旋转与平移
平移与旋转
平移与旋转平移1、在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移。
通过平移得到的图形与原来的图形相等。
2、性质:在平面内,一个图形平移后得到的图形与原来的图形的对应线段相等,各对应角相等,各对应点所连接的线平行(或在一条直线上)且相等。
旋转1.在平面内,一个图形绕一个定点沿某个方向转过一个角度,这样的图形运动叫旋转。
这个定点叫做旋转中心,转过的角度叫做旋转角。
2.性质:在平面内,一个图形经旋转后得到的图形与原来的图形之间有:对应点到旋转中心的距离相等;每对对应点与旋转中心连线所成的角都是相等的角,它们都是旋转角。
3.决定旋转的要素旋转中心在旋转过程中保持不变,图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。
4.旋转对称图形:一些图形绕着某一定点旋转一定的角度后能与自身重合,这种图形就称为旋转对称图形(a figure of rotation symmetry)。
中心对称与中心对称图形1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么两个图形叫做关于这个点的对称,简称中心对称,这个点叫做对称中心,中心对称的两个图形中的对应点、对应线段,分别叫做关于对称中心的对称点、对应线段.2.两个图形成中心对称的性质:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.3.中心对称图形:图形绕着中心点旋转180°后能与自身重合,我们把这种图形叫做中心对称图形(a figure of central symmetry),这个中心点叫做对称中心(centre of symmetry).4.反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.中心对称图形:圆,平行四边形,矩形,菱形,正方形图案的设计与欣赏图形的平移、旋转和对称统称为图形的变换。
典型例题讲解一、填空题:1.一个五角星绕中心至少旋转度后能与自身重合。
数学旋转和平移知识点总结
数学旋转和平移知识点总结一、旋转的基本概念1.1 旋转的概念所谓旋转,就是通过一个固定的点,将平面上的点或者图形绕着这个点进行转动的过程。
这个固定的点被称为旋转中心,转动的角度叫做旋转角。
在数学中,我们通常用一个坐标系来描述旋转的过程,通过将点或者图形绕着坐标系的原点旋转,来描述旋转的过程。
1.2 旋转的表示在数学中,我们可以通过旋转矩阵、三角函数等方式来表示旋转变换。
旋转矩阵是用来描述旋转变换的一个重要工具,它能够将点或者图形绕着旋转中心进行旋转,并将旋转后的点或者图形表示出来。
三角函数能够帮助我们计算旋转后的点的坐标,从而描述旋转的过程。
1.3 旋转的性质旋转具有一些重要的性质,例如角度不变性、共线性不变性、长度比例不变性等。
这些性质在实际问题中有着重要的应用,能够帮助我们更好地理解旋转变换。
1.4 旋转的定理在数学中,我们有着一些关于旋转的重要定理,例如旋转定理、旋转对称定理等。
这些定理能够帮助我们解决与旋转相关的各种问题,是数学中的重要内容。
1.5 旋转的应用旋转在实际生活和工程中有着广泛的应用,例如在建筑设计、机械加工、航天航空等领域。
旋转能够帮助我们更好地描述和分析各种物体的形状和结构,具有重要的工程应用价值。
二、平移的基本概念2.1 平移的概念平移是将平面上的点或者图形沿着某一方向进行平行移动的过程。
在数学中,我们通常用向量或者坐标变换来描述平移的过程,通过平移向量或者平移矩阵来表示平移变换。
2.2 平移的表示在数学中,平移变换可以通过向量加法或者矩阵相加来表示,从而描述平移的过程。
平移变换可以将点或者图形沿着某一方向进行平行移动,并得到平移后的点或者图形的位置。
2.3 平移的性质平移具有一些重要的性质,例如平移不改变长度、方向和大小等。
这些性质在实际问题中有着重要的应用,能够帮助我们更好地理解平移变换。
2.4 平移的定理在数学中,我们有着一些关于平移的重要定理,例如平移定理、平移对称定理等。
什么是平移 什么是旋转
很多同学学习几何时对于一些概念都不是很了解。
那么什么是平移?什么是旋转呢?
