高中数学函数方程专题(二)
新教材高中数学第二章一元二次函数方程和不等式
新教材高中数学第二章一元二次函数方程和不等式2.3 二次函数与一元二次方程、不等式最新课程标准要求学生从函数的角度来看待一元二次方程。
学生需要结合一元二次函数的图像,判断一元二次方程实根的存在性及实根的个数,并了解函数的零点与方程根的关系。
此外,学生还需要从函数的角度来看待一元二次不等式。
他们需要通过从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。
他们需要掌握利用一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。
同时,通过一元二次函数的图像,学生还需要了解一元二次不等式与相应函数、方程的联系。
知识点:二次函数与一元二次方程、不等式的解的对应关系当Δ>0时,一元二次方程y=ax^2+bx+c(a>0)有两个不相等的实数根x1,x2(x1<x2);当Δ=0时,有两个相等的实数根x1=x2=-b/2a;当Δ<0时,没有实数根。
当a>0时,二次不等式ax^2+bx+c>0(a>0)的解集为{x|xx2};当ax^2+bx+c0)时,解集为{x|x10时相同。
状元随笔一元二次不等式的解法:1.图像法:当a>0时,解形如ax^2+bx+c>0(≥0)或ax^2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax^2+bx+c=0的解;②画出对应函数y=ax^2+bx+c 的图像简图;③由图像得出不等式的解集。
2.代数法:将所给不等式化为一般式后借助分解因式或配方求解。
当p0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q。
有口诀如下:“大于取两边,小于取中间”。
教材解难]教材P50思考:从函数的角度和方程的角度两个角度来看待一元二次不等式。
从函数的角度来看,一元二次不等式ax^2+bx+c>0表示二次函数y=ax^2+bx+c的函数值大于0,图像在x轴的上方;一元二次不等式ax^2+bx+c>0的解集即二次函数图像在x轴上方部分的自变量的取值范围。
高考数学: 函数专题2
第11讲 函数复习专题2.函数图象与零点一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1 答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x-e-x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-2sin cos ++x xx x的图象大致是( )A. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)0a >()y x x a =-答案:C解析:由图②知,图象关于y轴对称,对应的函数是偶函数.对于A,当x>0时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为( )A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x 的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即的图象如图,结合图象可得的根方程有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
高中数学第二章一元二次函数方程和不等式经典知识题库(带答案)
高中数学第二章一元二次函数方程和不等式经典知识题库单选题1、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+12答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx=t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√y x 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t1+t 2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t 2=m 1+(m−1)2=m m 2−2m+2=1m+2m−2≤2√m⋅m−2=2√2−2=√2+12,当且仅当m =2m⇒√y x=√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12. 故选:D.2、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞) 答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2ba,2×6=−ca ,得b =−4a ,c =−12a , ∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0,整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞). 故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 3、已知a >b >c >0,则( ) A .2a <b +c B .a (b −c )>b (a −c ) C .1a−c >1b−c D .(a −c )3>(b −c )3 答案:D分析:由不等式的性质判断ACD ;取特殊值判断B.解:对于A ,因为a >b >c >0,所以a +a >b +a >b +c ,即2a >b +c ,故错误; 对于B ,取a =3>b =2>c =1>0,则a (b −c )=3<b (a −c )=4,故错误; 对于C ,由a >b >c >0,得a −c >b −c >0,所以1a−c<1b−c,故错误;对于D ,由a >b >c >0,得a −c >b −c >0,所以(a −c )3>(b −c )3,故正确. 故选:D.4、《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A .a+b 2≥√ab(a >0,b >0)B .a 2+b 2≥2√ab(a >0,b >0)C .2aba+b ≤√ab(a >0,b >0)D .a+b 2≤√a 2+b 22(a >0,b >0)答案:D分析:根据图形,求出圆的半径以及OC .再利用勾股定理求得FC ,结合直角三角形的直角边长小于斜边长,可得答案.设AC=a,BC=b,可得圆O的半径为r=OF=12AB=a+b2,又由OC=OB−BC=a+b2−b=a−b2,在直角△OCF中,可得FC2=OC2+OF2=(a−b2)2+(a+b2)2=a2+b22,因为FO≤FC,所以a+b2≤√a2+b22,当且仅当a=b时取等号.故选:D.5、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号.故选:A.6、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.7、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( ) A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞) 答案:A分析:分离参数,将问题转换为m <6xx 2+3在(0,2]上有解,设函数g(x)=6xx 2+3,x ∈(0,2],求出函数g(x)=6x x 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6xx 2+3,故问题转化为m <6xx 2+3在(0,2]上有解,设g(x)=6xx 2+3,则g(x)=6xx 2+3=6x+3x,x ∈(0,2],对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号,则g(x)max =2√3=√3,故m <√3 , 故选:A8、已知a,b 为正实数且a +b =2,则b a+2b的最小值为( )A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba+2b=2−a a +2b =2a +2b −1=2(1a +1b)−1 因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D 多选题9、已知正数a,b满足a2+b2=2a+2b,若a+b∈Z,则a+b的值可以是()A.2B.3C.4D.5答案:BC分析:利用基本不等式构造关于a+b的一元二次不等式,即可求解.解:2(a+b)=a2+b2=12(a2+b2+a2+b2)≥12(a+b)2(当且仅当a=b时,取等号),即(a+b)2−4(a+b)≤0,解得:0≤a+b≤4,又a+b=2时,ab=0,不合题意,故选:BC10、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为15(x−k+4500x)L,其中k为常数.若汽车以120km/h的速度行驶时,每小时的油耗为11.5L,欲使每小时的油耗不超过...9L,则速度x的值可为()A.60B.80C.100D.120答案:ABC解析:先利用120km/h时的油耗,计算出k的值,然后根据题意“油耗不超过9L”列不等式,解不等式求得x的取值范围.由汽车以120km/h的速度行驶时,每小时的油耗为11.5L,∴15(120−k+4500120)=11.5,解得:k=100,故每小时油耗为15(x+4500x)−20,由题意得15(x+4500x)−20≤9,解得:45≤x≤100,又60≤x≤120,故60≤x≤100,所以速度x的取值范围为[60,100].故选:ABC小提示:关键点点睛:本题考查利用待定系数法求解析式,考查一元二次不等式的解法,解题的关键是先利用120km/h时的油耗,计算出k的值,然后代入根据题意解不等式,考查实际应用问题,属于中档题.11、下列结论正确的是()A.当x>0时,√x√x≥2B.当x>2时,x+1x的最小值是2C.当x<54时,4x−2+14x−5的最小值是5D.设x>0,y>0,且x+y=2,则1x +4y的最小值是92答案:AD分析:由已知结合基本不等式检验各选项即可判断.解:x>0时,√x+√x⩾2,当且仅当x=1时取等号,A正确;当x>2时,x+1x >52,没有最小值,B错误;当x<54时,4x−2+14x−5=4x−5+14x−5+3=−(5−4x+15−4x)+3⩽−2√(5−4x)15−4x+3=1,有最大值,没有最小值,C错误;x>0,y>0,x+y=2,则1x +4y=(1x+4y)(x+y)×12=12(5+yx+4xy)⩾12(5+4)=92,当且仅当yx =4xy且x+y=2即x=23,y=43时取等号,故选:AD.12、2022年1月,在世界田联公布的2022赛季首期各项世界排名中,我国一运动员以1325分排名男子100米世界第八名,极大地激励了学生对百米赛跑的热爱.甲、乙、丙三名学生同时参加了一次百米赛跑,所用时间(单位:秒)分别为T1,T2,T3.甲有一半的时间以速度(单位:米/秒)V1奔跑,另一半的时间以速度V2奔跑;乙全程以速度√V1V2奔跑;丙有一半的路程以速度V1奔跑,另一半的路程以速度V2奔跑.其中V1>0,V2>0.则下列结论中一定成立的是()A.T1≤T2≤T3B.T1≥T2≥T3C.T1T3=T22D.1T1+1T3=1T2答案:AC分析:首先利用时间和速度的关系表示三人的时间,再利用不等式的关系,结合选项,比较大小,即可判断选项.由题意12T1V1+12T1V2=100,所以T1=100V1+V22,T2=V1V2,T3=50V1+50V2=1002V1V2V1+V2,根据基本不等式可知V 1+V 22≥√V 1V 2≥2V 1V 2V 1+V 2>0,故T 1≤T 2≤T 3,当且仅当V 1=V 2时等号全部成立,故A 选项正确,B 选项错误; T 1T 3=100V 1+V 22×1002V 1V 2V 1+V 2=1002V 1V 2=T 22,故C 选项正确;1T 1+1T 3=V 1+V 22100+2V 1V 2V 1+V 2100≠√V 1V 2100=1T 2,故D 选项错误.故选:AC .13、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若a >b >0,则1a<1b B .若a,b,∈R ,则3a 2+b 2≥2√3abC .若a >b >0,c >0,则ac −bc >0D .若a <b ,则|a |<|b | 答案:ABC分析:根据不等式的性质,或者做差法,即可判断选项. 对于A ,因为a >b >0,所以1a −1b =b−a ab <0,故A 正确;对于B ,3a 2+b 2−2√3ab =(√3a −b)2≥0,故B 正确;对于C ,若a >b >0,c >0,则ac >bc ,即ac −bc >0,故C 正确; 对于D ,当a =−2,b =1时,满足a <b ,但|a |>|b |,故D 不正确. 故选:ABC . 填空题 14、函数f(x)=√ax 2+3ax+1的定义域是R ,则实数a 的取值范围为________.答案:[0,49)分析:由题知不等式ax 2+3ax +1>0恒成立,进而分a =0和a ≠0两种情况讨论求解即可. 解:因为函数f (x )的定义域是R . 所以不等式ax 2+3ax +1>0恒成立.所以,当a =0时,不等式等价于1>0,显然恒成立;当a ≠0时,则有{a >0Δ<0,即{a >09a 2−4a <0,解得0<a <49.综上,实数a的取值范围为[0,49).故答案为: [0,49)15、若实数a,b满足a2+b2=1,则1a2+4b2+1的最小值为_________.答案:92##4.5分析:根据实数a,b满足a2+b2=1,利用“1”的代换得到1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=1 2(5+b2+1a2+4a2b2+1),再利用基本不等式求解.因为实数a,b满足a2+b2=1,所以1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=12(5+b2+1a2+4a2b2+1),≥12(5+2√(b2+1a2)⋅(4a2b2+1))=92,当且仅当{b2+1a2=4a2b2+1a2+b2+1=2,即a=√63,b=√33时,等号成立,所以1a2+4b2+1的最小值为92,所以答案是:9216、若实数a>b,则下列说法正确的是__________.(1)a+c>b+c;(2)ac<bc;(3)1a <1b;(4)a2>b2答案:(1)分析:根据不等式的性质以及特殊值验证法,对四个说法逐一分析,由此确定正确的说法. 根据不等式的性质(1)正确;(2)中如果c≥0时不成立,故错误;(3)若a=1,b=−1时,1a <1b不成立,故错误;(4)若a=1,b=−1,a2>b2不成立,故错误.故答案为:(1)小提示:本小题主要考查不等式的性质,属于基础题.解答题17、在△ABC 中,2B =A +C .(1)当AC =12时,求S △ABC 的最大值; (2)当S △ABC =4√3时,求△ABC 周长的最小值. 答案:(1)36√3;(2)12.分析:(1)由题意,B =60°,b =12,由余弦定理、基本不等式,即可求S △ABC 的最大值; (2)当S △ABC =4√3时,求出ac ,利用余弦定理、基本不等式,即可求出△ABC 周长的最小值. 解:(1)由题意,B =60°,b =12,∴由余弦定理可得122=a 2+c 2−2accos60°≥ac , ∴ac ≤144,∴S △ABC =12acsinB ≤36√3, ∴S △ABC 的最大值为36√3; (2)S △ABC =4√3=12ac ×√32, ∴ac =16,又b 2=a 2+c 2−2accos60°=(a +c)2−48, b 2=a 2+c 2−2accos60°≥ac , ∴a +c =√b 2+48,b ≥4∴△ABC 周长为a +b +c ≥8+4=12当且仅当时,△ABC 周长的最小值为12.小提示:本题考查了余弦定理、基本不等式,考查三角形面积、周长的求解,考查学生分析解决问题的能力,属于较难题.18、(1)若x >1,求y =x +4x−1的最小值及对应x 的值; (2)若0<x <2,求4x +12−x 的最小值及对应x 的值. 答案:(1)最小值为5,x =3;(2)最小值为92,x =43. 分析:(1)化简y =x −1+4x−1+1,再利用基本不等式求解;a b c ==(2)化简y=12(4x+12−x)×2=12(4x+12−x)×[x+(2−x)],再利用基本不等式求解.(1)因为x>1,所以x−1>0,4x−1>0,y=x−1+4x−1+1≥2√(x−1)(4x−1)+1=5当且仅当x−1=4x−1(x>1)即x=3时等号成立,函数取最小值5;(2)y=12(4x+12−x)×2=12(4x+12−x)×[x+(2−x)]=12[5+4(2−x)x+x2−x]≥12(5+2√4(2−x)x×x2−x)=92当且仅当4(2−x)x =x2−x(0<x<2)即x=43时等号成立,函数取最小值92.。
高中数学第二章一元二次函数方程和不等式知识点梳理(带答案)
