铝合金挤压缺陷分析及质量控制方法

合集下载

铝合金压铸件所有缺陷及对策大全

铝合金压铸件所有缺陷及对策大全

铝合金压铸件所有缺陷及对策大全一、化学成份不合格主要合金元素或杂质含量与技术要求不符,在对试样作化学分析或光谱分析时发现。

1、配料计算不正确,元素烧损量考虑太少,配料计算有误等;2、原材料、回炉料的成分不准确或未作分析就投入使用;3、配料时称量不准;4、加料中出现问题,少加或多加及遗漏料等;5、材料保管混乱,产生混料;6、熔炼操作未按工艺操作,温度过高或熔炼时间过长,幸免于难烧损严重;7、化学分析不准确。

对策:1)、对氧化烧损严重的金属,在配料中应按技术标准的上限或经验烧损值上限配料计算;配料后并经过较核;2)、检查称重和化学分析、光谱分析是否正确;3)、定期校准衡器,不准确的禁用;4)、配料所需原料分开标注存放,按顺序排列使用;5)、加强原材料保管,标识清晰,存放有序;6)、合金液禁止过热或熔炼时间过长;7)、使用前经炉前分析,分析不合格应立即调整成分,补加炉料或冲淡;8)、熔炼沉渣及二级以上废料经重新精炼后掺加使用,比例不宜过高;9)、注意废料或使用过程中,有砂粒、石灰、油漆混入。

二、气孔铸件表面或内部出现的大或小的孔洞,形状比较规则;有分散的和比较集中的两类;在对铸件作X光透视或机械加工后可发现。

1、炉料带水气,使熔炉内水蒸气浓度增加;2、熔炉大、中修后未烘干或烘干不透;3、合金液过热,氧化吸气严重;4、熔炉、浇包工具氧等未烘干;5、脱模剂中喷涂过重或含发气量大;6、模具排气能力差;7、煤、煤气及油中的含水量超标。

对策:1)、严禁把带有水气的炉料装入炉中,装炉前要在炉边烘干;2)、炉子、坩埚及工具未烘干禁止使用;3)、注意铝液过热问题,停机时间要把炉调至保温状态;4)、精炼剂、除渣剂等未烘干禁止使用,使用时禁止对合金液激烈搅拌;5)、严格控制钙的含量;6)、选用挥发性气体量小的脱模剂,并注意配比和喷涂量要低;7)、未经干燥的氯气等气体和未经烘干的氯盐等固体不得使用。

三、涡流孔铸件内部的细小孔洞或合金液流汇处的大孔洞。

铝合金焊接常见缺陷的产生原因及质量控制分析

铝合金焊接常见缺陷的产生原因及质量控制分析

铝合金焊接常见缺陷的产生原因及质量控制分析摘要:铝合金材料在现代装备制造业中应用广泛,铝合金材料的可焊性较差,焊接过程中会出现很多缺陷,主要是气孔和裂纹较多。

分析了铝合金焊接过程中造成气孔和裂纹的因素,提出减少气孔和裂纹的质量控制措施。

关键词:铝合金;焊缝;缺陷;措施1 焊接性能简介(1)氧化能力强。

Al与O2在空气中结合生成致密的Al2O3薄膜,厚度约为0.1μm,熔点高达2050℃,密度大,在焊接过程中氧化膜会阻碍金属之间的良好结合,并且容易造成夹渣,氧化膜还会吸附水分,焊接时易生成焊缝气孔。

