修4—5:不等式选讲](10分)已知函数f(x)=|3x +1|−2|x -1|.(1)画出y =f (x )的图像;(2)求不等式f (x )>f(x +1)的解集. (1)(2){x|x <−76}。
河南省2020届高三年级普通高等学校招生全国统一考试4月联考数学理科试题及答案word
试卷类型:B2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB的最小值为( )A.5B.554C.5D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件; ③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.39.已知5.03422log 2log ,,,03log m c m b m a m ===>,则c b a ,,间的大小关系为 A.c b a << B.c a b << C.b a c << D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则Bb A a B a cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+x x g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 . 14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A -BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A -BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17.(12分) 已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=,∠DFE=∠CEF=45.(1)证明DC ∥FE ;(2)求二面角D -BE -C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足4PQ u u u r u u u r .(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A、B、C.经过引种实验发现,引种树苗A的自然成活率为0.7,引种树苗B、C的自然成活率均为p(0.6≤p≤0.8)(1)任取树苗A、B、C各一棵,估计自然成活的棵数为X,求X的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p的值作为B种树苗自然成活的概率,该农户决定引种n棵B种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f(x)=(a-1)x+xlnx的图象在点A(e2,f(e2))(e为自然对数的底数)处的切线斜率为4(1)求实数a的值;(2)若m∈Z,且m(x-1)<f(x)+1对任意x>1恒成立,求m的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为-22ππρθ⎡⎤∈⎢⎥⎣⎦,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标;(2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分)设函数f (x )=|x -1|+2|x+1|,x ∈R(1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围。
2020年普通高等学校招生全国统一考试数学(文)样卷(四)(解析版)
C. D.
【答案】B
【解析】根据特殊值的函数值排除 ,从而选 .
【详解】
因为 ,所以A错;
因为 ,所以C错;
因为 ,所以D错,
故选:B.
【点睛】
本题考查了由函数解析式选择函数图象,考查了特值排除法,属于基础题.
4.已知角 的顶点在坐标原点,始边与 轴的正半轴重合, 为其终边上一点,则 ( )
A. B. C. D.
【答案】A
【解析】利用正弦定理和余弦定理化简已知条件,得到 ,结合基本不等式求得 的取值范围,由此求得 的取值范围.
【详解】
由题意及正弦定理,得 ,由余弦定理,得 ,即 .
又 ,
当且仅当 时取等号,所以 .
故选:A
【点睛】
本小题主要考查正弦定理和余弦定理,考查利用基本不等式求最值,属于中档题.
【答案】 或 .
【解析】分别讨论焦点在 轴与在 轴上两种情况,根据椭圆的几何性质求解即可
【详解】
由题, , ,所以 , ,则 ,
当焦点在 轴上时,椭圆方程为 ;当焦点在 轴上时,椭圆方程为 ,
故答案为: 或
【点睛】
本题考查利用椭圆的几何性质求椭圆的标准方程,注意:焦点的位置
14.已知向量 ,若 与 的夹角为钝角,则实数 的取值范围为_____.
当2x= 即x (k∈Z),y=g(x)其图象关于直线x (k∈Z)对称,且为奇函数,
故选项A,B,C错误,
当x 时,2x∈[ , ],函数g(x)的值域为[ ,2],
故选项D正确,
故选:D.