高中数学第二章一元二次函数方程和不等式知识点梳理单选题1、已知x >0,则下列说法正确的是( )A .x +1x −2有最大值0B .x +1x −2有最小值为0C .x +1x −2有最大值为-4D .x +1x −2有最小值为-4 答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解由题意,x >0,由均值不等式x +1x ≥2√x ×1x =2,当且仅当x =1x ,即x =1时等号成立 故x +1x −2≥0,有最小值0故选:B2、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( )A .4×x 0.5≥100B .4×x 0.5≤100 C .4×x 0.5>100D .4×x 0.5<100答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x 0.5>100.故选:C.3、若不等式(ax −2)(|x |−b )≥0对任意的x ∈(0,+∞)恒成立,则( )A .a >0,ab =12B . a >0,ab =2C .a >0,a =2bD .a >0,b =2a答案:B分析:由选项可知a >0,故原不等式等价于(x −2a)(|x |−b )≥0,当b ≤0时,不满足题意,故b >0,再由二次函数的性质即可求解 由选项可知a >0,故原不等式等价于(x −2a )(|x |−b )≥0,当b ≤0时,显然不满足题意,故b >0,由二次函数的性质可知,此时必有2a =b ,即ab =2,故选:B4、已知正数x ,y 满足2x+3y +13x+y =1,则x +y 的最小值( )A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解.令x +3y =m ,3x +y =n ,则2m +1n =1,即m +n =(x +3y )+(3x +y )=4(x +y ),∴x +y =m+n 4=(m 4+n 4)(2m +1n )=12+m 4n +2n 4m +14≥2√m 4n ⋅2n 4m +34=2×2√2+34=2√2+34,当且仅当m 4n =2n4m ,即m =2+√2,n =√2+1时,等号成立,故选:A.5、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为()A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可.不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−b a(−12)⋅13=2a,解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A6、已知2<a <3,−2<b <−1,则2a −b 的范围是( )A .(6,7)B .(5,8)C .(2,5)D .(6,8)答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8故选:B7、要使关于x 的方程x 2+(a 2−1)x +a −2=0的一根比1大且另一根比1小,则实数a 的取值范围是()A .{a |−1<a <2}B .{a |−2<a <1}C .{a |a <−2}D .{a |a >1}答案:B分析:根据二次方程根的分布可得出关于实数a 的不等式,由此可解得实数a 的取值范围.由题意可得1+(a 2−1)+a −2=a 2+a −2<0,解得−2<a <1.故选:B.8、不等式1+x 1−x ≥0的解集为( )A .{x|x ≥1或x ≤−1}B .{x ∣−1≤x ≤1}C .{x|x ≥1或x <−1}D .{x|−1≤x <1}答案:D分析:不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,解得−1≤x <1,故不等式的解集为{x|−1≤x <1}, 23,21<<-<<-a b故选:D .多选题9、已知a >b ⩾2,则( )A .b 2<3b −aB .a 3+b 3>a 2b +ab 2C .ab >a +bD .12+2ab >1a +1b 答案:BC解析:根据不等式的性质,逐一判断即可.解:a >b ⩾2,A 错误,比如a =3,b =2,4>3不成立;B ,a 3+b 3−(a 2b +ab 2)=a 2(a −b)−b 2(a −b)=(a −b)2(a +b)>0成立;C ,由ab −a −b =a(b −1)−b =(b −1)(a −b b−1)=(b −1)[a −(1+1b−1)]>0,故C 成立, D ,12+2ab −1a −1b =(a−2)(b−2)2ab ⩾0,故D 不成立,故选:BC . 小提示:本题考查不等式比较大小,常利用了作差法,因式分解法等.10、若a ,b ,c ∈R ,则下列命题正确的是( )A .若且a <b ,则1a >1bB .若0<a <1,则a 2<aC .若a >b >0且c >0,则b+c a+c >b aD .a 2+b 2+1≥2(a −2b −2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A ,当a <0<b 时,结论不成立,故A 错误;对于B ,a 2<a 等价于a (a −1)<0,又0<a <1,故成立,故B 正确;对于C ,因为a >b >0且c >0,所以b+c a+c >b a 等价于ab +ac >ab +bc ,即(a −b )c >0,成立,故C 正确; 对于D ,a 2+b 2+1≥2(a −2b −2)等价于(a −1)2+(b +2)2≥0,成立,故D 正确.故选:BCD. 0ab11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.12、已知不等式ax2+bx+c>0的解集为{x|−12<x<2},则下列结论正确的是()A.a>0B.b>0C.c>0D.a+b+c>0答案:BCD分析:对A,根据一元二次方程与一元二次函数的关系即可判断;对B,C,利用韦达定理即可判断;对D,根据韦达定理以及b>0,即可求解.解:对A,∵不等式ax2+bx+c>0的解集为{x|−12<x<2},故相应的二次函数y=ax2+bx+c的图象开口向下,即a<0,故A错误;对B,C,由题意知:2和−12是关于x的方程ax2+bx+c=0的两个根,则有ca =2×(−12)=−1<0,−ba=2+(−12)=32>0,又∵a<0,故b>0,c>0,故B,C正确;对D,∵ca=−1,∴a+c=0,又∵b>0,∴a+b+c>0,故D正确.故选:BCD.13、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为15(x −k +4500x )L ,其中k 为常数.若汽车以120km/h 的速度行驶时,每小时的油耗为11.5L ,欲使每小时的油耗不超过...9L ,则速度x 的值可为( ) A .60B .80C .100D .120答案:ABC解析:先利用120km/h 时的油耗,计算出k 的值,然后根据题意“油耗不超过9L ”列不等式,解不等式求得x 的取值范围.由汽车以120km/h 的速度行驶时,每小时的油耗为11.5L ,∴15(120−k +4500120)=11.5,解得:k =100,故每小时油耗为15(x +4500x )−20, 由题意得15(x +4500x )−20≤9,解得:45≤x ≤100,又60≤x ≤120,故60≤x ≤100,所以速度x 的取值范围为[60,100].故选:ABC小提示:关键点点睛:本题考查利用待定系数法求解析式,考查一元二次不等式的解法,解题的关键是先利用120km/h 时的油耗,计算出k 的值,然后代入根据题意解不等式,考查实际应用问题,属于中档题. 填空题14、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示) 答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论.2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3解得{m =−12n =52,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3,−2≤−12(x +y )≤12,5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8,所以答案是:[3,8].15、已知实数x 、y 满足−2≤x +2y ≤3,−2≤2x −y ≤0,则3x −4y 的取值范围为______.答案:[−7,2]分析:设3x −4y =m(x +2y)+n(2x −y),利用待定系数法求出m,n 的值,然后根据不等式的性质即可求解.解:设3x −4y =m(x +2y)+n(2x −y),则{m +2n =32m −n =−4,解得{m =−1n =2, 所以3x −4y =−(x +2y)+2(2x −y),因为−2≤x +2y ≤3,−2≤2x −y ≤0,所以−3≤−(x +2y)≤2,−4≤2(2x −y)≤0,所以−7≤3x −4y ≤2,所以答案是:[−7,2].16、已知三个不等式:①ab >0,②c a >d b ,③bc >ad ,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ; {c a >d b bc >ad ⇒{bc−ad ab >0bc >ad ⇒ab >0.故可组成3个真命题.所以答案是:3.解答题17、销售甲种商品所得利润是P 万元,它与投入资金t 万元的关系有经验公式P =at t+1;销售乙种商品所得利润是Q 万元,它与投入资金t 万元的关系有经验公式Q =bt .其中a ,b 为常数.现将3万元资金全部投入甲,乙两种商品的销售,若全部投入甲种商品,所得利润为94万元;若全部投入乙种商品.所得利润为1万元.若将3万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售.则所得利润总和为y 万元(1)求利润总和y 关于x 的表达式:(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值.答案:(1)y =3x x+1+13(3−x),0≤x ≤3;(2)对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.分析:(1)由题意得y =ax x+1+b(3−x),代入数值计算即可求出结果;(2)转化成可以利用基本不等式的形式,最后利用基本不等式即可求出结果.(1)因为对甲种商品投资x 万元,所以对乙种商品投资为3−x 万元,由题意知:y =P +Q =ax x+1+b(3−x),当x =3时,f(x)=94,当x =0时,f(x)=1, 则{3a 4=94,3b =1,解得a =3,b =13, 则y =3x x+1+13(3−x),0≤x ≤3. (2)由(1)可得f(x)=3x x+1+13(3−x)=3(x+1)−3x+1+1−13x =133−[3x+1+13(x +1)]≤133−2√3x+1⋅x+13=73,当且仅当x =2时取等号,故对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.18、已知函数f (x )=x 2+ax −2,f (x )>0的解集为{x |x <−1或x >b }.(1)求实数a 、b 的值;(2)若x ∈(0,+∞)时,求函数g (x )=f (x )+4x 的最小值.答案:(1)a =−1,b =2(2)2√2−1分析:(1)分析可知−1、b 是方程x 2+ax −2=0的两个根,利用一元二次方程根与系数的关系可求得a 、b 的值;(2)求得g (x )=x +2x −1,利用基本不等式可求得g (x )在(0,+∞)上的最小值.(1)解:因为关于x 的不等式x 2+ax −2>0的解集为{x |x <−1或x >b },所以,−1、b 是方程x 2+ax −2=0的两个根,所以,{1−a −2=0−1⋅b =−2,解得{a =−1b =2.(2)解:由题意知g(x)=f(x)+4x =x2−x+2x=x+2x−1,因为x>0,由基本不等式可得g(x)=x+2x −1≥2√x⋅2x−1=2√2−1,当且仅当x=2x时,即x=√2时,等号成立故函数g(x)的最小值为2√2−1.。
上海高三数学高考二轮复习教案函数方程专题之函数与不等式(2)含答案
沪教版(上海)高中数学度高三数学二轮复习函数方程专题之函数与不等式② 教学目标 理解并充分掌握基本的函数与不等式题型之间的转换问题,即函数题型用不等式来解,不等式题型用函数来做的思想.知识梳理函数与不等式(方程)是相互联系的,在一定条件下,他们可以相互转化,例如解方程()0f x =就是求函数的零点,解不等式()()f x g x >,就是当两个函数的函数值的大小关系确定后,求自变量的取值范围。
正确理解函数与不等式(方程)的这种对立统一关系,有利于提高综合运用知识分析问题和解决问题的能力.典例精讲例1.(★★★)已知函数()24f x mx =+,若在[2,1]-上存在唯一零点,则实数m 的取值范围是___________.解:由题意得:(2)(1)0f f -⋅≤,即(,2][1,)m ∈-∞-+∞例2.(★★★)函数3()log (3)1f x x =+-的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为___________. 解:由题意得点A 的坐标为(2,1)--,代入直线方程得:21m n +=.∴121244()(2)2244248n m n m m n m n m n m n m n +=++=+++=++≥+=,当且仅当4n m m n=.即1412m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立. 例3.(★★★)已知2()221f x x mx m =+++.(1)若函数有两个零点,且其中一个在区间(1,0)-,另一个在区间(1,2)内,求m 的取值范围(2)若函数的两个零点均在区间(0,1)内,求m 的取值范围.解:(1)(1)0122101(0)0210512(,)5(1)012210626(2)044210f m m m f m m f m m m f m m ->-++>⎧⎧⎧<-⎪⎪⎪<+<⎪⎪⎪⇒⇒⇒∈--⎨⎨⎨<+++<⎪⎪⎪>-⎪⎪⎪⎩>+++>⎩⎩. (2)221(22)1,2(1)x m x x m x --+=--=+.令1,(1,2)t x t =+∈. 所以221(1)11221212(2)()12222t t t m t t t t t t----+-=⋅=⋅=--+=-++. 所以212(1),222(1)3,122t m m m t +=--≤--<-<≤-. 课堂检测1.(★★)使2log ()1x x -<+成立的x 的取值范围是___________.解:结合函数图象可知:(1,0)x ∈-2.(★★★)设函数2()|45|f x x x =--,若在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方,则实数k 的取值范围是___________.解:由题意得:2345kx k x x +>-++在区间[1,5]-上恒成立. 即:2453x x k x -++>+在区间[1,5]-上恒成立, 由2453x x x -+++在[1,5]-上的最大值为2,得出2k >. 3.(★★★)三位同学合作学习,对问题“已知不等式222xy ax y ≤+,对于[1,2],[2,3]x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析” .乙说:“寻找x 与y 的关系,再作分析”.丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自己的其他解法,可求出实数a 的取值范围是___________.解:原式⇔ 22()y y a x x≥-在[1,2],[2,3]x y ∈∈上恒成立, 令[1,3]y t x=∈,则函数22t t -在[1,3]的最大值为1-,则1a ≥-. 4.(★★★★)已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c 满足a b c >>,0(,,)a b c a b c R ++=∈.(1)求证:两函数的图像交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影11A B 的长的取值范围.解:(1)222220444()y ax bx c ax bx c b ac b ac y bx⎧=++⇒++=⇒∆=-⇒∆=-⎨=-⎩. 因为a b c >>且0a b c ++=,所以0a >且0c <,20b ac ->,即0∆>.所以两函数图像有两个交点. (2)22221124()()13||221()2()24b ac a c ac c c c A B a a a a -+-===++=++ 因为0()()a b c b a c a a c c ++=⇒=-+⇒>-+>, 所以1(2,)2c a ∈--.故11||(3,23)A B ∈. 回顾总结1.在写不等式解集的时候一定要注意答案要写__________集合或区间形式.。
高考数学第一轮复习教案-专题2函数概念与基本初等函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.