(2)铝的比热大,导热速度快。

因导热快,散热也快,焊接一般采用能量集中功率大的焊接热源,有时还需预热,才能获得高质量的焊接接头。

(3)线膨胀系数大。

铝及铝合金线膨胀系数大,金属凝固时体积收缩率也大,易产生焊接变形。

(4)容易形成气孔。

H2是铝及铝合金焊接时产生气孔的主要原因,H2主要来源于焊接材料(母材、焊丝、保护气体)吸附的水分。

(5)合金元素蒸发和烧损。

铝合金的某些合金元素,在高温下容易蒸发烧损,从而改变了焊缝金属的化学成份,降低了焊接接头的性能。

(6)铝及铝合金熔化时无色泽变化。

铝及铝合金焊接时,由固态转变为液态时,没有明显的颜色变化,给焊接操作带来一定困难。

2 TIG焊常见缺陷及防止措施铝及铝合金TIG焊的各种缺陷,既有与其他电弧焊相同的,也有一些是其特有的。

铝及铝合金TIG焊的焊接质量与焊前准备情况、保护气体纯度、焊接参数的正确性、电极材料的质量、操作技术的熟练程度、焊接电源等因素有关。

其常见缺陷产生原因及对策阐述如下。

2.1气孔在焊接过程中,熔池中的气体未在金属凝固前逸出,残存于焊缝中的空穴被称为气孔。

气孔是比较多见的焊接缺陷,在焊缝的各个位置都可能发现气孔。

铝合金焊接时生成气孔的气体主要是氢气,氢气主要来自电弧周围的空气,母材和焊丝表面的杂质,如油污,水分等的分解燃烧。

气孔是铝合金焊接时最容易出现的一种体积型缺陷,气孔的存在减少了焊缝的受力截面,有些针形气孔会使焊缝疏松,从而降低了接头的强度,还有就是降低了焊缝的力学性能。

铝合金挤压缺陷分析及质量控制方法

铝合金挤压缺陷分析及质量控制方法

铝合金挤压缺陷分析及质量控制方法铝合金挤压是一种常见的金属加工方法,可以制造出各种形状复杂、尺寸准确的铝合金材料。

在挤压过程中,可能会出现一些缺陷,如裂纹、畸变、气泡等。

这些缺陷对最终产品的性能和质量产生重要影响。

因此,对铝合金挤压缺陷进行分析和质量控制非常重要。

首先,我们来分析一些铝合金挤压可能出现的缺陷:1.裂纹:裂纹是挤压过程中最常见的缺陷之一,可能是由于材料的拉伸、压缩或应力过大引起的。

裂纹通常位于材料的边缘或内部,严重影响材料的强度和耐久性。

2.畸变:挤压过程中,材料受到强烈的变形力,可能导致其形状发生畸变。

这可能是由于模具设计不当、材料不均匀或挤压温度过高等原因引起的。

畸变会影响产品的精度和外观质量。

3.气泡:在挤压过程中,可能会产生气泡,这通常与气体溶解度、挤压温度、模具设计等因素有关。

气泡会降低材料的强度和断裂韧性。

为了控制和避免上述铝合金挤压缺陷,可以采取以下质量控制方法:1.优化模具设计:合理的模具设计可以减少挤压过程中的应力集中和变形,降低裂纹和畸变的风险。

通过对挤压参数和材料性能的充分了解,可以设计出适合的模具几何形状和尺寸。

2.选择合适的挤压温度:挤压温度对铝合金挤压过程中的材料流动性和冷却速率具有重要影响。

选择适宜的挤压温度可以避免材料的过度损伤和缺陷的产生。

3.控制挤压速度:挤压速度对挤压过程中的应力分布和微观组织形成有影响。

过高的挤压速度可能引起过度的应力和快速冷却,增加裂纹和畸变的风险。

因此,需要控制挤压速度,使之适应材料的性质和模具的要求。

4.严格控制材料质量:合格的原材料是制造高质量铝合金挤压材料的基础。

需要严格遵守材料规格和标准,进行材料化学成分和物理性能的检测,确保材料的可靠性和稳定性。

5.加强挤压过程监控:挤压过程中需要不断监控挤压力、温度、速度等参数,及时反馈调整,并进行质量检验。

通过合理的挤压工艺和检测控制方法,可以最大限度地避免缺陷的出现。

以上是针对铝合金挤压缺陷的分析及质量控制方法的简要介绍。

铝合金压铸产品不良认识及分析

铝合金压铸产品不良认识及分析

为规则,表面较为光滑的空洞 ,一般椭 圆形状。
原因: ①浇口位置选择和导流形状不当,导致金
属液进入型腔产生旋涡。 ②浇道形状设计不良。 ③排气不畅。 ④涂料过多,填充前未燃尽。 ⑤压铸成型条件不合理。 ⑥机械加工余量太大。
对策: ①选择有利气体排除的浇口位置和导流形状。
10. 错位
特征: 铸件的一部分与另一部分在分型面上错
开,发生相对位移
原因:
①模具镶块位移。 ②模具导向件磨损。
③两半模的镶块制造误差。
④合模处挤压变形造成错位。
①调整镶块,加以紧固。
对策: ②更换导柱,导套。
③进行修整,消除误差。 ④针对变形处补焊、打磨、放电
等方式进行修整。
11. 龟裂痕
特征:由于模具型腔表面产生热疲劳而形成的铸
13.隔皮
特征: 铸件上局部存在有明显的金属层次。
原因:①模具刚性不够,在金属液填充过程中,
模板产生抖动。 ②压射冲头与压室配合不好,在压射中 前进速度不平稳。 ③浇注系统设计不当。
对策:①加强模具刚度,紧固模具部件。
②调整压射冲头与压射,保证配合良好。 ③合理设计内浇口
特征:铸件边缘上出现的金属薄片。
原因:①压射前机器的锁模力调整不佳。
②模具变形及滑块损坏,闭锁元件失效。 ③分型面上杂物未清理干净。 ④压射速度过高,形成压力冲击峰过高。
对策:①检查合模力或增压情况,调整压射增压
机构,使压射增压峰值降低。 ②检查模具及滑块损坏程度并修整,确保 封锁元件起到作用。 ③清除分型面上杂物。 ④适当调整压射速度。
②开模过早,铸件刚性不够。 ③铸件斜度太小。 ④取置铸件的操作不当。 ⑤推杆位置布置不当。 ⑥堆放不合理或去除浇口方法不当。

铝合金材料缺陷分析及对策

铝合金材料缺陷分析及对策
效 . 可 以在 高于室温 的某一 温度范 围( 10 2 0 内发生 . 也 如 0 ~ 0 ℃) 称人
1铸造铝合金缺陷分析 .
常见铸造铝合金缺 陷主要有 :
11 纹 .裂
工时效 。 21 . 提高强度的热处理 检验发现 211 ..固溶和淬火 处理 形成原 因: 1加热速度过快;2 淬火冷却太激烈 ;3 壁厚差大 ; () () () 形成 固溶体 的工艺过程称 固溶热处理 目的是把合 金最大量实 其 () 4装料方法不对 :5化学成分不正确 。 () 际可溶解 的硬化元素溶于固溶体 中 这一工艺过程包括把合金加热到 消除方法 : 1降低升温速度 ; ) () ( 更换冷却介质 , 2 或提高介质温度 足够高温度下保温足够长时间然后水 中快冷 。概括 的说 . 提高铝合金 或采用 等温淬火 ;3 壁厚或壁薄部位涂涂料 ;4 采用适 当夹具 。 () () 选择 强度、 硬度 的热处理 , 包括三个步骤的工艺过程 :1 固溶热处理一 () 可溶 正确的下水方 向;5 选择最合适的化学成分 。 () 相的溶解 。2 淬火一 () 过饱和 固溶体的形成。 3 时效一 () 在室温下 ( 然时 自 1 . 2浇不足 效) 或高温下 ( 人工时效或沉淀热处理 ) 溶质原子的沉淀析出。 因浇 注温度低 、 铸件凝固速度快、 铸件未浇注便凝 固成形 , 形成浇 21 ., 2时效和析出处理 不足 , 造成铸件产品不完整 ; 因浇 注系统通道狭 隘, 铝液流量小 , 形成 已固溶处理 的材料从过饱 和固溶体状态发生析 出. 在此过程 中材 瓶颈 . 当浇注流量小于铝液填充速度时 , 便形成浇不足 。 成为废品。 料的强度增高 。在实用合金中 , 当在低温 , 即在室温时效时 . 低温 时效 消除方法 : 重新设计和改进浇 注系统 , 加大铝液 流量 ; 预热模具 . 注 作为第一段时效 . 浇 再继续进 行高温时效 . 把高温 时效阶段作为第二 阶 时避免铝液冷速过快 : 涂料在型腔分布应合理 。 厚度适 中均匀 . 不 段时效 。 lz — g 涂料 A — n M 系合金固溶处理温度低 , 而且淬火时的冷却速度对 强度的影响小 . 室温 下的时效硬化效果好 . 以作 为焊接结构材料被 所 宜太薄 ; 确保模具排气顺畅等。 广泛使用。 可是 , 对高于室温时效 的材料来说 , 先在室温放置 3 7 天后 13缩松 . 铝合金也温度和浇注温度偏高 、 冷却速度缓慢 、 收缩量大 。 晶 进行高温时效 比固溶淬火后立即进行 高温时效 的材料强度更高 导致 表现在经热处理后 的铸件上 出现裂纹 . 或者 肉眼可见 . 或者荧光 粒粗大 、 组织缩松 、 力学性能低劣 , 形成废品。