平移简介
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
它是等距同构,是仿射空间中仿射变换的一种。
它可以视为将同一个向量加到每点上,或将坐标系统的中心移动所得的结果。
即是说,若是一个已知的向量,是空间中一点,平移。
旋转的定义
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。
平移和旋转的区别与联系
1、区别:旋转不改变物体在空间上的位置不发生位移,平移将一个图形上的所有点都按照某个直线方向做相同距离的移动发生了位移。
2、联系:旋转和平移都是物体运动现象,在运动中都没有改变本身的形状、大小与自身性质特征。
以上就是一些有关于平移和旋转的相关信息,供大家参考。
平移与旋转--知识讲解
平移与旋转--知识讲解【学习目标】1.理解平移、旋转的基本概念,掌握平移、旋转的基本特征,并能利用平移与旋转的性质进行证明有关问题;2.知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计;理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3.能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】要点一、平移1.定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2.性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3.作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.要点二、旋转的概念把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如NAOA, ),如果图形上的点A经过旋转变为点A’,那么,这两个点叫做这个旋转的对应点要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点三、旋转的性质(1)对应点到旋转中心的距离相等(OA=OA');(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形的形状与大小不变.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点四、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点.【典型例题】类型一、平移1.如图所示,平移^ABC,使点A移动到点A,,画出平移后的4A‘ B‘ C’.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA,后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA/,过点B 作AA,的平行线l ,在l 上截取BB'=AA ’,则点B ’就是点B 的对应点.(2)用同样的方法做出点C 的对应点C ’,连接A' B ‘、B ‘ C ’、C' A ’, 就得到平移后的三角形A ’B' C ’.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA ’,这个问题就解决了,然后分 别把B 、C 按AA,的方向平移AA,的长度,便可得到其对应点B ’、C ’,这就是确定了关键点平移后的 位置,依次连接A, B ‘, B ‘ C ’, C ’ A ’便得到平移后的三角形A ’ B ‘ C ’.2 .如图所示,将4ABC 沿直线AB 向右平移后到达4BDE 的位置,若NCAB = 50°,NABC =100°, 则NCBE 的度数为.【答案】30°【解析】根据平移的特征可知:NEBD=NCAB = 50°而NABC=100。
平移和旋转的定律
平移和旋转的定律平移和旋转是几何学中常用的变换方法,它们在解决实际问题和研究几何性质时起到了重要作用。
本文将分别介绍平移和旋转的定律,并阐述它们的应用。
一、平移的定律平移是指将一个图形沿着直线方向移动一定的距离,保持形状和大小不变。
平移的定律有以下几个要点:1. 平移的性质:平移不改变图形的大小、形状和内部角度。
2. 平移的表示方法:平移可以用向量表示,即将图形上的每个点都沿着同一方向平行地移动相同的距离。
平移向量可以表示为一个有向线段,起点为原点,终点为目标点。
3. 平移的步骤:平移的步骤包括确定平移向量、找到每个点的新位置、绘制新图形。
4. 平移的特点:平移是保持图形相对位置关系的变换,它将原来的图形完全重叠到了新位置上,相当于给原图形“搬家”。
平移的应用非常广泛。
在实际生活中,我们经常可以看到平移的影子。
比如,一辆汽车从一个位置开到另一个位置,这就是一个平移过程。
在建筑设计中,平移可以用来布局房间、道路等。
在数学教学中,平移可以帮助我们理解向量的概念和性质。
二、旋转的定律旋转是指将一个图形围绕一个点或轴线进行转动,使其在平面内改变位置和朝向,但形状和大小保持不变。
旋转的定律有以下几个要点:1. 旋转的性质:旋转不改变图形的大小和内部角度,但改变了图形的位置和朝向。