高中数学第二章一元二次函数方程和不等式典型例题(带答案)
高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。
专题02 函数(第02期)-2021年高三数学(理)最新模拟调研试题精选分项汇编(解析版)
一.基础题组1.【山东省实验中学2017届高三第一次诊,11】已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则1()4f f ⎡⎤=⎢⎥⎣⎦.【答案】19考点:分段函数求值2.【湖北省黄石市2017届高三年级九月份调研,4】已知函数()221,1,1x x f x x ax x ⎧+<=⎨+≥⎩,若()()04f f a =,则实数a 等于( ) A .12 B .45C .2D .9 【答案】C 【解析】 试题分析:()()0(2)4242ff f a a a ==+=⇒=,选C.考点:分段函数求值【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.3.【江西南昌市2017届摸底考试,8】若定义域为R 的函数()f x 在(4,)+∞上为减函数,且函数(4)y f x =+为偶函数,则( )A .(2)(3)f f >B .(2)(5)f f >C .(3)(5)f f >D .(3)(6)f f > 【答案】D考点:函数性质4.【山东省肥城市2017届高三上学期升级统测,9】定义在R 上的函数()f x 满足在区间[)1,1-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩, 其中m R ∈,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f m =( ) A .85- B .25- C .35 D .75【答案】B 【解析】试题分析:因为()()11 2.f x f x T +=-⇒=所以59111213()()||22222525f f f f m m ⎛⎫⎛⎫-=⇒-=⇒-=--⇒=- ⎪ ⎪⎝⎭⎝⎭,因此()325(3)(1)1.55f m f f =-=-=-+=-选B. 考点:分段函数性质5.【河南濮阳市一高2017届高三上学期第二次检测,6】“2log (23)1x -<”是“48x >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】试题分析:因为2log (23)1x -<,所以3522x <<,又因为48x >,所以32x > ,所以3522x <<⇒32x >.即“2log (23)1x -<”是“48x >”的充分不必要条件,故选A. 考点:1、对数函数的性质及指数函数的性质;2、充分条件与必要条件.6.【河南濮阳市一高2017届高三上学期第二次检测,6】函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2 B .1(,)2-∞ C .1(1,0)(0,)2- D .1(,1)(1,)2-∞-- 【答案】D考点:1、函数的定义域;2、对数函数的.7.【河南濮阳市一高2017届高三上学期第二次检测,3】下列函数中,是偶函数且在(0,)+∞上为增函数的是( )A .cos y x =B .21y x =-+ C .2log ||y x = D .xx y e e -=- 【答案】C【解析】考点:1、函数的奇偶性;2、函数的单调性.8.【河南濮阳市一高2017届高三上学期第二次检测,4】若0.2log 2a =,0.2log 3b =,0.22c =,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b << 【答案】B【解析】试题分析:0.2log y x =是减函数,所以0b a <<,又0c >,所以b a c <<.故选B. 考点:1、对数函数的性质;2、指数函数的性质.9.【河南濮阳市一高2017届高三上学期第二次检测,7】若3x a =,5x b =,则45x 等于( )A . 2abB .2a bC .2a b +D .22a b +【答案】A【解析】试题分析:()22459535x x xx x a b =⨯=⨯=.故选A.考点:指数的运算.10.【河南濮阳市一高2017届高三上学期第二次检测,9】已知函数(12),1,()1log ,13x a ax f x x x ⎧-≤⎪=⎨+>⎪⎩当12x x ≠时,1212()()0f x f x x x -<-,则a 的取值范围是( )A .1(0,]3B .11[,]32C .1(0,]2D .11[,]43【答案】A考点:1、分段函数的解析式;2、分段函数的单调性及数学的转化与划归思想.11.【河南濮阳市一高2017届高三上学期第二次检测,10】若函数2()2(2)||f x x x a x a =+--在区间[-3,1]上不是单调函数,则实数a 的取值范围是 ( )A .[-4,1]B .[-3,1]C .(-6,2)D .(-6,1) 【答案】C考点:1、分段函数的单调性;2、利用导数研究分段函数的极值点.12.【江西九江地区2017届高三七校联考,2】函数229log (1)x y x -=+的定义域是( )A .(1,3)-B .(1,3]-C .(1,0)(0,3)-D .(1,0)(0,3]-【答案】D 【解析】考点:函数定义域13.【江西九江地区2017届高三七校联考,4】幂函数2268()(44)m m f x m m x -+=-+在(0,)+∞为增函数,则m 的值为( )A .1或3B .1 C.3 D .2 【答案】B 【解析】试题分析:22441,6801m m m m m -+=-+>⇒=,选B. 考点:幂函数定义及性质14.【江西九江地区2017届高三七校联考,5】已知函数||()21x f x =-+,定义函数(),0,()(),0.f x x F x f x x >⎧=⎨-<⎩则()F x 是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .非奇非偶函数 【答案】A考点:分段函数奇偶性15.【江西九江地区2017届高三七校联考,7】若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( ) A .(,4)-∞ B .(4,4]- C .(,4)[2,)-∞+∞ D .[4,4)- 【答案】D 【解析】试题分析:由题意得230x ax a -->在区间(,2]-∞-上恒成立且22a≥-,即2(2)(2)30a a ---->且4a ≥-,解得实数a 的取值范围是[4,4)-,选D.考点:复合函数单调性16.【广东海珠区2017届上学期高三综合测试(一),3】设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A .(2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(2)(3)()f f f π-<-<D .(3)(2)()f f f π-<-< 【答案】C考点:1、函数的奇偶性;2、函数的单调性.17.【河北唐山市2017届上学期高三摸底考,4】设函数(),y f x x R =∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B .【解析】试题分析:当“()y f x =的图象关于原点对称”时,函数()y f x =为奇函数,所以)()(x f x f -=-,所以)()(x f x f =-,所以()y f x =是偶函数;反过来,当“()y f x =是偶函数”时不能推出“()y f x =的图象关于原点对称”例如:2x y =,此时2x y =是偶函数,其图像不关于原点对称.所以“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的必要不充分条件,故应选B .18.【河北唐山市2017届上学期高三摸底考,8】设0x 是方程13xx ⎛⎫= ⎪⎝⎭的解,则0x 所在的范围是( )A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .2,13⎛⎫⎪⎝⎭【答案】B . 【解析】试题分析:构造函数x x f x -⎪⎭⎫ ⎝⎛=31)(,所以01031)0(0>=-⎪⎭⎫⎝⎛=f ,031313131)31(213131>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,021312131)21(212121<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,所以由零点的存在性定理可得函数x x f x-⎪⎭⎫⎝⎛=31)(在11,32⎛⎫ ⎪⎝⎭上存在零点,故应选B .考点:1、函数与方程.19.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,6】设函数311log (2),1()3,1x x x f x x -+-<⎧=⎨≥⎩,求3(7)(log 12)f f -+=( )A .8B .15C .7D .16 【答案】C 【解析】考点:分段函数.20.【湖南永州市2017届高三第一次模拟,4】若2a =,384b =,ln2c =,则( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<【答案】B考点:基本函数.21.【湖北2017届百所重点校高三联考,5】“11e eb dx x≤⎰”是“函数()2,03,0xx x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:因e e b 1lnln -≤,即2≤b ;因函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数,故21≤+b ,即1≤b ,故2≤b 是1≤b 的必要非充分条件,应选B.考点:充分必要条件及运用.【易错点晴】本题是一道函数的单调性和充分必要条件整合在一起的综合问题.求解这类问题时,要充分借助题设条件,先搞清楚判定哪个命题是哪个命题的条件,再将问题转换为判定在一个命题成立的前提下,另一个命题的真假问题.本题求解时,要先将不等式“11eeb dx x≤⎰”翻译成2≤b 成立的前提下,命题“函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”是否成立的问题,当然这里要用到绝对值函数语指数函数的性质.验证必要性时,要考察这个命题的逆命题的真伪.显然命题不真;反之成立,故应选B.22.【江西九江地区2017届高三七校联考,13】若方程210x mx m -+-=有两根,其中一根大于2,另一根小于2的充要条件是__________. 【答案】3m >【解析】考点:二次函数实根分布23.【江西九江地区2017届高三七校联考,15】若函数3211(),22()1log,2xaxf xx x-⎧≤⎪⎪=⎨⎪>⎪⎩(0a>,且1a≠)的值域是R,则实数a的取值范围是________.【答案】2[,1)2考点:分段函数值域【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.24.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,14】已知定义在R上的偶函数()f x在[0,)+∞上单调递减,且(1)0f=,则不等式(2)0f x-≤的解集是__________.【答案】(,1][3,)-∞+∞【解析】试题分析:因为()f x在R上为单调递减的偶函数,且(1)0f=,所以不等式(2)0f x-≤等价于|2|1x-≥,解得3x≥或1x≤,所以等式(2)0f x-≤的解集为(,1][3,)-∞+∞.考点:1、函数的奇偶性;2、函数的单调性;3、不等式的解法.25.【江苏南通市如东县、徐州丰县2017届10月联考,2】函数1()lg(1)1f x xx=++-的定义域是▲.【答案】()()1,11,-⋃+∞考点:定义域26.【江苏南通市如东县、徐州丰县2017届10月联考,4】设幂函数()f x kx α=的图象经过点()4,2,则k α+=▲ . 【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义27.【江苏南通市如东县、徐州丰县2017届10月联考,5】计算121(lg lg 25)1004--÷= ▲ .【答案】-20 【解析】试题分析:11211(lg lg 25)100lg 10204100---÷=÷=-考点:对数式运算28.【江苏南通市如东县、徐州丰县2017届10月联考,7】已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .【答案】2- 【解析】试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=-29.【江苏南通市如东县、徐州丰县2017届10月联考,8】已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集是 ▲ .【答案】[]2,4- 【解析】试题分析:当0x ≥时,()22xf x =-单调递增,又()33226f =-=()16|1|324f x x x ∴-⇒-≤⇒-≤≤≤考点:利用函数性质解不等式30.【四川巴中市2017届“零诊”,14】若31044=+-x x ,则=4log 3x .【答案】1±.考点:对数的运算.二.能力题组1.【山东省实验中学2017届高三第一次诊,10】已知定义在R 上的偶函数()f x 满足(4)()f x f x -=,且(1,3]x ∈-时,21cos ,13,()2,11,x x f x x x π⎧+<≤⎪=⎨⎪-<≤⎩则()()lg ||g x f x x =-的零点个数是( ) A .9 B .10C .18D .20【答案】C 【解析】试题分析:(4)()()4f x f x f x T -==-⇒=,只需考虑(0,10]x ∈上()y f x =与lg y x =交点个数,在第一个周期(0,4]x ∈上有3个交点,第二个周期(4,8]x ∈上有4个交点,在 (8,10]x ∈上有2个交点,共有9个交点,因此零点个数一共是18个,选C. 考点:函数零点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.2.【云南省、四川省、贵州省2017届高三上学期百校大联考数学,7】设e 是自然对数的底,0a >且1a ≠,0b >且1b ≠,则“log 2log a b e >”是“01a b <<<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B3.【河南濮阳市一高2017届高三上学期第二次检测,11】函数2()xf x x a=+的图象可能是( )A .(1)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4) 【答案】C【解析】试题分析:取0a =,可知(4)正确;取4a =-,可知(3)正确;取1a =,可知(2)正确;无论a 取何值都无法作出(1).故选C.考点:1、函数的图象和性质;2、选择题的“特殊值法”.【方法点睛】本题主要考查函数的图象和性质、选择题的“特殊值法”,属于难题.特殊值法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.4.【江西九江地区2017届高三七校联考,6】已知正方体1111ABCD A B C D -的棱长为1,E 、F 分别是边1AA 、1CC 的中点,点M 是1BB 上的动点,过三点E 、M 、F 的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =, 则y 关于x 的函数()y f x =的解析式为( )A .23()222f x x x =-+,[0,1]x ∈B .23()222f x x x =-++,[0,1]x ∈ C .3()2f x x =-,[0,1]x ∈ D .3()2f x x =-,[0,1]x ∈【答案】A考点:函数解析式5.【江西九江地区2017届高三七校联考,8】函数221x x e x y e =-的大致图象是( )A .B .C .D .【答案】A 【解析】考点:函数图像与性质【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.6.【江西九江地区2017届高三七校联考,11】已知函数()f x 和(1)f x +都是定义在R 上的偶函数,若[0,1]x ∈时,1()()2x f x =,则( )A .15()()32f f ->B .15()()32f f -<C .15()()32f f -=D .19()()32f f -<【解析】试题分析:()(),(1)(1)(2)()f x f x f x f x f x f x =-+=-+⇒+=-,所以5111(2)()2,()()()()2233f x f x T f f f f +=⇒==<=-,选A.考点:函数对称性与周期性7.【广东海珠区2017届上学期高三综合测试(一),8】已知函数()ln ||f x x x =-,则()f x 的图象大致为( )【答案】A【解析】试题分析:因为0x <时()()ln f x x x =--,()f x 在(0,)+∞上递增,0x >时,1()ln ,'()1f x x x f x x=-=-,可得()f x 在(0,1)上递减,在(1,)+∞上递增,所以只有选项A 合题意,故选A.考点:1、函数的图象和性质;2、利用导数研究函数的单调性.8.【河北衡水中学2017届上学期一调,6】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】B考点:函数的奇偶性及函数的图象.9.【湖南永州市2017届高三第一次模拟,12】已知函数()()()11 232 [2)x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,,,则函数()()cos g x f x x π=-在区间[]08,内所有零点的和为( )A .16B .30C .32D .40 【答案】C 【解析】10.【湖北2017届百所重点校高三联考,8】函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供的解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象的对称性可知应选D. 考点:函数图象的性质及运用.11.【湖北2017届百所重点校高三联考,11】设函数()()()211,ln 31f x x g x ax x =-+=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为( ) A .94 B .2 C .92D .4 【答案】A考点:函数的图象和性质及运用.12.