铝合金冷轧板带材的缺陷分析

铝合金冷轧板带材的缺陷分析

铝合金冷轧板带材的缺陷分析班级:成型1002 姓名:林晶晶学号:3100704030 摘要:分析了铝合金挤压制品常见缺陷产生原因,以便得到相应的预防措施。

这些措施可确保铝挤压制品,有显著经济效益。

关键词:铝合金;挤压制品;缺陷分析1 引言1.1铝合金铝合金是以铝为基的合金总称。

主要合金元素包括:铜、硅、镁、锌、锰,次要合金元素包括:镍、铁、钛、铬、锂等。

铝合金的密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在工业上使用广泛,其使用量仅次于钢。

1.2板带材的工艺缺陷板带材的轧制过程中,由于连铸钢坯、轧制设备和轧制工艺等原因,易在板带材表面出现裂纹、氧化皮、结疤、辊印、刮伤、孔洞、针眼、鳞片、表皮分层和麻点等缺陷,不仅影响产品外观,而且降低了产品的抗腐蚀性、抗磨性和疲劳极限等使用性能。

如果要提高板带材的表面质量,首先必须解决板带材表面质量的检测和分类问题,继而分析相应缺陷产生的原因,最终提出消除缺陷的解决方案。

所以我们要对板带材表面各种缺陷进行有效地检测,及时报告缺陷的大小、位置、范围、严重程度,将结果传送给后续工艺进行参考,并采取措施,以降低废品率,从而带来显著的经济效益。

1.3冷轧冷轧的优点:(1)成型速度快、产量高,且不损伤涂层,可以做成多种多样的截面形式,以适应使用条件的需要;(2)冷轧可以使钢材产生很大的塑性变形,从而提高了钢材的屈服点。

冷轧的缺点:(1)虽然成型过程中没有经过热态塑性压缩,但截面内仍然存在残余应力,对钢材整体和局部屈曲的特性必然产生影响;(2)冷轧型钢样式一般为开口截面,使得截面的自由扭转刚度较低。

在受弯时容易出现扭转,受压时容易出现弯扭屈曲,抗扭性能较差;(3)冷轧成型钢壁厚较小,在板件衔接的转角处又没有加厚,承受局部性的集中荷载的能力弱。

2铝及铝合金板带材表面的铝粉缺陷分析2.1铝粉缺陷产生的机理稳定轧制过程中,变形区内的金属受轧辊径向压力N 和切向摩擦力T 的作用,前滑区内的金属运动速度快于轧辊表面线速度,摩擦力T前阻止金属轧制,后滑区内的金属运动速度慢于轧辊表面线速度,摩擦力T后将金属拽入轧辊,实现稳定轧制的条件是:ΣFx = T后x - Nx - T前x = 0由上式可知,摩擦力的存在是实现轧制的必要条件,后滑区的摩擦力为实现轧制提供动力;无论前滑区还是后滑区轧件和轧辊都存在相对滑动,轧辊和轧件之间的摩擦为滑动摩擦,而当物体在外力作用下克服摩擦力而反复运动时就会导致表面物质的不断磨损。

ZL111铝合金压铸件硬质点缺陷分析_张晓妍

ZL111铝合金压铸件硬质点缺陷分析_张晓妍
1 试验取样与方法
1. 1 取样
表 1 试样宏观(目视) 缺陷情况
试样号
取样部位
1 号 箱体裙边( 图 1 箭头指处)
宏观缺陷
表面 10. 0 mm 2. 5 mm 白亮大块状物
2 号 箱体裙边( 图 1 箭头指处)
表面群集黑色夹渣
1. 3 检测方案
检测方案见表 2。
表 2 检测方案
试样号
测试对象
检测项目
ZL111 合金中 Si 的局部成分不均匀, 含量过高, 接 近甚至超过共晶成分[ 2] ( 12. 5%) , 加上 长时间低温保 温, 就会有初晶硅相形成; 铝硅中间合金中也可能存在 未溶解的初晶硅。
尖晶石型铝镁氧化物 M gA l2 O4 的形成主要原因是 熔炼过程中造成的, 加入的回炉料量较多, 而且其中混 有镁合金, 从而造成铝液容易氧化, 形成氧化夹渣。
4 硬质点形成原因及预防措施
4. 1 硬质点形成原因 AlSiM nFe 金属间化合物相的形成 是由于铝合金
液中的 Fe、M n 等元素有向铝液下部偏析的倾向, 当合 金中 F e 杂质含量较高和 M n 含量较多时, 在压铸过程 中因铝液保温温度较低、停放时间较长, 使偏析倾向变 得更为强烈, 促使 AlSiMnFe 金属间化合物在铝液底部 析出、长大, 当大块的 A lSiM nF e 金属间化合物进入压 铸件时即成为硬质点。
( 4) 回炉料 保证回炉料的清洁、干燥, 回炉料加入 比例要适当。
5 结语
经检测的压铸件化学成分偏析严重, 试样上的硬点 ( 黑色、白亮色、浅亮灰色夹渣物) 的硬度均高于正常组 织的硬度( H V 90~ 97) 数倍至十数倍之多, 不但影响铸 件外观, 而且在机械加工时常常造成刀具崩断, 使加工 难以进行。

铝合金压铸件的缺陷分析

铝合金压铸件的缺陷分析
▪ 主要的工艺参数有:压力、速度、时 间、温度这些工艺参数的选择与合理匹配, 是保证压铸件综合性能的关键,同时也直 接影响生产效率和模具寿命
▪ 因为这样的生产工艺极为复杂,目前 在国内的一些压铸企业中已有较多的采用 了自动化,无论是人工操作还是自动操作, 在生产中都有可能出现一些影响产品品质 的问题,下面将压铸件的一些常见的缺陷 问题向大家描述:希望在以后的工作中对 各位有所帮助
3.提高压射速度,同时加 大内浇口截面积
而狭长,有时交接 边缘光滑,在外力 作用下有发展的可
3.选择合金不当,流动性差 4.浇道位置不当或流道过长
4.改善排气,填充条件 5.正确选择合金,提高合

5.填充速度低
金流动性
6.压射比压低
常见外观缺陷分析-拉伤
缺陷名 称
特征及检查方法
产生的原因
防止方法
4.模具强度不够造成变形 束时间系统,可实现无飞
5.镶块、滑块磨损与分型面 边压铸
不平齐
常见外观缺陷:变色、斑点
缺陷名 称
特征及检查方法
产生的原因
防止方法
变色、 斑点
外观检查:铸件表 面上呈现出不同于 基本金属颜色的斑
1.不合适的脱模剂 2.脱模具用量过多 3.含有石墨的润滑剂中的石
1.更换优质脱模剂 2.严格喷涂量及喷涂操作
产生的原因
防止方法
1.铸件在凝固过程中,因产生收 1.降低浇注温度,减少收
缩而得不到金属液的补尝而造成 缩量
孔穴
解剖后检查或探 2.浇注温度过高,模具温度场分
伤检查:孔洞形 布不合理
缩孔、状不规则、不光 缩松 滑、表面呈暗色
(大而集中为缩
孔,小而分散为
3.压射比压低

