3倒计时第7天 功能关系和能量守恒

合集下载

功能关系能量守恒定律

功能关系能量守恒定律

第4讲功能关系能量守恒定律一、几种常见的功能关系及其表达式力做功能的变化定量关系合力的功动能变化W=E k2-E k1=ΔE k重力的功重力势能变化(1)重力做正功,重力势能减少(2)重力做负功,重力势能增加(3)W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少(2)弹力做负功,弹性势能增加(3)W F=-ΔE p=E p1-E p2只有重力、弹簧弹力做功机械能不变化机械能守恒ΔE=0除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加(2)摩擦生热Q=F f·x相对自测1升降机底板上放一质量为100kg的物体,物体随升降机由静止开始竖直向上移动5m时速度达到4m/s,则此过程中(g取10 m/s2,不计空气阻力)()A.升降机对物体做功5800JB.合外力对物体做功5800JC.物体的重力势能增加500JD.物体的机械能增加800J答案A二、两种摩擦力做功特点的比较类型比较静摩擦力滑动摩擦力不同点能量的转化方面只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)将部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量一对摩擦力的总功方面一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值相同点正功、负功、不做功方面两种摩擦力对物体可以做正功,也可以做负功,还可以不做功自测2如图1所示,一个质量为m的铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()图1A.43mgR B.mgRC.12mgR D.34mgR答案D三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.自测3质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图2所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()图2A.12mv 02-μmg (s +x ) B.12mv 02-μmgx C.μmgs D.μmg (s +x ) 答案A解析根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由能量守恒定律可得12mv 02=W 弹+W f ,W 弹=12mv 02-μmg (s +x ),故选项A 正确.命题点一功能关系的理解和应用1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析. 例1(多选)如图3所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环()图3A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14mv 2C.在C 处,弹簧的弹性势能为14mv 2-mghD.上滑经过B 的速度大于下滑经过B 的速度 答案BD解析由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后反向增大,故A 错误;根据能量守恒定律,从A 到C 有mgh =W f +E p (W f 为克服摩擦力做的功),从C 到A 有12mv 2+E p =mgh +W f ,联立解得:W f =14mv 2,E p =mgh -14mv 2,所以B 正确,C 错误;根据能量守恒定律,从A 到B 的过程有12mv 2B +ΔE p ′+W f ′=mgh ′,从B 到A 的过程有12mv B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确.变式1(多选)(2016·全国卷Ⅱ·21)如图4所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中()图4A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N 点时的动能等于其在M 、N 两点的重力势能差 答案BCD解析因M 和N 两点处弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,知M 处的弹簧处于压缩状态,N 处的弹簧处于伸长状态,则弹簧的弹力对小球先做负功后做正功再做负功,选项A 错误;当弹簧水平时,竖直方向的力只有重力,加速度为g ;当弹簧处于原长位置时,小球只受重力,加速度为g ,则有两个时刻的加速度大小等于g ,选项B 正确;弹簧长度最短时,即弹簧水平,弹力方向与速度方向垂直,弹力对小球做功的功率为零,选项C 正确;由动能定理得,W F +W G =ΔE k ,因M 和N 两点处弹簧对小球的弹力大小相等,弹性势能相等,则由弹力做功特点知W F =0,即W G =ΔE k ,选项D 正确.例2(2017·全国卷Ⅰ·24)一质量为8.00×104kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105m 处以7.5×103m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8m/s 2(结果保留两位有效数字).(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%. 答案(1)4.0×108J2.4×1012J(2)9.7×108J 解析(1)飞船着地前瞬间的机械能为E 0=12mv 02①式中,m 和v 0分别是飞船的质量和着地前瞬间的速度.由①式和题给数据得E 0=4.0×108J②设地面附近的重力加速度大小为g ,飞船进入大气层时的机械能为 E h =12mv h 2+mgh ③式中,v h 是飞船在高度1.60×105m 处的速度.由③式和题给数据得E h ≈2.4×1012J④(2)飞船在高度h ′=600m 处的机械能为 E h ′=12m (2.0100v h )2+mgh ′⑤由功能关系得W =E h ′-E 0⑥式中,W 是飞船从高度600m 处至着地前瞬间的过程中克服阻力所做的功. 由②⑤⑥式和题给数据得W ≈9.7×108J⑦变式2(2017·全国卷Ⅲ·16)如图5所示,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为()图5A.19mglB.16mglC.13mglD.12mgl 答案A解析由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p=23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、D 错误.命题点二摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.例3如图6所示,某工厂用传送带向高处运送货物,将一货物轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是()图6A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间摩擦生的热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功答案C解析对物体分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A错误;由动能定理知,合外力做的总功等于物体动能的增加量,B错误;物体机械能的增加量等于摩擦力对物体所做的功,D错误;设第一阶段物体的运动时间为t,传送带速度为v,对物体:x1=v2t,对传送带:x1′=v·t,摩擦产生的热Q=F f x相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确.变式3(多选)如图7所示为生活中磨刀的示意图,磨刀石静止不动,刀在手的推动下从右向左匀速运动,发生的位移为x ,设刀与磨刀石之间的摩擦力大小为F f ,则下列叙述中正确的是()图7A.摩擦力对刀做负功,大小为F f xB.摩擦力对刀做正功,大小为F f xC.摩擦力对磨刀石做正功,大小为F f xD.摩擦力对磨刀石不做功 答案AD变式4(多选)(2018·XXXX 模拟)质量为m 的物体在水平面上,只受摩擦力作用,以初动能E 0做匀变速直线运动,经距离d 后,动能减小为E 03,则()A.物体与水平面间的动摩擦因数为2E 03mgdB.物体再前进d3便停止C.物体滑行距离d 所用的时间是滑行后面距离所用时间的3倍D.若要使此物体滑行的总距离为3d ,其初动能应为2E 0 答案AD解析由动能定理知W f =μmgd =E 0-E 03,所以μ=2E 03mgd,A 正确;设物体总共滑行的距离为s ,则有μmgs =E 0,所以s =32d ,物体再前进d2便停止,B 错误;将物体的运动看成反方向的匀加速直线运动,则连续运动三个d2距离所用时间之比为1∶(2-1)∶(3-2),所以物体滑行距离d 所用的时间是滑行后面距离所用时间的(3-1)倍,C 错误;若要使此物体滑行的总距离为3d ,则由动能定理知μmg ·3d =E k ,得E k =2E 0,D 正确. 命题点三能量守恒定律的理解和应用例4如图8所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相切,半圆形导轨的半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B 点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C .不计空气阻力,试求:图8(1)物体在A 点时弹簧的弹性势能;(2)物体从B 点运动至C 点的过程中产生的内能. 答案(1)72mgR (2)mgR解析(1)设物体在B 点的速度为v B ,所受弹力为F N B ,由牛顿第二定律得:F N B -mg =m v 2BR由牛顿第三定律F N B ′=8mg =F N B 由能量守恒定律可知物体在A 点时的弹性势能E p =12mv B 2=72mgR(2)设物体在C 点的速度为v C ,由题意可知mg =m v 2CR物体由B 点运动到C 点的过程中,由能量守恒定律得Q =12mv B 2-(12mv C 2+2mgR )解得Q =mgR .变式5如图9所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图9(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.答案(1)v 02-gL (2)12(v 02g -L )(3)34m (v 02-gL )解析(1)物体A 与斜面间的滑动摩擦力F f =2μmg cos θ, 对A 向下运动到C 点的过程,由能量守恒定律有 2mgL sin θ+32mv 02=32mv 2+mgL +Q其中Q =F f L =2μmgL cos θ 解得v =v 02-gL(2)从物体A 接触弹簧将弹簧压缩到最短后又恰好回到C 点的过程,对系统应用动能定理 -F f ·2x =0-12×3mv 2解得x =v 022g -L 2=12(v 02g-L )(3)从弹簧压缩至最短到物体A 恰好弹回到C 点的过程中,由能量守恒定律得E p +mgx =2mgx sin θ+Q ′ Q ′=F f x =2μmgx cos θ解得E p =3m 4(v 02-gL )1.如图1所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中()图1A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功12mgR 答案D2.如图2所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则()图2A.两个阶段拉力做的功相等B.拉力做的总功等于A 的重力势能的增加量C.第一阶段,拉力做的功大于A 的重力势能的增加量D.第二阶段,拉力做的功等于A 的重力势能的增加量答案B3.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图3A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成的系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减少,减少的机械能等于M克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.4.(多选)如图4所示,质量为m的物体以某一速度冲上一个倾角为37°的斜面,其运动的加速度的大小为0.9g,这个物体沿斜面上升的最大高度为H,则在这一过程中()图4A.物体的重力势能增加了0.9mgHB.物体的重力势能增加了mgHC.物体的动能损失了0.5mgHD.物体的机械能损失了0.5mgH答案BD解析在物体上滑到最大高度的过程中,重力对物体做负功,故物体的重力势能增加了mgH,故A错误,B正确;物体所受的合力沿斜面向下,其合力做的功为W=-F·Hsin37°=-ma·Hsin37°=-1.5mgH,故物体的动能损失了1.5mgH,故C错误;设物体受到的摩擦力为F f,由牛顿第二定律得mg sin37°+F f=ma,解得F f=0.3mg.摩擦力对物体做的功为W f=-F f·Hsin37°=-0.5mgH,因此物体的机械能损失了0.5mgH,故D正确.5.(多选)(2018·XXXX质检)如图5所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则()图5A.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的机械能C.升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能D.升降机上升的全过程中,升降机拉力做的功大于升降机和人增加的机械能答案BC解析根据动能定理可知,合外力对物体做的功等于物体动能的变化量,所以升降机匀加速上升过程中,升降机底板对人做的功和人的重力做功之和等于人增加的动能,故A 错误;除重力外,其他力对人做的功等于人机械能的增加量,B 正确;升降机匀速上升过程中,升降机底板对人做的功等于人克服重力做的功(此过程中动能不变),即增加的机械能,C 正确;升降机上升的全过程中,升降机拉力做的功等于升降机和人增加的机械能,D 错误.6.(多选)如图6所示,一物块通过一橡皮条与粗糙斜面顶端垂直于固定斜面的固定杆相连而静止在斜面上,橡皮条与斜面平行且恰为原长.现给物块一沿斜面向下的初速度v 0,则物块从开始滑动到滑到最低点的过程中(设最大静摩擦力与滑动摩擦力大小相等,橡皮条的形变在弹性限度内),下列说法正确的是()图6A.物块的动能一直增加B.物块运动的加速度一直增大C.物块的机械能一直减少D.物块减少的机械能等于橡皮条增加的弹性势能答案BC解析由题意知物块的重力沿斜面向下的分力为mg sin θ≤F f =μmg cos θ,在物块下滑过程中,橡皮条拉力F 一直增大,根据牛顿第二定律有a =F f +F -mg sin θm,F 增大,a 增大,选项B正确;物块受到的合外力方向沿斜面向上,与位移方向相反,根据动能定理知动能一直减少,选项A错误;滑动摩擦力和拉力F一直做负功,根据功能关系知物块的机械能一直减少,选项C正确;根据能量守恒定律,物块减少的机械能等于橡皮条增加的弹性势能和摩擦产生的热量之和,选项D错误.7.如图7所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()图7A.圆环机械能守恒B.橡皮绳的弹性势能一直增大C.橡皮绳的弹性势能增加了mghD.橡皮绳再次到达原长时圆环动能最大答案C解析圆环沿杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和橡皮绳的拉力,所以圆环的机械能不守恒,如果把圆环和橡皮绳组成的系统作为研究对象,则系统的机械能守恒,故A错误;橡皮绳的弹性势能随橡皮绳的形变量的变化而变化,由题意知橡皮绳先不发生形变后伸长,故橡皮绳的弹性势能先不变再增大,故B错误;下滑过程中,圆环的机械能减少了mgh,根据系统的机械能守恒,橡皮绳的弹性势能增加了mgh,故C正确;在圆环下滑过程中,橡皮绳再次达到原长时,该过程中圆环的动能一直增大,但不是最大,沿杆方向的合力为零的时刻,圆环的速度最大,故D错误.8.如图8所示,一质量为m的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点.将小球拉至A点,弹簧恰好无形变,由静止释放小球,当小球运动到O点正下方与A点的竖直高度差为h的B点时,速度大小为v.已知重力加速度为g,下列说法正确的是()图8A.小球运动到B 点时的动能等于mghB.小球由A 点到B 点重力势能减少12mv 2 C.小球由A 点到B 点克服弹力做功为mghD.小球到达B 点时弹簧的弹性势能为mgh -12mv 2 答案D解析小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧伸长,弹簧的弹性势能增大,小球动能的增加量与弹簧弹性势能的增加量之和等于小球重力势能的减小量,即小球动能的增加量小于重力势能的减少量mgh ,A 、B 项错误,D 项正确;弹簧弹性势能的增加量等于小球克服弹力所做的功,C 项错误.9.(2018·XX 德阳调研)足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是()A.W =0,Q =mv 2B.W =0,Q =2mv 2C.W =mv 22,Q =mv 2D.W =mv 2,Q =2mv 2答案B解析对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v 2μg,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确.10.(多选)如图9所示,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是()图9A.物块到达小车最右端时具有的动能为F (L +s )B.物块到达小车最右端时,小车具有的动能为F f sC.物块克服摩擦力所做的功为F f (L +s )D.物块和小车增加的机械能为F f s答案BC解析对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12mv 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12Mv ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能以及摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F (L +s )-F f L ,故D 错误.11.如图10所示,一物体质量m =2kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3m/s 下滑,A 点距弹簧上端B 的距离AB =4 m.当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点AD =3 m.挡板及弹簧质量不计,g 取10 m/s 2,sin37°=0.6,求:图10(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案(1)0.52(2)24.4J解析(1)物体从A 点至最后弹到D 点的全过程中,动能减少ΔE k =12mv 02=9J. 重力势能减少ΔE p =mgl AD sin37°=36J.机械能减少ΔE =ΔE k +ΔE p =45J减少的机械能全部用来克服摩擦力做功,即W f =F f l =45J ,而路程l =5.4m ,则F f =W f l≈8.33N. 而F f =μmg cos37°,所以μ=F f mg cos37°≈0.52. (2)由A 到C 的过程:动能减少ΔE k ′=12mv 02=9J. 重力势能减少ΔE p ′=mgl AC sin37°=50.4J.物体克服摩擦力做的功W f ′=F f l AC =μmg cos37°·l AC =35J.由能量守恒定律得:E pm =ΔE k ′+ΔE p ′-W f ′=24.4J.12.如图11为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A 点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T ,轨道半径为r ,椭圆轨道的近地点B 离地心的距离为kr (k <1),引力常量为G ,飞船的质量为m ,求:图11(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M 、m 的两个质点相距为r 时的引力势能E p =-GMm r,式中G 为引力常量.求飞船在A 点变轨时发动机对飞船做的功.答案(1)4π2r 3GT 22πr T (2)2(k -1)π2mr 2(k +1)T 2解析(1)飞船在轨道Ⅰ上运动时,由牛顿第二定律有 G Mm r 2=mr (2πT)2 则地球的质量M =4π2r 3GT 2 飞船在轨道Ⅰ上的线速度大小为v =2πr T.(2)设飞船在椭圆轨道上的远地点速度为v 1,在近地点的速度为v 2,由开普勒第二定律有rv 1=krv 2根据能量守恒定律有12mv 12-G Mm r =12mv 22-G Mm kr解得v 1=2GMk (k +1)r =2πr T 2k k +1根据动能定理,飞船在A 点变轨时,发动机对飞船做的功为W =12mv 12-12mv 2=2(k -1)π2mr 2(k +1)T 2.。