2. 旋转的表示方法:旋转可以用角度来表示,即将图形上的每个点绕着旋转中心按照一定的角度旋转。
旋转角度可以用度数或弧度来表示。
3. 旋转的方向:旋转可以顺时针或逆时针进行,视旋转角度的正负而定。
4. 旋转的特点:旋转是保持图形形状不变,但改变位置和朝向的变换。
旋转的中心可以是一个点,也可以是一条轴线。
旋转在几何学中有着重要的应用。
在工程设计中,旋转可以用来描述物体的运动轨迹,比如机械零件的旋转运动。
在自然界中,旋转也是普遍存在的,比如地球的自转和公转。
在数学教学中,旋转可以帮助我们理解三角函数的概念和性质。
总结起来,平移和旋转是几何学中常用的变换方法,它们有着许多相似之处,也有着各自独特的特点和应用。
图形的平移与旋转
要点回放:一、平移:定义:在平面内,将一个图形沿着某个方向移动一定的距离,这样的运动叫做平移2、性质:(1)平移不改变图形的形状和大小,(即平移后的图形与原图形全等)(2)图形上的每一个点都沿同一个方向移动相同的距离。
(3)经过平移,对应点所连的线段平行且相等、对应线段平行且相等。
二、旋转1、定义:图形绕着某一点(固定)转动的过程称为旋转,这一固定点叫做旋转中心。
2、性质:(1)旋转不改变图形的形状和大小。
(即旋转后的图形与原图形全等)(2)图形中每一个点都绕着旋转中心旋转了同样大小的角度。
(3)对应点的连线到旋转中心的距离相等。
解题宝典习题一、填空1、如果小狗沿水平方向移动了50米,那么拖着的箱子沿_______方向移动了________米的距离。
2、下图中的图形是由基本图案多边形ABCDE旋转而成的,它的旋转角为______度.3、下图中的图案分别是三种不同颜色(绿、白、黑)的“爬虫”(形状、大小完全相同)组成的,则所有同色的“爬虫”可以通过其中一只经过_______而得到,相邻的不同色的“爬虫”之间可以通过_______而得到,其旋转角度为________度,旋转中心为_________.4、如图,正方形ABCD内有一点E,连结AE、DE,且△ABE′是由△ADE绕A点顺时针旋转而成,那么,旋转角为______________=________度,△AEE′的形状为___________________.二、选择:1、如图,由图形M变化到图形N是平移得到的是( )2、将图甲的火柴棒房子变成乙图火柴棒房子需要旋转两根火柴棒,请你指出按逆时针旋转的火柴棒是()A、 a、bB、 b、cC、 b、dD、c、d3、小兵把如图所示的4张扑克牌面摆放在桌上,请一位同学避开他任意将其中一张旋转倒过来,然后小兵很快辨认出哪张牌被倒过来了,那么图中被倒过来的扑克牌是()。
4、当一个字母F旋转90度或180度时,其中旋转后位置正确的是()5、如图:两个边长相等的正方形ABCD与正方形OEFG,且正方形OEFG的顶点O恰为正方形ABCD对角线交点。
平移与旋转
平移:由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都向同一个方向运动,并且运动相等的距离,这样的图形改变叫做图形的平移变换,简称平移。
平移不改变图形的形状、大小和方向,连接对应点的线段平行且相等。
旋转:由一个图形改变为另一个图形,在改变的过程中,原图形上的所有点都绕一个固定的点,按同一个方向转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转。
这个固定的点叫旋转中心。
轴对称:如果一个图形沿着一条直线对折后两端完全重合这样的图形叫做轴对称图形,这条直线叫做对称轴。
例如等腰三角形、长方形、正方形、等腰梯形和圆都是轴对称图形。
有的轴对称图形有不止一条对称轴。
(1)要从生活中选取较为典型的平移和旋转的例子让学生感知。
生活中有许多物体的运动可以看作平移或旋转。
事实上,正是由于学生在生活中或多或少地接触过平移或旋转的现象,他们认识图形的平移或旋转才有了可*的基础。
但另一方面,生活中的平移或旋转现象,并不是数学意义上的平移或旋转。
特别是,当我们选来用作学生观察的例子不够典型时,就有可能产生歧义甚至误导。
此外,在观察生活中的平移或旋转现象时,要引导学生着眼于整体,不要被一些细节所纠缠。
如火车在一段平直的轨道上行进的过程,可以看作是平移。
但如果考虑到车轮的滚动,整个火车的运动就不那么简单了。
为了避免学生误解,教学时可以提醒学生关注事物的整体,忽略一些无关紧要的细节,也可以强调指出:火车车身的运动可以看作平移。
(2)要具体指导在方格纸上把一个图形进行平移的方法。
在方格纸上平移图形时,平移的方向比较容易判断,但平移的距离却常常容易出错,而且学生画出的平移后的图形也常常不能与原图形全等。
怎样突破这一教学难点?指导具体的平移方法是关键。
第一,选点。
也就是在原图形上选择几个能决定图形形状和大小的点,如三角形的三个顶点。
第二,移点。
也就是按要求把选择的点向规定的方向平移规定的格数。
(3)在从一组平面图形或图案中选择轴对称图形时,要经常让学生对自己的选择做出解释或验证。
平移与旋转
第十五章平移与旋转一、知识梳理:1.平移:图形的平行移动,简称为平移.它由移动的方向和距离所决定.(对应点,对应线段,对应角).平移的特征:平移后对应点所连的线段平行并且相等。