【四川巴中市2017届“零诊”,11】定义在R 上的奇函数)(x f 和偶函数)(x g 满足:xe x g xf =+)()(,给出如下结论:①2)(x x e e x f --=且)2()1(0g f <<;②R x ∈∀,总有1)]([)]([22=-x f x g ; ③R x ∈∀,总有0)()()()(=+--x g x f x g x f ; ④R x ∈∃0,使得)()(2)2(000x g x f x f >. 其中所有正确结论的序号是( )A .①②③B .②③C .①③④D .①②③④ 【答案】A. 【解析】试题分析:由题意得,()()()2()()()()()2x x x x x xe ef x f xg x e f x g x f x g x e e eg x ---⎧+=⎪⎧+=⎪⎪⇒⎨⎨-+-=-+=+⎪⎩⎪=⎪⎩,①:1220(1)(2)222e e e e e f g ---+<=<<=,故①正确;②:2222[()][()]()()122x x x x e e e e g x f x --+--=-=,故②正确;③:()()()()()()()()0f x g x f x g x f x g x f x g x --+=-+=,故③正确;④:000000220002()()2(2)222x x x x x x e e e e e e f x g x f x ----+-=⋅⋅==,故④错误,即正确的结论为①②③,故选A.考点:函数的性质.13.【江西九江地区2017届高三七校联考,16】给出下列四个命题:①函数()log (21)1a f x x =--的图象过定点(1,0);②已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()(1)f x x x =+,则()f x 的解析式为2()||f x x x =-;③函数1||1y x =-的图象可由函数1||y x =图象向右平移一个单位得到;④函数1||1y x =-图象上的点到点(0,1)距离的最小值是3.其中所有正确命题的序号是_________. 【答案】②④考点:函数性质14.【河北省衡水中学2017届高三上学期第三次调,16】已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是______________.【答案】1724b <≤考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.15.【江苏南通市如东县、徐州丰县2017届10月联考,10】已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 【答案】43【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,13,33b b b b b b b b a =⇒=>⇒==43a b +=考点:指对数式运算16.【山东省肥城市2017届高三上学期升级统测,15】已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点, 则a 的取值范围是 .【答案】()11,5,973⎛⎫⎪⎝⎭考点:函数交点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.17.【湖北2017届百所重点校高三联考,16】设函数()f x 对任意实数x 满足()()1f x f x =-+,且当01x ≤≤时,()()1f x x x =-,若关于x 的方程()f x kx =有3个不同的实数根,则k 的取值范围是___________. 【答案】(){}526,1322--+【解析】试题分析:因()()1f x f x =-+,故)()2(x f x f =+,即函数)(x f 是周期为2的周期函数,画出函数函数]1,0[),(∈=x x f y 的图象,再借助函数满足的条件()()1f x f x =-+及图象的对称性,画出函数)(x f y =的图象如图,结合图象可得12+=-kx x x ,故04)1(2>-+=∆k k ,解之可得1625<<-k 或223+-=k ,故应填(){}526,1322--+.y=kx+1yx-2-1O -2-12121考点:函数的图象等有关知识的综合运用.【易错点晴】函数图象和性质是高中数学教与学中的重点和难点之一,也是高考和各级各类考试的热点内容.本题以函数零点的个数的形式将二次函数与一次函数的零点问题进行有机地整合,有效地考查和检测学生综合运用所学知识去分析问题解决问题的能力.求解时,先探求函数的周期性,再画出函数的图象,然后借助函数的图象进行分析探求建立不等式,进而求得实数k 的取值范围是(){}526,1322--+.18.【河南濮阳市一高2017届高三上学期第二次检测,15】若“m a >”是“函数11()()33x f x m =+-的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为__________. 【答案】1-三.拔高题组1.【河北省衡水中学2017届高三摸底联考,11】已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()fx a a R =∈实根个数不可能为 ( )A . 2个B .3个C . 4个D .5 个 【答案】D考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.2.【河北衡水中学2017届上学期一调,10】已知()11,01,22,1,x x x f x x -⎧+≤<⎪=⎨⎪≥⎩存在210x x >≥,使得()()12f x f x =,则()12x f x 的取值范围为( )A .2112⎫-⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .24⎫⎪⎪⎣⎭D .2212⎫-⎪⎪⎣⎭【答案】A 【解析】考点:对数函数的图象及二次函数的性质.3.【河南百校联考2017届高三9月质检,9】已知()1145279722,,,log 979x x f x a b c --⎛⎫⎛⎫=-=== ⎪ ⎪⎝⎭⎝⎭,则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a << 【答案】B 【解析】试题分析:()22xxf x -=-为单调递增函数,而11144527997,log 09779a b c -⎛⎫⎛⎫⎛⎫==>==< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f b f a <<,选B.考点:比较大小4.【河北邯郸2017届9月联考,12】已知函数42412sin4()22x x x f x x +++=+,则122016()()()201720172017f f f +++=( ) A .2017 B .2016 C .4034 D .4032 【答案】D .考点:1、函数的基本性质;2、函数的奇偶性;3、函数的综合应用.【思路点睛】本题主要考查了函数的基本性质、函数的奇偶性和函数的综合应用,考查学生综合知识能力,属中档题.其解题的一般思路为:首先将已知条件进行化简并得到222sin 2)21(xx x x f ++=+,并令222sin )21(xx x x g +=+,进而可判断出其奇偶性,再由奇函数的图像与性质可得出所求的结果即可.其解题的关键是正确的化简变形并判断出函数的奇偶性.5.【河南濮阳市一高2017届高三上学期第二次检测,21】(本小题满分12分)已知函数()22xxf x -=+. (1)求方程5()2f x =的根; (2)求证:()f x 在[0,)+∞上是增函数;(3)若对于任意[0,)x ∈+∞,不等式(2)()f x f x m ≥-恒成立,求实数m 的最小值. 【答案】(1)1x =或1x =-;(2)证明见解析;(3)0.(2)证明:设120x x ≤<,则211211221212(22)(12)()()22(22)022x x x x x x x x x x f x f x +-----=+-+=<, ∴12()()f x f x <,∴()f x 在[0,)+∞上是增函数. (3)由条件知2222(2)22(22)2(())2xx x x f x f x --=+=+-=-.因为(2)()f x f x m ≥-对于[0,)x ∈+∞恒成立,且()2f x ≥,2()(2)()[()]2m f x f x f x f x ≥-=-+.又0x ≥,∴由(2)知()f x 最小值为2, ∴()2f x =时,m 最小为2-4+2=0.考点:1、简单的指数方程;2、单调性的证明方法及不等式恒成立问题.【方法点晴】本题主要考查、简单的指数方程、单调性的证明方法及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(3)是利用方法①求得m 的最小值的.6.【河南濮阳市一高2017届高三上学期第二次检测,18】(本小题满分12分)设222()(log )2log (0)f x x a x b x =-+>.当14x =时,()f x 有最小值-1. (1)求a 与b 的值;(2)求满足()0f x <的x 的取值范围. 【答案】(1)23a b =-⎧⎨=⎩;(2)11(,)82x ∈.考点:1、二次函数配方法求最值;2、简单的对数不等式.7.【江西九江地区2017届高三七校联考,17】(本小题满分10分)设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间3[0,]2上的值域. 【答案】(1)2a =,(2)215[log ,2]4【解析】试题分析:(1)由(1)2f =的log 42a =,解得2a =(2)因为22()log [(1)4]f x x =--+,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.因此()f x 在区间3[0,]2上的值域是考点:函数定义域与值域8.【江西九江地区2017届高三七校联考,19】(本小题满分12分)已知二次函数()f x 的对称轴2()x f x =-,的图象被x 轴截得的弦长为3(0)1f =. (1)求()f x 的解析式;(2)若1(())2x f k >对[1,1]x ∈-恒成立,求实数k 的取值范围. 【解析】试题分析:(1)由题意可得二次函数两个零点,所以用零点式设()(23)(23)f x a x x =++,再根据(0)1f =解得1a =(2)不等式恒成立问题一般转化为对应函数最值问题min 1(())2x f k >,而求函数最值,先确定内函数值域11()[,2]22x t =∈,即为外函数定义域,再根据二次函数对称轴与定义区间位置关系得最小值由(0)11f a =⇒=,∴2()(23)(23)41f x x x x x =++=++;………………6分(2)当[1,1]x ∈-时,11()[,2]22xt =∈,………………8分 ∵()f x 开口向上,对称轴为2x =-.∴()f t 在1[,2]2t ∈上单调递增.………………9分 ∴min113()()24f t f ==.所以实数k 的取值范围是13(,)4-∞.………………12分 考点:二次函数解析式及最值【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.9.【江苏南通市如东县、徐州丰县2017届10月联考,16】(本小题满分14分)已知函数()33x x f x λ-=+⋅()R λ∈(1) 当1λ=时,试判断函数()33x x f x λ-=+⋅的奇偶性,并证明你的结论;【答案】(1) 偶函数(2) 27λ-≤考点:函数奇偶性,不等式恒成立问题【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.10.【江苏南通市如东县、徐州丰县2017届10月联考,19】(本小题满分16分)已知函数()133x x af x b+-+=+.(1) 当1a b ==时,求满足()3x f x =的x 的取值;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值. 【答案】(1) 1x =- (2) ①()1,-+∞,②6 【解析】试题分析:(1)根据+1333x x =⋅ ,可将方程()3xf x =转化为一元二次方程:()2332310x x ⋅+⋅-=,再根据指数函数范围可得133x= ,解得1x =- (2) ①先根据函数奇偶性确定a b ,值:1,3a b ==,再利用单调性定(2) 因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且解得:1133a a b b ⎧==-⎧⎪⎨⎨==-⎪⎩⎩或,因为()f x 的定义域是R ,所以13a b =-⎧⎨=-⎩舍去 所以1,3a b ==, 所以()13133x x f x +-+=+ ………………………………………6分①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有: ()()()()211212121222333331313131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x ->,所以()()12f x f x >,因此()f x 在R 上递减. ………………………………………8分因为()()2222f t t f t k -<-,所以2222t t t k ->-,所以440t ∆=+>,解得:1t >-,所以k 的取值范围为()1,-+∞ ………………………………………10分 ②因为()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,所以()()3323x x g x f x --=-考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
高中数学第二章一元二次函数方程和不等式必考知识点归纳(带答案)
高中数学第二章一元二次函数方程和不等式必考知识点归纳单选题1、已知a>0,b>0且ab=1,不等式12a +12b+ma+b≥4恒成立,则正实数m的取值范围是()A.m≥2B.m≥4C.m≥6D.m≥8答案:D分析:由条件结合基本不等式可求a+b的范围,化简不等式可得m≥4(a+b)−(a+b)22,利用二次函数性质求4(a+b)−(a+b)22的最大值,由此可求m的取值范围.不等式12a +12b+ma+b≥4可化为a+b2ab+ma+b≥4,又a>0,b>0,ab=1,所以m≥4(a+b)−(a+b)22,令a+b=t,则m≥4t−t22,因为a>0,b>0,ab=1,所以t=a+b≥2√ab=2,当且仅当a=b=1时等号成立,又已知m≥4t−t22在[2,+∞)上恒成立,所以m≥(4t−t22)max因为4t−t22=12(8t−t2)=−12(t−4)2+8≤8,当且仅当t=4时等号成立,所以m≥8,当且仅当a=2−√3,b=2+√3或a=2−√3,b=2+√3时等号成立,所以m的取值范围是[8,+∞),故选:D.2、已知正数x,y满足x+y=4,则xy的最大值()A. 2B.4C. 6D.8答案:B分析:直接使用基本不等式进行求解即可.因为正数x,y满足x+y=4,所以有4=x+y≥2√xy⇒√xy≤2⇒xy≤4,当且仅当x=y=2时取等号,故选:B3、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.4、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D 错误, 故选:A5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞)答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合,故实数a 的取值范围为[−13,+∞). 故选:C.6、某公司准备对一项目进行投资,提出两个投资方案:方案A 为一次性投资300万;方案B 为第一年投资80万,以后每年投资20万.下列不等式表示“经过n 年之后,方案B 的投入不大于方案A 的投入”的是( ) A .80+20n ≥300B .80+20n ≤300C .80+20(n −1)≥300D .80+20(n −1)≤300 答案:D分析:由不等关系求解即可.经过n 年之后,方案B 的投入为80+20(n −1),故经过n 年之后,方案B 的投入不大于方案A 的投入,即80+20(n −1)≤300 故选:D7、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a <1b ,而c 的正负不确定,故A 错误; 对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C.8、若不等式ax 2+bx +c >0的解集为{x |−1<x <2},则不等式a (x 2+1)+b(x −1)+c >2ax 的解集是( )A .{x |0<x <3}B .{x |x <0或x >3}C .{x |1<x <3}D .{x |−1<x <3} 答案:A分析:由题知{ba =−1ca=−2,a <0,进而将不等式转化为x 2−3x <0,再解不等式即可. 解:由a (x 2+1)+b (x −1)+c >2ax ,整理得ax 2+(b −2a )x +(a +c −b )>0 ①. 又不等式ax 2+bx +c >0的解集为{x |−1<x <2},所以a <0,且{(−1)+2=−ba (−1)×2=c a,即{ba =−1ca=−2②. 将①两边同除以a 得:x 2+(b a −2)x +(1+ca −ba )<0③.将②代入③得:x 2−3x <0,解得0<x <3. 故选:A 多选题9、(多选题)下列命题为真命题的是( )A .若a >b >0,则ac 2≥bc 2B .若a <b <0,则a 2>ab >b 2C .若a >b >0且c >0,则ca 2>cb 2D .若a >b 且1a >1b ,则ab <0 答案:ABD解析:由不等式的性质结合作差法,逐项判断即可得解.对于A ,若a >b >0,则ac 2−bc 2=c 2(a −b )≥0,即ac 2≥bc 2,故A 正确; 对于B ,若a <b <0,则a 2−ab =a (a −b )>0,ab −b 2=b (a −b )>0, 所以a 2>ab >b 2,故B 正确;对于C ,若a >b >0且c >0,则ca 2−cb 2=c (b 2−a 2)a 2b 2=c (b−a )(b+a )a 2b 2<0,所以c a 2<c b 2,故C 错误;对于D ,若a >b 且1a >1b ,则b −a <0,1a −1b =b−a ab>0,所以ab <0,故D 正确. 故选:ABD.10、已知函数y =x 2+ax +b (a >0)有且只有一个零点,则( ) A .a 2−b 2≤4 B .a 2+1b ≥4C .