铝合金压铸件表面缺陷原因分析及解决办法

铝合金压铸件表面缺陷原因分析及解决办法

铸合金压铸件表面缺陷主要原因汇总:1、金属压力太低(压射比压低);2、金属压力太高;3、第一级速度太低;4、第一级速度太高;5、第一级/二级切换点太早;6、第一级/二级切换点太晚;7、减速设定错误;8、第二级速度太低;9、第二级速度太高;10、增压太早;11、增压太晚;12、增压太低;13、增压太高;14、料勺的注射重量设定错误;15、在注料口受阻;16、在定量炉的流槽上受阻;17、定量炉的管道阻塞;18、凝固时间太长/短;19、锁模机械/导柱等不好;20、顶出力太高;21、顶出延时太短;22、顶出延时太长;23、锁模力太低/机器吨位太小;24、操作循环不正规;25、模具有水/水管泄漏;26、加热/冷却装置漏油;27、冲头润滑油太多;28、冲头润滑油不足/冲头粘卡;29、模具太冷;30、模具太热;31、模具喷涂太多;32、模具喷涂不够;33、模具喷涂型式错误;34、脱模剂浓度太低;35、模具表面脏/金属粘连;36、真空泄露;37、真空开启太早/晚;38、排气道和/或溢流口失效;39、模具/压射筒表面抛光差;40、拔模面斜度不足或侧凹;41、内浇口和横浇道设计差;42、加热和冷却点的导热控制差;43、铸件的几何形状成型困难;44、金属太热/冷;45、金属被污染或脏;46、金属规格不对;47、炉中熔料里有浮渣。

压铸件缺陷分析一、充型不足主要特征:金属在充满型腔之前已被冷却凝固,或料勺舀取的金属重量不足。

可能原因:1、金属压力太低;3、第一级速度太低(金属在压射筒内冷却的太快);6、第一级/二级切换点太晚;7、减速设定错误;8、第二级速度太低;14、料勺的注射重量设定错误;15、在注料口受阻;16、在定量炉的流槽上受阻;17、定量炉的管道阻塞;24、操作循环不正规;28、冲头润滑油太少/冲头粘卡;29、模具太冷;31、模具喷涂太多;36、真空泄露;37、真空开启太早/晚;38、排气道和/或溢流口失效;41、内浇口和横浇道设计差(模具的局部可能太冷);42、加热和冷却点的导热控43、铸件的几何形状成型困难;44、金属太热/冷;46、金属规格不对。

第六章挤压制品成品率控制及制品主要缺陷分析

第六章挤压制品成品率控制及制品主要缺陷分析

第六章挤压制品成品率控制及制品主要缺陷6.1 挤压制品成品率控制6.1.1挤压制品废品分类铝合金挤压型材的废品分为两大类:几何废品和技术废品。

几何废品是铝合金型材在挤压过程中不可避免产生的废品。

如挤压的残料、拉伸时制品两端的夹头、定尺料因不够定尺长度而抛弃的料,切取必要的试样,分流组合模中残留在分流腔中的铝块,铸锭和制品切取定尺断料的锯口消耗的铝屑以及试模时消耗的铝锭等。

技术废品是铝合金型材生产过程中因工艺不合理、设备出现问题,工人操作不当时产生的认为废品。

它和几何废品不同,通过技术改进、加强管理,可以有效的克服和杜绝技术废品的产生。

技术废品可分为:组织废品:过烧、粗晶环、粗大晶粒、缩尾、夹渣等。

力学性能不合格废品:强度、硬度太低,不符合国家标准:或塑性太低,没有充分软化不符合技术要求。

表面废品:成层、气泡、挤压裂纹,桔子皮、组织条文、黑斑、纵向焊合线、横向焊合线、擦划伤、金属压入等。

几何尺寸废品:波浪、扭拧、弯曲、平面间隙、尺寸超差等。

6.1.2 成品率的计算方法成品率是企业的一个主要技术指标,成品率的高低反应了一个企业的技术管理水平。

企业的成品率分工序成品率和综合成品率。

1)工序成品铝率一般指主要工序,多按一个车间进行计算。

如熔铸工序(熔铸车间)、挤压工序(挤压工序)、氧化着色工序(氧化车间)、喷粉工序(喷涂车间)。

所以工序成品率通常就是车间成品率。

它的定义是:车间合格产出量均与车间原料(也可能是半成品)的投入量之比。

熔铸车间的成品率K 1=车间投入的原料总量合格铸锭的产出量×100%挤压车间的成品率K 2=车间投入的铸锭总量合格挤压制品的产出量×100%氧化车间的成品率K 3=车间投入挤压制品总量出量合格的氧化着色制品产×100%其他车间的成品率计算方法相同。

如果企业连续生产的话,从上面公式可以看出,上道工序的产出量,往往就是下道工序的投入量,如果中间有部分半成品外销,则要减去其半成品的外销量,才是下道工序的投入量。

铝合金挤压型材几种常见缺点解析

铝合金挤压型材几种常见缺点解析

挤压铝型材表面颗粒状毛刺的形成原因与对策在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。

但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。

因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。

一、颗粒吸附成因分析1、挤压型材表面出现的颗粒状毛刺分为四种:1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。

2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。

3)时效炉内的灰尘附着。

4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。

“吸附颗粒”的形成2、原因1)铝棒质量的影响由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。

铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。

棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状毛刺。

2)模具的影响在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。

6061铝合金复合挤压的缺陷分析

6061铝合金复合挤压的缺陷分析

准25
图 1 试样挤压前后示意图 Fig.1 Samples before and after extrusion
92
Hot Working Technology 2010, Vol.39, No.17
上半月出版
Casting·Forging·Welding 金属铸锻焊技术
表 2 挤压后三试样对应 H 和 h 值 Tab.2 H and h value of samples after extrusion
1 实验材料及方法
1.1 实验材料 实验原材料为 6061 铝合金, 其化学成分见 表
1。 加工成 3 个尺寸为 准25 mm×H0(H0 分别为 23.1、
表 1 6061 铝合金的化学成分(质量分数,%) Tab.1 Chemical composition of 6061 aluminium alloy(wt%)
在冷挤压过程中, 金属流动具有极大的不均匀 性。外部摩擦、模具结构、零件的各种复杂几何形状、 材料的硬化等, 均使金属的流动更加复杂。 对于这 些问题的深入研究, 是正确设计冷挤压成形方案和 模 具 设 计 的 基 础 ,并 且 有 助 于 保 证 挤 压 件 的 质 量 [2]。
本文通过物理实验和数值模拟两种途径研究 6061 铝合金 H 形复合挤压时金属流动的规律,讨论 工件内的涡流、空洞等缺陷,并提出防止措施。
0 5000 10000 15000 20000
0 1000 2000 3000 4000
行程 / μm
行程 / μm
行程 / μm
图 3 各试样行程载荷曲线
Fig.3 Load - stroke curves of different samples