2.中心对称:图形绕着中心点旋转180°后能与自身重合,我们把这种图形叫做中心对称图形,这个中心点叫做对称中心.3. 两个图形成中心对称的性质:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.4.轴对称与中心对称区别:轴对称与中心对称区别:轴对称图形是关于一条直线对称,而中心对称图形是关于一个定点对称,重合的方式不同,轴对称图形是沿直线翻转(离开平面)1800后重合.而中心对称图形绕定点旋转1800后重合,共同处是对称的两图形都是全等形5.旋转:单摆上小球的转动,由位置P转到位置P′,显然它是绕上面的悬挂点转动.像这样的运动,就叫做旋转.这一悬挂点就叫做小球旋转的旋转中心.显然,旋转中心在旋转过程中保持不动,图形的旋转由旋转中心、旋转的角度和旋转的方向所决定.旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状与大小都没有发生变化。
6.旋转对称图形:一些图形绕着某一定点旋转一定的角度后能与自身重合,这种图形就称为旋转对称图形.课堂练习1.(2010哈尔滨)下列图形中,是中心对称图形的是()2.(2010珠海)在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()(A).(-2,6) (B).(-2,0) (C).(-5,3) (D).(1,3)3.(2010珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()图1 图2(A). (B). (C). (D).4.(2010遵义市)下列图形中既是中心对称图形,又是轴对称图形的是()5.(2010年怀化市)下列图形中,是中心对称图形但不是轴对称图形的是()6.(2010年连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()(A).①②(B).②③(C).②④(D).①④7.(2010哈尔滨)点A(-l,4)和点B(-5,1)在平面直角坐标系中的位置如图所示.(1)将点A、B分别向右平移5个单位,得到点A1、B1,请画出四边形AA1B1B;(2)画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.8.(2010山东青岛市)如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). (A).(-3,3) (B).(3,-3) (C).(-2,4) (D).(1,4)9.(2010年镇江市)动手操作(本小题满分6分)在如图所示的方格纸中,△ABC 的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,其中A ,B ,C 分别和A 1,B 1,C 1对应; (2)平移△ABC ,使得A 点在x 轴上,B 点在y 轴上,平移后的三角形记为△A 2B 2C 2,作出平移后的△A 2B 2C 2,其中A ,B ,C 分别和A 2,B 2,C 2对应;(3)填空:在(2)中,设原△ABC 的外心为M ,△A 2B 2C 2的外心为M 2,则M 与M 2之间的距离为.第7题图A第24题BCDO 10.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD 的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转180度,试解决下列问题:(1)画出四边形ABCD 旋转后的图形; (2)求点C 旋转过程事所经过的路径长;11.(2010年安徽)在小正方形组成的15×15的网络中,四边形ABCD 和四边形D C B A '''' 的位置如图所示。
平移、旋转、轴对称
---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。
旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。
轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。
这条直线叫对称轴。
互相重合的点叫对称点。
(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。
回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。
如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。
全等变换有几种方式。
我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。
除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。
平移和旋转
平移现象
旋转现象
平移
旋转
平移:像小火车、电梯、缆车这样 的运动称为平移。用符号 表示。
特点:从一个位置沿直线运动到另 一个位置,运动方向不发生改变。
旋转:像螺旋桨、风车、旋转 门这样绕着一个固定的中心点 或轴转动,叫旋转。
用符号
表示。
1.观察下面物体的运动,是平移的画“△”,是旋 转的画“○”。
左
下
右
我坐在船头, 我经过的距离 比你长
不对,我坐 在船尾,我 经过的距离 比你更长!