若不等式x 2+ax −b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且,则c =4答案:ABD分析:由函数的零点的定义和二次方程有两个相等的实数解的条件可得a ,b 的关系式,由二次函数的最值求法,可判断A ;由基本不等式可判断B ;由二次方程的韦达定理可判断C ,D .124x x -=根据题意,函数y =x 2+ax +b(a >0)有且只有一个零点,必有a 2−4b =0,即a 2=4b ,(b >0), a 2−b 2−4=4b −b 2−4=−(b 2−4b +4)=−(b −2)2≤0,b =2时,等号成立,即有a 2−b 2≤4,故A 正确;a 2+1b =4b +1b ≥2√4b ⋅1b =4,当且仅当b =12时,取得等号,故B 正确; 由x 1,x 2为方程x 2+ax −b =0的两根,可得x 1x 2=−b <0,故C 错误; 由x 1,x 2为方程x 2+ax +b −c =0的两根,可得x 1+x 2=−a ,x 1x 2=b −c , 则|x 1−x 2|2=(x 1+x 2)2−4x 1x 2=a 2−4(b −c)=a 2−4b +4c =4c =16, 解得c =4,故D 正确. 故选:ABD .11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1aba b =b a ,即a =b =1时取等号,故D 正确.故选:ACD.12、已知a >0,b >0,a 2+b 2=1,则( ) A .ab 的最大值为12B .2ab+3a+b的最小值为2√2C .a 2(1+2b 2)的最大值为94D .1a 2+4b 2的最小值为9答案:ABD分析:利用基本不等式判断A 、B 、D 的正误,注意等号成立条件,将a 2(1+2b 2)化为关于a 2的二次函数形式求最值判断C.因为a >0,b >0,a 2+b 2=1, 所以1≥2ab ,即ab ≤12,2ab+3a+b=(a+b )2+2a+b=a +b +2a+b≥2√2,当且仅当a =b =√22时等号成立,则A ,B正确. a 2(1+2b2)=a 2[1+2(1−a2)]=3a 2−2a 4=−2(a 2−34)2+89,当a 2=34时取得最大值98,则C 错误.1a 2+4b 2=(a 2+b 2)(1a 2+4b 2)=5+b 2a 2+4a 2b 2≥5+2√4=9,当且仅当b 2=2a 2=23时等号成立,则D 正确.故选:ABD13、已知a,b ∈R +且a +b =1,那么下列不等式中,恒成立的有( ). A .ab ⩽14B .ab +1ab ⩾174C .√a +√b ⩽√2D .1a +12b ⩾2√2 答案:ABC分析:利用基本不等式,逐个进行验证,即可得到结论. ∵a,b ∈R +,a +b =1,∴ab ⩽(a+b 2)2=14(当且仅当a =b =12时取得等号).所以选项A 正确由选项A 有ab ≤14,设y =x +1x ,则y =x +1x 在(0,14]上单调递减. 所以ab +1ab ≥14+4=174,所以选项B 正确∵(√a +√b)2=a +b +2√ab ⩽a +b +a +b =2(当且仅当a =b =12时取得等号), ∴√a +√b ⩽√2.所以选项C 正确. ∵1a +12b=a+b a+a+b 2b=32+b a+a 2b⩾32+2√b a⋅a 2b=32+√2(当且仅当a 2=2b 2时等号成立),所以选项D 不正确.故A ,B ,C 正确 故选:ABC小提示:本题考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题填空题14、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、已知x>0,则7−x−9x的最大值为________.答案:1分析:直接利用基本不等式求最大值.∵x>0,则7−x−9x =7−(x+9x)≤7−2√x⋅9x=1,当且仅当x=9x即x=3时取等号.所以答案是:116、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________.答案:2√6分析:由题知x1+x2=6a,x1x2=3a2,进而根据基本不等式求解即可.解:因为关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],所以x1,x2是方程−x2+6ax−3a2=0(a>0)的实数根,所以x1+x2=6a,x1x2=3a2,因为a>0,所以x1+x2+3ax1x2=6a+1a≥2√6,当且仅当6a=1a,即a=√66时等号成立,所以x1+x2+3ax1x2的最小值是2√6所以答案是:2√6解答题17、已知不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.(1)求常数a的值;(2)若关于x的不等式ax2+mx+4≥0的解集为R,求m的取值范围.答案:(1)a=1(2)[−4,4]分析:(1)由题意可得-1和3是方程(a+1)x2−4x−6=0的解,将x=−1代入方程中可求出a的值;(2)由x2+mx+4≥0的解集为R,可得Δ≤0,从而可求出m的取值范围(1)因为不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.所以-1和3是方程(a+1)x2−4x−6=0的解,把x=−1代入方程解得a=1.经验证满足题意(2)若关于x的不等式ax2+mx+4≥0的解集为R,即x2+mx+4≥0的解集为R,所以Δ=m2−16≤0,解得−4≤m≤4,所以m的取值范围是[−4,4].18、为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.答案:(1)最大值为16米;(2)最小值为(824+160√3)平方米.分析:(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示S=(2x+6)(y+4)=(2x+6)(400x+4),利用均值不等式,即得最小值.(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得y=400x.因为矩形草坪的长比宽至少大9米,所以400x⩾x+9,所以x2+9x−400⩽0,解得−25⩽x⩽16.又x>0,所以0<x⩽16.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得S=(2x+6)(y+4)=(2x+6)(400x +4)=824+8(x+300x)⩾(824+160√3)(平方米)当且仅当x=10√3米时,等号成立.所以整个绿化面积的最小值为(824+160√3)平方米.。
高中数学题型讲座:二次函数与一元二次方程、不等式
第2讲:二次函数与一元二次方程、不等式(重点题型方法与技巧)目录类型一:一元二次不等式(不含参)的求解 类型二:一元二次不等式(含参)的求解 角度1:两根大小不确定,从两根相等开始讨论角度2:最高项系数含参从0开始讨论 角度3:不可因式分解型,从开始讨论 类型三:一元二次不等式与对应函数、方程的关系类型四:二次不等式恒成立问题 类型五:一元二次函数求最值(含参数)类型六::根据不等式的解求参数1、四个二次的关系 1.1一元二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.1.2次函数与一元二次方程的根、一元二次不等式的解集的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图象与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.判别式ac b 42-=∆ 0∆>0∆=0∆<二次函数2y ax bx c =++(0a >的图象一元二次方程20ax bx c ++=(0a >)的根有两个不相等的实数有两个相等的实数根没有实数根根1x ,2x (12x x <)122b x x a==-20ax bx c ++>(0a >)的解集 12{|}x x x x x <>或 {|}2b x x a≠-R20ax bx c ++<(0a >)的解集12{|}x x x x <<∅ ∅2、一元二次不等式的解法1:先看二次项系数是否为正,若为负,则将二次项系数化为正数; 2:写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用十字相乘法); ②0∆=时,求根ab x x 221-==; ③0∆<时,方程无解 3:根据不等式,写出解集.类型一:一元二次不等式(不含参)的求解典型例题例题1.(2022·全国·高一课时练习)不等式21560x x +->的解集为( ) A .{1x x 或1}6x <-B .116x x ⎧⎫-<<⎨⎬⎩⎭C .{1x x 或3}x <-D .{}32x x -<<【答案】B【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D . 故选:B .例题2.(2022·陕西省丹凤中学高一期末(理))不等式2280x x +-≤的解集是________. 【答案】{|42}x x -≤≤【详解】解:因为2280x x +-≤,即()()420x x +-≤, 解得42x -≤≤,所以原不等式的解集为{|42}x x -≤≤; 故答案为:{|42}x x -≤≤同类题型演练1.(2022·广东珠海·高一期末)不等式()()130x x ++<的解集是( )A .RB .∅C .{31}x x -<<-∣D .{3xx <-∣,或1}x >- 【答案】C【详解】解:由()()130x x ++<,解得31x -<<-,即不等式的解集为{31}xx -<<-∣; 故选:C2.(2022·四川成都·高一期末(文))不等式()()120x x +->的解集为___________. 【答案】{}|12x x -<<【详解】不等式()()120x x +->可化为()()120x x +-<, 解得:12x -<<.所以原不等式的解集为{}|12x x -<<. 故答案为:{}|12x x -<<类型二:一元二次不等式(含参)的求解 角度1:两根大小不确定,从两根相等开始讨论 典型例题例题1.(2022·全国·高一课时练习)解不等式()2220x c x c -++<.【答案】解:不等式化为()2220x c x c -++<,即()(2)0x c x --<当2>c 时,不等式的解集为{}2x x c <<, 当2c =时,不等式的解集为∅, 当2c <时,不等式的解集为{}2x c x <<例题2.(2022·全国·高三专题练习)求不等式2212x ax a ->(a R ∈)的解集. 【答案】当a>0时,不等式的解集为{|}43a ax x x <->或 当a =0时,不等式的解集为{x|x ∈R 且x≠0}; 当a<0时,不等式的解集为{|}34a ax x x <>-或 【详解】试题分析:解含参数的二次不等式,通常要比较其对应方程的两根大小才能写出不等式的解集.本题对应方程两根为13a x =,24ax =-比较这两个根的大小,只需讨论与零的大小关系就可以了.试题解析:原不等式可化为(3x -a )(4x +a )>0. 当a>0时,不等式的解集为{|}43a a x x x <->或 当a =0时,不等式的解集为{x|x ∈R 且x≠0}; 当a<0时,不等式的解集为{|}34a a x x x <>-或 例题3.(2022·广东·高一期末)设函数2()(1)1f x ax a x =-++. (1)当a +∈R 时,求关于x 的不等式()0f x <的解集.【答案】(1)当1a =时,解集为∅;当01a <<时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭. ()0f x <,即()2110ax a x -++<,当a +∈R 时,原不等式可化为()110x x a⎛⎫--< ⎪⎝⎭,其解得情况应由1a与1的大小关系确定, 当1a =时,解得x ∈∅; 当1a >时,解得11x a<<; 当01a <<时,解得11x a<<. 综上所述:当1a =时,解集为∅;当01a <<时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 同类题型演练1.(2022·福建南平·高一期末)当0a <时,求关于x 的不等式2(24)80ax a x +-->的解集. 【答案】2(24)80ax a x +-->,因为0a <,所以不等式可化为2(4)0x x a ⎛⎫+-< ⎪⎝⎭当24a <-时,即102a -<<,原不等式的解集24,a ⎛⎫- ⎪⎝⎭当24a =-时,即12a =-,原不等式的解集为∅当24a >-时即12a <-原不等式的解集2,4a ⎛⎫- ⎪⎝⎭.综上所述,当102a -<<时,原不等式的解24,a ⎛⎫- ⎪⎝⎭;当12a =-时,原不等式的解集为∅;当12a <-时,原不等式的解集2,4a ⎛⎫- ⎪⎝⎭.2.(2022·四川成都·高一期末)设函数()()3y x x a =--,R a ∈. (1)解关于x 的不等式0y <; 【答案】(1)答案见解析.当3a <时,不等式()0f x <的解集为(),3a , 当3a =时,不等式()0f x <的解集为∅, 当3a >时,不等式()0f x <的解集为()3,a .3.(2022·甘肃省武威第一中学高一开学考试)解关于x 的不等式:()2230x a a x a -++<.【答案】答案见解析【详解】解:()2230x a a x a -++<即()()20x a x a --<, 则对应方程的根为212,==x a x a ,①当0a <或1a >时,原不等式的解集为{}2x a x a <<,②当0a =或1a =时,原不等式的解集为∅,③当01a <<时,原不等式的解集为{}2x a x a <<.角度2:最高项系数含参从0开始讨论典型例题例题1.(2022·湖南·新邵县第二中学高一开学考试)解关于x 的不等式2(1)21(R)ax a x a a a +-+-<-∈.【答案】由题意可得22(1)21(1)10ax a x a a ax a x +-+-<-⇒+--<,当0a =时,不等式可化为1x <,所以不等式的解集为{}1x x <,当0a >时,21(1)10(1)(1)01ax a x ax x x a+--<⇒+-<⇒-<<,当0a <时,2(1)10(1)(1)0ax a x ax x +--<⇒+-<,①当1a =-,解集{}1x x ≠,②当10a -<<,解集为{1x x <或1x a ⎫>-⎬⎭,③当1a <-,解集为{1x x >或1x a ⎫<-⎬⎭.综上所述,当1a <-,不等式的解集为{1x x >或1x a ⎫<-⎬⎭,当1a =-,不等式的解集为{}1x x ≠,当10a -<<,不等式的解集为{1x x <或1x a ⎫>-⎬⎭,当0a =时,不等式的解集为{}1x x <,当0a >时,不等式的解集为11x x a ⎧⎫-<<⎨⎬⎩⎭.例题2.(2022·陕西·西安高新第三中学高一期中)已知函数()2(2)()f x ax a x a =+-∈R .若2a >-,解关于x 的不等式()2f x ≥.【答案】20a -<<时,解集为2|1x x a ⎧⎫≤≤-⎨⎬⎩⎭;0a =时,解集为{}1x x ≤-; 0a >时,解集为2{|x x a≥或1}x ≤- 不等式()2f x ≥,可化为:()2220ax a x +--≥.当0a =时,原不等式即为220x --≥,∴1x ≤-.当0a >时,原不等式化为()210a x x a ⎛⎫-+≥ ⎪⎝⎭,∴2x a ≥或1x ≤-.当20a -<<时,原不等式为()210a x x a ⎛⎫-+≥ ⎪⎝⎭,可化为()210x x a ⎛⎫-+≤ ⎪⎝⎭因21a<-,∴21x a ≤≤-.综上,20a -<<时,原不等式的解集为2|1x x a ⎧⎫≤≤-⎨⎬⎩⎭;0a =时,原不等式的解集为{}1x x ≤-; 0a >时,原不等式的解集为2{|x x a≥或1}x ≤- 同类题型演练1.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.【答案】答案见解析.【详解】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>,当0a <时,1()(1)0x x a ++<,解得11x a-<<-,当0a >时,1()(1)0x x a++>,若1a =,则1x ≠-,若01a <<,则1x a <-或1x >-,若1a >,则1x <-或1x a>-,所以当0a <时,原不等式的解集是{}|11x x a -<<-;当0a =时,原不等式的解集是{|1}x x >-;当01a <≤时,原不等式的解集是1{|x x a <-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-.2.(2022·福建·莆田一中高一期末)已知函数2()(1)2f x ax a x a =+-+-. 若0a <,解关于x 的不等式()1f x a <-. 【答案】依题意,因0a <,则2()1(1)101()(1)0f x a ax a x x x a<-⇔+-⇔--+><,当1a =-时,11a-=,解得1x ≠, 当10a -<<时,11a ->,解得1x <或1x a>-, 当1a <-时,101a <-<,解得1x a<-或1x >,所以,当1a =-时,原不等式的解集为{R |1}x x ∈≠;当10a -<<时,原不等式的解集为{|1x x <或1}x a>-;当1a <-时,原不等式的解集为1{|x x a<-或1}x >.角度3:不可因式分解型,从开始讨论典型例题例题1.(2022·全国·高一专题练习)解关于x 的不等式:2220()x ax a R ++>∈. 【答案】答案见解析.【详解】关于x 的不等式:2220()x ax a R ++>∈中,∆2242216a a =-⨯⨯=-,当4a >或4a 时,∆0>,对应的一元二次方程有两个实数根2164a a x ---=和2164a a x -+-=,且22161644a a a a ----+-<, 故不等式的解集为216{|4a a x x ---<或216}4a a x -+->;当4a =±时,∆0=,对应的一元二次方程有两个相等的实数根4ax =-,∴不等式的解集为{|}4ax x ≠-;当44a -<<时,∆0<, ∴不等式的解集为R ;综上,4a >或4a时,不等式的解集为216{|4a a x x ---<或216}4a a x -+->;4a =±时,不等式的解集为{|}4ax x ≠-;44a -<<时,不等式的解集为R .同类题型演练1.(2022·山东滨州·高二期中)已知一元二次函数2()f x x bx c =++,满足(0)2,(1)(1)=-=f f f .(1)求()f x 的解析式;(2)解关于x 的不等式()2≤f x ax . 【答案】(1)2()2f x x =+(2)解集见解析(1)解:函数2()f x x bx c =++,由(0)2f =,得2,c = 因为(1)(1)f f -=,所以1212,++=-+b b 解得0b =; 所以2()2f x x =+.