奥数四年级行程问题

合集下载

四年级奥数详解答案 第16讲 行程问题

四年级奥数详解答案 第16讲 行程问题

四年级奥数详解答案第16讲第十六讲行程问题一、知识概要关于物体运动的速度、时间和路程(距离三者之间的关系问题就是行程问题。

行程问题是小学阶段一个重点知识,本讲只汲及到火车过桥、钻越隧道等常见的行程问题,讲述的重点应放在五年级或者六年级。

行程问题最基本的数量关系式是:速度×时间=路程二、典型题目精讲1、客车以每秒21m的速度行驶,另一列货车以每秒15m的速度从对面开过来,司机观察此车从身边经过共用10秒钟,试问:货车的车长是多少米?解:分析,如图,两车相遇时为路程的起,客车头和货车尾离开为路程的终点,很明显,货车的车长是所求的路程,且这段路程是两列车同时行驶的,所以,用“速度和×时间即得路程”。

(21+15)×10=360(m)答:货车的车长是360(m)2、火车通过一条长1460m的桥用了70秒,穿越1940m隧道用了90秒,求火车的车长和车速。

解:分析,如图,这类问题首先要明白,这里的“路程”二桥长(或隧道长)+车长”。

因为为桥的一头为起点,另一头与火车头相接,火车尾就是终点。

①车速:(1940-1460)÷(90-7)=24(m/秒)②车长:24×70-1460=220(m)答:火车的车长是220,车速为24m/秒.3、一列火车有18节车厢,每节车厢长45m,车厢与车厢之间相隔1m。

这列火车以30m/秒的速度通过一座长103m的大桥,需要多少分钟?解:分析:①18节车厢共长18×45=810(m)②每个间隔1m,共(18-1)×1=17(m)③车长+桥长=810+17+103=930(m)故:需要时间为[45×18+(18-1)×1+103]÷30=31(分)答:需要31分钟。

4、在铁路复线上两列火车同向而行,甲车车长172m,车速为每秒24m,乙车车长128m,车速为每秒16m。

现乙车在前,甲车在后,两车相距180m,甲车完全超过乙车要行多少路程?解:分析,这是个追及问题,追及的路程=甲车长+乙车长+两车距离。

奥数四年级行程问题

奥数四年级行程问题

第三部分行程问题第一讲行程基础【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。

行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。

行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度⨯时间,时间=距离÷速度,速度=距离÷时间。

在这三个量中,已知两个量,即可求出第三个量。

掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。

【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

四年级奥数:行程问题(一)

四年级奥数:行程问题(一)
【解析】因为提前 9 分钟相遇,说明李大爷出门时,小明已经比平时多走了两人 9 分钟合走的 路,即多走了(60+40)×9=900(米),
所以小明比平时早出门 900÷60=15(分).
3、甲、乙两人环绕周长是 400 米的跑道跑步,如果两人从同一地点出发背向而行,那么经过 2 分钟相遇;如果两人从同一地点出发同向而行,那么经过 20 分钟两人相遇,已知甲的速度比乙快, 求甲、乙两人跑步的速度各是多少? 【解析】 由两人同一地点出发背向而行,经过 2 分钟相遇知两人每分钟共行 400÷2=200(米) 由两人从同一地点出发同向而行,经过 20 分钟相遇知甲每分钟比乙多走 400÷20=20(米) 根据和差问题的解法可知甲的速度是每分钟(200+20)÷2=110(米) 乙的速度为每分钟 110-20=90(米).
解:(1)从家到学校的距离的 2 倍:1400×2=2800(米) (2)从出发到相遇所需的时间:2800÷(200+80)=10(分) (3)相遇处到学校的距离:1400-80×10=600(米)
答:从出发到相遇,妹妹走了 10 分钟,相遇处离学校有 600 米.
【巩固拓展】 1、甲车每小时行 40 千米,乙车每小时行 60 千米.两车分别从 A,B 两地同时出发,相向而行, 相遇后 3 小时,甲车到达 B 地.求 A,B 两地的距离. 【解析】先画示意图如下:
例1
如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行.他 们在离A点100米的C点第一次相遇.亮亮到达B点后返回A点,明明到达A点后返回B点,两人在 离B点80米的D点第二次相遇.整个过程中,两人各自的速度都保持不变.求A、B间的距离.
【解析】 第一次相遇,两人共走了 1 个全程,其中亮亮走了 100 米; 从开始到第二次相遇,两人共走了 3 个全程,则亮亮走了 100×3=300(米),亮亮共走 的路程是一个全程多 80 米,所以 A、B 间的距离是:300-80=220(米)