传送带模型中“功能关系”与“能量守恒”的对比分析

传送带模型中“功能关系”与“能量守恒”的对比分析
功 呢? 本 文 在 对 比“ 滑块一 木 板 ”模 型 的 基 础 上 , 针对 传送 带 空 载 与 负 载 两 种 状 态 进 行 受 力 分 析 , 一定 程 度 上 回 答 了
这 个 问题 .
关键词 : 传 送 带 功 能 关 系 能 量 守 恒 机 械 能 系 统 内 能
( 2 )从“ 功能 关系”的角度 分析 因保 持原 状态 多
做 的 功
这一 过程 中 , 多 做 的功
W = : Fx B= : = Fi x B
的“ 滑 块一 木 板”模 型谈 起.
1 滑 块一 木 板 模 型
其 中
F I= m g zB= o t
由 A 得 ( 1 ) 模 型 情 景 及 分 析
传送 带模 型 是 高 中 阶段 物理 学 科 中 比较 成 熟
的模型 , 典 型 的有 水 平 传 送 带 与倾 斜 传 送 带 两 种 情
由于 释放滑 块 A, 木 板 B受 到水 平 向左 的摩 擦
阻力作 用 , 使 B的速度 减慢 , 要 使其保 持 原来 的速 度
运动 , 需要 施加 向右 的牵 引力 F—F, , 如图 1 所示 . 现在 , 我们 从“ 功 能关 系”与 “ 能量 守恒 ”两个 角度 分 析 F 多做 的功 , 即多 消耗 的能量 .
2 0 1 8年 第 1 期
物 理通 报
中 学物 理教 学
传 送 带 模 型 中“ 功 能 关 系"与 “ 能 量 守 恒 "的 对 比分 析
岳 巍 巍 赵 永
( 蒙 城 县 第 六 中学 安 徽 毫 州 2 3 3 5 0 0 )
( 收稿 日期 : 2 0 1 7— 0 5 —0 3 )

高考物理二轮复习 第2部分 考前回扣篇 倒计时第7天 功

高考物理二轮复习 第2部分 考前回扣篇 倒计时第7天 功

倒计时第7天 功能关系和能量守恒A .主干回顾B .精要检索 1.恒力做功的计算式W =Fl cos α(α是F 与位移l 方向的夹角).2.恒力所做总功的计算W 总=F 合l cos α或W 总=W 1+W 2+….3.计算功率的两个公式P =Wt或P =Fv cos α. 4.动能定理W 总=E k2-E k1.5.机车启动类问题中的“临界点” (1)全程最大速度的临界点为:F 阻=P m v m. (2)匀加速运动的最后点为Pv 1m-F 阻=ma ;此时瞬时功率等于额定功率P 额.(3)在匀加速过程中的某点有:P 1v 1-F 阻=ma . (4)在变加速运动过程中的某点有P m v 2-F 阻=ma 2. 6.重力势能E p =mgh (h 是相对于零势能面的高度)7.机械能守恒定律的三种表达方式 (1)始末状态:mgh 1+12mv 21=mgh 2+12mv 22.(2)能量转化:ΔE k(增)=ΔE p(减). (3)研究对象:ΔE A =-ΔE B . 8.几种常见的功能关系(1)动能定理的计算式为标量式,不涉及方向问题,在不涉及加速度和时间的问题时,可优先考虑动能定理.(2)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系.(3)动能定理既适用于物体的直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(4)若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以视全过程为一整体来处理.C .考前热身1.(多选)如图1所示,光滑水平面上有一长为L 的小车,在小车的一端放有一物体,在物体上施一水平恒力F ,使它由静止开始从小车的一端运动到另一端,设小车与物体之间的摩擦力为f ,则( )【导学号:25702079】图1A .物体到达另一端时的动能为(F -f )(s +L )B .物体到达另一端时小车的动能为fsC .整个过程中消耗的机械能为fsD .物体克服摩擦力做功为fLAB [对物体运用动能定理可得(F -f )(s +L )=12mv 2,则A 正确;对车运用动能定理可得fs =12Mv 2,则B 正确;系统在整个过程中消耗的机械能等于滑动摩擦力与相对位移的乘积,则整个过程中消耗的机械能为fL ,C 错误;物体克服摩擦力所做的功为f (L +s ),D 错误.]2.一物块沿倾角为θ的斜面向上滑动,当物块的初速度为v 时,上升的最大高度为H ,如图2所示;当物块的初速度为2v 时,上升的最大高度记为h .重力加速度大小为g .物块与斜面间的动摩擦因数μ和h 分别为( )图2A .tan θ和2HB .tan θ和4HC.⎝ ⎛⎭⎪⎫v 22gH -1tan θ和2H D.⎝ ⎛⎭⎪⎫v 22gH -1tan θ和4H D [物块以初速度v 上升的过程,由动能定理可得-mgH -μmg cos θ·H sin θ=0-12mv 2;以初速度2v 上升的过程,由动能定理可得-mgh -μmg cos θ·hsin θ=0-12m (2v )2,联立解得μ=⎝ ⎛⎭⎪⎫v 22gH -1tan θ,h =4H ,选项D 正确.]3.140 kg 的玉兔号月球车采用轮式方案在月球的平整表面前进(所受摩擦力按滑动摩擦力计算),通过光照自主进行工作.若车轮与月球地面间的动摩擦因数为μ=0.5,月球表面的重力加速度为g =1.6 m/s 2,现在正以最大速度做匀速直线运动,前进100 m 用时30 min.则月球车提供的动力功率为( )A .P =1.1×102WB .P =16.2 WC .P =81 WD .P =6.2 WD [玉兔号月球车以最大速度做匀速直线运动时所受的摩擦力等于前进提供的动力,由力平衡得:F =μmg ,解得F =112 N ,平均速度v =x t =1001 800 m/s =118m/s ,P =Fv ,解得P=6.2 W ,故D 正确.]4.如图3所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平,OB 竖直.一质量为m 的小球自A 点正上方的P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )图3A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgRD [重力做功与路径无关,只与初、末位置有关,故小球从P 到B 的过程中,重力做的功为W G =mgR ,选项A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,根据牛顿第二定律,有mg =m v 2BR,解得v B =gR ,从P 到B 过程,重力势能的减少量为mgR ,动能的增加量为12mv 2B =mgR 2,故机械能的减少量为mgR -mgR 2=mgR2,选项B 错误;小球从P 到B 的过程中,合外力做的功等于动能的增加量,即为mgR2,选项C 错误;从P 到B 的过程中,小球克服摩擦力做的功等于机械能的减少量,即为mgR2,选项D 正确.]5.(多选)如图4所示,质量分别为m 和2m 的两个小球A 和B ,中间用长为2L 的轻杆相连,在杆的中点O 处有一固定水平转动轴,把杆置于水平位置后由静止释放,在B 球沿顺时针转动到最低位置的过程中( )图4A .A 、B 两球的角速度大小始终相等 B .重力对B 球做功的瞬时功率一直增大C .B 球转动到最低位置时的速度大小为23gL D .杆对B 球做正功,B 球机械能不守恒AC [A 、B 两球用轻杆相连,角速度大小始终相等,选项A 正确;杆在水平位置时,重力对B 球做功的瞬时功率为零,杆在竖直位置时,B 球的重力和速度方向垂直,重力对B 球做功的瞬时功率也为零,但在其他位置重力对B 球做功的瞬时功率不为零,因此,重力对B 球做功的瞬时功率先增大后减小,选项B 错误;设B 球转动到最低位置时的速度为v ,两球角速度大小相等,转动半径相等,所以两球的线速度大小也相等,对A 、B 两球和杆组成的系统,由机械能守恒定律得,2mgL -mgL =12(2m )v 2+12mv 2,解得v =23gL ,选项C 正确;B 球的重力势能减少了2mgL ,动能增加了23mgL ,机械能减少了,所以杆对B 球做负功,选项D错误.]6.(多选)如图5甲所示,质量m =0.5 kg ,初速度v 0=10 m/s 的物体,受到一个与初速方向相反的外力F 的作用,沿粗糙的水平面滑动,经3 s 后撤去外力,直到物体停止,整个过程物体的v ­t 图象如图乙所示,g 取10 m/s 2,则( )图5A .物体与地面间的动摩擦因数为0.1B .0~2 s 内F 做的功为-8 JC .0~7 s 内物体由于摩擦产生的热量为25 JD .0~7 s 内物体滑行的总位移为29 mABD [由图象可知物体在3~7 s 内仅受摩擦力,做匀减速直线运动,其加速度大小a =1 m/s 2=μg ,得物体与地面间的动摩擦因数为0.1,A 正确;计算0~7 s 内所围面积可得物体滑行的总位移为x =29 m ,D 正确,0~7 s 内物体由于摩擦产生的热量为Q =μmgx =14.5 J ,C 错误;0~2 s 加速度大小a 1=2 m/s 2,由μmg +F =ma 1可得F =0.5 N,0~2 s 内位移由面积可得x ′=16 m ,所以F 做的功为W =-Fx ′=-8 J ,B 正确.]7.如图6所示,在光滑水平地面上放置质量为M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面的高度h =0.6 m .滑块在长木板上滑行t =1 s 后,和长木板以共同速度v =1 m/s 匀速运动,g 取10 m/s 2.求:【导学号:25702080】图6(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块自A 点沿弧面由静止滑下到与长木板共同运动,产生的内能是多少? 【解析】 (1)滑块在长木板上滑行时,对长木板,根据牛顿第二定律有F f =Ma 1 由运动学公式得v =a 1t 代入数据解得F f =2 N.(2)滑块在长木板上滑行时,对滑块,根据牛顿第二定律有-F f =ma 2 设滑块滑上长木板时的初速度为v 0,则有v -v 0=a 2t 代入数据解得v 0=3 m/s滑块沿弧面下滑的过程,由动能定理得mgh -Q 1=12mv 20-0代入数据解得Q 1=1.5 J.(3)滑块在木板上滑行,t =1 s 时长木板的位移为s 1=12a 1t 2此过程中滑块的位移为s 2=v 0t +12a 2t 2故滑块相对木板滑行的距离为L =s 2-s 1=1.5 m 所以Q 2=F f ·L =3 J 则Q =Q 1+Q 2=4.5 J.【答案】 (1)2 N (2)1.5 J (3)4.5 J。

高考物理三轮回扣(倒数第7天)功能关系和能量守恒(,含解析)

高考物理三轮回扣(倒数第7天)功能关系和能量守恒(,含解析)