(2)关于x 的不等式()2≤f x ax 可化为2220,-+≤x ax 因为248,∆=-a所以当0,∆<即22a -<<时,原不等式对应的方程无实数根, 又二次函数222y x ax =-+的图像开口向上,所以原不等式的解集为∅; 当0∆=,即2a =±时,原不等式对应的方程有两个相等的实数根, 2a =时,原不等式的解集为{}|2=x x ;2a =-时,原不等式的解集为{}|2=-x x ;当0,∆>即2a <-或2a >时,原不等式对应的有两个相等的实数根, 分别为22122,2,=--=+-x a a x a a 且12,x x <所以原不等式解集为{}22|22--≤≤+-x a a a a a .综上所知,当22a -<<时,原不等式的解集为∅; 当2a =时,原不等式的解集为{}|2=x x ; 当2a =-时,原不等式的解集为{}|2=-x x ;当2a <-或2a >时,原不等式解集为{}22|22--≤≤+-x a a a a a .类型三:一元二次不等式与对应函数、方程的关系典型例题例题1.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥【答案】A【详解】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A例题2.(2022·黑龙江·大庆实验中学高二期末)已知220x kx m -+<的解集为()1,t -(1t >-),则k m +的值为( ) A .1- B .2- C .1 D .2【答案】B【详解】解:因为220x kx m -+<的解集为()1,t -(1t >-), 所以1x =-为220x kx m -+=的根,所以2k m +=-. 故选:B例题3.(2022·黑龙江·大庆中学高二期末)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为( )A .1,6⎛⎫-∞- ⎪⎝⎭B .1,6⎛⎫-∞ ⎪⎝⎭C .1,6⎛⎫-+∞ ⎪⎝⎭D .1,6⎛⎫+∞ ⎪⎝⎭【答案】A【详解】不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭则根据对应方程的韦达定理得到:112311223ba a⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅= ⎪⎪⎝⎭⎩,解得122a b =-⎧⎨=-⎩,则1220x -->的解集为1,6⎛⎫-∞- ⎪⎝⎭故选:A同类题型演练1.(2022·浙江·高三专题练习)已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是( )A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞【答案】A【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-, 故选:A.2.(2022·全国·高一单元测试)若方程()200ax bx c a ++=<有唯一的实数根3,则不等式20ax bx c ++≥的解集为______.【答案】{}3x x =【详解】由已知得抛物线()20y ax bx c a =++<的开口向下,与x 轴交于点()3,0,故不等式20ax bx c ++≥的解集为{}3x x =. 故答案为:{}3x x =3.(2022·江苏·高一)若关于x 的不等式28210mx mx ++<的解集为{}71x x -<<-,则实数m 的值为______. 【答案】3【详解】由题可知,-7和-1是二次方程28210mx mx ++=的两个根, 故()21713m m=-⨯-⇒=.经检验满足题意 故答案为:3.类型四:二次不等式恒成立问题典型例题例题1.(2022·江西吉安·高二期末(文))若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0-D .()(),20,-∞-⋃+∞【答案】B【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立, 等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-. 故选:B .例题2.(2022·黑龙江·鸡东县第二中学高二期中)已知命题“[1,2]x ∃∈-,230x x a +>-”是假命题,则实数a 的取值范围是________. 【答案】(,4]-∞-【详解】由题意得,“[1,2]x ∀∈-,230x x a -+≤”是真命题, 则23a x x ≤-+对[1,2]x ∀∈-恒成立,在区间[]1,2-上,23x x -+的最小值为()()21314--+⨯-=-,所以()2min 34a x x ≤-+=-,即a 的取值范围是(,4]-∞-. 故答案为:(,4]-∞-例题3.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【答案】(1)(0,4) (2)()()(),00,22,-∞⋃⋃+∞(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.同类题型演练1.(多选)(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥【答案】ACD【详解】22x bx c x b ++≥+可整理为()220x b x c b +-+-≥,则()()2224440b c b b c ∆=---=-+≤,故A 正确. 当1b =,2c =时,满足0∆≤,即原不等式成立.B 错误;由0∆≤,得214b c ≥+,所以1c ≥.C 正确;2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭.D 正确.故选:ACD .2.(2022·江苏南京·高二期末)2R,10x x x λ∀∈-+>,则λ的取值范围为__________. 【答案】22λ-<<【详解】由题设240λ∆=-<,可得22λ-<<. 故答案为:22λ-<<3.(2022·四川广安·高一期末(理))已知不等式()21460a x x +--<的解集是{}13x x -<<.(1)求常数a 的值;(2)若关于x 的不等式240ax mx ++≥的解集为R ,求m 的取值范围. 【答案】(1)1a =(2)[]4,4-(1)因为不等式()21460a x x +--<的解集是{}13x x -<<.所以-1和3是方程()21460a x x +--=的解,把1x =-代入方程解得1a =.经验证满足题意(2)若关于x 的不等式240ax mx ++≥的解集为R ,即240x mx ++≥的解集为R , 所以2160m ∆=-≤,解得44m -≤≤,所以m 的取值范围是[]4,4-.4.(2022·四川·盐亭中学高二阶段练习(文))已知函数()()211f x x a x =-++.(1)若关于x 的不等式的()0f x <的解集是{}2x m x <<,求a ,m 的值; (2)设关于x 不等式的()0f x >在[]0,1上恒成立,求实数a 的取值范围. 【答案】(1)32a =,12m =(2)(),1-∞ (1)根据二次不等式的解集与系数的关系可得x m =和2x =是方程()2110x a x -++=的两根,故()221210a -+⨯+=,解得32a =,由韦达定理有21m =,解得12m =. 故32a =,12m = (2)()0f x >在[]0,1上恒成立,即()211x a x +>+恒成立.当0x =时满足题意,当(]0,1x ∈时,min 11x a x ⎛⎫+>+ ⎪⎝⎭恒成立,因为1122x x x x+≥⋅=,当且仅当1x =时取等号.故12a +<,即a的取值范围为(),1-∞.5.(2022·浙江·镇海中学高二期末)已知函数2()4f x x x b =-+,若()0f x <的解集为{}1|x x m <<.(1)求b ,m 的值;(2)当a 为何值时,2()2()10a b x a b x +++-<的解集为R ? 【答案】(1)3m =,3b = (2)(]4,3--(1)解:由题意可知,240x x b -+<的解集为{}1|x x m <<, 所以1x =与x m =为方程240x x b -+=的两根,141m m b +=⎧∴⎨⋅=⎩,33m b =⎧∴⎨=⎩; (2)解:()()2210a b x a b x +++-<的解集为R ,①当0a b +=时,10-<的解集为R ,30a ∴+=,3a ∴=-;②当0a b +<时,()20Δ4()40a b a b a b +<⎧⎨=+++<⎩,10a b ∴-<+<,130a ∴-<+<,43a ∴-<<-综上所述,a 的取值范围为(]4,3--.类型五:一元二次函数求最值(含参数)典型例题例题1.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值. 【答案】(1)[)1,17(2)221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,(3)答案见解析(1)当1a =时,()()222211f x x x x =++=++,函数在[)21-,-上单调递减,在()1,3-上单调递增, ()()min 11317x f x f ∴===-,,,∴函数()f x 在区间[)23-,上的值域是[)1,17;(2)当1a =-时,()()222211f x x x x =-+=-+,12t,函数()f x 在区间[]1t t +,上的最大值()()211f t t =-+; 12t ≥,函数()f x 在区间[]1t t +,上的最大值()211f t t +=+; ∴函数()f x 在区间[]1t t +,上的最大值221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,;(3)函数()()222222f x x ax x a a =++=++- 的对称轴为x a =-,①当5a -<-,即5a >时,函数y 在[]55-,上是增函数, 当5x =-时,函数y 取得最小值为2710a -;当5x =时,函数y 取得最大值为2710a +. ②当50a -≤<,即05a <≤时,当x a =-时,函数y 取得最小值为22-a ;当5x =时,函数y 取得最大值为2710a +.③当05a ≤≤-,即50a ≤≤-时,x =-a 时,函数y 取得最小值为22a -;当5x =-时,函数y 取得最大值为2710a -.④当5a >-,即5a <-时,函数y 在[]55-,上是减函数, 故当5x =-时,函数y 取得最大值为2710a -;当5x =时,函数y 取得最小值为2710a +. 综上,当5a >时,函数的最大值为2710a +,最小值为2710a -,当05a <≤时,函数的最大值为2710a +,最小值为22-a ,当50a ≤≤-时,函数的最大值为2710a -,最小值为22a -,当5a <-时,函数的最大值为2710a -,最小值为2710a + 例题2.(2022·黑龙江·大庆市东风中学高二期末)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+. (1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示). 【答案】(1)2()2f x x =+ (2)222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+, 所以2c =,且22(1)(1)()21a x b x c ax bx c x ++++-++=+,由22(1)(1)()21a x b x c ax bx c x ++++-++=+,得221ax b a x ++=+,所以221a b a =⎧⎨+=⎩,得10a b =⎧⎨=⎩,所以2()2f x x =+.(2)因为2()2f x x =+是图象的对称轴为直线0x =,且开口向上的二次函数, 当0t ≥时,2()2f x x =+在[,2]x t t ∈+上单调递增,则2min ()()2f x f t t ==+;当20t +≤,即2t ≤-时,2()2f x x =+在[,2]x t t ∈+上单调递减,则22min ()(2)(2)246f x f t t t t =+=++=++;当01t t <<+,即20t -<<时,min ()(0)2f x f ==, 综上222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩同类题型演练1.(2021·全国·高一专题练习)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值; 【答案】(1)2()221f x x x =--(2)2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩(1)解:因为函数2()2f x x mx n =++的图象过点(0,1)-, 所以1n =- 又(1)(2)f f -=, 所以1224m -+=-, 解得2m =-,所以2()221f x x x =--;(2)2213()221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[,2]x a a ∈+,当122a +≤时,即32a ≤-时,函数()f x 在[],2a a +上单调递减,所以2min [()](2)263f x f a a a =+=++,当122a a <<+时,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,所以min 13[()]22f x f ⎛⎫==- ⎪⎝⎭;当12a ≥时,函数()f x 在[],2a a +上单调递增, 所以2min [()]()221f x f a a a ==--.综上:2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩2.(2021·江西·兴国县将军中学高一期中)已知二次函数()2f x x bx c =++,且()()31f f -=,()00=f .(1)求函数()f x 的解析式;(2)若函数()()()422g x f x a x =-++,[]1,2x ∈,求函数()g x 的最小值. 【答案】(1)2()2f x x x =+;(2)2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩. (1)由(3)(1),(0)0f f f -==,则(0)0f c ==,又931b b -=+,解得2b =, ∴函数()f x 的解析式为2()2f x x x =+.(2)由(1)知,2()2(1)2g x x a x =-++, 其对称轴1x a =+,而[]1,2x ∈, 当11a +≤,即0a ≤时,()g x 在[]1,2上单调递增,min ()(1)12g x g a ==-, 当12a +≥,即1a ≥时,()g x 在[]1,2上单调递减,min ()(2)24g x g a ==-,当01a <<时,2min ()(1)21g x g a a a =+=--+,∴2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩. 类型六::根据不等式的解求参数典型例题例题1.(2021·福建三明·高一期中)已知函数2()2f x ax x c =++,若不等式()0f x <的解集是{|53}x x -<< (1)求()f x 的解析式;(2)若函数()f x 在区间[,2]m m +上的最小值为20,求实数m 的值. 【答案】(1)2()215f x x x =+- (2)-9或5(1)125,3x x =-=是对应方程ax 2+2x +c =0的两根.由韦达定理得12122211515x x a ac c x x a ⎧+=-=-⎪=⎧⎪∴⎨⎨=-⎩⎪==-⎪⎩,2()215f x x x ∴=+-;(2)22()215(1)16f x x x x =+-=+-,对称轴为1x =-,当21m +≤-,即3m ≤-时,2min ()(2)(3)16f x f m m =+=+-,由已知得:2(3)1620m +-=, 解得:m =3或-9,又3m ≤-,9m ∴=-,当1m ≥-时,2min ()()(1)16f x f m m ==+-,由已知得:2(1)1620m +-=, 解得:m =5或-7,又1m ≥-,5m ∴=,当12m m <-<+时,min ()1620f x =-≠,(舍去), 综上所述,m =-9或5.例题2.(2021·河南开封·高一阶段练习)已知函数()221f x x ax =-+,[]1,2x ∈,R a ∈.(1)若()0f x ≤恒成立,求a 的取值范围; (2)若()f x 最小值为4-,求a 的值. 【答案】(1)54a ≥; (2)94. (1)因为2()21f x x ax =-+开口向上,由[]1,2x ∈时,()0f x ≤恒成立,可得()max 0f x ≤,所以(1)0(2)0f f ≤⎧⎨≤⎩,即220540a a -≤⎧⎨-≤⎩,解得:54a ≥,所以a 的取值范围为54a ≥. (2)()221f x x ax =-+对称轴为x a =,开口向上,当1a ≤时,()()min 1224f x f a ==-=-,解得:3a =(舍);当12a <<时,2min ()()14f x f a a ==-+=-,5a =±(舍);当2a ≥时,min ()(2)544f x f a ==-=-,94a =; 所以a 的值为94.同类题型演练1.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【答案】(1)(1,1)(5,7)-⋃ (2)0,2t a ==或2,2t a ==(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.2.(2022·全国·高三专题练习(理))已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a的值.【答案】a=-1或a=2.【详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1.(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=125(舍去).(3)当a>1时,f(x)max=f(1)=a,∴a=2.综上可知,a=-1或a=2.。
新教材2023年高中数学 第2章 一元二次函数、方程和不等式 2
则不等式3xx--3a<0 即3xx--36<0 等价于 3(x-2)(x-3)<0,
不等式 3(x-2)(x-3)<0 的解集为{x|2<x<3},则不等式3xx--3a<0 的解
集为{x|2<x<3},
故答案为:{x|2<x<3}.