铝合金挤压工序中的主要缺陷分析及质量控制方法

铝合金挤压工序中的主要缺陷分析及质量控制方法

铝合金挤压工序中的主要缺陷分析及质量控制方法一、缩尾在某些挤压制品的尾端,经低倍检查,在截面的中间部位有不合层形似喇叭状现象,称为缩尾。

经常可以见到一类缩尾或二类缩尾两种情况。

一类缩尾位于制品的中心部位,呈皱褶状裂缝或漏斗状孔洞。

二类缩尾位于制品半径1/2区域,呈环状或月牙状裂缝。

有时在离制品表面层0.5-2mm处出现连续的或不连续的不合层裂纹或裂纹痕迹,有人把它称为第三类缩尾。

一般正向挤压制品的缩尾比反向挤压的长,软合金比硬合金的长。

正向挤压制品的缩尾多表现为环形不合层,反向挤压制品的缩尾多表现为中心漏斗状。

金属挤压到后端,堆积在挤压筒死角或垫片上的铸锭表皮和外来夹杂物流入制品中形成二次缩尾;当残料留得过短,制品中心补缩不足时,则形成一类缩尾。

从尾端向前,缩尾逐渐变轻以至完全消失。

缩尾的主要产生原因1、残料留得过短或制品切尾长度不符合规定;2、挤压垫不清洁,有油污;3、挤压后期,挤压速度过快或突然增大;4、使用已变形的挤压垫(中间凸起的垫);5、挤压筒温度过高;6、挤压筒和挤压轴不对中;7、铸锭表面不清洁,有油污,未车去偏析瘤和折叠等缺陷;8、挤压筒内套不光洁或变形,未及时用清理垫清理内衬。

防止方法1、按规定留残料和切尾;2、保持工模具清洁干净;3、提高铸锭的表面质量;4、合理控制挤压温度和速度,在平稳挤压;5、除特殊情况外,严禁在工、模具表面抹油;6、垫片适当冷却。

二、粗晶环有些铝合金的挤压制品在固溶处理后的低倍试片上,沿制品周边形成粗大再结晶晶粒组织区,称为粗晶环。

由于制品外形和加工方式不同,可形成环状、弧状及其他形式的粗晶环。

粗晶环的深度同尾端向前端逐渐减小以至完全消失。

期形成机理是由热挤压后在制品表层形成的亚晶粒区,加热固溶处理后形成粗大的再结晶晶粒区。

粗晶环主要的产生原因1、挤压变形不均匀‘2、热处理温度过高,保温时间过长,使晶粒长大;3、便金化学成分不合理;4、一般的可热处理强化合金经热处理后都有粗晶环产生,尤其是6A02,2A50等合金的型、棒材最为严重,不能消除,只能控制在一定范围内;5、挤压变形小或变形不充分,或处于临界变形范围,易产生粗晶环。

铝合金挤压型材拉毛及颗粒缺陷的研究

铝合金挤压型材拉毛及颗粒缺陷的研究
要解决型材麻面缺陷,必须清楚麻面缺陷的形 成机制。在挤压过程中,模具工作带粘铝是造成挤
压铝材表面产生麻面缺陷的主要原因。这是因为铝 材的挤压过程是在 450 ℃左右的高温下进行的,如 果加上变形热、摩擦热的作用,金属在流出模孔时 的温度会更高[6]。当制品流出模孔时,由于处于高 温状态,金属与模具工作带存在粘铝现象[7]。这种 粘结的形式往往是:粘结—撕开—再粘结—再撕开 的反复过程,而制品又是向前流动着的,从而在制 品表面出现了许多小麻点,造成了挤压制品表面的 拉毛、颗粒缺陷 。 [8] 这种粘结现象又与铸锭质量、 模具工作带的表面状况、挤压温度、挤压速度、变 形程度以及金属的变形抗力等因素有关。
Copyright©博看网 . All Rights Reserved.
马 旭, 等:铝合金挤压型材麻面缺陷的研究
氧化处理后呈暗黑色,最终会影响型材美观, 如图 1 中小圈所示。
(2) 颗粒缺陷又称金属豆或吸附颗粒。铝合金 型材表面附有球状灰黑色硬质颗粒金属,结构疏 松,在铝合金型材表面分能擦掉和擦不掉二种。尺 寸一般小于 0.5 mm,手触有粗糙感,前端不带有划 道,经氧化后与基体差别不大,如图 1 中大圈所 示。
1 试验材料与方法
通过前期调研了解到冶金纯净度、模具状态、 挤压工艺、成分 (难溶杂质相)、生产状况等因素 可能会影响到表面拉毛、颗粒缺陷。试验选用 6005A 和 6060 两种合金棒材挤压相同断面,通过直 读光谱仪、SEM 等检测手段对拉毛、颗粒位置进行 形貌与成分分析,并与周围正常基体进行对比。
上呈现明显堆叠痕迹。
1 基体 4~6 小点
技术工程
2~3 拉毛
(a) 放大 100 倍
(a) 表面处理前
(b) 表面处理后 图 1 挤压型材表面缺陷