物体平移时每一点的移动距离 是一样的,我们只要确定一个 点或一条线,数出这个点或这 条线平移了多少格,整个物体 就平移了多少格。
移一移,描一描。
把棋子向下平移4格。 把铅笔向右平移3格。 把三角尺向左平移2格。
说一说,铅笔和三角尺怎样才能平移到图③的 位置?
铅笔先向右平移5格, 再向下平移2格。
图①
铅笔先向下平移2格, 再向右平移5格。
图② 图③
说一说,铅笔和三角尺怎样才能平移到图③的 位置? 三角尺先向上平移2格, 再向右平移3格。 再向上平移2格。
图② 图③
三角尺先向右平移3格,
3.移一移,描一描。 ⑴ 把图①向左平移5格。 ⑵ 把图②向右平移4格。 ⑶ 把图③向上平移1格。
2.涂一涂。
判断下面物体的运动现象是平移还是旋转?
滑轮 ( 旋转) 车身( 平移 ) 车轮( 旋转 ) 重物 (平移 )
( 旋转 )
( 旋转 )
我们的船在做什么运动?
朝哪个方向平移 ?
我们的船在做什么运动?
朝哪个方向平移 ?
上
左
右
下
小船向左平移了( )个方格。 上
平移与旋转的性质
平移与旋转的性质平移和旋转是数学中常见的两种几何变换操作,它们在几何学、物理学、计算机图形学等领域中具有重要的应用。
本文将探讨平移和旋转的性质以及它们在不同领域中的应用。
一、平移的性质1. 定义:平移是指将一个对象在平面内按照某个方向移动一定的距离,保持原有形状和大小不变。
2. 数学表示:对于平面上的一个点P(x,y),经过平移变换后得到的点P'(x',y')的坐标满足以下关系式:x' = x + a,y' = y + b,其中(a,b)表示平移的向量。
3. 性质:- 平移不改变对象的形状、面积和角度。
- 平移是正交变换,即平行线经过平移后仍然保持平行。
- 平移的逆变换是将对象沿相反方向平移同样的距离。
4. 应用:- 平移在计算机图形学中广泛应用,可以用来实现图像在屏幕上的平移效果。
- 在物理学中,平移变换用于描述物体的位置和位移。
二、旋转的性质1. 定义:旋转是指将一个对象绕着某个固定点按一定角度转动,保持原有形状和大小不变。
2. 数学表示:对于平面上的一个点P(x,y),经过旋转变换后得到的点P'(x',y')的坐标满足以下关系式:x' = x*cosθ - y*sinθ,y' = x*sinθ + y*cosθ,其中θ表示旋转的角度。
3. 性质:- 旋转不改变对象的形状、面积和平行关系。
- 旋转是正交变换,即直线经过旋转后仍然保持直线。
- 旋转的逆变换是将对象绕相反方向旋转同样的角度。
4. 应用:- 旋转在计算机图形学中广泛应用,可以用来实现图像的旋转、变形等效果。
- 在物理学和工程领域,旋转变换用于描述物体的旋转、刚体运动等。
三、平移与旋转的组合变换1. 定义:平移与旋转可以组合实现更复杂的变换,如平移后再旋转、旋转后再平移等。
2. 数学表示:设对象P(x,y)经过平移变换得到P'(x',y'),然后再经过旋转变换得到P''(x'',y''),则P''的坐标与P的坐标之间满足以下关系式:x'' = (x-a)*cosθ - (y-b)*sinθ + a,y'' = (x-a)*sinθ + (y-b)*cosθ + b,其中(a,b)表示平移的向量。
平移和旋转(教学课件)