倒数第7天功能关系和能量守恒知识回扣导图考前必做题图11.如图1所示,有一倾角θ=30°的足够长斜坡,小孩在做游戏时,从该斜坡顶端将一足球沿水平方向踢出去,已知足球被踢出时的初动能为9 J ,不计空气阻力,则该足球第一次落在斜坡上时的动能为( )A .12 JB .21 JC .27 JD .36 J解析 足球被踢出后开始做平抛运动,第一次落在斜坡上时对足球的位移进行分解有tan 30°=y x =0+v y 2t v 0t ,得v 0v y =32,足球第一次落在斜坡上时的动能为12m (v 20+v 2y )=21 J ,只有选项B 正确.答案 B 图22.如图2所示,一质量为1 kg 的小球静止在一竖直放置的轻弹簧上,弹簧的劲度系数为k =50 N/m ,现用一竖直向下的F =10 N 的恒力作用在小球上,当小球向下运动到最大速度时撤去F ,则小球再回到初始位置时的速度大小为(弹簧形变过程中一直处于弹性限度内)( )A .2 m/s B. 2 m/sC .2 2 m/s D.22 m/s解析 小球从初始位置回到初始位置的过程中,重力、弹力做功为零,根据动能定理,W F =12m v 2,从开始到最大速度时,小球向下运动的位移Δx =F k ,则F ·Δx =12m v 2,F ·F k =12m v 2,v =2F 2km =2 m/s ,A 项正确.答案 A3.一条长12 m 的传送带,倾角为30°,它能够将工件从地面送到卡车上,每个工件的质量为25 kg ,传送带每分钟可传送16个工件,不考虑传送带对工件的加速,g =10 m/s 2,下列说法正确的是( )A .传送带每分钟对工件做的总功是2.4×104 JB .摩擦力每分钟对工件做的总功是1.2×104 JC .传送带的传送功率为100 WD .传送带的传送功率为200 W解析 传送工件时不计加速,则工件随传送带一起匀速上升,即摩擦力f =mg sin θ,传送带对工件做功实质是传送带的摩擦力f 对工件做功,所以W =nf ·l =16×mg sin 30°×l=2.4×104 J,A项正确,B项错误;由功率定义,P=Wt=2.4×10460W=400 W,知C、D项错误.答案 A4.图3如图3所示,质量为m的滑块以一定初速度滑上倾角为θ的固定斜面,同时施加一沿斜面向上的恒力F=mg sin θ.已知滑块与斜面间的动摩擦因数μ=tan θ,取出发点为参考点,能正确描述滑块运动到最高点过程中产生的热量Q、滑块的动能E k、机械能E随时间t变化关系及滑块的势能E P随位移x变化关系的是()解析滑块运动到最高点的过程中,所受的合外力等于沿斜面向下的摩擦力,滑块沿斜面向上做匀减速运动,运动到最高点的过程中产生的热量Q=fx=mg sin θ(v t-1 2at 2),图A错误.由动能定理得-mg sin θ(v t-12at2)=Ek-12m v2,E k=-mg sin θ(v t-1 2at 2)+12m v2,图B错误.滑块的重力势能E p=mgx sin θ,图C正确.根据题述知,F=mg sin θ=μmg cos θ,机械能E随时间t不变,图D正确.答案CD5.图4如图4所示,一轻绳一端连一小球B,另一端固定在O点,开始时球与O点在同一水平线上,轻绳拉直,在O点正下方距O点L处有一铁钉C,释放小球后,小球绕铁钉C恰好能做完整的竖直面内的圆周运动.(1)求绳的长度.(2)求小球第一次运动到最低点时的速度.(3)若让小球自然悬挂,小球恰好与水平面接触于F点,小球质量为m,在水平面上固定有倾角为θ的斜面,斜面高为h,小球与斜面AE及水平面EF间的动摩擦因数均为μ,EF段长为s,让一质量与小球质量相等的滑块从斜面顶端由静止滑下,滑块与小球碰撞后粘在一起,结果两者一起恰好能绕C在竖直面内做圆周运动,则滑块与小球碰撞过程中损失的机械能是多少(不计滑块在E处碰撞的能量损失)? 解析(1)设轻绳长为R,则小球绕C在竖直面内做圆周运动时,半径为R-L,恰好能做竖直面内的圆周运动,则在最高点mg=m v 2R-L根据机械能守恒有mg[R-2(R-L)]=12m v2解得R=53L.(2)由机械能守恒定律,小球到最低点时mgR=12m v′2得到v′=103gL.(3)若滑块与小球粘在一起且恰好能在竖直面内绕C做圆周运动,则碰撞后的共同速度也为v′=103gL对滑块根据动能定理有mgh-μmg(h cot θ+s)=12m v21碰撞过程中损失的机械能为E损=12m v 21-12·2m v′2解得E损=mgh-103mgL-μmg(h cot θ+s).答案(1)53L(2)103gL(3)mgh-103mgL-μmg(h cot θ+s)。

专题七 功能关系与能量守恒

专题七  功能关系与能量守恒

1专题七 功能关系与能量守恒 常见功能关系小结:(1)重力功与重力势能增量的关系:P G E W ∆-= (2)弹簧弹力功与弹性势能增量的关系:P E W ∆-=弹簧 (3)电场力功与电势能增量(ε∆)的关系:ε∆-=电W(4)分子力功与分子势能增量(分子E ∆)的关系:分子分子E W ∆-= (5)合力功与动能增量的关系:K E W ∆=合(动能定理) (6)机械能的改变量E ∆:外的力做的总功)(除重力和弹簧弹力以非W E =∆(7)机械能向内能的转化:Q fd W E f -=-=-=∆相对机专题七 练习一1、质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h ,不计空气阻力,则 ①物体的重力势能减少2mgh ; ②物体的机械能保持不变; ③物体的动能增加2mgh ; ④物体的机械能增加mgh 以上说法正确的是( )A 、①②B 、③④C 、①③D 、只有④2、如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a 点进入电磁场并刚好能沿ab 直线向上运动,下列说法正确的是( )A 、 微粒一定带负电B 、 微粒动能一定减小C 、 微粒的电势能一定增加D 、 微粒的机械能一定增加3、将质量为m 的小球在距地面高度为h 处以速率0v 抛出,小球落到地面的速率为02v ,若小球受到的空气阻力不能忽略,则对于小球下落的整个过程中下列说法正确的是( )A 、 小球机械能的减少小于mghB 、重力势能的减少小于mghC 、 合外力对小球做的功小于20mvD 、合外力对小球做的功等于20mv4、如图所示,密闭绝热容器内有一绝热的具有一定质量的活塞,活塞的上部密封着气体,下部为真空,活塞与器壁的摩擦忽略不计,置于真空中的轻弹簧的一端固定于容器的底部,另一端固定在活塞上,弹簧被压缩后用绳扎紧,此时弹簧的弹性势能为P E (弹簧处在自然长度时弹性势能为零),现绳突然断开,弹簧推动活塞向上运动,经过多次往复运动后活塞静止,气体达到平衡态,经过此过程( )A 、P E 全部转化为气体的内能B 、P E 一部分转化为活塞的重力势能,其余部分仍为弹簧的弹性势能C 、P E 全部转化为活塞的重力势能和气体内能D 、PE 一部分转化为活塞的重力势能,一部分转化为气体的内能,其余部分仍为弹簧的弹性势能。

功能关系和能量守恒

功能关系和能量守恒

方法技巧 涉及弹簧的能量问题应注意 两个或两个以上的物体与弹簧组成的系统相互作用的过程,具 有以下特点: (1)能量变化上,如果只有重力和系统内弹簧弹力做功,系统机 械能守恒. (2)如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧 伸长或压缩到最大程度时两物体速度相同.
多维练透
1.如图所示,劲度系数为 k 的轻弹簧一端固定在墙上,一个小 物块(可视为质点)从 A 点以初速度 v0 向左运动,接触弹簧后运动到 C 点时速度恰好为零,弹簧始终在弹性限度内.A、C 两点间距离 为 L,物块与水平面间动摩擦因数为 μ,重力加速度为 g,则物块由 A 点运动到 C 点的过程中,下列说法正确的是( )
即 ΔE1=W+ΔE2,选项 C 正确,选项 D 错误. 答案:C
3.[2017·全国卷Ⅲ,16]如图,一质量为 m,长度为 l 的均匀柔
软细绳 PQ 竖直悬挂.用外力将绳的下端 Q 缓慢地竖直向上拉起至
M 点,M 点与绳的上端 P 相距13l.重力加速度大小为 g.在此过程中,
外力做的功为( )
答案:AC
考点三 能量守恒定律的应用 1.对能量守恒定律的理解 (1)转化:某种形式的能量减少,一定存在其他形式的能量增加, 且减少量和增加量一定相等. (2)转移:某个物体的能量减少,一定存在其他物体的能量增加, 且减少量和增加量相等.
2.运用能量守恒定律解题的基本思路
例 3 如图所示,一物体质量 m=2 kg,在倾角 θ=37°的斜面上 的 A 点以初速度 v0=3 m/s 下滑,A 点距弹簧上端 B 的距离 AB=4 m.当物体到达 B 点后将弹簧压缩到 C 点,最大压Байду номын сангаас量 BC=0.2 m, 然后物体又被弹簧弹上去,弹到的最高位置为 D 点,D 点距 A 点的 距离 AD=3 m,挡板及弹簧质量不计,g 取 10 m/s2,sin37°=0.6, 求:

功能关系能量守恒定律

功能关系能量守恒定律

第4课时功能关系能量守恒定律学习目标:1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.【课前知识梳理】一、几种常见的功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力外)做正功机械能增加二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.【预习自测】1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是A.力F做的功和阻力做的功之和等于物体动能的增量B.重力所做的功等于物体重力势能的增量C.力F做的功和阻力做的功之和等于物体机械能的增量D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中A.X-37B中燃料的化学能转化为X-37B的机械能B.X-37B的机械能要减少C.自然界中的总能量要变大D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变3、如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B的距离为A.0.5 m B.0.25 m C.0.1 m D.0【课堂合作探究】考点一功能关系的应用【例1】如右上图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中A.物块A的重力势能增加量一定等于mghB.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量B.物块重力势能的减少量C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D.物块动能的增加量与物块克服摩擦力做的功之和考点二摩擦力做功的特点及应用1.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对位移.深化拓展从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.【例2】如图4所示,质量为m的长木块A静止于光滑水平面上,在其水平的上表面左端放一质量为m的滑块B,已知木块长为L,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F拉滑块B.(1)当长木块A的位移为多少时,B从A的右端滑出?(2)求上述过程中滑块与木块之间产生的内能.【突破训练2】如图所示,足够长的传送带以恒定速率顺时针运行.将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法中正确的是A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C.第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量等于全过程物体与传送带间的摩擦生热考点三能量守恒定律及应用列能量守恒定律方程的两条基本思路:(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.【例3】如图6所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是 A .电动机多做的功为12m v 2B .物体在传送带上的划痕长v 2μgC .传送带克服摩擦力做的功为12m v 2D .电动机增加的功率为μmg v应用能量守恒定律解题的步骤(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化; (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式;(3)列出能量守恒关系式:ΔE 减 =ΔE 增.【突破训练3】如图7所示,传送带保持1 m/s 的速度顺时针转动.现将一质量m =0.5 kg 的小物体轻轻地放在传送带的a 点上,物体与传送带间的动摩擦因数μ=0.1,a 、b 间的距离L =2.5 m ,g =10 m/s 2.设物体从a 点运动到b 点所经历的时间为t ,该过程中物体和传送带间因摩擦而产生的热量为Q ,下列关于t 和Q 的值正确的是A .t = 5 s ,Q =1.25 JB .t = 3 s ,Q =0.5 JC .t =3 s ,Q =0.25 JD .t =2.5 s ,Q =0.25 J传送带模型中的动力学和能量转化问题1.模型概述传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.传送带模型问题中的功能关系分析(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.传送带模型问题的分析流程【例4】如图所示,是利用电力传送带装运麻袋包的示意图.传送带长l=20 m,倾角θ=37°,麻袋包与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径R相等,传送带不打滑,主动轮顶端与货车车箱底板间的高度差为h=1.8 m,传送带匀速运动的速度为v=2 m/s.现在传送带底端(传送带与从动轮相切位置)由静止释放一只麻袋包(可视为质点),其质量为100 kg,麻袋包最终与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.如果麻袋包到达主动轮的最高点时,恰好水平抛出并落在货车车箱底板中心,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)主动轮轴与货车车箱底板中心的水平距离x及主动轮的半径R;(2)麻袋包在传送带上运动的时间t;(3)该装运系统每传送一只麻袋包需额外消耗的电能.【课后巩固练习】1.(2013·山东·16)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功2、(2012·福建理综·17)如图所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落,B沿斜面下滑,则从剪断轻绳到物块着地,两物块A.速率的变化量不同B.机械能的变化量不同C.重力势能的变化量相同D.重力做功的平均功率相同3.如图所示,一个小球(视为质点)从H=12 m高处,由静止开始沿光滑弯曲轨道AB,进入半径R=4 m的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C时,刚好对轨道压力为零;然后沿CB圆弧滑下,进入光滑弧形轨道BD,到达高度为h的D点时速度为零,则h的值可能为A.10 m B.9.5 m C.8.5 m D.8 m4、假设某次罚点球直接射门时,球恰好从横梁下边缘踢进,此时的速度为v .横梁下边缘离地面的高度为h ,足球质量为m ,运动员对足球做的功为W 1,足球运动过程中克服空气阻力做的功为W 2,选地面为零势能面,下列说法正确的是A .运动员对足球做的功为W 1=mgh +12m v 2B .足球机械能的变化量为W 1-W 2C .足球克服空气阻力做的功为W 2=mgh +12m v 2-W 1D .运动员刚踢完球的瞬间,足球的动能为mgh +12m v 25.工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图所示,质量为m 的滑块,放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L ;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时(仍处于弹簧弹性限度内)由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C 时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:(1)释放滑块时,弹簧具有的弹性势能;(2)滑块在传送带上滑行的整个过程中产生的热量.(限时:30分钟)1.轻质弹簧吊着小球静止在如图1所示的A 位置,现用水平外力F 将小球缓慢拉到B 位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于小球和弹簧组成的系统,下列说法正确的是 A .系统的弹性势能增加 B .系统的弹性势能减少 C .系统的机械能不变D .系统的机械能增加2.如图所示,汽车在拱形桥上由A 匀速率运动到B ,以下说法正确的是A .牵引力与克服摩擦力做的功相等B .合外力对汽车不做功C .牵引力和重力做的总功大于克服摩擦力做的功D .汽车在上拱形桥的过程中克服重力做的功转化为汽车的重力势能3.如图所示,长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是 A .物体B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量4.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,并刚好从中穿出.对于这一过程,下列说法正确的是A .子弹减少的机械能等于木块增加的机械能B .子弹和木块组成的系统机械能的损失量等于系统产生的热量C .子弹减少的机械能等于木块增加的动能与木块增加的内能之和D .子弹减少的动能等于木块增加的动能与子弹和木块增加的内能之5.如图所示,电梯的质量为M ,其天花板上通过一轻质弹簧悬挂一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,不计空气阻力的影响,当上升高度为H 时,电梯的速度达到v ,则在这段运动过程中,以下说法正确的是 A .轻质弹簧对物体的拉力所做的功等于12m v 2B .钢索的拉力所做的功等于12m v 2+MgHC .轻质弹簧对物体的拉力所做的功大于12m v 2D .钢索的拉力所做的功等于12(m +M )v 2+(m +M )gH6.如图所示,小球从A 点以初速度v 0沿粗糙斜面向上运动,到达最高点B 后返回A ,C 为AB 的中点.下列说法中正确的是A.小球从A出发到返回A的过程中,位移为零,外力做功为零B.小球从A到C与从C到B的过程,减少的动能相等C.小球从A到C与从C到B的过程,速度的变化相等D.小球从A到C与从C到B的过程,损失的机械能相等7.如图所示,质量为M、长度为l的小车静止在光滑水平面上,质量为m的小物块放在小车的最左端.现用一水平恒力F作用在小物块上,使它从静止开始运动,物块和小车之间摩擦力的大小为F f,当小车运动的位移为x时,物块刚好滑到小车的最右端.若小物块可视为质点,则A.物块受到的摩擦力对物块做的功与小车受到的摩擦力对小车做功的代数和为零B.整个过程物块和小车间摩擦产生的热量为F f lC.小车的末动能为F f xD.整个过程物块和小车增加的机械能为F(x+l)8.如图所示,质量为m的可看成质点的物块置于粗糙水平面上的M点,水平面的右端与固定的斜面平滑连接,物块与水平面及斜面之间的动摩擦因数处处相同.物块与弹簧未连接,开始时物块挤压弹簧使弹簧处于压缩状态.现从M点由静止释放物块,物块运动到N点时恰好静止.弹簧原长小于MM′.若物块从M点运动到N点的过程中,物块与接触面之间由于摩擦所产生的热量为Q,物块、弹簧与地球组成系统的机械能为E,物块通过的路程为s.不计转折处的能量损失,下列图象所描述的关系中可能正确的是9.如图所示,光滑半圆弧轨道半径为R,OA为水平半径,BC为竖直直径.一质量为m的小物块自A处以某一竖直向下的初速度滑下,进入与C点相切的粗糙水平滑道CM上.在水平滑道上有一轻弹簧,其一端固定在竖直墙上,另一端恰位于滑道的末端C点(此时弹簧处于自然状态).若物块运动过程中弹簧最大弹性势能为E p,且物块被弹簧反弹后恰能通过B点.已知物块与水平滑道间的动摩擦因数为μ,重力加速度为g ,求:(1)物块离开弹簧刚进入半圆轨道时对轨道的压力F N 的大小; (2)弹簧的最大压缩量d ;(3)物块从A 处开始下滑时的初速度v 0.10.如图所示,在粗糙水平台阶上静止放置一质量m =0.5 kg 的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个14圆弧挡板,圆弧半径R =1 m ,今以O 点为原点建立平面直角坐标系.现用F =5 N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板上的P 点(OP 与水平方向夹角为37°,已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2),求其离开O 点时的速度大小;(2)为使小物块击中挡板,求拉力F 作用的最短时间;(3)改变拉力F 的作用时间,使小物块击中挡板的不同位置.求击中挡板时小物块动能的最小值.功能关系 能量守恒定律例1.质量为m 的物体,在距地面h 高处以g /3的加速度由静止竖直下落到地面,下列说法中正确的是 ( B C D )A. 物体的重力势能减少 1/3 mghB. 物体的机械能减少 2/3 mghC. 物体的动能增加 1/3 mghD. 重力做功 mgh例2.如图,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C在水平线上,其距离d =0.5 m .盆边缘的高度为h =0.3 m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B 的距离为( D )A .0.5 mB .0.25 mC .0.1 mD .0m例3.(2014上海)质量为M 的物块静止在光滑水平桌面上,质量为m 的子弹以水平速度v 0射入物块后,以水平速度2v 0/3射出。