小学奥数行程问题50道详解

小学奥数行程问题50道详解

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

四年级奥数行程问题及答案【三篇】

四年级奥数行程问题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。

【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。

求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。

【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。

【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。

⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。

(完整版)小学奥数行程问题汇总

(完整版)小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?
乙每小时走4千米
甲、乙1小时共走多 少千米?走完这段路程 甲、乙一共需要几小时?
思维发散
1、A、B两地相距540千米。一列客车与一列货车分别从 A、B两地相向而行。客车每小时行120千米,货车每小 时行90千米,已知客车出发1小时后,货车才出发求货车 出发几小时后,两车相遇?
120千米
(540-120)千米
330÷(60+50) =330÷110 =3(小时)
80×3=240(千米)
骑摩托车的人与甲 乙两人是同时出发、同 时停止吗?那么骑摩托 车的人行驶的时间和甲、 乙两人的相遇时间有什 么关系?
答:摩托车行驶了240千米。
“中间往返”这类题目的核心就是往返行驶的时间与相遇时间相等。
思维发散
1、甲、乙两队同时从相隔50千米的两地出发,相向而行。 甲队每小时行15千米,乙队每小时行10千米,同时,一个 通讯员每小时行20千米,在两车队中间往返联络,问两队 相遇时,通讯员行了多少千米?
50÷(15+10)×20 =50÷25×20 =2×20 =40(千米)
答:通讯员行了多少千米。
通讯员行驶的时
间与两车队的相遇 时间有什么关系?
2、A、B两地相距648千米。甲、乙两列火车从A、B两地相 对开出,甲列火车每小时行驶60千米,乙列火车每小时行驶 48千米。乙出发时,从车厢里飞出一只鸽子,这只鸽子以每 小时80千米的速度在两列火车之间往返飞行(遇到一列车后 马上返回,向另一列车飞去)。当两列车相遇时,鸽子飞行 了多少千米?

小学奥数四年级行程问题

小学奥数四年级行程问题

小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。

4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。

行程问题,四年级奥数

行程问题,四年级奥数

行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。

行程问题主要包括相遇问题、相背问题的追及问题。

例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。

两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。

甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。

从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。

哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。

)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。

问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。

两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。

甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。

四年级奥数——相遇、追及

四年级奥数——相遇、追及

四年级奥数——行程问题相遇问题1、南北两村相距90千米,甲从南村出发,他要在9分钟内赶到北村,那他每分钟至少要行多少千米?2、王叔叔因急事,以每小时78千米的车速从甲地赶往乙地,3小时后,他发现时间足够,又以每小时62千米的速度行驶了2小时,赶到了乙地,甲乙两地相距多少千米?3、小飞和小华同时从相距5320米的两地相向而行,两人行了40分钟后还相距1520米,问两人再走几分钟才能相遇?4、甲乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?5、小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发,相向而行,3小时后相遇。