【点睛】
本题考查了三角函数图象的平移、三角函数图象的性质及三角函数的值域,熟记三角函数基本性质,熟练计算是关键,属中档题
2020年普通高等学校招生全国统一考试 理科数学(全国 I 卷)word版试题及答案解析
2020年普通高等学校招生全国统一考试(全国卷I )理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若1z i =+,则22z z -= A.0 B.1 C.2 D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a = A.-4 B.-2 C.2 D.43. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.51- B.51- C.51+ D.51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p = A .2 B .3 C .6 D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)x y (1,2,...,20)i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+ C .x y a be =+ D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109πB. 76πC. 43πD. 32π8. 25()()y x x y x++的展开式中33x y 的系数为A. 5B. 10C. 15D. 209. 已知(0,)α∈π,且3cos28cos 5αα-=,则sin α= A.5 B. 23C. 13D. 510. 已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14,AB BC AC OO π===,则球O 的表面积为 A. 64π B. 48π C. 36π D. 32π11. 已知22:2220M x y x y +---=,直线:20,l x y p +=为l 上的动点.过点p作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为 A. 210x y --= B. 210x y +-= C. 210x y -+= D. 210x y ++=12.若a 242log 42log b a b +=+则 A.a>2b B.a<2b C.a>2b D.a<2b二、填空题:本题共4小题,每小题5分,共20分。
(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题(含答案)
2020年普通高等学校招生全国统一考试理科数学试卷总分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B 中元素的个数为( ) A. 2 B. 3C. 4D. 62.复数113i的虚部是( ) A. 310B. 110C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p B. 14230.4,0.1p p p p C. 14230.2,0.3p p p pD. 14230.3,0.2p p p p4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69机密★启用前5.设O 为坐标原点,直线2x 与抛物线C :22(0)y px p 交于D ,E 两点,若OD OE ,则C 的焦点坐标为( )A. 1,04B. 1,02C. (1,0)D. (2,0)6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ( ) A. 3135B. 1935C.1735D.19357.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.238.下图为某几何体的三视图,则该几何体的表面积是( )9.已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2B. –1C. 1D. 210.若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1B. y =2x +12C. y =12x +1 D. y =12x +1211.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2,P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1B. 2C. 4D. 812.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <cB. b <a <cC. b <c <aD. c <a <b二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x, ,则z =3x +2y 的最大值为_________.14.262()x x的展开式中常数项是__________(用数字作答).15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 16.关于函数f (x )=1sin sin x x有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2na n }的前n 项和S n .18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d ,19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.20.已知椭圆222:1(05)25x y C m m的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. [选修4—5:不等式选讲](10分) 23.设a ,b ,c R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c.理科数学参考答案12020年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C2.D3.B4.C5.B6.D7.A8.C9.D 10.D 11.A 12.A 二、填空题:本题共4小题,每小题5分,共20分. 13.7 14.240 15.316.②③ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2na n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n , 证明如下:当1n 时,13a 成立; 假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.机密★启用前理科数学参考答案2则对任意的*n N ,都有21n a n 成立; (2)由(1)可知,2(21)2nnn a n231325272(21)2(21)2n n n S n n ,① 23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?理科数学参考答案3附:22()()()()()n ad bc K a b c d a c b d,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22 列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100,等级为2的概率为510120.27100 ,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100理科数学参考答案4(3)22 列联表如下:221003383722 5.820 3.84155457030K,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值. 【答案】(1)证明见解析;(2)7. 【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;理科数学参考答案5(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG , 同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,理科数学参考答案6设平面AEF 的法向量为 111,,m x y z,由00m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m , 设平面1A EF 的法向量为 222,,n x y z, 由1100n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7. 因此,二面角1A EF A的正弦值为7. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;理科数学参考答案7(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1) 222:1(05)25x y C m m 5a ,b m ,根据离心率4c e a , 解得54m或54m (舍), C 的方程为:22214255x y,即221612525x y ; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图理科数学参考答案8||||BP BQ ,BP BQ ,90PMB QNB ,又 90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”, 可得:PMB BNQ △△,221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时, 故532MB ,PMB BNQ △△,理科数学参考答案9||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d, 根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点为(3,1) 时, 故5+38MB ,PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8), 画出图象,如图理科数学参考答案10(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y , 根据点到直线距离公式可得P 到直线AQ 的距离为:d,根据两点间距离公式可得:AQAPQ面积为:1522, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题. 21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b ;(2)证明见解析 【解析】 【分析】(1)利用导数的几何意义得到'1()02f ,解方程即可;理科数学参考答案11(2)由(1)可得'2311()32()422f x x x x,易知()f x 在11(,22上单调递减,在1(,2 ,1(,)2上单调递增,且111111(1),(,(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b则34b; (2)由(1)可得33()4f x x x c, '2311()33()()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,)22 上单调递减,在1(,)2 ,1(,)2上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c或14c . 当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x , 即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c时,111111(1)0,()0,()0,(1)0424244f c f c f c f c , 又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,理科数学参考答案12即()f x 在(1,) 上存在唯一一个零点,在(,1) 上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)(2)3cos sin 120 【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)B.AB (2)由(1)可知12030(4)AB k,则直线AB 的方程为3(4)y x ,即3120x y .理科数学参考答案13由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 . 【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明; (2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bcbc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ,22212ab bc ca a b c. 1,,,abc a b c 均不为0,则2220a b c ,222120ab bc ca a b c ; (2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc , 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c时,取等号,a,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.理科数学参考答案14选填题解析1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可. 【详解】由题意,A B 中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4), 故A B 中元素的个数为4. 故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i的虚部是( ) A. 310B. 110C.110D.310【答案】D 【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i , 所以复数113z i 的虚部为310. 故选:D.理科数学参考答案15【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p B. 14230.4,0.1p p p p C. 14230.2,0.3p p p p D. 14230.3,0.2p p p p【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题. 4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60B. 63C. 66D. 69理科数学参考答案16【答案】C 【解析】 【分析】将t t 代入函数0.23531t KI t e结合0.95I t K 求得t 即可得解. 【详解】0.23531t KI t e,所以 0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t ,解得353660.23t. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线2x 与抛物线C :22(0)y px p 交于D ,E 两点,若OD OE ,则C 的焦点坐标为( )A. 1,04B. 1,02C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4DOx EOx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果. 【详解】因为直线2x 与抛物线22(0)y px p 交于,E D 两点,且OD OE , 根据抛物线的对称性可以确定4DOx EOx,所以 2,2D ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ( )理科数学参考答案17A. 3135B. 1935C.1735D.1935【答案】D 【解析】 【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a ab a a b a a b. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】 在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB由22299161 cos22339 AB BC ACBAB BC故1 cos9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S△△△根据勾股定理可得:AB AD DB理科数学参考答案18ADB△是边长为根据三角形面积公式可得:211sin60222ADBS AB AD△该几何体的表面积是:632.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tanθ–tan(θ+π4)=7,则tanθ=()A. –2B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan74,tan12tan71tan,令tan,1t t,则1271ttt,整理得2440t t,解得2t ,即tan2.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l与曲线y和x2+y2=15都相切,则l的方程为()A. y=2x+1B. y=2x+12C. y=12x+1 D.y=12x+12【答案】D【解析】【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案.