3.若x∈{x|1<x<2}时,不等式x2+mx+4<0恒成立,求m的取值范 围.
2.若不等式
ax2+5x+1≤0
的解集为x-12≤x≤-13
,则不等式
3x-a x-3 <0
的解集为______{_x|_2_<_x_<_3_}____.
[解析]
由不等式 ax2+5x+1≤0 的解集为x-12≤x≤-13
,
可知方程 ax2+5x+1=0 有两根 x1=-12,x2=-13,故 a=6,
因此4 1515-1<x≤2 3 3-1.
因为4 1515-1≈0.033=3.3%,2 3 3-1≈0.155=15.5%,所以该镇居 民的生活如果在 2005 年达到小康水平,那么他们的食品消费额的年增长 率就应在 3.3%到 15.5%的范围内取值,不包括 3.3%但包括 15.5%,也就 是说,平均每年的食品消费额增长率至多是 15.5%.
(1)x1,x2一正一负⇔x1x2<0. Δ≥0,
(2)x1>0,x2>0⇔x1+x2>0, x1x2>0.
Δ≥0, (3)x1<0,x2<0⇔x1+x2<0,
x1x2>0.
【对点练习】❸ (2021·陕西汉中高二期末)要使关于x的方程x2+(a2 - 1)x + a - 2 = 0 的 一 根 比 1 大 且 另 一 根 比 1 小 , 则 a 的 取 值 范 围 是 ____{_a_|_-__2_<_a_<_1_}_____.
高中数学第二章一元二次函数方程和不等式2基本不等式训练新人教A版必修第一册
基本不等式A 级——基础过关练1.下列不等式中,正确的是( ) A .a +4a≥4B .a 2+b 2≥4abC .ab ≥a +b2D .x 2+3x2≥2 3【答案】D 【解析】a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b2,故C 错;由基本不等式可知D 项正确.2.(2021年哈尔滨期末)“a >b >0”是“ab <a 2+b 22”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由a >b >0得a 2+b 2>2ab ;但由a 2+b 2>2ab 不能得到a >b >0.故“a >b >0”是“ab <a 2+b 22”的充分不必要条件.3.(2020年白银高一期中)当x ≥3时,x +4x -1的最小值为( ) A .5 B .4 C .112D .163【答案】A 【解析】x +4x -1=x -1+4x -1+1,令t =x -1,∵x ≥3,所以t ≥2,所以原式y =t +4t +1≥5,当且仅当t =2时等号成立,所以x +4x -1≥5.故选A .4.(多选)已知实数a ,b ,判断下列不等式中哪些一定是正确的( ) A .a +b2≥abB .a +1a≥2C .⎪⎪⎪⎪⎪⎪a b +ba ≥2 D .2(a 2+b 2)≥(a +b )2【答案】CD 【解析】当a <0,b <0时,a +b2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2,故C 正确;因为2(a 2+b 2)-(a +b )2=a 2+b 2-2ab =(a -b )2≥0,所以2(a 2+b 2)≥(a +b )2,故D 正确.故选CD .5.(2021年宝鸡模拟)设x >0,y >0且x +4y =40,则xy 的最大值是( ) A .10 B .40 C .100D .400【答案】C 【解析】因为x >0,y >0且x +4y =40,所以x +4y ≥2x ·4y =4xy ,当且仅当x =4y 时取“=”.所以4xy ≤40,得xy ≤100.6.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.【答案】160 【解析】设底面矩形的一边长为x ,由容器的容积为4 m 3,高为1 m ,得另一边长为4xm .记容器的总造价为y 元,则y =4×20+2⎝ ⎛⎭⎪⎫x +4x ×1×10=80+20⎝ ⎛⎭⎪⎫x +4x ≥80+20×2x ·4x =160,当且仅当x =4x,即x =2时,等号成立.因此当x =2时,y 取得最小值160,即容器的最低总造价为160元.7.3-aa +6(-6≤a ≤3)的最大值为________.【答案】92 【解析】因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本不等式可知3-aa +6≤3-a +a +62=92,当且仅当a =-32时等号成立.8.已知x >0,y >0,2x +3y =6,则xy 的最大值为________.【答案】32 【解析】因为x >0,y >0,2x +3y =6,所以xy =16(2x ·3y )≤16⎝ ⎛⎭⎪⎫2x +3y 22=16×⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y 且2x +3y =6,即x =32,y =1时等号成立,xy 取到最大值32.9.设a ,b ,c 都是正数,求证:b +c a +c +a b +a +bc ≥6. 证明:因为a >0,b >0,c >0,所以b a +a b≥2,c a +a c≥2,c b +b c≥2.所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥6,当且仅当b a =a b ,c a =a c ,c b =b c,即a =b =c 时等号成立.所以b +c a +c +a b +a +bc≥6. B 级——能力提升练10.若0<x <12,则x 1-4x 2的最大值为( )A .1B .12C .14D .18【答案】C 【解析】因为0<x <12,所以1-4x 2>0,所以x 1-4x 2=12×2x ×1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x =1-4x 2,即x =24时等号成立.故选C .11.已知x ≥52,则x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1【答案】D 【解析】x 2-4x +52x -4=x -22+12x -2=12⎣⎢⎡⎦⎥⎤x -2+1x -2.因为x ≥52,所以x -2>0,所以12⎣⎢⎡⎦⎥⎤x -2+1x -2≥12·2 x -2·1x -2=1,当且仅当x -2=1x -2,即x =3时取等号.故原式有最小值为1.12.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8【答案】B 【解析】不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +ax y +yx ≥1+a +2ax y ·y x=1+a +2a =(1+a )2≥9,所以a ≥2,即a ≥4,故正实数a 的最小值为4.13.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值是________.【答案】1 【解析】xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x +1y -2z=-1y2+2y=-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.14.已知a ,b 均为正数,且a +b +3=ab ,则ab 的最小值是________,a +b 的最小值是________.【答案】9 6 【解析】①由题意可得a +b =ab -3≥2ab ,所以ab ≥3,所以ab ≥9,当且仅当a =b =3时取等号,所以ab 的最小值为9;②a +b +3=ab ≤⎝ ⎛⎭⎪⎫a +b 22,所以a +b ≥6,当且仅当a =b =3时取等号,所以a +b 的最小值为6.15.(2021年株洲期中)某村计划建造一个室内面积为800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?解:设矩形温室的左侧边长为a m ,后侧边长为b m , 则ab =800.蔬菜的种植面积S =(a -4)(b -2)=808-2(a +2b ).S ≤808-42ab =648(m 2),当且仅当a =2b ,即a =40 m ,b =20 m 时,S 最大值=648 m 2.所以当矩形温室的左侧边长为40 m ,后侧边长为20 m 时,蔬菜的种植面积最大,最大种植面积为648 m 2.C 级——探究创新练16.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A .a +b2≥ab (a >b >0)B .a 2+b 2≥2ab (a >b >0) C .2aba +b≤ab (a >b >0) D .a +b2≤a 2+b 22(a >b >0)【答案】D 【解析】由图形可知OF =12AB =12(a +b ),OC =12(a +b )-b =12(a -b ).在Rt △OCF 中,由勾股定理得CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12a 2+b 2.因为CF ≥OF ,所以1 2a2+b2≥12(a+b)(a>b>0).故选D.。
高中数学第二章一元二次函数方程和不等式2.2基本不等式第1课时基本不等式课件新人教A版必修第一册
6.若 a,b 都是正数,则1+ba1+4ba的最小值为(
)
A.7 B.8 C.9 D.10
答案 C
解析 因为 a,b 都是正数,所以1+ba1+4ba=5+ba+4ba≥5+2
b 4a a·b
=9,当且仅当 b=2a 时取等号.
7.已知 x>0,y>0,且 x+y=8,则(1+x)(1+y)的最大值为( ) A.16 B.25 C.9 D.36
8.若 a>b>0,则下列不等式一定成立的是( )
A.a-b>1b-1a B.ca2<cb2
2ab C. ab>a+b
D.3aa++3bb>ab
答案 C
解析 逐一考查所给的选项:当 a=2,b=13时,a-b=53,1b-1a=52,不 满足 a-b>1b-1a,A 错误;当 c=0 时,ca2=cb2=0,不满足ca2<cb2,B 错误;
x+4x=--x+-4x≤-2
-x·-4x=-4,C 错误,故选 D.
知识点二 直接利用基本不等式求最值 5.设 x>0,y>0,且 x+y=18,则 xy 的最大值为( ) A.80 B.77 C.81 D.82
答案 C 解析 因为 x>0,y>0,所以x+2 y≥ xy,即 xy≤x+2 y2=81,当且仅当 x=y=9 时,等号成立,所以 xy 的最大值为 81.