小军从甲地到乙地要12小时,小明从乙地到甲地要几小时?6、甲、乙两车同时从东西两地相对开出,6小时相遇。

如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。

东西两地相距多少千米?7、A、B两车同时从甲、乙两站相对开出,两车第一次在距甲站50千米处相遇。

相遇后继续前进,各自到达乙、甲两站后立即返回,第二次在距乙站20千米处相遇。

甲、乙两站相距多少千米?追及问题1、甲从A出发,每小时12千米,2小时后,乙也从A地相背而行,每小时16千米,再经过4小时他们同时停下来,这时他们相距多远?2、甲、乙相背而行,甲每小时比乙多行2千米,8小时后两人相隔112千米,求甲、乙各自的速度?3、快车和慢车同时从南北两地相对开出,已知快车每小时行60千米,经过3小时后,快车已驶过中点25千米。

这时与慢车还相距6千米。

慢车每小时行多少千米?4、小华和小亮的家相距410米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。

3分钟后两人可能相距多少米?5、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙的后面250米,乙追上需要多少分钟?6、甲、乙二人同时从A地到B地,甲每小时行10千米,乙每小时行8千米,甲行至15千米处又回去取东西,因此比乙迟1小时到B地。

四年级奥数行程问题

四年级奥数行程问题

四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。

甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。

如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。

一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。

中午放学时,小光跑不回家,只用了10分钟。

小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。

汽车每小时行80千米,客车每小时比汽车少行5千米。

6小时候,两车在途中相遇。

两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。

经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。

甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。

这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。

3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。

几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。

兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。

四年级数学奥数培优讲义-专题08行程问题(含解析)

四年级数学奥数培优讲义-专题08行程问题(含解析)

专题08行程问题1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米?3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车?4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?19.A、B两地相距960km。

小学四年级奥数思维训练-行程问题

小学四年级奥数思维训练-行程问题

小学四年级奥数思维训练-行程问题行程问题(一)专题简析:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析:这是一道相遇问题。

两人每小时共走6+4=10千米(这是他们的速度和)。

求两人几小时相遇,就是求20千米里面有几个1 0千米。

因此,两人20÷(6+4)=2小时后相遇。

试一试1:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析:“人走狗跑,人相遇狗停”两人相遇的时间就是狗跑的时间。

相遇时间=2000÷(110+90)=10分钟狗共行:500×10=5000米。

试一试2:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络.两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析:这是一道相背问题。

解答相背问题同相遇问题一样。

甲乙两人共行54-18=36千米,每小时共行7+5=12千米。

要求几小时能行完36千米,就是求36千米里面有几个12千米。

所以,36÷12=3小时。

试一试3:东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

四年级奥数第十七讲行程问题

四年级奥数第十七讲行程问题

第十七讲行程问题【芝麻开门】为北上抗日,红军战士进行了二万五千里长征,经过漫长跋涉,终于到达了陕北抗日前线,展开了对日军的抗击,取得了抗战的伟大胜利。

抗日战争胜利后,有关专家对红军二万五千里长征进行了回顾,在当时艰苦的条件下,没有吃,没有穿,英勇的红军战士仍然每天坚持行军50里。

同学们,如果按一年365天计算,你知道红军战士走了多长时间才到达陕北的吗?【范例点播】要点1 相遇问题,相遇路程二速度和×相遇时间例1. 甲、乙两车分别从两地同时相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇时,甲车比乙车少行80千米。