铝挤压过程缺陷分析与质量控制

铝挤压过程缺陷分析与质量控制

铝挤压过程缺陷分析与质量控制铝挤压是一种常见的金属成形工艺,适用于生产各种各样的铝合金型材。

然而,在铝挤压过程中,可能会出现各种缺陷,这些缺陷对产品的质量和性能有很大影响。

因此,对铝挤压过程中的缺陷进行分析和质量控制非常重要。

1.热裂纹:铝合金在高温下容易发生热裂纹,这是由于材料内部的应力超过了其本身的强度或受到外部影响造成的。

为了避免热裂纹的产生,可以采取以下措施:降低挤压温度、提高挤压速度、添加合适的合金元素、采用合适的模具设计等。

2.挤压线:挤压线是指铝型材表面上呈现出的横向凹槽,通常是由于挤压过程中模头或模具中的污染物、气泡等引起的。

为了避免挤压线的产生,应加强模具的清洁和维护,并确保挤压过程中的材料干净。

3.冷裂纹:冷裂纹是指在挤压过程中铝型材表面的纵向或横向发现细小的裂纹。

这通常是由于铝合金在冷却阶段中由于收缩而引起的。

为了避免冷裂纹的产生,应控制挤压温度和冷却速度,避免快速冷却。

4.噪音:挤压过程中可能会产生噪音,通常是由于模具和模头接触不良造成的。

为了减少噪音,应加强模具和模头的维护,确保其质量和精度。

为了控制上述缺陷,需要采取以下质量控制措施:1.合理设计模具:模具的设计应考虑到产品形状、尺寸和挤压参数,并确保模具材料的质量和精度。

2.控制挤压温度和速度:合理的挤压温度和速度能够有效降低裂纹和缺陷的产生。

3.加强材料控制:使用干净的铝材,避免污染物和气泡的存在,以减少缺陷的产生。

4.加强模具维护:定期对模具进行检查和维护,确保其良好的工作状态。

5.进行挤压过程监控:对挤压过程进行实时监控,及时调整挤压参数,以保证产品的质量。

总之,铝挤压过程缺陷的分析和质量控制对于提高产品的质量和性能非常重要。

通过合理的设计和工艺控制,可以有效地减少各种缺陷的产生,提高产品的质量和竞争力。

型材缺陷

型材缺陷

近年来, 随着云南建筑业的快速发展, 对建筑用铝型材的需求逐渐增大, 其生产规模不断扩大。

但就整个云南市场建筑用铝型材的产品质量来说, 特别是外观质量, 一直存在很多问题, 轻则影响美观, 重则造成返工, 提高了成本, 浪费了资金。

综合起来, 产生铝型材外观缺陷的原因有两种, 一是由于物理的作用造成缺陷; 二是由于化学作用造成缺陷。

1.型材湾曲扭拧、波浪由于模孔设计不合理,挤压速度过快,模孔润滑不适当,导路不合适或未安装导路等原因引起。

2.气泡与起皮由于挤压筒内径磨损超差,挤压垫与筒间隙过大;挤压筒和挤压垫粘有油污水分等;锭坯表面有气孔、砂眼、油污且锭坯表面过于粗糙;挤压筒温度和锭坯温度过高,填充过快;挤压时磨具抹油等原因引起。

3.挤压裂纹由于挤压锭坯温度过高,挤压速度太快;锭坯均匀化处理不好;模具设计不合理,以致中心与边缘流速差过大等原因造成。

4.麻点或麻面由于筒和锭坯温度太高,挤压速度过快或不均匀;模子工作带粘有金属、不光洁;模具工作台带硬度不够或工作带内宽;锭坯过长等原因引起。

5.划痕与凸棱由于模具工作带有缺陷或有棱;模具空刀有尖棱、不光滑;工作台面有异物、不清洁;锭坯中硬性夹杂物堵于模孔等原因引起。

6.尺寸不合格由于模具设计错误或制造缺陷;修模不当;挤压时锭坯温升过高,挤压速度变化太大;锭坯长度计算不准确而不够定尺长度等原因引起。

7.成层由于锭坯表面有油污、灰尘;锭坯表面质量不好,有较大的偏析瘤;在模子表面上留有残料;锭坯本身有分层、气泡等原因引起。

8.缩尾由于挤压残料留得太短,挤压垫片涂油或不干净,锭坯表面不清洁,制品切层长度不够,挤压终了时突然提高挤压速度等原因引起。

9.性能不合格由于挤压温度过低,型材达不到淬火温度;人工时效制度不合适;仪表失控、炉温过高或过低;锭坯组织不均匀,冷却风量不足等原因引起。

10. 挤压横纹由于模具设计不合理,相同部位的工作带不等长;挤压速度控制不当;挤压机运行不平稳等原因引起。

冷隔(铝合金缺陷)

冷隔(铝合金缺陷)

韧性下降
冷隔缺陷使得铝合金制品 的韧性降低,容易出现脆 性断裂。
疲劳性能受损
冷隔会加速铝合金制品的 疲劳裂纹扩展,降低其疲 劳寿命。
耐腐蚀性能影响分析
电化学腐蚀加速
01
冷隔处的电位差异导致电化学腐蚀加速,使铝合金制品表面出
现腐蚀坑。
晶间腐蚀敏感
02
冷隔可能引发晶间腐蚀,导致铝合金制品在腐蚀环境中性能迅
冷隔特征提取与识别
信号处理技术
对检测信号进行滤波、放大、数 字化等处理,提取出与冷隔相关 的特征信息,如反射波幅度、频
率等。
图像处理技术
对检测图像进行增强、去噪、边缘 检测等处理,突出冷隔的形态特征, 便于后续识提取的冷隔特征进行训练和分类, 实现自动识别和定位。
无损检测
采用X射线、超声波等无损检测方法 对修补区域进行内部质量检测,确保 无内部缺陷。
耐久性评估
通过模拟实际工况下的加载、疲劳等 试验,评估修补后的铝合金构件的耐 久性能。
05 冷隔对铝合金制品性能影 响研究
力学性能影响分析
强度降低
冷隔会导致铝合金制品的 局部强度降低,使其容易 受到外力破坏。
行业应用前景展望
航空航天领域
随着航空航天技术的不 断发展,对铝合金制品 的质量和性能要求越来 越高,冷隔缺陷的控制 将成为关键。
汽车制造领域
铝合金在汽车制造中的 应用越来越广泛,控制 冷隔缺陷对于提高汽车 的安全性和耐久性具有 重要意义。
3C产品领域
3C产品对于外观和性能 要求较高,冷隔缺陷的 控制将有助于提高产品 的良品率和市场竞争力。
温度控制
熔炼温度和模具温度控制不当 ,导致金属液在填充过程中温
度下降过快。