【高中物理】功能关系、能量守恒定律的知识点汇总,务必掌握

【高中物理】功能关系、能量守恒定律的知识点汇总,务必掌握

【高中物理】功能关系、能量守恒定律的知识点汇总,务必掌握!知识网络图一、功能关系1.功和能(1)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。

(2)做功的过程一定伴随有能量的转化,而且能量的转化必须通过做功来实现。

2.力学中常用的四种功能对应关系(1)合外力做功等于物体动能的改变:即W(合)=Ek2-Ek1=ΔEk。

(动能定理)(2)重力做功等于物体重力势能的减少:即W(G)=Ep1-Ep2=-ΔEp。

(3)弹簧弹力做功等于弹性势能的减少:即W(弹)=Ep1-Ep2=-ΔEp。

(4)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变,即W(其他力)=E2-E1=ΔE。

(功能原理)二、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

2.表达式ΔE减=ΔE增。

三、功能关系的应用1.对功能关系的进一步理解(1)做功的过程是能量转化的过程。

不同形式的能量发生相互转化是通过做功来实现的。

(2)功是能量转化的量度,功和能的关系,一是体现到不同的力做功,对应不同形式的能转化,具有一一对应关系;二是做功的多少与能量转化的多少在数量上相等。

2.不同的力做功对应不同形式的能的改变四、能量守恒定律的应用1.对定律的理解(1)某种形式的能量减少,一定有另外形式的能量增加,且减少量和增加量相等。

(2)某个物体的能量减少,一定有别的物体的能量增加,且减少量和增加量相等。

2.应用定律的一般步骤(1)分清有多少种形式的能(如动能、势能、内能、电能等)在变化。

(2)分别列出减少的能量ΔE减和增加的能量ΔE增的表达式。

(3)列恒等式:ΔE减=ΔE增。

五、相对滑动物体的能量分析静摩擦力与滑动摩擦力做功特点比较。

第7课时 功能关系 能量守恒

第7课时 功能关系 能量守恒

第7课时 功能关系 能量守恒高考题型1 机械能守恒定律的应用1.判断物体或系统机械能是否守恒的三种方法(1)做功判断法:只有重力(或弹簧的弹力)做功时,系统机械能守恒;(2)能量转化判断法:没有与机械能以外的其他形式的能转化时,系统机械能守恒;(3)定义判断法:看动能与重力(或弹性)势能之和是否变化.2.三种表达式(1)守恒的观点:E k1+E p1=E k2+E p2.(2)转化的观点:ΔE k =-ΔE p .(3)转移的观点:E A 增=E B 减.3.公式选用技巧(1)单物体守恒问题:通常应用守恒观点和转化观点(如抛体类、摆动类、光滑轨道类).转化观点不用选取零势能面.(2)系统机械能守恒问题:通常应用转化观点和转移观点(如绳或杆相连接的物体),都不用选取零势能面.4.易错易混点(1)分析含弹簧的物体系统机械能守恒时,必须是包括弹簧在内的系统;(2)绳子突然绷紧、非弹性碰撞、有摩擦力或电(磁)场力做功等情况,机械能必不守恒;(3)分析关联物体机械能守恒时,应注意寻找用绳或杆连接的物体间的速度关系和位移关系. 考题示例例1 (2017·全国卷Ⅱ·17)如图1,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g )( )图1A.v 216gB.v 28gC.v 24gD.v 22g答案 B解析 小物块由最低点到最高点的过程,由机械能守恒定律得,12m v 2=2mgr +12m v 12,小物块做平抛运动时,落地点到轨道下端的距离x =v 1t ,t =4r g ,联立解得,x =4v 2g r -16r 2, 由数学知识可知,当r =v 28g时,x 最大,故选项B 正确. 例2 (2016·全国卷Ⅲ·24)如图2所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R 4处由静止开始自由下落,经A 点沿圆弧轨道运动.图2(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.答案 (1)5∶1 (2)能,理由见解析解析 (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得E k A =mg ·R 4① 设小球在B 点的动能为E k B ,同理有E k B =mg ·5R 4② 由①②式得E k B ∶E k A =5∶1③(2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力F N 应满足F N ≥0④设小球在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有F N +mg =m v C 2R2⑤ 由④⑤式得mg ≤m 2v C 2R⑥ v C ≥Rg 2⑦ 全程应用机械能守恒定律得mg ·R 4=12m v C ′2⑧ 解得v C ′=gR 2,满足⑦式条件,即小球恰好可以沿轨道运动到C 点. 命题预测1.(多选)如图3所示,一物体从光滑斜面AB 底端A 点以初速度v 0上滑,沿斜面上升的最大高度为h .下列说法中正确的是(设下列情境中物体从A 点上滑的初速度仍为v 0)( )图3A.若把斜面CB 部分截去,物体冲过C 点后上升的最大高度仍为hB.若把斜面AB 变成光滑曲面AEB ,物体沿此曲面上升仍能到达B 点C.若把斜面弯成圆弧形轨道D ,物体仍沿圆弧升高hD.若把斜面从C 点以上部分弯成与C 点相切的圆弧状,物体上升的最大高度有可能仍为h 答案 BD解析 物体上升过程中轨道的支持力不做功,只有重力做功,机械能守恒.若把斜面CB 部分截去,物体冲过C 点后做斜抛运动,斜抛运动的最高点有水平分速度,速度不为零,由机械能守恒定律可知,物体不能到达h 高处,故A 错误;若把斜面AB 变成光滑曲面AEB ,物体在最高点速度为零,根据机械能守恒定律,物体沿此曲面上升仍能到达B 点,故B 正确;若把斜面弯成圆弧形轨道D ,如果能到圆弧最高点,根据机械能守恒定律得知:到达h 处的速度应为零,而物体要到达圆弧最高点,必须由合力充当向心力,速度不为零,所以物体不可能升高h ,故C 错误;若把斜面从C 点以上部分弯成与C 点相切的圆弧状,若B 点不高于此圆的圆心,根据机械能守恒定律,物体沿斜面上升的最大高度仍然可以为h ,故D 正确.2.(多选)如图4所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .杆上的A 点与定滑轮等高,杆上的B 点在A 点正下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,轻绳足够长,下列说法正确的是( )图4A.环到达B 处时,重物上升的高度h =d 2B.环到达B 处时,环与重物的速度大小相等C.环从A 到B ,环减少的机械能等于重物增加的机械能D.环能下降的最大高度为4d 3 答案 CD解析 环到达B 处时,对环的速度进行分解,如图所示,可得v 环cos θ=v 物,由题图中几何关系可知θ=45°,则v 环=2v 物,B 错误;因环从A 到B ,环与重物组成的系统机械能守恒,则环减少的机械能等于重物增加的机械能,C 正确;当环到达B 处时,由题图中几何关系可得重物上升的高度h =(2-1)d ,A 错误;当环下落到最低点时,设环下落高度为H ,由机械能守恒有mgH =2mg (H 2+d 2-d ),解得H =43d ,故D 正确.3.(多选)(2020·安徽淮北市一模)如图5甲所示,竖直光滑杆固定不动,套在杆上的轻质弹簧下端固定,将套在杆上的滑块向下压缩弹簧至离地高度h =0.1 m 处,滑块与弹簧不拴接.现由静止释放滑块,通过传感器测量出滑块的速度和离地高度h 并作出如图乙所示滑块的E k -h 图象,其中高度从0.2 m 上升到0.35 m 范围内图象中图线为直线,其余部分为曲线,以地面为参考平面,不计空气阻力,取g =10 m/s 2,由图象可知( )图5A.小滑块的质量为0.1 kgB.弹簧原长为0.2 mC.弹簧最大弹性势能为0.5 JD.小滑块的重力势能与弹簧的弹性势能总和最小为0.4 J答案 BC解析 在从0.2 m 上升到0.35 m 范围内,ΔE k =ΔE p =mg Δh ,图线斜率的绝对值为|k |=|ΔE k Δh|=0.3N=2 N=mg,所以m=0.2 kg,故A错误;在E k-h图象中,图线的斜率表示0.35-0.2滑块所受的合外力,由题图乙可知,从0.2 m上升到0.35 m范围内所受作用力为恒力,则从h=0.2 m,滑块与弹簧分离,所以弹簧的原长为0.2 m,故B正确;根据机械能守恒可知,当滑块上升至最大高度时,增加的重力势能即为弹簧最大弹性势能,所以E pm=mgΔh′=0.2×10×(0.35-0.1) J=0.5 J,故C正确;在滑块整个运动过程中,系统的动能、重力势能和弹性势能相互转化,因此动能最大时,滑块的重力势能与弹簧的弹性势能总和最小,根据能的转化和守恒可知E pmin=E-E km=E pm+mgh-E km=0.5 J+0.2×10×0.1 J-0.32 J=0.38 J,故D错误.高考题型2 功能关系的理解和应用1.常见的功能关系2.机械能变化的两种分析方法(1)定义法:如果动能和势能都增加(或减少),机械能一定增加(或减少).(2)功能关系法:除重力(或弹簧弹力)以外的其他力做正功(或负功),机械能一定增加(或减少).3.功能关系的理解和应用功能关系反映了做功和能量转化之间的对应关系,功是能量转化的量度和原因,在不同问题中的具体表现不同.(1)根据功能之间的对应关系,判定能的转化情况.(2)根据能量转化可计算变力做的功. 考题示例例3 (2017·全国卷Ⅲ·16)如图6,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为( )图6A.19mgl B.16mgl C.13mgl D.12mgl 答案 A解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l 6,则重力势能增加ΔE p =23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、D 错误.例4 (多选)(2020·全国卷Ⅰ·20)一物块在高3.0 m 、长5.0 m 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s 的变化如图7中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s 2.则( )图7A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s 2D.当物块下滑2.0 m 时机械能损失了12 J答案 AB解析 由E -s 图像知,物块动能与重力势能的和减小,则物块下滑过程中机械能不守恒,故A 正确;由E -s 图像知,整个下滑过程中,物块机械能的减少量为ΔE =30 J -10 J =20 J ,重力势能的减少量ΔE p =mgh =30 J ,又ΔE =μmg cos α·s ,其中cos α=s 2-h 2s=0.8,h =3.0 m ,g =10 m /s 2,则可得m =1 kg ,μ=0.5,故B 正确;物块下滑时的加速度大小a =g sin α-μg cos α=2 m/s 2,故C 错误;物块下滑2.0 m 时损失的机械能为ΔE ′=μmg cos α·s ′=8 J ,故D 错误.命题预测4.(2020·贵州贵阳市3月调研)如图8所示,处于原长的轻质弹簧的一端与固定的竖直板P 拴接,另一端与物体A 相连,物体A 静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是( )图8A.B物体的动能增加量等于B物体重力势能的减少量B.B物体机械能的减少量等于弹簧的弹性势能的增加量C.A的动能先增大后减小D.细线拉力对A做的功等于A物体与弹簧所组成的系统机械能的增加量答案 D解析由于A、B和弹簧组成的系统机械能守恒,所以B物体重力势能的减少量等于A、B 增加的动能与弹簧弹性势能增加量的和,故选项A错误.整个系统机械能守恒,所以B物体机械能的减少量等于A物体与弹簧机械能的增加量,故选项B错误.根据动能定理可知,合力对A做正功,则物块A的速度增加,即动能增加,故选项C错误.根据功能关系可知,除重力和弹簧弹力以外的力即细线的拉力对A做的功等于A物体与弹簧所组成的系统机械能的增加量,故选项D正确.5.(多选)(2020·哈尔滨师大附中联考)如图9甲所示,一木块沿固定斜面由静止开始下滑,下滑过程中木块的机械能和动能随位移变化的关系图线如图乙所示,则下列说法正确的是()图9A.在位移从0增大到x0的过程中,木块的重力势能减少了E0B.在位移从0增大到x0的过程中,木块的重力势能减少了2E0C.图线a斜率的绝对值表示木块所受的合力大小D.图线b斜率的绝对值表示木块所受的合力大小答案BD解析木块沿斜面下滑过程中,动能增大,则图线b为木块的动能随位移变化的关系图线.由机械能的变化量等于动能的变化量与重力势能变化量之和,有E0-2E0=E0-0+ΔE p,得ΔE p=-2E0,即木块的重力势能减少了2E0,故A错误,B正确;由功能关系可知图线a斜率的绝对值表示木块所受的除重力之外的合力大小,故C错误;由功能关系可知图线b斜率的绝对值表示木块所受的合力大小,故D正确.高考题型3动力学和能量观点的综合应用1.多过程问题(1)解题技巧①拆:把整个过程拆分为多个子过程,变为熟悉的运动模型.②找:在题目中找“恰好”“恰能”“最高”“至少”等关键字,找出对应的临界条件.③用:选择合适的规律列方程.④注意:注意分析“界点”的速度大小和方向,界点速度是上一过程的末速度,又是下一过程的初速度,在解题过程中有重要的作用.(2)对于涉及滑动摩擦力的过程,一定不能用机械能守恒定律来求解.(3)对于非匀变速直线运动过程,不能用运动学公式求解,但可用动能定理、能量守恒定律或功能关系求解.2.解决传送带问题的关键点(1)摩擦力的方向及存在阶段的判断.(2)物体能否达到与传送带共速的判断.(3)计算产生的热量,应正确确定物体相对传送带滑动的距离.(4)弄清能量转化关系:传送带因传送物体多消耗的能量等于物体增加的机械能与产生的内能之和.3.