两地相距多少千米?甲车每小时行40千米,乙车每小时行60千米,甲车每小时比乙车少行20千米。

相遇时甲车比乙车少行80千米,80千米中有多少个20千米就是行了多少小时,即相遇时间。

解:80÷(60—40)=4(小时)(60+40)×4=400(千米)答:两地相距400千米。

要点2 相背问题,速度和二行走路程÷行走时间例2. 甲、乙两地相距300米,小明和小军各从甲、乙两地相背而行,7分钟后两人相距860米。

小明每分钟走37米,小军每分钟走多少米?小明和小军不是从同一地点相背而行的,他们7分钟一共走的距离是:860—300=560(米)。

两人的速度和=行走路程÷行走时间=560÷7=80(米),所以,小军的速度=速度和—小明的速度=80—37=43(米)。

解:(860—300)÷7—37=560÷7—37=80—37=43(米)答:小军每分钟走43米。

要点3 追及问题,追及时间:路程差÷速度差例3. 人民路小学有一条200米长的环形跑道,芳芳和丽丽同时从起点起跑,芳芳每秒跑6米,丽丽每秒跑4米。

当芳芳第一次追上丽丽时两人各跑了多少米?第二次追上丽丽时两人各跑了多少圈?环形跑道说明是一个封闭路上的追及问题。

四年级奥数:行程问题

四年级奥数:行程问题

四年级奥数:行程问题四年级奥数:行程问题奥数:行程问题145名学生要到离学校30千米的郊外劳动。

学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米。

学生步行的速度是每小时4千米。

为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?[解答]:45人分三组出发,每组15人。

为了尽快到达,三组必须同时到达。

每一组都是步行了一些路程,坐车行了一些路程。

由于同时到达,所以每一组坐车的时间相等,当然步行的时间也相等。

汽车速度是步行速度的15倍,所以如果时间相同,汽车行的路程是人步行路程的15倍。

我们设第二组第一条红色线段的长度为1份。

可得出第一条蓝色线段=8份,当然,第3条,第5条蓝色线段的长度也等于8份。

还可以得到第三组的红色线段=2份,当然,第1组的红色线段也等于2份。

所以全程是8+2=10份,8份路程坐车,2份路程步行。

每份长度为30÷10=3公里。

所以坐车时间为3×8÷60=0.4小时步行时间为3×2÷4=1.5小时一共需要0.4+1.5=1.9小时。

四年级奥数:行程问题2专题简析:在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。

船在水中漂流,不借助外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。

行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。

由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

四年级奥数专题-行程问题

四年级奥数专题-行程问题

四年级奥数专题-行程问题行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程二速度义时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米, 乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米, 以后两人的距离每小时缩短6 + 4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20・(6 + 4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2, 一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000 + (110 + 90)=10分钟。

四年级奥数之行程问题

四年级奥数之行程问题

行程问题班级姓名一、行程问题的类1.相遇问题——同时出发,相向而行,最后相遇;2.背向问题——同一地点,同时出发;3.追击问题——同时行走,同向而行,最后追上。

二、知识要点:1、相遇问题(或背向问题)AB两地的距离=甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离=甲的速度×时间-乙的速度×时间= (甲的速度-乙的速度)×追击的时间相遇问题【经典例题】例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。

求该车的平均速度。

2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。

行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。

行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度⨯时间,时间=距离÷速度,速度=距离÷时间。

在这三个量中,已知两个量,即可求出第三个量。

掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。

【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。

.【例2】(难度等级※)甲、乙两地相距100千米。

下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【分析与解】马车从甲地到乙地需要100÷10=10小时,在汽车出发时,马车已经走了9-3=6(小时)。

依题意,汽车必须在10-6=4小时内到达乙地,其每小时最少要行驶100÷4=25(千米).【例3】(难度等级※※)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)【分析与解】原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。