铝合金压铸件的缺陷分析

铝合金压铸件的缺陷分析

铝合金压铸件的缺陷分析铝合金压铸件是指通过将铝合金熔化后注入铸模中,在高压下快速凝固而形成的铝合金制品。

它具有优异的机械性能、强度高、重量轻、加工性好等特点,因此广泛应用于汽车、航空航天、电子、建筑等领域。

然而,铝合金压铸件在制造过程中可能出现一些缺陷,影响其质量和性能。

下面将分析铝合金压铸件的常见缺陷及其原因:1.粘合缺陷:铝合金压铸件在注模过程中,由于铝液与铸模表面的接触面积较大,容易出现液态铝与模具表面产生粘合现象。

导致铸件表面出现明显的凹痕和粘合痕迹。

这种缺陷主要是由于铸造温度过高或模具表面粗糙度不足造成的。

2.空洞缺陷:空洞是指铸造件内部出现的孔洞。

空洞缺陷主要由于铝液在凝固过程中未完全填充铸型腔体,造成残留气体无法排出,从而形成气孔。

这种缺陷主要是由于铸造温度过低、注模速度过快、铝液中气体含量过高等原因造成的。

3.热裂缺陷:热裂是指铸造件在冷却过程中,由于内部应力超过材料的强度极限而产生的裂纹。

热裂缺陷主要由于铝合金压铸件在凝固过程中温度梯度过大、结晶过程不均匀等原因造成的。

4.气泡缺陷:气泡是指铝合金压铸件内部出现的气体聚集。

气泡缺陷主要由于熔铝中的氢气在凝固过程中无法完全排出,导致气泡形成。

这种缺陷主要是由于熔铝中氢气含量过高、注模速度过快、温度过高等原因造成的。

5.灰斑缺陷:灰斑是指铝合金压铸件表面出现的较大灰白色斑点。

灰斑缺陷主要由于模具表面氧化层未能完全清除、铝液中含有过多的杂质等原因造成的。

为减少这些缺陷的出现,可以采取以下措施:1.控制铸造温度,确保合金能够充分熔化并达到适宜的流动性,避免温度过高或过低产生缺陷。

2.提高模具表面的粗糙度,以增加与铝液的接触面积,减少粘合缺陷的发生。

3.控制注模速度,确保铝液完全填充铸模腔体,避免空洞和气泡的产生。

4.控制铸造过程中的温度梯度,确保均匀凝固,减少热裂缺陷的发生。

5.提高熔铝的纯净度,减少杂质的含量,避免灰斑的产生。

综上所述,铝合金压铸件的缺陷主要包括粘合缺陷、空洞缺陷、热裂缺陷、气泡缺陷和灰斑缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合金挤压缺陷分析及质量控制方法一、缩尾在某些挤压制品的尾端,经低倍检查,在截面的中间部位有不合层形似喇叭状现象,称为缩尾。

经常可以见到一类缩尾或二类缩尾两种情况。

一类缩尾位于制品的中心部位,呈皱褶状裂缝或漏斗状孔洞。

二类缩尾位于制品半径1/2区域,呈环状或月牙状裂缝。

有时在离制品表面层0.5-2mm处出现连续的或不连续的不合层裂纹或裂纹痕迹,有人把它称为第三类缩尾。

一般正向挤压制品的缩尾比反向挤压的长,软合金比硬合金的长。

正向挤压制品的缩尾多表现为环形不合层,反向挤压制品的缩尾多表现为中心漏斗状。

金属挤压到后端,堆积在挤压筒死角或垫片上的铸锭表皮和外来夹杂物流入制品中形成二次缩尾;当残料留得过短,制品中心补缩不足时,则形成一类缩尾。

从尾端向前,缩尾逐渐变轻以至完全消失。

缩尾的主要产生原因:1、残料留得过短或制品切尾长度不符合规定;2、挤压垫不清洁,有油污;3、挤压后期,挤压速度过快或突然增大;4、使用已变形的挤压垫(中间凸起的垫);5、挤压筒温度过高;6、挤压筒和挤压轴不对中;7、铸锭表面不清洁,有油污,未车去偏析瘤和折叠等缺陷;8、挤压筒内套不光洁或变形,未及时用清理垫清理内衬。

防止方法:1、按规定留残料和切尾;2、保持工模具清洁干净;3、提高铸锭的表面质量;4、合理控制挤压温度和速度,在平稳挤压;5、除特殊情况外,严禁在工、模具表面抹油;6、垫片适当冷却。

二、粗晶环织区,称为粗晶环。

由于制品外形和加工方式不同,可形成环状、弧状及其他形式的粗晶环。

粗晶环的深度同尾端向前端逐渐减小以至完全消失。

形成机理是由热挤压后在制品表层形成的亚晶粒区,加热固溶处理后形成粗大的再结晶晶粒区。

粗晶环主要的产生原因:1、挤压变形不均匀;2、热处理温度过高,保温时间过长,使晶粒长大;3、便金化学成分不合理;4、一般的可热处理强化合金经热处理后都有粗晶环产生,尤其是6A02、2A50等合金的型、棒材最为严重,不能消除,只能控制在一定范围内;5、挤压变形小或变形不充分,或处于临界变形范围,易产生粗晶环。

防止方法:1、挤压筒内壁光洁,形成完整的铝套,减小挤压时的摩擦力;2、变形尽可能充分和均匀,合理控制温度、速度等工艺参数;3、避免固溶处理温度过高或保温时间过长;4、用多孔模挤压;5、用反挤压法和静挤压法挤压;6、用固溶处理-拉拔-时效法生产;7、调整全金成分,增加再结晶抑制元素;8、采用较高的温度挤压;9、某些合金铸锭不均匀化处理,在挤压时粗晶环较浅。

三、成层这是在金属流动较均匀时,铸锭表面沿模具和前端弹性区界面流入制品而形成的一种表皮分层缺陷。

在横向低倍试片上,表现为在截面边缘部有不合层的缺陷。

成层主要的产生原因:1、铸锭表面有尘垢或铸锭有较大的偏析聚集物而不车皮,金属瘤等易产生成层;2、毛坯表面有毛刺或粘有油污、锯屑等脏物,挤压前没有清理干净;3、模孔位置不合理,靠近挤压筒边缘;4、挤压工具磨损严重或挤压筒衬套内有脏物地,清理不干净,且不及时更换;5、挤压垫直径差过大;6、挤压筒温度比铸锭温度高得太多。

防止方法:1、合理设计模具,及时检查和更换不合格的工具;2、不合格的铸锭不装炉;3、剪切残料后,应清理干净,不得粘润滑油;4、保持挤压筒内衬完好,或用垫片及时清理内衬。

四、焊合不良用分流模挤压的空心制品在焊缝处表现的焊缝分层或没有完全焊合的现象,称为焊合不良。

焊合不良主要的产生原因:1、挤压系数小,挤压温度低,挤压速度快;2、挤压毛料或工具不清洁;3、型模涂油;4、模具设计不当,静水压力不够或不均衡,分流孔设计不合理;5、铸锭表面有油污。