理科数学参考答案19理科数学参考答案20【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数yy,则直线l的斜率k, 设直线l的方程为 0y x x,即00x x , 由于直线l 与圆2215x y两边平方并整理得2005410x x ,解得01x ,015x(舍), 则直线l 的方程为210x y ,即1122y x . 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca,c ,根据双曲线的定义可得122PF PF a , 12121||42PF F PF F S P△,即12||8PF PF , 12F P F P , 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.理科数学参考答案21【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b ,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系. 【详解】由题意可知a、b、0,1c ,222528log 3lg3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg522lg 5lg 25lg5a b,a b ; 由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b; 由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c . 综上所述,a b c . 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.理科数学参考答案2213.若x ,y 满足约束条件0,201,x y x y x, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy,易知截距2z 越大,则z 越大, 平移直线32x y ,当322x zy经过A 点时截距最大,此时z 最大, 由21y x x ,得12x y,(1,2)A ,所以max 31227z . 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】理科数学参考答案23写出622x x二项式展开通项,即可求得常数项.【详解】 622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r r C x当1230r ,解得4r622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r rr n T a b ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】3【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ,且点M 为BC 边上的中点, 设内切圆的圆心为O ,理科数学参考答案24由于AM,故122S△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 16.关于函数f (x )=1sin sin x x有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】理科数学参考答案25利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f,152622f,则66f f, 所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称,111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x, 11sin cos 22cos sin 2f x x x x x,则22f x f x, 所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.。
2020年普通高等学校招生全国统一考试仿真卷理科数学(四)含答案
绝密 ★ 启用前 2020年普通高等学校招生全国统一考试仿真卷理科数学(四)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N =I ( ) A .{}0 B .{}1C .{}0,1D .{}1,0,1-2.设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .B .i -C .1i -+D .1i --3.已知()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则31322f f ⎛⎫⎛⎫+=⎪ ⎪ ⎪⎝⎭⎝⎭( ) A .52B .52-C .32-D .12-4.已知等差数列{}n a 的前项和为n S ,且96=πS ,则5tan a =( ) A .33B .3C .3-D .33-5.执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.已知函数()()sin ωϕ=+f x A x (0,0,)2ωϕπ>><A 在一个周期内的图象如图所示,则4π⎛⎫= ⎪⎝⎭f ( )A .22-B .22C .2D .2-7.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.若P 是圆()()22:331C x y ++-=上任一点,则点P 到直线1y kx =-距离的最大值( ) A .4B .6C .32+1D .109.已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的的取值范围是( ) A .()(),10,3-∞-U B .()()1,03,-+∞U C .()(),11,3-∞-UD .()()1,01,3-U10.已知,x y ∈R ,在平面直角坐标系xOy 中,点,)x y (为平面区域2040⎧⎪⎨⎪⎩≤≤≥≥y x y x 内任一点,则坐标原点与点,)x y (连线倾斜角小于3π的概率为( )A .116B .316C .3316D .333211.某几何体的直观图如图所示,AB 是O e 的直径,BC 垂直O e 所在的平面,且10AB BC ==,Q 为O e 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ uuu r的长为,CQ 的长度为关于的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .12.设双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点分别为1F ,2F ,122F F c =,过2F 作轴的垂线与双曲线在第一象限的交点为A ,已知3,2a Q c ⎛⎫⎪⎝⎭,22F Q F A >,点P 是双曲线C 右支上的动点,且11232+>PF PQ F F 恒成立,则双曲线的离心率的取值范围是( )A .10,⎛⎫+∞ ⎪ ⎪⎝⎭B .71,6⎛⎫⎪⎝⎭C .710,62⎛⎫ ⎪ ⎪⎝⎭D .101,2⎛⎫⎪ ⎪⎝⎭ 第Ⅱ卷本卷包括必考题和选考题两部分。
2020普通高等学校招生全国统一考试线上测试4月线上测试(四)数学(理科)试题(含解析)
第Ⅰ卷(选择题 共 60 分)
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是
符合题目要求的.)
1.已知函数 f (x) x2 2x ,集合 A {x | f ( x)≤0} , B {x | f '( x)≤0} ,则 A B (
)
A. [1, 0] C. [0,1]
所以四面体 PDEF
的体积V
1 3
DE
SPEF
12 3
1 2 2 2
4 3
.
18.解:(1)证明: P ABC 为正三棱锥,且 D 为顶点 P 在平面 ABC 内的正投影, PD 平面 ABC ,则 PD AB , 又 E 为 D 在平面 PAB 内的正投影, DE 面 PAB ,则 DE AB ,
请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.
22.(10 分)选修 4—4 坐标系与参数方程
在直角坐标系
xOy
中,直线
l
的参数方程为
x
1 2
3t (t 为参数).以原点为极点,x 轴正半轴为极
y 1 t
轴建立极坐标系,圆 C 的极坐标方程为 2 cos( ) . 4
a 的取值范围是
()
A.[2, 4]
B.[2, 7] 3
C.[7 ,3] 3
D. [2, 3]
11.已知双曲线
E
:
x a
2 2
y2 b2
1 (a>0,b>0)满足以下条件:①双曲线 E
的右焦点与抛物线
y2
4x 的焦
点 F 重合;②双曲线 E 与过点 P(4,2) 的幂函数 f (x) x 的图象交于点 Q ,且该幂函数在点 Q 处的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年普通高等学校招生全国统一考试理科数学样卷(四)一、单选题
(★★) 1. 设是虚数单位,则()
A.B.C.1D.
(★★) 2. 已知全集,集合,,则图中阴影部分表示的集合为()
A.B.C.D.