这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。

总路程就是=100×30=3000米。

【例4】(难度等级※)韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【分析与解】原来韩雪到校所用的时间为20分钟,速度为:480÷20=24(米/分),现在每分钟比原来多走16米,即现在的速度为24+16=40(米/分),那么现在上学所用的时间为:480÷40=12(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【例5】(难度等级※※)王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】假设甲地到乙地的路程为300,那么按时的往返一次需时间300÷60×2=10(小时),现在从甲到乙花费了时间300÷50=6(小时),所以从乙地返回到甲地时所需的时间只能是10-6=4(小时).即如果他想按时返回甲地,他应以300÷4=75(千米/时)的速度往回开.【例6】(难度等级※※)刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?【分析与解】这道题没有出发时间,没有学校到韩丁家的距离,也就是说既没有时间又没有路程,似乎无法求速度.这就需要通过已知条件,求出时间和路程.假设有A,B两人同时从学校出发到韩丁家,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到.B到韩丁家时,A距韩丁家还有10×2=20(千米),这20千米是B从学校到韩丁家这段时间B比A多行的路程.因为B比A每小时多行15-10=5(千米),所以B从学校到韩丁家所用的时间是20÷(15-10)=4(时).由此知,A,B是上午7点出发的,学校离韩丁家的距离是15×4=60(千米).刘老师要想中午12点到,即想(12-7=)5时行60千米,刘老师骑车的速度应为60÷(12-7)=12(千米/时).【例7】(难度等级※※※)小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的2倍,如果上山用了3时50分,那么下山用了多少时间?【分析与解】上山用了3时50分,即60×3+50=230(分),由230÷(30+10)=5……30,得到上山休息了5次,走了230-10×5=180(分).因为下山的速度是上山的2倍,所以下山走了180÷2=90(分).由90÷30=3知,下山途中休息了2次,所以下山共用90+5×2=100(分)=1时40分.【例8】(难度等级※※※)老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?【分析与解】设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x÷36)=30(千米/时),正好是平地的速度,所以行AD 总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).【例9】(难度等级※※※)汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。

求该车的平均速度。

【分析与解】想求汽车的平均速度=汽车行驶的全程÷总时间,在这道题目中如果我们知道汽车行驶的全程,进而就能求出总时间,那么问题就迎刃而解了。

在此我们不妨采用“特殊值”法,这是奥数里面非常重要的一种思想,在很多题目中都有应用。

①把甲、乙两地的距离视为1千米,总时间为:1÷72+1÷48,平均速度=2÷(1÷72+1÷48)=57.6千米/时。

②我们发现①中的取值在计算过程中不太方便,我们可不可以找到一个比较好计算的数呢?在此我们可以把甲、乙两地的距离视为[72,48]=144千米,这样计算时间时就好计算一些,平均速度=144×2÷(144÷72+144÷48)=57.6千米/时。

【例10】(难度等级※※)如图,从A到B是12千米下坡路,从B到C是8千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小张从A到D的平均速度是多少?【分析与解】从A到B的时间为:12÷6=2(小时),从B DCBA724313513⨯÷=到C 的时间为:8÷4=2(小时),从C 到D 的时间为:4÷2=2(小时),从A 到D 的总时间为:2+2+2=6(小时),总路程为:12+8+4=24(千米),那么从A 到D 的平均速度为:24÷6=4(千米/时).【例11】(难度等级 ※※)有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

【分析与解】假设上坡、走平路及下坡的路程均为24米,那么总时间为:24÷4+24÷6+24÷8=13(秒),过桥的平均速度为 (米/秒).【例12】(难度等级 ※※※) 汽车往返于A ,B 两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?【分析与解】假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【例13】(难度等级※※※)有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度..【分析与解】假设上坡、平路及下坡的路程均为66米,那么总时间=66÷11+66÷22+66÷33=6+3+2=11(秒),过桥的平均速度=66×3÷11=18(米/秒)【例14】(难度等级※※※)一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?【分析与解】假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=11(厘米/分钟).3119【例15】(难度等级※※※)甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?【分析与解】全程的平均速度是每分钟(80+70)÷2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000÷80=37.5分钟,后一半路程时间是80-37.5=42.5分钟.第二讲相遇与追及【专题知识点概述】在今天这节课中,我们来研究行程问题中的相遇与追及问题.这一讲就是通过例题加深对行程问题三个基本数量关系的理解,使学生养成画图解决问题的好习惯!在行程问题中涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即tv S差差【重点难点解析】1.直线上的相遇与追及2.环线上的相遇与追及【竞赛考点挖掘】1. 多人多次相遇与追及【习题精讲】【例1】(难度等级※)一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

相关文档
最新文档