解决弹簧模型问题的关键点(1)从动力学角度分析弹力作用下物体运动的加速度往往是变化的,用胡克定律F=kx结合牛顿第二定律F合=ma 分析加速度和运动过程,注意弹力是变力,且注意三个位置:自然长度位置、平衡位置(a=0,v最大)、形变量最大(伸长最长或压缩最短)的位置.(2)从功能关系的角度分析弹簧问题往往涉及多种能量转化,一般根据能量守恒定律或动能定理列方程分析,弹力做功与弹性势能的关系:W弹=-ΔE p注意:对同一根弹簧而言,无论是处于伸长状态还是压缩状态,只要在弹性限度内形变量相同,其储存的弹性势能就相同,弹簧先后经历两次相同的形变的过程中,弹性势能的变化相同.考题示例例5(2016·全国卷Ⅱ·25)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图10所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动,重力加速度大小为g .图10(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.答案 (1)6gl 22l (2)53m ≤M <52m 解析 (1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律知,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 到达B 点时的速度大小为v B ,由能量守恒定律得E p =12m v B 2+μmg (5l -l )② 联立①②式,并代入题给数据得v B =6gl ③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足m v 2l-mg ≥0④ 设P 滑到D 点时的速度为v D ,由机械能守恒定律得12m v B 2=12m v D 2+mg ·2l ⑤ 联立③⑤式得v D =2gl ⑥v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB所需的时间为t ,由运动学公式得2l =12gt 2⑦ P 落回到AB 上的位置与B 点之间的距离为s =v D t ⑧联立⑥⑦⑧式得s =22l ⑨(2)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知5mgl >μMg ·4l ⑩要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有 12M v B ′2≤Mgl ⑪ E p =12M v B ′2+μMg ·4l ⑫ 联立①⑩⑪⑫式得53m ≤M <52m . 命题预测6.(2019·湖北恩施州2月教学质量检测)如图11所示为轮滑比赛的一段模拟赛道.一个小物块(可看成质点)从A 点以一定的初速度水平抛出,刚好无碰撞地从C 点进入光滑的圆弧赛道,圆弧赛道所对的圆心角为60°,圆弧半径为R ,圆弧赛道的最低点与水平赛道DE 平滑连接,DE 长为R ,物块经圆弧赛道进入水平赛道,然后在E 点无碰撞地滑上左侧的固定光滑斜坡,斜坡的倾角为37°,物块恰好能滑到斜坡的最高点F ,F 、O 、A 三点在同一高度,重力加速度大小为g ,不计空气阻力.求:图11(1)物块的初速度v 0的大小及物块与水平赛道间的动摩擦因数;(2)试判断物块向右返回时,能不能滑到C 点,如果能,试分析物块从C 点抛出后,撞在AB 或BC 部分的位置.答案 (1)133gR 16(2)物块刚好落在平台上的B 点 解析 (1)物块从A 点抛出后做平抛运动,在C 点,v C =v 0cos 60°=2v 0 由题意可知AB 的高度:h =R cos 60°=0.5R ;设物块的质量为m ,从A 点到C 点的过程,由动能定理可得:mgh =12m v C 2-12m v 02 解得v 0=133gR 物块从A 到F 的过程,由动能定理得:-μmgR =0-12m v 02 解得μ=16; (2)假设物块能回到C 点,设到达C 点的速度大小为v C ′,物块从F 点到C 点过程,根据动能定理:mg ·12R -μmgR =12m v C ′2 解得v C ′=136gR ,假设成立; BC 长度s =v 02h g =33R 假设物块从C 点抛出后直接落在BC 平台上,物块回到C 点时,在C 点竖直方向的分速度v y =v C ′sin 60°=2gR 2水平分速度:v x =v C ′cos 60°=6gR 6 落在BC 平台上的水平位移:x =v x ·2v y g =33R 即物块刚好落在平台上的B 点.专题强化练保分基础练1.如图1所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )图1A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功12mgR 答案 D解析 小球从P 点运动到B 点的过程中,重力做功W G =mg (2R -R )=mgR ,故A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,则有mg =m v B 2R ,解得v B =gR ,则此过程中机械能的减少量为ΔE =mgR -12m v B 2=12mgR ,故B 错误;根据动能定理可知,合外力做功W 合=12m v B 2=12mgR ,故C 错误;根据功能关系可知,小球克服摩擦力做的功等于机械能的减少量,为12mgR ,故D 正确. 2.(多选)(2016·全国卷Ⅱ·21)如图2,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中( )图2A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N 点时的动能等于其在M 、N 两点的重力势能差答案 BCD解析 因在M 和N 两点处弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,知在M 处时弹簧处于压缩状态,在N 处时弹簧处于伸长状态,则弹簧的弹力对小球先做负功后做正功再做负功,选项A 错误;当弹簧水平时,竖直方向的力只有重力,加速度为g ;当弹簧处于原长位置时,小球只受重力,加速度为g ,则有两个时刻的加速度大小等于g ,选项B 正确;弹簧长度最短时,即弹簧水平,弹力与速度垂直,弹力对小球做功的功率为零,选项C 正确;由动能定理得,W F +W G =ΔE k ,因M 和N 两点处弹簧对小球的弹力大小相等,弹性势能相等,则由弹力做功特点知W F =0,即W G =ΔE k ,选项D 正确.3.(多选)如图3所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图3A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加量C.轻绳对m做的功等于m机械能的增加量D.两滑块组成的系统的机械能损失等于M克服摩擦力做的功答案CD解析由于斜面ab粗糙,故两滑块组成的系统的机械能不守恒,故A错误;由动能定理得,重力、拉力、摩擦力对M做的总功等于M动能的增加量,故B错误;除重力、弹力以外的力做功,将导致机械能变化,轻绳对m做正功,m机械能增加,故C正确;除重力、弹力以外的力做功,导致机械能变化,摩擦力对M做负功,造成两滑块组成的系统的机械能损失,故D正确.4.(2020·山西长治市高三下学期3月线上试题)如图4所示,一物体沿固定斜面从静止开始向下运动,经过时间t0滑至斜面底端.已知物体在运动过程中所受的摩擦力大小恒定.若用v、x、E p和E分别表示该物体的速度大小、位移大小、重力势能和机械能,设斜面最低点重力势能为零,则下列图象中可能正确的是()图4答案 D解析在v-t图象中,斜率表示加速度,由于物体沿斜面做匀加速运动,因此其v-t图象斜率不变,选项A错误;物体下滑位移大小为x=12,因此由数学知识可知其位移-时间2at图象为开口向上的抛物线的一部分,故B错误;设斜面高为h0,倾角为θ,则物体下落的高,斜面最低点重力势能为零,则物体的重力势能为E p=mg(h0-h)=mgh0度h=x sin θ=at2sin θ2-mga sin θ2,所以E p-t图象明显不是一次函数关系图象,选项C错误;根据功能关系,物2t体克服摩擦力做的功等于机械能的减少量,故物体的机械能E=E0-F f x=E0-F f·12,所以2atE-t图象是开口向下的抛物线的一部分,选项D正确.5.(多选)(2019·江苏卷·8)如图5所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()图5A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A点的初速度为2μgs答案BC解析小物块处于最左端时,弹簧的压缩量最大,然后小物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg,选项A错误;物块从开始运动至最后回到A点过程,由功的定义可得物块克服摩擦力做功为2μmgs,选项B正确;自物块从最左侧运动至A 点过程由能量守恒定律可知E p=μmgs,选项C正确;设物块在A点的初速度为v0,整个过程应用动能定理有-2μmgs=0-12,解得v0=2μgs,选项D错误.2m v06.(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图6所示.重力加速度取10 m/s2.由图中数据可得()图6A.物体的质量为2 kgB.h =0时,物体的速率为20 m/sC.h =2 m 时,物体的动能E k =40 JD.从地面至h =4 m ,物体的动能减少100 J答案 AD解析 根据题图可知,h =4 m 时物体的重力势能mgh =80 J ,解得物体质量m =2 kg ,抛出时物体的动能为E k0=100 J ,由公式E k0=12m v 2可知,h =0时物体的速率为v =10 m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE |=20 J ,解得物体上升过程中所受空气阻力大小F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100 J ,解得E k =50 J ,选项C 错误;由题图可知,物体上升到h =4 m 时,机械能为80 J ,重力势能为80 J ,动能为零,即从地面上升到h =4 m ,物体动能减少100 J ,选项D 正确.7.(多选)(2020·安徽合肥市一模)如图7所示,小球A 、B 、C 通过铰链与两根长为L 的轻杆相连,ABC 位于竖直面内且成正三角形,其中A 、C 置于水平面上.现将球B 由静止释放,球A 、C 在杆的作用下向两侧滑动,三小球的运动始终在同一竖直平面内.已知m A =12m B =12m C =m ,不计任何摩擦,重力加速度为g .则球B 由静止释放至落地的过程中,下列说法正确的是( )图7A.球B 的机械能先减小后增大B.球B 落地的速度大小为3gLC.球A 对地面的压力一直大于mgD.球B 落地地点位于初始位置正下方答案 AB解析 B 下落时,A 、C 开始运动,当B 落地后,A 、C 停止运动,因A 、B 、C 三球组成的系统机械能守恒,故球B 的机械能先减小后增大,故A 正确;对整个系统分析有:2mg 32L =12×2m v B 2,解得v B =3gL ,故B 正确;在B 落地前的一段时间,A 、C 做减速运动,轻杆对球有沿杆向上的力,此时球A 对地面的压力小于mg ,故C 错误;因为A 、C 两球质量不相同,故A 、C 两球水平方向加速度大小不同,故球B 落地地点不可能位于初始位置正下方,故D 错误.8.(2020·福建厦门市线上检测)如图8甲所示为历史上著名的襄阳炮,其实质就是一种大型抛石机.它采用杠杆原理,由一根横杆和支架构成,横杆的一端固定重物,另一端放置石袋,发射时用绞车将放置石袋的一端用力往下拽,而后突然松开,因为重物的牵缀,长臂会猛然翘起,石袋里的巨石就被抛出.将其工作原理简化为图乙所示,横杆的质量不计,将一质量m =10 kg ,可视为质点的石块,装在横杆长臂与转轴O 点相距L =5 m 的末端石袋中,在转轴短臂右端固定一重物M ,发射之前先利用外力使石块静止在地面上的A 点,静止时长臂与水平面的夹角α=37°,解除外力后石块被发射,当长臂转到竖直位置时立即停止运动,石块被水平抛出,落在水平地面上,石块落地位置与O 点的水平距离s =20 m ,空气阻力不计,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.则( )图8A.石块水平抛出时的初速度大小为10 5 m/sB.石块水平抛出时的初速度大小为20 m/sC.从A 点到最高点的过程中,长臂对石块做的功为2 050 JD.从A 点到最高点的过程中,长臂对石块做的功为2 500 J答案 C解析 石块被抛出后做平抛运动,竖直高度为h =L +L sin α=12gt 2 可得t =2(L +L sin α)g =2510 s 水平方向做匀速直线运动,有s =v 0t可得平抛的初速度大小为v 0=510 m/s ,故A 、B 错误;。

功能关系 能量守恒PPT课件

功能关系 能量守恒PPT课件

静摩擦力
滑动摩擦力
在静摩擦力做功的过程 1.相互摩擦的物体通过摩
中,只有机械能从一个 擦力做功,将部分机械能从
不 能量的转 物体转移到另一个物体 一个物体转移到另一个物 同 化方面 (静摩擦力起着传递机 体

械能的作用)而没有机 2.部分机械能转化为内能,
械能转化为其他形式的 此部分能量就是系统机械
(1)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就 增加多少.
(2)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就 减少多少.
(3)除重力或弹簧的弹力以外的其他力不做功, 物体的机械能守恒
6
热点二 对能量守恒定律的理解和应用 1.对定律的理解
(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增 加量一定相等.