防止方法:1、适当增加挤压系数、挤压温度、挤压速度;2、合理设计、制造模具;3、挤压筒、挤压垫片不涂油,保持干净;4、采用表面清洁的铸锭。

五、挤压裂纹这是在挤压制品横向试片边缘呈小弧状开裂,沿其纵向具有一定角度周期性开裂,轻时隐于表皮下,严重时外表层形成锯齿状开裂,会严重地破坏金属连续性。

挤压裂纹由挤压过程中金属表层受到模壁过大周期性拉应力被撕裂而形成。

挤压裂纹主要的产生原因:1、挤压速度过快;2、挤压温度过高;3、挤压速度波动太大;4、挤压毛料温度过高;5、多孔模挤压时,模具排列太靠近中心,使中心金属供给量不足,以致中心与边部流速差太大;6、铸锭均匀化退火不好。

防止方法:1、严格执行各项加热和挤压规范;2、经常巡回检测仪表和设备,以保证正常运行;3、修改模具设计、精心加工,特别是模桥、焊合室和棱角半径等处的设计要合理;4、在高镁铝合金中尽量减少钠含量;5、铸锭进行均匀化退火,提高其塑性和均匀性。

六、气泡局部表皮金属与基体金属呈连续或非连续分离,表现为圆形单个或条状空腔凸起的缺陷,称为气泡。

气泡主要的产生原因:1、挤压时挤压筒和挤压垫带有水分、油等脏物;2、由于挤压筒磨损,磨损部位与铸锭之间的空气在挤压时进入金属表面;3、润滑剂中有水分;4、铸锭组织本身有疏松、气孔缺陷;5、热处理温度过高,保温时间过长,炉内气氛湿度大;6、制品中氢含量过高;7、挤压筒温度和铸锭温度过高。

防止方法:1、工具、铸锭表面保持清洁、光滑和干燥;2、合理设计挤压筒和挤压垫片的配合尺寸,经常检查工具尺寸,挤压筒出现大肚时要及时修理,挤压垫不能超差;3、保证润滑剂清洁干燥;4、严格遵守挤压工艺操作流程,及时排气,正确剪切,不抹油,彻底清除残料,保持坯料和工模具干净,不被污染。

七、起皮这是铝合金挤压制品表皮金属与基体金属间产生局部离落的现象。

起皮主要的产生原因:1、换合金挤压时,挤压筒内壁粘有原来金属形成的衬套,清理不干净;2、挤压筒与挤压垫配合不适当,在挤压筒内壁衬有局部残留金属;3、采用润滑挤压筒挤压;4、模孔上粘有金属或模子工作带过长。

防止方法:1、列换合金挤压时要彻底清理挤压筒;2、合理设计挤压筒和挤压垫片的配合尺寸,经常检查工具尺寸,挤压垫不能超差;3、及时清理模具上的残留金属。

八、划伤因尖锐的物品与制品表面接触,在相对滑动时所造成的呈单条状分布的机械伤痕,称为划伤。

划伤主要的产生原因:1、工具装配不正,导路、工作台不平滑,有尖角或有异物等;2、模子工作带上粘有金属屑或模具工作带损坏;3、润滑油内有砂粒或碎金属屑;4、运办理过程中操作不当,吊具不合适。

防止方法:1、及时检查和抛光模具工作带;2、检查制品流出通道,应光滑,可适当润滑导路;3、防止搬运中的机械擦碰和划伤。

九、磕碰伤制品间或制品与其他物体发生碰撞而在其表面形成的伤痕,称为磕碰伤。

磕碰伤主要的产生原因:1、工作台、料架等结构不合理;2、料筐、料架等对金属保护不当;3、操作时没有注意轻拿轻放。

防止方法:1、精心操作,轻拿轻放;2、打磨掉尖角,用垫木和软质材料包覆料筐、料架。

十、擦伤挤压制品表面与其他物体的棱或面接触后发生相对滑动或错动而在制品表面造成的成束分布的伤痕,称为擦伤。

擦伤主要的产生原因:1、模具磨损严重;2、因铸锭温度过高,模孔粘铝或模孔工作带损坏;3、挤压筒内落入石墨及油等脏物;4、制品相互窜动,使表面擦伤、挤压流带不匀,造成制品不按直线流动,致使料与料与导路、工作台擦伤。

防止方法:1、及时检查、更换不合格的模具;2、控制毛料加热温度;3、保证挤压筒和毛料表面清洁、干燥;4、控制好挤压速度,保证速度均匀。

十一、模痕这是挤压制品表面纵向凸凹不平的痕迹,所有挤压制品都存在程度不同的模痕。

模痕主要的产生原因:主要原因:模具工作带无法达到绝对的光滑。

防止方法:1、保证模具工作带表面光洁、平滑、无尖棱;2、合理氮化处理,保证高的表面硬度;3、正确地修模;4、合理地设计工作带,工作带不能过长。

十二、扭拧、弯曲、波浪挤压制品横截面沿纵向发生角度偏转的现象,称为扭拧。

制品沿纵向呈弧形或刀形不平直的现象称为弯曲。

制品沿纵向发生的连续起伏不平的现象称为波浪。

扭拧、弯曲、波浪主要的产生原因:1、模孔设计排列不好,或工作带尺寸分配不合理;2、模孔加工精度差;3、未安装合适的导路;4、修模不当;5、挤压温度和速度不当;6、制品固溶处理前未进行预先矫直;7、在线热处理时冷却不均匀。

防止方法:1、搞高模具设计、制造水平;2、安装合适的导路,牵引挤压;3、用局部润滑、修模加导流或改变分流孔设计等来调节金属流速;4、合理调整挤压温度和速度,使变形更均匀;5、适当降低固溶处理温度或提高固溶处理用的水温;6、在线淬火时保证冷却均匀。

十三、硬弯挤压制品在长度方向上某处的突然弯曲,称为硬弯。

硬弯主要的产生原因:1、挤压速度不匀,由低速突然变高速,或由高速突然变低速,以及突然停车等;2、在挤压过程中硬性搬动制品;3、挤压机工作台面不平。

防止方法:1、不要随便停车或突然改变挤压速度;2、不要用手突然搬动型材;3、保证出料台平整和出料辊道平滑、无异物,合制品畅通无阻。

十四、麻面这是挤压制品的表面缺陷,是指制品表面呈细小的凸凹不平的连续的片状、点状擦伤、麻点、金属豆等。

麻面主要的产生原因:1、模具硬度不够或软硬不匀;2、挤压温度过高;3、挤压速度过快;4、模子工作带过长,粗糙或粘有金属;5、挤压毛料太长。

防止方法:1、提高模具工作带硬度和硬度均匀性;2、按规程加热挤压筒和铸锭,采用适当的挤压速度;3、合理设计模具,降低工作带表面粗糙度,加强表面检查、修理和抛光;4、采用合理的铸锭长度。

相关文档
最新文档