在计算机图形学中,平移和旋转是基本的3D模型变换操作。通过平移和旋转,可以对3D模型进行位 置调整、方向调整和角度调整,以实现各种视觉效果和动画效果。
游戏开发
在游戏开发中,平移和旋转操作被广泛应用于游戏场景、角色和物体的变换。通过平移和旋转,可以 实现游戏中的移动、视角转换、物体旋转等效果,提高游戏的互动性和视觉体验。
球类运动
各种球类运动如篮球、足球等,球体 本身做旋转运动。
平移和旋转在机械工程中的应用
要点一
机械加工
要点二
机器人操作
在机械加工中,刀具对工件进行平移和旋转运动,实现切 削加工。
机器人手臂通过平移和旋转运动,实现对物体的抓取和移 动。
06
平移和旋转的教学设计
教学目标与要求
理解平移和旋转的基本概念
物体同时进行顺时针和逆时针方向的 旋转。
复合平移
物体同时进行水平和垂直方向的平移 。
03
平移和旋转的应用
平移在几何图形变换中的应用
图形平移
平移操作可以将图形在平面内沿某一方向移动一定的距离, 而不改变其形状和大小。在几何图形变换中,平移可以用于 构造复杂的图形或对图形进行位置调整。
图形对称
通过平移,可以将图形进行对称变换,即在平面内将图形沿 垂直或水平方向移动一定的距离,得到与原图形关于某一点 或直线对称的新图形。
垂直平移
物体在垂直方向上移动, 不改变其方向和宽度。
斜向平移
物体在任意方向上移动, 不改变其方向和高度、宽 度。
旋转的表示方法
顺时针旋转
物体按照顺时针方向进行 旋转。
逆时针旋转
物体按照逆时针方向进行 旋转。
旋转角度
描述旋转的幅度,通常以 度数表示。
平移和旋转
平移和旋转平移和旋转是几何学中常见的两种基本变换,它们在日常生活和工程设计中都有着重要的应用。
无论是建筑设计、机械制造还是计算机图形学,都离不开平移和旋转的操作。
在本文中,我们将详细介绍平移和旋转的定义、性质、应用以及在实际工程中的应用。
一、平移的定义和性质1. 平移的定义平移是指在平面上,将一个图形沿着某个方向移动一定的距离,而不改变它的形状和大小。
通俗地说,平移就是将一个图形整体沿着某个方向平行移动,移动的距离和方向是确定的。
如图1所示,将图形A通过平移变换得到图形A',图形A'与图形A相比没有发生变形,只是位置发生了改变。
平移变换可以保持图形的形状和大小不变,只是改变了位置。
在平移变换下,图形的各个点之间的位置关系保持不变。
即对于平面上的两点A和B,假设A经过平移变换得到A',B经过平移变换得到B',那么线段AB和线段A'B'的长度相等,并且它们的方向是相同的。
2. 旋转的性质旋转变换可以保持图形的形状和大小不变,只是改变了方向。
在旋转变换下,图形的每个点都以固定点为中心按照一定的角度旋转。
对于一个图形来说,它的每个点到固定点的距离在旋转变换后保持不变,而且每个点的旋转角度也是相同的。
三、平移和旋转的应用平移在日常生活和工程设计中有着广泛的应用。
在建筑设计领域,平移可以用于设计楼层的布局和空间的规划,实现空间的合理利用。
在机械制造领域,平移可以用于设计机械零件的运动轨迹,实现机械装置的运动控制。
在计算机图形学领域,平移可以用于设计图形界面和动画效果,实现图形的移动和变换。
1. 平移和旋转在建筑设计中的应用在建筑设计中,平移和旋转是常见的设计手段。
平移可以用于设计建筑的平面布局和空间分隔,实现建筑的功能和美观。