一对摩擦
能量 一对静摩擦力所做功的
一能对的相损互失作量用的滑动摩擦
同 力做功方 代数总和等于零
力对物体系统所做的总功,
点面
等于摩擦力与相对路程的
乘积,即Wf=-f·s相表示物 体克服摩擦力做功,系统损
失的机械能转变成内能
相 正负功、不 两种摩擦力都可以对物体做正功、负功,还可以不做功
同 做功方面
9
物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限
度.对于m、M和弹簧组成的系统( B )
A.由于F1、F2等大反向,故系统机械能守恒 B.当弹簧弹力大小与F1、F2大小相等时,m、M各自的动能最大 C.由于F1、F2大小不变,所以m、M各自一直做匀加速运动 D.由于F1、F2均做正功,故系统的机械能一直增大
5
热点一 几种常见的功能关系 1.合外力所做的功等于物体动能的增量,表达式: W合=Ek2-Ek1,即动 能定理. 2.重力做正功,重力势能减少;重力做负功,重力势 能增加.由于“增 量”是终态量减去始态量,所 以重力的功等于重力势能增量的负值, 表达式: WG=-ΔEp=Ep1-Ep2. 3.弹簧的弹力做的功等于弹性势能增量的负值,表 达式:WF=ΔEp=Ep1-Ep2.弹力做多少正功,弹性势能减少多少;弹力做多少负功, 弹性势能增加多少. 4.除系统内的重力和弹簧的弹力外,其他力做的总 功等于系统机械 能的增量,表达式: W其他=ΔE.

功能关系能量守衡

功能关系能量守衡

课堂互动讲练
特别提醒
应用能量守恒定律解决有关问 题,关键是准确分析有多少种形 式的能在变化,求出减小的总能 量和增加的总能量,然后再依据 能量守恒列式求解.
高频考点例析
题型一 功能关系的应用
例1 如图5-4-1所示,卷扬机的
绳索通过定滑轮用力F拉位于粗糙 斜面上的木箱,使之沿斜面加速 向上移动.在移动过程中,下列 图5-4-1 说法正确的是( ) A.F对木箱做的功等于木箱增加的动能与木箱克服 摩擦力所做的功之和 B.F对木箱做的功等于木箱克服摩擦力和克服重力 所做的功之和 C.木箱克服重力做的功等于木箱增加的重力势能 D.F对木箱做的功等于木箱增加的机械能与木箱克 服摩擦力做的功之和
66 m/s 10
高频考点例析
【规律总结】 利用能量 守恒分析问题时,一定要分清 楚总共有几种形式的能参与转 化.哪种形式的能减少,哪种 形式的能增加,最后利用增加 量等于减少量列式求解.
高频考点例析
变式训练
3.传统的能源——煤和石油,在利用过程中将产 生严重的环境污染,而且储量有限,有朝一日将被开 采尽.因此,寻找无污染的新能源是人们努力的方 向,利用风力发电即是一例,我国已建立了一定规模 的风力发电站.假设某地强风的风速约为v=20m/s, 空气的密度为ρ=1.3 kg/m3,如果通过横截面积为S= 20 m2的风的动能有20%转化为电能,则发电机输出的 电功率的大小约为多少?(结果保留一位有效数字)
(3)在静摩擦力做功的过程中,有机械能的转移,而没有 机械能转化为内能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以对物体做正功,也可以做负功,还可 以不做功. (2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做 功将产生两种可能效果.①机械能全部转化为内能;②有一 部分机械能在相互摩擦的物体间转移,另外部分转化为内 能. (3)摩擦生热的计算:Q=Ffs相对.

功能关系及能量守恒(课件)高一物理(人教版2019必修第二册)

功能关系及能量守恒(课件)高一物理(人教版2019必修第二册)

常见命题点
命题点一:功能关系的理解
1.只涉及动能的变化用动能定理分析. 2.只涉及重力势能的变化,用重力做功与重力势能变化 的关系分析. 3.只涉及机械能的变化,用除重力和弹簧的弹力之外的 其他力做功与机械能变化的关系分析.
常见题型
命题点二:功能关系的综合应用
例.如图,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机 相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升。摩擦
(2)小球落地点C与B的水平距离s为多少?
(3) 若H一定,R多大时小球落地点C与B水平距离s最远?该水
平距离的最大值是多少?
常见题型
命题点三:摩擦力做功与能量转化
2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效 果: ①机械能全部转化为内能; ②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.
常见题型
除了重力和弹力之外,系统中其他内 外力做功的代数和。
这个功能关系具有普遍意义
三、功能关系
E机 mgx cos 想一想:机械能减小了,是消失了吗?
能量守恒:
E机 Q
Q mgx cos
摩擦生热等于克服摩擦力做功?
三、功能关系
M
mv
地面光滑
动能定理:
x1 x2
mgx2 Ek1 mgx1 Ek2
时会触发闭合装置将圆轨道封闭。(取g=10 m/s2,sin 53°=0.8,cos
53°=0.6)求:
(1)小物块与水平面间的动摩擦因数μ1; (2)弹簧具有的最大弹性势能Ep; (3)要使小物块进入竖直圆轨道后不脱