3x·1x=3-2 3,当且仅当 3x=1x,
4.设 x>0,则 x+2x+2 1-32的最小值为(
)
A.0
1 B.2
C.1
3 D.2
答案 解析
A 因为 x>0,所以 x+12>0,所以 x+2x+2 1-32=x+12+x+1 12-
高考数学二轮复习 专题2 函数与导数 教案 文
高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。
(2021年整理)高三数学第二轮专题复习系列(2)--函数
(完整版)高三数学第二轮专题复习系列(2)--函数编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高三数学第二轮专题复习系列(2)--函数)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高三数学第二轮专题复习系列(2)--函数的全部内容。
(完整版)高三数学第二轮专题复习系列(2)--函数编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)高三数学第二轮专题复习系列(2)—-函数这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)高三数学第二轮专题复习系列(2)-—函数> 这篇文档的全部内容。
高三数学第二轮专题复习系列(2)——函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数.(4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。
2020高中数学 专题强化训练(二)一元二次函数、方程和不等式(含解析)第一册
专题强化训练(二) 一元二次函数、方程和不等式(建议用时:60分钟)[合格基础练]一、选择题1.设a<0,0<b<1,则A=a,B=ab,C=a2b的大小关系是( )A.A〉B>C B.A〉C〉BC.C>B〉A D.C〉A>BC[可以用特殊值法:取a=-1,b=错误!。
∴A=-1,B=-错误!,C=错误!,∴C>B〉A.]2.若错误!<错误!<0,则下列不等式不正确的是( )A.a+b<ab B。
错误!+错误!>0C.ab<b2D.a2>b2D[由错误!<错误!<0,可得b<a<0,故选D。
]3.已知x≥错误!,则y=错误!有( )A.最大值错误!B.最小值错误!C.最大值1 D.最小值1D[y=错误!=错误!+错误!.∵x≥错误!,∴x-2>0,∴y≥2错误!=1。
当且仅当错误!=错误!,即x=3时,取等号.]4.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于( )A.-3 B.1 C.-1 D.3A[由题意:A={x|-1<x<3},B={x|-3<x<2}.A∩B={x|-1<x<2},由根与系数的关系可知:a=-1,b=-2,∴a+b=-3。
]5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为错误!天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A.60件B.80件C.100件D.120件B[设每件产品的平均费用为y元,由题意得y=错误!+错误!≥2错误!=20.当且仅当错误!=错误!(x〉0),即x=80时“=”成立,故选B.]二、填空题6.不等式-3x2-x+10〈0的解集为________.错误![-3x2-x+10<0,-(3x-5)(x+2)〈0⇒x〉错误!或x〈-2,此不等式的解集为错误!.]7.不等式ax2+4x+a>1-2x2对一切x∈R恒成立,则实数a的取值范围是________.a>2 [不等式ax2+4x+a>1-2x2对一切x∈R恒成立,即(a+2)x2+4x+a-1>0对一切x∈R恒成立.若a+2=0,显然不成立;若a+2≠0,则错误!⇔错误!⇔{a>-2a<-3或a〉2⇔a〉2。
高中数学专题复习(2)充要条件
高中数学专题复习(2)充要条件一、高考要求:充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.重难点归纳:(1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).二、题例示范:例1.已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0:*∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m ∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9,∴实数m 的取值范围是[9,+∞).例2.已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件.命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p 若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件.当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1:(p ≠0,p ≠1) 211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1.例3.已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4.设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b ) 又|b |<4⇒4+b >0⇒2|a |<4+b(2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线.∴方程f (x )=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.例4.写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x 、y 都是奇数,则x +y 是偶数;(2)若xy =0,则x =0或y =0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x 、y 都是奇数,则x +y 不是偶数,为假命题.原命题的否命题:若x 、y 不都是奇数,则x +y 不是偶数,是假命题.(2)命题的否定:xy =0则x ≠0且y ≠0,为假命题.原命题的否命题:若xy ≠0,则x ≠0且y ≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题.原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.例5.有A 、B 、C 三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A 盒子上的纸条写的是“苹果在此盒内”,B 盒子上的纸条写的是“苹果不在此盒内”,C 盒子上的纸条写的是“苹果不在A 盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A 盒内,则A 、B 两个盒子上的纸条写的为真,不合题意.若苹果在B 盒内,则A 、B 两个盒子上的纸条写的为假,C 盒子上的纸条写的为真,符合题意,即苹果在B 盒内.同样,若苹果在C 盒内,则B 、C 两盒子上的纸条写的为真,不合题意.综上,苹果在B 盒内.三、巩固练习:1.函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A .ab =0 B.a +b =0 C .a =b .D .a 2+b 2=02.“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也不是必要条件3.a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的___.4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.5.设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.已知数列{a n }、{b n }满足:b n =nna a a n +++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)四、参考答案:1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b )=-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )=(-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件.答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a ,结论是q :⎩⎨⎧>>11βα (注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p (2)为证明p q ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立. 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件.6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.1212(12)[1223(1)]1231n n a a na a n d n n b nn n +++++++⋅+⋅++-∴==+++++++12(1)3a n d =+-⋅ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1).32d =32d 为常数. 故{b n }是等差数列,公差为32d . ②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′∵b n (1+2+…+n )=a 1+2a 2+…+na n① b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n② ①-②得:na n =2)1(2)1(--+n n b n n n b n -1 111111113[(1)][(2)](1)22222n n n n n n n a b b b n d b n d b n d -+-+-'''=-=+--+-=+-⋅ 从而得a n +1-a n =23d ′为常数,故{a n }是等差数列. 综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点, 所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解. 消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有2(1)440(0)40(3)93(1)401032m f f m m ⎧∆=+-⨯>⎪=≥⎪⎪⎨=-++≥⎪+⎪<<⎪⎩ 1033m ⇒<≤ ②充分性:当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x ∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件是3<m ≤310. 8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2.则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1,根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p .反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.课前后备注:1.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴q p . 答案:A2..“cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件C.充分必要条件D.既不充分又不必要条件 解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3.在△ABC 中,“A >B ”是“cos A <cos B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n -1,a n =(p -1)·p n -1,1-n n a a =p (n ≥2),∴{a n}是等比数列.。
专题02 一元二次函数、方程与不等式(解析版)备考2025高考数学一轮知识清单
专题02一元二次函数、方程与不等式(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1等式性质与不等式性质1、等式性质性质文字表述性质内容注意1对称性a b b a =⇔=可逆2传递性,a b b c a c ==⇒=同向3可加、减性a b a c b c =⇔±=±可逆4可乘性a b ac bc=⇒=同向5可除性,0a b a b c c c=≠⇒=同向2、不等式性质性质别名性质内容注意1对称性a >b ⇔b <a可逆2传递性a >b ,b >c ⇒a >c 同向3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6正数同向可乘性a >b >0,c >d >0⇒ac >bd 同向7正数乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点2一元二次不等式的解集1、重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式:()2222()()ab a b a b R +≥+∈,22a b +≤(1)基本不等式成立的条件:0,0a b >>(2)等号成立的条件:当且仅当a b =时取等号.(3)算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为2a b +,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.3、利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)重难点01利用基本不等式求最值的方法法一、直接法:条件和问题间存在基本不等式的关系【典例1】(2024·重庆·模拟预测)若实数a ,b 满足2ab =,则222a b +的最小值为()A .2B .22C .4D .42【答案】D【解析】2222222222242a b a b +≥=⨯=当且仅当222a b =时,等号成立.故选:D.【典例2】(2024·四川成都·三模)若正实数,a b 满足22a b m +=,则a b +的最大值为()A 2mB 2mC .2mD .2m【答案】A【解析】因为22a b m +=,0,0a b >>,所以2222a b a b ++≤,即2222a b a b m +⋅+当且仅当2ma b ==时等号成立,所以a b +2m 故选:A.法二、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
函数方程专题之函数与数列(2)-沪教版(上海)高中数学2019-2020学年高三数学二轮复习教案(教
沪教版(上海)高中数学2019-2020学年度高三数学二轮复习函数方程专题之 函数与数列②教学目标 1.理解并能知道数列是一个定义域在N *上的函数;2.掌握好等差数列的相关函数性质. 知识梳理 1.数列的定义:数列可以看作以正整数集(或它的有限子集)为定义域的函数()n a f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值;2.等差数列的通项公式:11(1)()n a a n d dn a d n N *=+-=+-∈,不难看出: 当0d =,则等差数列为一个常数列;当0d ≠,则等差数列的通项公式可以看作是一个一次函数.3.等差数列的前n 项和公式:2111()(1)()()2222n n n a a n n d d S a n d n a n n N *+-==+=+-∈. 当0d =,则等差数列前n 项和为一次函数(10a ≠);当0d ≠,则等差数列前n 项和为过原点的二次函数,开口方向由d 的符号决定. 典例精讲 例1.(★★)设数列{}n a 的通项公式是1413--=n n a n ,则该数列中最最大的项是第__________项,最小的项是第__________项.解:1314141314131141414n a n n n ===---, 由函数图象可知:最大的项是第4项,最小的项是第3项.例2.(★★★)已知数列2n a n kn =-为递增数列,则k 的取值范围是__________.解:结合函数图象可知:对称轴3(,)22k n =∈-∞,则3k <. 例3.(★★★)已知数列{}n a 满足1116,2n n a a a n +=-=,则n a n的最小值为__________. 解:由题意得:216n a n n =-+,16121617n a n n n∴=+-≥-=, 当且仅当16n n =,即4n =时等号成立.课堂检测1.(★★★)公差为d ,各项均为正整数的等差数列中,若11,51n a a ==,则n d +的最小值为__________. 解:150(1)1n a a n d d n =+-⇒=-,则505011250111n d n n n n +=+=-++≥+--, 但n N *∈,∴能成立,所以根据分析得:当115n d =⎧⎨=⎩或610n d =⎧⎨=⎩时,原式有最小值16. 2.(★★★)已知数列{}n a 的通项公式为9(1)()10n n a n =+,是否存在自然数m ,使对于一切n N *∈,n m a a ≤恒成立?若存在,求出m 的值;若不存在,说明理由.解:本题只要求出数列n a 的最大值即可,所以根据1198n n n n a a n a a n -+≥≤⎧⎧⇒⎨⎨≥≥⎩⎩,所以8m =或9m =时满足题意.3.(★★★)已知等差数列{}n a 中,120032004200320040,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大自然数n 是__________.解:由题意得:2003140054005200414007400720032004140064006000000000a a a S a a a S a a a a S >+>>⎧⎧⎧⎪⎪⎪<⇒+<⇒<⎨⎨⎨⎪⎪⎪+>+>>⎩⎩⎩,所以4006n =. 4.(★★★★)已知函数121()(0),,4x f x m x x R m =>∈+,当121x x +=时,121()()2f x f x +=. (1) 求()f x 的解析式;(2) 数列{}n a ,若121(0)()()()()n n n a f f f f f n n n n -=+++++,求n a ; (3) 对任意的自然数n N *∈,11n n n n a a a a ++<恒成立,求正实数a 的取值范围.解:(1)令1212x x ==,则有111222m m +=++,得2m =.1()42x f x =+; (2)0121()()()()()n n n a f f f f f n n n n n-=+++++ ① 1210()()()()()n n n n a f f f f f n n n n n--=+++++ ② 1(1)()4n a n n N *=+∈; (3)由于11n n n n a a a a ++<对任意的自然数n N *∈成立, 又0a >,即111a n >++,对一切n N *∈都成立, 而1331,122a n +≤∴>+. 回顾总结1.数列可以看作是_______________的一个函数2.等差数列的通项公式可以看作_______________.3.等差数列的前n 项和公式可以看作_______________.以正整数集(或它的有限子集)为定义域;一次函数;经过原点的二次函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数方程专题(二)
1、函数的零点所在区间是()
A.B.C.D.
2、在下列区间中,函数的零点所在的区间为()
A.B.C.D.
3、若,则函数的两个零点分别位于区间()
A、和内
B、和内
C、和内
D、和内
4、7.若,则函数在区间上零点的个数为
(A)0个(B)1个(C)2个(D)3个
5、函数的零点所在区间为
A. B. C. D.
6、已知符号表示不超过的最大整数,若函数有且仅有3个零点,则的取值范围是
A. B.C. D.
7、函数有两个不同的零点,则实数的取值范围是
A. B. C. D.
8、已知函数,那么在下列区间中含有函数零点的是
(A)(B)(C)(D)
9、函数有两个不同的零点,则实数的取值范围是
A. B. C. D.
10、设定义在R上的函数,若关于的方程有3个不同的实数解,则等于()
A.3
B.6
C.-b-1
D.c
11、函数的零点个数为............................................................................()A.3 B.2 C.1 D.0
12、若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是( )A. (-
2,2) B. [-2,2] C. (-∞,-1) D. (1,+∞)
13、函数的零点个数为( )
A. 0
B. 1
C. 2
D. 3
14、设a是函数的零点,若,则的值满足()
A. B. C. D.的符号不确定
15、已知是单调函数的一个零点,且则()....
16、已知是函数的两个零点,则
(A)(B)(C)(D)
17、设函数,若,,则函数的零点的个数是()
A.0 B.1 C.2 D.3
18、若方程有两个实数解,则的取值范围是()
A B C D
19、设,用二分法求方程内近似解的过程中得
,则方程的根落在区间
A. B. C. D. 不能确定
20、已知函数,若关于x的方程恰有5个不同的实数解,则a的取值范围是()
A.(0,1)
B.(0,2)
C.(1,2)
D.(0,3)
21、已知定义在R上的函数满足,当-1<x≤1时,,若函数
至少有5个零点,则的取值范围是()
A.(1,5) B.( 0,)∪[ 5,+∞) C.(0,]∪ [5,+∞) D.[,1)∪(1,5]
22、已知是的一个零点,,则()
A. B. C. D.
23、函数的零点所在区间为()
A、(0,7)
B、(6,8)
C、(8,10)
D、(9,+∞)
24、已知函数f(x)=()x-log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)( ) A.恒为正值B.等于0 C.恒为负值D.不大于0
25、若函数f(x)在(1,2)内有一个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )
A.5次 B.6次 C.7次 D.8次
26、设函数f(x)=x-ln x(x>0),则y=f(x)( )
A.在区间(,1),(1,e)内均有零点B.在区间(,1),(1,e)内均无零点
C.在区间(,1)内有零点,在区间(1,e)内无零点D.在区间(,1)内无零点,在区间(1,e)内有零点
27、方程4x-3×2x+2=0的根的个数是( )
A.0 B.1 C.2 D.3
28、下列函数图象与x轴均有公共点,其中能用二分法求零点的
是 ( )
29、函数在区间上的图像是一条连续不断的曲线,并且有,则方程
在区间上()
(A)至少有一个实数根 (B)至多有一个实根 (C)没有实根 (D) 必有唯一的实根
30、在这三个函数中,当时,
使恒成立的函数的个数是()
A个 B个 C个 D个
31、若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:
f(1)=-2 f(1.5)=0.625
f(1.25)=-
0.984
f(1.375)=-0.260
f(1.438)=0.165 f(1.406 5)=-0.052
那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)
为 ( )
A.1.2 B.1.3 C.1.4 D.1.5
32、下列函数图像与x轴均有交点,其中不能用二分法求图中函数零点的是 ( )
33、若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是A.f(x)=4x-1 B.f(x)=(x-1)2 C.f(x)=e x-1 D.f(x)=ln(x-)
34、在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )
A.0.68 B.0.72 C.0.7 D.0.6
35、用二分法求函数y=f(x)在区间(2,4)上的唯一零点的近似值时,验证f(2)·f(4)<0,取区间(2,4)的中点x1==3,计算得f(2)·f(x1)<0,则此时零点x0所在的区间是 ( ) A.(2,4) B.(2,3) C.(3,4) D.无法确定
36、下列关于函数f(x),x∈[a,b]的命题中,正确的是( )
A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点
B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值
C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点
D.用二分法求方程的根时,得到的都是近似解
37、已知函数f(x)=x2+2x+a没有零点,则实数a的取值范围是( )
A.a<1 B.a>1 C.a≥1 D.a≤1
38、函数f(x)=xcosx²在区间[0,4]上的零点个数为
A.4
B.5
C.6
D.7
39、若函数,则函数在,上的不同零点个数为
A.2 B.3 C.4 D.5
40、已知函数,且关于的方程有且只有一个实根,则实数
的范围是()
A. B. C. D.
参考答案
一、选择题
1A2C3、A4、B 5、C 6、A 7、B 8、B 9、B 10、B 11、B 12、A 13、C 14、B15、B 16、B 17、C
【解析】因为,,所以且,解得,即。
即当时,由得,即
,解得或。
当时,由得,解得,不成立,舍去。
所以函数的零点个数为2个,选C.
18、 A 19、B 20、A 21、B 22、C 23、B 24、解析:设f1(x)=()x,f2(x)=log2x,画出f1(x)和f2(x)的图象(如图),易知当0<x1<x0时,f1(x1)>f2(x1),所以f(x1)=f1(x1)-f2(x1)>0,即f(x1)的值恒为正值.
答案:A
25、解析:设对区间(1,2)至少二等分n次,此时区间长为1,第1次二等分
后区间长为,第2次二等分后区间长为,第3次二等分后区间长为
,…,第n次二等分后区间长为.依题意得<0.01,∴n>log2100.由于6<log
100<7,∴n≥7,即n=7为所求.
2
答案:C26、解析:∵函数f′(x)=-,答案:D
27、[答案] C 28、C 29、A 30、B 31、解:C
32、
答案:B33、答案:A
34、解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,
0.72].又0.68=(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72]
上,且该区间的左、右端点精确到0.1所取的近似值都是0.7,所以0.7就是所求函数的一个正实数零点的近似值.
答案:C 35答案:B 36、答案:A37、答案:B38、C
39、【解析】注意分段.,,
当时,,则上恒成立.故在上为单调递增函数,又,,故在上有1个根.同理可分析得在,上各有1个根,在上无根.综上可
40、【答案】D。