(★★) 3. 函数的图象大致为()
A.B.C.D.
(★★) 4. 若点在函数的图象上,则的值为()
A.0B.C.1D.
(★★★) 5. 已知在中,,那么的值为()A.B.C.D.
(★★) 6. 中国古代数学名著《九章算术》卷“商功”篇章中有这样的问题:“今有方锥,下方二丈七尺,高二丈九尺.问积几何?”(注:一丈等于十尺).若此方锥的三视图如图所示(其中俯视图为正方形),则方锥的体积为(单位:立方尺)
A.7047B.21141C.7569D.22707
(★★★) 7. 若曲线在处的切线斜率为,则的展开式中的常数项为()
A.B.4C.60D.
(★) 8. 《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.此问题中若记该女子一月中的第
天所织布的尺数为,则的值为()
A.56B.52
C.28D.26
(★★★) 9. 已知直线与圆交于,两点,且(其中为坐标原点),则实数等于()
A.2B.C.2或D.或
(★★★) 10. 已知,,函数,下面四个结论中正确的是()
A.函数的最小正周期为
B.函数的图象关于直线对称
C.函数的图象是由的图象向左平移个单位得到的
D.函数是奇函数
(★★) 11. 下图为国家统计局网站发布的《2018年国民经济和社会发展统计公报》中居民消费价格月度涨跌幅度的折线图(注:同比是今年第个月与去年第个月之比,环比是现在的统计周期和上一个统计周期之比)
下列说法正确的是()
①2018年6月CPI环比下降0.1%,同比上涨1.9%
②2018年3月CPI环比下降1.1%,同比上涨2.1%
③2018年2月CPI环比上涨0.6%,同比上涨1.4%
④2018年6月CPI同比涨幅比上月略微扩大1.9个百分点
A.①②B.③④C.①③D.②④.
(★★★★) 12. 若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足
,且当时,.若存在,且为函数
的一个不动点,则实数的取值范围为()
A.B.C.D.
二、填空题
(★★) 13. 中心在坐标原点,对称轴为坐标轴的椭圆经过抛物线的焦点和双曲线
的顶点,则该椭圆的离心率等于______.
(★★★) 14. 正三棱柱中,,,若,,则异
面直线,所成角的正弦值为______.
(★★★★) 15. 若函数(,是自然对数的底数,)存在唯一的零点,则实数的取值范围为______.
三、双空题
(★★★) 16. 某农户建造一个室内面积为150 m 2的矩形蔬菜温室.如图,在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留2 m宽的空地,中间区域为菜地.当温室
的长为______ m时,菜地的面积最大,最大面积是______ m 2.
四、解答题
(★★★) 17. 已知数列中,,前项和为,对任意的自然数,是
与的等差中项.
(1)求的通项公式;
(2)求.
(★★★) 18. 如图,在梯形中,,,,四边形为矩形,平面平面,.
(1)求证:平面.
(2)点在线段上运动,设平面与平面所成二面角的平面角为,
试求的取值范围.
(★★★) 19. 在一次数学考试中,从甲,乙两个班级各抽取10名同学的成绩进行统计分析,他们成绩的茎叶图如图所示,成绩不小于90分为及格.
(1)从两班10名同学中各抽取一人,在有人及格的情况下,求乙班同学不及格的概率;
(2)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为,求的分布列和数学期望.
(★★★) 20. 过轴正半轴上的动点作曲线:的切线,切点为,,线段的中点为,设曲线与轴的交点为.
(1)求的大小及的轨迹方程;
(2)当动点到直线的距离最小时,求的面积.
(★★★) 21. 已知函数(常数).
(1)当时,求曲线在处的切线方程;
(2)讨论函数在区间上零点的个数(为自然对数的底数).
(★★) 22. 在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为(为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的
极坐标方程为.
(1)求与的极坐标方程;
(2)设与的交点为、,与的交点为、,且,求值.
(★★★) 23. 已知.
(1)如果关于的不等式的解集不是空集,求参数的取值范围;
(2)解不等式:.。