2023年高考物理一轮复习讲义——功能关系 能量守恒定律

2023年高考物理一轮复习讲义——功能关系 能量守恒定律

第4讲 功能关系 能量守恒定律目标要求 1.熟练掌握几种常见的功能关系,并会用于解决实际问题.2.掌握一对摩擦力做功与能量转化的关系.3.会应用能量守恒观点解决综合问题.考点一 功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的. (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.常见的功能关系能量功能关系表达式势能重力做功等于重力势能减少量 W =E p1-E p2=-ΔE p弹力做功等于弹性势能减少量静电力做功等于电势能减少量 分子力做功等于分子势能减少量动能 合外力做功等于物体动能变化量 W =E k2-E k1=12m v 2-12m v 02机械能 除重力和弹力之外的其他力做功等于机械能变化量W 其他=E 2-E 1=ΔE 摩擦 产生 的内能 一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q =F f ·x 相对电能 克服安培力做功等于电能增加量W 电能=E 2-E 1=ΔE1.一个物体的能量增加,必定有别的物体能量减少.( √ ) 2.合力做的功等于物体机械能的改变量.( × )3.克服与势能有关的力(重力、弹簧弹力、静电力等)做的功等于对应势能的增加量.( √ ) 4.滑动摩擦力做功时,一定会引起机械能的转化.( √ )1.功的正负与能量增减的对应关系(1)物体动能的增加与减少要看合外力对物体做正功还是做负功.(2)势能的增加与减少要看对应的作用力(如重力、弹簧弹力、静电力等)做负功还是做正功.(3)机械能的增加与减少要看重力和弹簧弹力之外的力对物体做正功还是做负功.2.摩擦力做功的特点(1)一对静摩擦力所做功的代数和总等于零;(2)一对滑动摩擦力做功的代数和总是负值,差值为机械能转化为内能的部分,也就是系统机械能的损失量;(3)说明:无论是静摩擦力还是滑动摩擦力,都可以对物体做正功,也可以做负功,还可以不做功.考向1功能关系的理解例1在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,当地的重力加速度为g,那么在他减速下降高度为h的过程中,下列说法正确的是()A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh答案 D解析运动员进入水中后,克服合力做的功等于动能的减少量,故动能减少(F-mg)h,故A 错误;运动员进入水中后,重力做功mgh,故重力势能减小mgh,故B错误;运动员进入水中后,除重力外,克服阻力做功Fh,故机械能减少了Fh,故C错误,D正确.例2如图所示,弹簧的下端固定在光滑斜面底端,弹簧与斜面平行.在通过弹簧中心的直线上,小球P从直线上的N点由静止释放,在小球P与弹簧接触到速度变为零的过程中,下列说法中正确的是()A.小球P的动能一定在减小B.小球P的机械能一定在减少C.小球P与弹簧系统的机械能一定在增加D.小球P重力势能的减小量大于弹簧弹性势能的增加量答案 B解析小球P与弹簧接触后,刚开始弹力小于重力沿斜面向下的分力,合力沿斜面向下,随着形变量增大,弹力大于重力沿斜面向下的分力,合力方向沿斜面向上,合力先做正功后做负功,小球P的动能先增大后减小,A错误;小球P与弹簧组成的系统的机械能守恒,弹簧的弹性势能不断增大,所以小球P的机械能不断减小,B正确,C错误;在此过程中,根据系统机械能守恒,可知小球P重力势能的减小量与动能减小量之和等于弹簧弹性势能的增加量,即小球P重力势能的减小量小于弹簧弹性势能的增加量,D错误.考向2功能关系与图像的结合例3(多选)(2020·全国卷Ⅰ·20)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s2.则()A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s2D.当物块下滑2.0 m时机械能损失了12 J答案AB解析由E-s图像知,物块动能与重力势能的和减小,则物块下滑过程中机械能不守恒,故A正确;由E-s图像知,整个下滑过程中,物块机械能的减少量为ΔE=30 J-10 J=20 J,重力势能的减少量ΔE p=mgh=30 J,又ΔE=μmg cos α·s,其中cos α=s2-h2s=0.8,h=3.0m,g=10 m/s2,则可得m=1 kg,μ=0.5,故B正确;物块下滑时的加速度大小a=g sin α-μg cosα=2 m/s2,故C错误;物块下滑2.0 m时损失的机械能为ΔE′=μmg cos α·s′=8 J,故D错误.考向3摩擦力做功与摩擦生热的计算例4(多选)如图所示,一个长为L,质量为M的木板,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度v0,从木板的左端滑向另一端,设物块与木板间的动摩擦因数为μ,当物块与木板相对静止时,物块仍在长木板上,物块相对木板的位移为d,木板相对地面的位移为s,重力加速度为g.则在此过程中()A.摩擦力对物块做功为-μmg(s+d)B.摩擦力对木板做功为μmgsC.木板动能的增量为μmgdD.由于摩擦而产生的热量为μmgs答案AB解析根据功的定义W=Fs cos θ,其中s指物体对地的位移,而θ指力与位移之间的夹角,可知摩擦力对物块做功W1=-μmg(s+d),摩擦力对木板做功W2=μmgs,A、B正确;根据动能定理可知木板动能的增量ΔE k=W2=μmgs,C错误;由于摩擦而产生的热量Q=F f·Δx =μmgd,D错误.例5(多选)(2019·江苏卷·8)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A点的初速度为2μgs答案BC解析 物块处于最左端时,弹簧的压缩量最大,然后物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,由功的定义可得物块克服摩擦力做功为2μmgs ,选项B 正确;物块从最左侧运动至A 点过程,由能量守恒定律可知E p =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,对整个过程应用动能定理有-2μmgs =0-12m v 02,解得v 0=2μgs ,选项D 错误.考点二 能量守恒定律的理解和应用1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增.3.应用能量守恒定律解题的步骤(1)首先确定初、末状态,分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.例6 (2020·浙江1月选考·20)如图所示,一弹射游戏装置由安装在水平台面上的固定弹射器、竖直圆轨道(在最低点E 分别与水平轨道EO 和EA 相连)、高度h 可调的斜轨道AB 组成.游戏时滑块从O 点弹出,经过圆轨道并滑上斜轨道.全程不脱离轨道且恰好停在B 端则视为游戏成功.已知圆轨道半径r =0.1 m ,OE 长L 1=0.2 m ,AC 长L 2=0.4 m ,圆轨道和AE 光滑,滑块与AB 、OE 之间的动摩擦因数μ=0.5.滑块质量m =2 g 且可视为质点,弹射时从静止释放且弹簧的弹性势能完全转化为滑块动能.忽略空气阻力,各部分平滑连接.求:(1)滑块恰好能过圆轨道最高点F 时的速度v F 大小;(2)当h =0.1 m 且游戏成功时,滑块经过E 点对圆轨道的压力F N 大小及弹簧的弹性势能E p0; (3)要使游戏成功,弹簧的弹性势能E p 与高度h 之间满足的关系. 答案 见解析解析 (1)滑块恰好能过F 点的条件为mg =m v F 2r解得v F =1 m/s(2)滑块从E 点到B 点,由动能定理得 -mgh -μmgL 2=0-12m v E 2在E 点由牛顿第二定律得F N ′-mg =m v E 2r解得F N =F N ′=0.14 N从O 点到B 点,由能量守恒定律得: E p0=mgh +μmg (L 1+L 2) 解得E p0=8.0×10-3 J(3)使滑块恰能过F 点的弹性势能 E p1=2mgr +μmgL 1+12m v F 2=7.0×10-3 J到B 点减速到0E p1-mgh 1-μmg (L 1+L 2)=0 解得h 1=0.05 m设斜轨道的倾角为θ,若滑块恰好能停在B 点不下滑, 则μmg cos θ=mg sin θ解得tan θ=0.5,此时h 2=0.2 m 从O 点到B 点E p =mgh +μmg (L 1+L 2)=2×10-3(10h +3) J 其中0.05 m ≤h ≤0.2 m.例7 如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m =4 kg ,B 的质量为m =2 kg ,初始时物体A 到C 点的距离L =1 m ,现给A 、B 一初速度v 0=3 m/s ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹回到C 点.已知重力加速度g =10 m/s 2,不计空气阻力,整个过程中轻绳始终处于伸直状态.求在此过程中:(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能. 答案 (1)2 m/s (2)0.4 m (3)6 J解析 (1)在物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得 μ·2mg cos θ·L =12×3m v 02-12×3m v 2+2mgL sin θ-mgL解得v =2 m/s.(2)对A 、B 组成的系统分析,在物体A 从C 点压缩弹簧至将弹簧压缩到最大压缩量,又恰好返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量,即 12×3m v 2-0=μ·2mg cos θ·2x 其中x 为弹簧的最大压缩量 解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm ,从C 点到弹簧最大压缩量过程中由能量守恒定律可得 12×3m v 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm 解得E pm =6 J.课时精练1.(多选)如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其减速运动的加速度为34g ,此物体在斜面上能够上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了mghB .机械能损失了12mghC .动能损失了mghD .克服摩擦力做功14mgh答案 AB解析 加速度大小a =34g =mg sin 30°+F f m ,解得摩擦力F f =14mg ,机械能损失等于克服摩擦力做的功,即F f x =14mg ·2h =12mgh ,故B 项正确,D 项错误;物体在斜面上能够上升的最大高度为h ,所以重力势能增加了mgh ,故A 项正确;动能损失量为克服合力做功的大小,动能损失量ΔE k =F 合x =34mg ·2h =32mgh ,故C 项错误.2.某同学用如图所示的装置测量一个凹形木块的质量m ,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)将其压缩,记下木块右端位置A 点,静止释放后,木块右端恰能运动到B 1点.在木块槽中加入一个质量m 0=800 g 的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A 点,静止释放后木块离开弹簧,右端恰能运动到B 2点,测得AB 1、AB 2长分别为27.0 cm 和9.0 cm ,则木块的质量m 为( )A .100 gB .200 gC .300 gD .400 g 答案 D解析 根据能量守恒定律,有μmg ·AB 1=E p ,μ(m 0+m )g ·AB 2=E p ,联立解得m =400 g ,D 正确. 3.一木块静置于光滑水平面上,一颗子弹沿水平方向飞来射入木块中.当子弹进入木块的深度达到最大值2.0 cm 时,木块沿水平面恰好移动距离1.0 cm.在上述过程中系统损失的机械能与子弹损失的动能之比为( ) A .1∶2 B .1∶3 C .2∶3 D .3∶2答案 C解析 根据题意,子弹在摩擦力作用下的位移为x 1=(2+1) cm =3 cm ,木块在摩擦力作用下的位移为x 2=1 cm ;系统损失的机械能转化为内能,根据功能关系,有ΔE 系统=Q =F f ·Δx ;子弹损失的动能等于子弹克服摩擦力做的功,故ΔE 子弹=F f x 1;所以ΔE 系统ΔE 子弹=23,所以C 正确,A 、B 、D 错误.4.如图所示,一质量为m的滑块以初速度v0从固定于地面的斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下图分别表示它在斜面上运动的速度v、加速度a、势能E p和机械能E随时间的变化图像,可能正确的是()答案 C解析由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f=ma1;下滑阶段有:mg sin θ-F f=ma2,因此a1>a2,故选项B错误;速度-时间图像的斜率表示加速度,当上滑和下滑时,加速度不同,则斜率不同,故选项A错误;重力势能先增大后减小,且上升阶段加速度大,所用时间短,势能变化快,下滑阶段加速度小,所用时间长,势能变化慢,故选项C可能正确;由于摩擦力始终做负功,机械能一直减小,故选项D错误.5.如图所示,赫章的韭菜坪建有风力发电机,风力带动叶片转动,叶片再带动转子(磁极)转动,使定子(线圈,不计电阻)中产生电流,实现风能向电能的转化.若叶片长为l,设定的额定风速为v,空气的密度为ρ,额定风速下发电机的输出功率为P,则风能转化为电能的效率为()A.2Pπρl2v3 B.6Pπρl2v3 C.4Pπρl2v3 D.8Pπρl2v3答案 A解析风能转化为电能的工作原理为将风的动能转化为输出的电能,设风吹向发电机的时间为t,则在t时间内吹向发电机的风柱的体积为V=v t·S=v tπl2,则风柱的质量M=ρV=ρv tπl2,因此风吹过的动能为E k =12M v 2=12ρv t πl 2·v 2,在此时间内发电机输出的电能E =P ·t ,则风能转化为电能的效率为η=E E k =2Pπρl 2v3,故A 正确,B 、C 、D 错误.6.(多选)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功12mgRD .克服摩擦力做功12mgR答案 CD解析 小球从P 点运动到B 点的过程中,重力做功W G =mg (2R -R )=mgR ,故A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,则有mg =m v B 2R ,解得v B =gR ,则此过程中机械能的减少量为ΔE =mgR -12m v B 2=12mgR ,故B 错误;根据动能定理可知,合外力做功W 合=12m v B 2=12mgR ,故C 正确;根据功能关系可知,小球克服摩擦力做的功等于机械能的减少量,为12mgR ,故D 正确.7.质量为2 kg 的物体以10 m/s 的初速度,从起点A 出发竖直向上抛出,在它上升到某一点的过程中,物体的动能损失了50 J ,机械能损失了10 J ,设物体在上升、下降过程空气阻力大小恒定,则该物体再落回到A 点时的动能为(g =10 m/s 2)( ) A .40 J B .60 J C .80 J D .100 J 答案 B解析 物体抛出时的总动能为100 J ,物体的动能损失了50 J 时,机械能损失了10 J ,则动能损失100 J 时,机械能损失20 J ,此时到达最高点,由于空气阻力大小恒定,所以下落过程,机械能也损失20 J ,故该物体从A 点抛出到落回到A 点,共损失机械能40 J ,所以该物体再落回到A点时的动能为60 J,A、C、D错误,B正确.8.(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示.重力加速度取10 m/s2.由图中数据可得()A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J答案AD解析根据题图可知,h=4 m时物体的重力势能E p=mgh=80 J,解得物体质量m=2 kg,抛出时物体的动能为E k0=100 J,由公式E k0=12可知,h=0时物体的速率为v=10 m/s,2m v选项A正确,B错误;由功能关系可知F f h4=|ΔE总|=20 J,解得物体上升过程中所受空气阻力F f=5 N,从物体开始抛出至上升到h=2 m的过程中,由动能定理有-mgh-F f h=E k-E k0,解得E k=50 J,选项C错误;由题图可知,物体上升到h=4 m时,机械能为80 J,重力势能为80 J,动能为零,即从地面上升到h=4 m,物体动能减少100 J,选项D正确.9.(多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab与水平面的夹角为60°,光滑斜面bc与水平面的夹角为30°,顶角b处安装一定滑轮.质量分别为M、m(M>m)的两滑块A和B,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动,A、B不会与定滑轮碰撞.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.轻绳对滑轮作用力的方向竖直向下B.拉力和重力对M做功之和大于M动能的增加量C.拉力对M做的功等于M机械能的增加量D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功答案 BD解析 根据题意可知,两段轻绳的夹角为90°,轻绳拉力的大小相等,根据平行四边形定则可知,合力方向与绳子方向的夹角为45°,所以轻绳对滑轮作用力的方向不是竖直向下的,故A 错误;对M 受力分析,受到重力、斜面的支持力、绳子拉力以及滑动摩擦力作用,根据动能定理可知,M 动能的增加量等于拉力和重力以及摩擦力做功之和,而摩擦力做负功,则拉力和重力对M 做功之和大于M 动能的增加量,故B 正确;根据除重力以外的力对物体做功等于物体机械能的变化量可知,拉力和摩擦力对M 做的功之和等于M 机械能的增加量,故C 错误;对两滑块组成系统分析可知,除了重力之外只有摩擦力对M 做功,所以两滑块组成的系统的机械能损失等于M 克服摩擦力做的功,故D 正确.10.(多选)如图所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点.轻弹簧左端固定于竖直墙面,现将质量为m 1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B 点的机械能损失.换用相同材料质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程,下列说法正确的是( )A .两滑块到达B 点的速度相同B .两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点过程克服重力做的功相同D .两滑块上升到最高点过程机械能损失相同答案 CD解析 两滑块到B 点的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于质量不同,则在B 点时的速度不同,故上升的最大高度不同,故B 错误;滑块上升到斜面最高点过程克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ·h sin θ,则mgh =E p 1+μtan θ,故两滑块上升到斜面最高点过程克服重力做的功相同,故C 正确;由能量守恒定律得E 损=μmg cos θ·h sin θ=μmgh tan θ,结合C 可知D 正确. 11.(多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处有一固定挡板,挡板上固定轻质弹簧,右侧用不可伸长的轻绳连接在竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达到最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.重力加速度为g ,则( )A .细绳被拉断瞬间长木板的加速度大小为F MB .细绳被拉断瞬间弹簧的弹性势能为12m v 2 C .弹簧恢复原长时滑块的动能为12m v 2 D .滑块与长木板AB 段间的动摩擦因数为v 22gl答案 ABD解析 细绳被拉断瞬间弹簧的弹力等于F ,对长木板,由牛顿第二定律得F =Ma ,得a =F M,A 正确;滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得,细绳被拉断瞬间弹簧的弹性势能为12m v 2,B 正确;弹簧恢复原长时长木板与滑块都获得动能,所以滑块的动能小于12m v 2,C 错误;弹簧最大弹性势能E p =12m v 2,小滑块恰未掉落时滑到木板的最右端B ,此时小滑块与长木板均静止,又水平面光滑,长木板上表面OA 段光滑,则有E p =μmgl ,联立解得μ=v 22gl,D 正确. 12.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端挡板位置B 点的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(结果均保留三位有效数字)(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案 (1)0.521 (2)24.4 J解析 (1)物体从A 点到被弹簧弹到D 点的过程中,弹簧弹性势能没有发生变化,机械能的减少量全部用来克服摩擦力做功,即:12m v02+mgAD·sin θ=μmg cos θ·(AB+2BC+BD)代入数据解得:μ≈0.521.(2)物体由A到C的过程中,动能减少量ΔE k=12m v02重力势能减少量ΔE p=mg sin θ·AC摩擦产生的热量Q=μmg cos θ·AC由能量守恒定律可得弹簧的最大弹性势能为:E pm=ΔE k+ΔE p-Q≈24.4 J.13.如图所示,在倾角为37°的斜面底端固定一挡板,轻弹簧下端连在挡板上,上端与物块A 相连,用不可伸长的细线跨过斜面顶端的定滑轮把A与另一物体B连接起来,A与滑轮间的细线与斜面平行.已知弹簧劲度系数k=40 N/m,A的质量m1=1 kg,与斜面间的动摩擦因数μ=0.5,B的质量m2=2 kg.初始时用手托住B,使细线刚好处于伸直状态,此时物体A 与斜面间没有相对运动趋势,物体B的下表面离地面的高度h=0.3 m,整个系统处于静止状态,弹簧始终处于弹性限度内.重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)由静止释放物体B,求B刚落地时的速度大小;(2)把斜面处理成光滑斜面,再将B换成一个形状完全相同的物体C并由静止释放,发现C 恰好到达地面,求C的质量m3.答案(1) 2 m/s(2)0.6 kg解析(1)因为初始时刻A与斜面间没有相对运动趋势,即A不受摩擦力,此时有:m1g sin θ=F弹此时弹簧的压缩量为:x1=F弹k=m1g sin θk=0.15 m当B落地时,A沿斜面上滑h,此时弹簧的伸长量为:x2=h-x1=0.15 m所以从手放开B到B落地过程中以A、B和弹簧为系统,弹簧伸长量和压缩量相同,弹性势能不变,弹簧弹力不做功,根据能量守恒定律可得:m 2gh =m 1gh sin θ+μm 1g cos θ·h +12(m 1+m 2)v 2 代入数据解得:v = 2 m/s(2)由(1)分析同理可知换成光滑斜面,没有摩擦力,则从手放开C 到C 落地过程中以A 、C 和弹簧为系统,根据机械能守恒可得:m 3gh =m 1gh sin θ代入数据解得m 3=0.6 kg.。

功能关系和能量守恒定律

功能关系和能量守恒定律

(版权所有,翻印必究)教师版名思学案行业典范学案科目物理年级日期时段教师课题功能关系和能量守恒定律本次课知识点罗列1.功能关系的定义2.几种常见力的功与能量转化的关系3. 能量守恒定律的内容4. 能量守恒定律的两天基本思路重点难点功能关系功能关系的熟练运用一.基础点睛(一)功能关系1、功是转化的量度,即“做多少功,就有多少能量转化”,但功不是能。

2、能量转化过程中,总能量总是。

即(1)某种形式的能量减少,一定有其他形式的能增加,且减少量等于增加量;(2)某个物体能量的减少,一定存在其他物体的能量增加,且减少量等于增加量。

3、功与动能、势能、机械能的关系可归纳如下:(1)合外力的功与物体的变化相联系,即W合=ΔE k(2)重力的功与物体的变化相联系,即W G=-ΔE p(3)重力、弹簧力以外的其他力做功与物体系统的变化相联系,即W其他=ΔE机。

其他力做正功,系统的机械能增加,反之,则系统的机械能减少,若其他力做功为零,则系统的机械能守恒。

这种关系通常称为“功能原理”。

(4)相互摩擦的系统内,一对静摩擦力所做的功总和等于零;一对滑动摩擦力所做的功的总和总是负值,其绝对值等于滑动摩擦力与相对路程的乘积,且恰等于系统损失的机械能。

(二)能量守恒定律与能源1、能量守恒定律1.内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另外一个物体,而在转化和转移的过程中,能量的总和保持不变.2.建立过程.2能源和能量耗散1.内容:能量转化具有方向性.2.节约能源的重要意义(版权所有,翻印必究)教 师 版名思学案 行业典范二、夯实小练1、 某人将一个物体由地面举起一定高度且使物体获得一定速度的过程中,若不计空气阻力,则( )A 、 举力所做的功等于物体机械能的增加B 、 物体克服重力所做的功等于其动能的增加C 、 举力和重力所做的功的代数和等于动能的增加D 、 物体所受合外力所做的功等于物体机械能的增加2、 一木块静止在光滑的水平面上,被水平方向飞来的子弹击中,子弹进入木块的深度为2cm ,木块相对于桌面移动了1cm 。

高三物理:功能关系及能量守恒的综合应用(解析版)

高三物理:功能关系及能量守恒的综合应用(解析版)

功能关系及能量守恒的综合应用1.功能关系及能量守恒在高考物理中占据了至关重要的地位,因为它们不仅是物理学中的基本原理,更是解决复杂物理问题的关键工具。

在高考中,这些考点通常被用于检验学生对物理世界的深刻理解和应用能力。

2.从命题方式上看,功能关系及能量守恒的题目形式丰富多样,既可以作为独立的问题出现,也可以与其他物理知识点如牛顿运动定律、动量守恒定律等相结合,形成综合性的大题。

这类题目往往涉及对能量转化、传递、守恒等概念的深入理解和灵活运用,对考生的逻辑思维和数学计算能力有较高的要求。

3.备考时,考生需要首先深入理解功能关系及能量守恒的基本原理和概念,明确它们之间的转化和守恒关系。

这包括理解各种形式的能量(如动能、势能、热能等)之间的转化关系,以及能量守恒定律在物理问题中的应用。

同时,考生还需要掌握相关的公式和计算方法,如动能定理、机械能守恒定律等,并能够熟练运用这些公式和方法解决实际问题。

4.考向一:应用动能定理处理多过程问题1.解题流程2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。

(2)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。

(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解,这样更简便。

(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。

考向二:三类连接体的功能关系问题1.轻绳连接的物体系统常见情景二点提醒(1)分清两物体是速度大小相等,还是沿绳方向的分速度大小相等。

(2)用好两物体的位移大小关系或竖直方向高度变化的关系。

2.轻杆连接的物体系统常见情景三大特点(1)平动时两物体线速度相等,转动时两物体角速度相等。

(2)杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017版高三二轮复习与策略
2.一物块沿倾角为 θ 的斜面向上滑动,当物块的初速度为 v 时,上升的最 大高度为 H,如图 2 所示;当物块的初速度为 2v 时,上升的最大高度记为 h.重 力加速度大小为 g.物块与斜面间的动摩擦因数 μ 和 h 分别为(
A.tan θ 和 2H B.tan θ 和 4H
2017版高三二轮复习与策略
C.考前热身 1.(多选)如图 1 所示,光滑水平面上有一长为 L 的小车,在小车的一端放 有一物体,在物体上施一水平恒力 F,使它由静止开始从小车的一端运动到另一 端,设小车与物体之间的摩擦力为 f,则( )
图1
2017版高三二轮复习与策略
A.物体到达另一端时的动能为(F-f)(s+L) B.物体到达另一端时小车的动能为 fs C.整个过程中消耗的机械能为 fs D.物体克服摩擦力做功为 fL
由运动学公式得 v=a1t 代入数据解得 Ff=2 N.
2017版高三二轮复习与策略
(2)滑块在长木板上滑行时,对滑块,根据牛顿第二定律有-Ff=ma2 设滑块滑上长木板时的初速度为 v0,则有 v-v0=a2t 代入数据解得 v0=3 m/s 滑块沿弧面下滑的过程,由动能定理得 1 2 mgh-Q1=2mv0-0 代入数据解得 Q1=1.5 J.
2017版高三二轮复习与策略
D
[玉兔号月球车以最大速度做匀速直线运动时所受的摩擦力等于前进提
x 100 供的动力,由力平衡得:F=μmg,解得 F=112 N,平均速度 v= t =1 800 m/s 1 =18 m/s,P=Fv,解得 P=6.2 W,故 D 正确.]
2017版高三二轮复习与策略
2017版高三二轮复习与策略
5.(多选)如图 4 所示,质量分别为 m 和 2m 的两个小球 A 和 B,中间用长 为 2L 的轻杆相连,在杆的中点 O 处有一固定水平转动轴,把杆置于水平位置后 由静止释放,在 B 球沿顺时针转动到最低位置的过程中( )
图4
2017版高三二轮复习与策略
A.A、B 两球的角速度大小始终相等 B.重力对 B 球做功的瞬时功率一直增大 C.B 球转动到最低位置时的速度大小为 D.杆对 B 球做正功,B 球机械能不守恒 2 3gL
2017版高三二轮复习与策略
(3)滑块在木板上滑行,t=1 s 时长木板的位移为 1 2 s1=2a1t 1 2 此过程中滑块的位移为 s2=v0t+2a2t 故滑块相对木板滑行的距离为 L=s2-s1=1.5 m 所以 Q2=Ff· L=3 J 则 Q=Q1+Q2=4.5 J.
【答案】 (1)2 N (2)1.5 J
2017版高三二轮复习与策略
AC [A、B 两球用轻杆相连,角速度大小始终相等,选项 A 正确;杆在水
平位置时,重力对 B 球做功的瞬时功率为零,杆在竖直位置时,B 球的重力和速 度方向垂直,重力对 B 球做功的瞬时功率也为零,但在其他位置重力对 B 球做 功的瞬时功率不为零,因此,重力对 B 球做功的瞬时功率先增大后减小,选项 B 错误;设 B 球转动到最低位置时的速度为 v,两球角速度大小相等,转动半径相 等,所以两球的线速度大小也相等,对 A、B 两球和杆组成的系统,由机械能守 1 1 2 2 恒定律得,2mgL-mgL=2(2m)v +2mv ,解得 v= 2 3gL,选项 C 正确;B 球
2017版高三二轮复习与策略
1 2 AB [对物体运用动能定理可得(F-f)(s+L)=2mv ,则 A 正确;对车运用 1 2 动能定理可得 fs=2Mv ,则 B 正确;系统在整个过程中消耗的机械能等于滑动 摩擦力与相对位移的乘积,则整个过程中消耗的机械能为 fL,C 错误;物体克 服摩擦力所做的功为 f(L+s),D 错误.]
图5
2017版高三二轮复习与策略
A.物体与地面间的动摩擦因数为 0.1 B.0~2 s 内 F 做的功为-8 J C.0~7 s 内物体由于摩擦产生的热量为 25 J D.0~7 s 内物体滑行的总位移为 29 m
2017版高三二轮复习与策略
ABD
[由图象可知物体在 3~7 s 内仅受摩擦力,做匀减速直线运动,其加
v2 1 2 -2m(2v) ,联立解得 μ= - 1 tan θ,h=4H,选项 D 正确.] 2 gH
2017版高三二轮复习与策略
3. 140 kg 的玉兔号月球车采用轮式方案在月球的平整表面前进(所受摩擦力 按滑动摩擦力计算),通过光照自主进行工作.若车轮与月球地面间的动摩擦因 数为 μ=0.5,月球表面的重力加速度为 g=1.6 m/s2,现在正以最大速度做匀速 直线运动,前进 100 m 用时 30 min.则月球车提供的动力功率为( A.P=1.1×102 W C.P=81 W B.P=16.2 W D.P=6.2 W )
做功 重力做功 弹力做功 合外力做功 W 合 除重力和弹力之外其他力做功 W 其 滑动摩擦力与介质阻力做功 Ffl 相对 电场力做功 WAB=qUAB 电流做功 W=UIt 能量变化 重力势能变化 ΔEp 弹性势能变化 ΔEp 动能变化 ΔEk 机械能变化 ΔE 系统内能变化 ΔE 内 电势能变化 ΔEp 电能变化 ΔE 功能关系 WG=-ΔEp WFN=-ΔEp W 合=ΔEk W 其=ΔE Ffl 相对=ΔE 内 WAB=-ΔEp W=-ΔE
(3)4.5 J
4.如图 3 所示,在竖直平面内有一半径为 R 的圆弧轨道,半径 OA 水平, OB 竖直.一质量为 m 的小球自 A 点正上方的 P 点由静止开始自由下落,小球沿 轨道到达最高点 B 时恰好对轨道没有压力.已知 AP=2R,重力加速度为 g,则 小球从 P 到 B 的运动过程中( )
A.重力做功 2mgR C.合外力做功 mgR
2017版高三二轮复习与策略
4.动能定理 W 总=Ek2-Ek1. 5.机车启动类问题中的“临界点” Pm (1)全程最大速度的临界点为:F 阻= v . m P (2)匀加速运动的最后点为v -F 阻=ma;此时瞬时功率等于额定功率 P 额. 1m P1 (3)在匀加速过程中的某点有: v -F 阻=ma. 1 Pm (4)在变加速运动过程中的某点有 v -F 阻=ma2. 2
速度大小 a=1 m/s2=μg, 得物体与地面间的动摩擦因数为 0.1, A 正确; 计算 0~ 7 s 内所围面积可得物体滑行的总位移为 x=29 m, D 正确, 0~7 s 内物体由于摩 擦产生的热量为 Q=μmgx=14.5 J, C 错误; 0~2 s 加速度大小 a1=2 m/s2, 由 μmg +F=ma1 可得 F=0.5 N,0~2 s 内位移由面积可得 x′=16 m,所以 F 做的功为 W =-Fx′=-8 J,B 正确.]
2017版高三二轮复习与策略
6.重力势能 Ep=mgh(h 是相对于零势能面的高度) 7.机械能守恒定律的三种表达方式 1 2 1 2 (1)始末状态:mgh1+2mv1=mgh2+2mv2. (2)能量转化:ΔEk(增)=ΔEp(减). (3)研究对象:ΔEA=-ΔEB.
2017版高三二轮复习与策略 8.几种常见的功能关系
v2 C. - 1 tan 2 gH v2 D. - 1 tan 2gH
)
θ 和 2H θ 和 4H
图2
2017版高三二轮复习与策略
H D [物块以初速度 v 上升的过程, 由动能定理可得-mgH-μmgcos θ· sin θ= 1 2 h 0-2mv ;以初速度 2v 上升的过程,由动能定理可得-mgh-μmgcos θ· sin θ=0
2017版高三二轮复习与策略
9.应用动能定理的情况 (1)动能定理的计算式为标量式,不涉及方向问题,在不涉及加速度和时间 的问题时,可优先考虑动能定理. (2)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系. (3)动能定理既适用于物体的直线运动,也适用于曲线运动;既适用于恒力 做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以 分段作用. (4)若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考 虑,也可以视全过程为一整体来处理.
B.机械能减少 mgR 1 D.克服摩擦力做功2mgR
图3
2017版高三Biblioteka 轮复习与策略D [重力做功与路径无关,只与初、末位置有关,故小球从 P 到 B 的过程 中,重力做的功为 WG=mgR,选项 A 错误;小球沿轨道到达最高点 B 时恰好对 v2 B 轨道没有压力,根据牛顿第二定律,有 mg=m R ,解得 vB= gR,从 P 到 B 过 1 2 mgR 程,重力势能的减少量为 mgR,动能的增加量为2mvB= 2 ,故机械能的减少 mgR mgR 量为 mgR- 2 = 2 ,选项 B 错误;小球从 P 到 B 的过程中,合外力做的功 mgR 等于动能的增加量,即为 2 ,选项 C 错误;从 P 到 B 的过程中,小球克服摩 mgR 擦力做的功等于机械能的减少量,即为 2 ,选项 D 正确.]
2017版高三二轮复习与策略
倒计时第 7 天
功能关系和能量守恒
2017版高三二轮复习与策略
A.主干回顾
2017版高三二轮复习与策略
B.精要检索 1.恒力做功的计算式 W=Flcos α(α 是 F 与位移 l 方向的夹角). 2.恒力所做总功的计算 W 总=F 合 lcos α 或 W 总=W1+W2+„„. 3.计算功率的两个公式 W P= t 或 P=Fvcos α.
2 的重力势能减少了 2mgL,动能增加了3mgL,机械能减少了,所以杆对 B 球做负 功,选项 D 错误.]
2017版高三二轮复习与策略
6.(多选)如图 5 甲所示,质量 m=0.5 kg,初速度 v0=10 m/s 的物体,受到 一个与初速方向相反的外力 F 的作用, 沿粗糙的水平面滑动, 经 3 s 后撤去外力, 直到物体停止,整个过程物体的 vt 图象如图乙所示,g 取 10 m/s2,则( )
相关文档
最新文档