设计师可以通过平移将不同功能的区域进行合理的布局,使建筑空间更加通透和舒适。
而旋转可以用于设计建筑的外观和结构,实现建筑的立面和空间形态。
平移和旋转
平移和旋转的区别是:在图形当中,将一个图形从一个地方变换到另一个地方,这种过程叫做平移。
一个图形围着一个定点旋转到一定的角度,这种过程叫做旋转。
在准确的平移过程中,无论哪个对应点,他们的前进方向均保持一种平行状态。
而旋转最主要的在于准确的旋转过程中,旋转只围绕着一个点或轴,进行圆周运动。
无论是旋转变化还是平移变化,他们双方的进行过程均不会导致图形的状态和大小产生变化,双方保持不变的还有各项对应点之间的距离。
“平移和旋转”是两个抽象的概念,但是平移与旋转现象在生活中却无处不在。
从数学的意义上讲,平移和旋转是两种基本的图形变换。
图形的平移和旋转对于帮助学生建立空间观念,掌握变换的数学思想方法有很大作用。
因此,我们在教学时应充分考虑学生的认知水平,寻找新知识与学生已有经验的联系,尽可能选取学生熟悉的、丰富有趣的生活实例,同时注意突出所选事例的本质属性,使学生能抓住特征并达到初步感知的效果。
本节课主要是让学生充分动手操作,仔细观察,让学生在“做中学”,体验“平移和旋转”的相关知识,从而培养学生的实践能力和创新意识,使之获得良好的情感体验,提高学习能力。
平移和旋转
平移和旋转火车车厢的运动是“平移”吗?火车车轮的运动是“旋转”吗?定义概念平移:是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移不改变物体的形状和大小。
平移可以不是水平的。
也就是把一个图形沿着某个方向移动一定的距离,这种移动叫做平移变换,简称平移.。
旋转:把一个图形绕着某一点转动一个角度的图形变换叫做旋转。
也就是说旋转是物体在以一个点或一个轴为中心的圆周上运动的现象,不一定要作圆周运动。
因此摆动也是旋转,所以秋千、钟摆、跷跷板的运动是摆动,同时也是旋转。
性质解释平移:1.图形平移前后的形状和大小没有变化,只是位置发生变化。
2.图形平移后,对应点连成的线段平行(或在同一直线上)且相等。
3.多次连续平移相当于一次平移。
4.偶数次对称后的图形等于平移后的图形。
5.平移是由方向和距离决定的。
6.经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等。
旋转:1.对应点到旋转中心的距离相等。
2.对应点与旋转中心所连线段的夹角等于旋转角。
3.旋转前、后的图形全等。
涉及知识运动是绝对的,静止是相对的,没有绝对的静止。
一个物体,不论是运动还是静止,都是相对于某个参照物而言的。
平移和旋转都是机械运动。
判断要点1.图形在运动时是绕一个定点(或轴)运动还是沿直线运动。
2.图形运动时角度有没有改变。
3.所选参照平面和参照物的对象。
课题讲解火车车厢的运动是“平移”吗?如果以火车车轨为参照物,火车车厢的运动是平移;如果火车车轨是圆形的,且以圆心为参照物,火车车厢的运动是旋转。
火车车轮的运动是“旋转”吗?如果以火车车轮的中心轴为参照物,火车车轮的运动是旋转;如果以火车车轨为参照物,火车车轮的运动是平移。
总结讨论平移是物体位置变化,旋转是物体绕一个点或轴转动。
无论是平移,还是旋转,都与参照平面和参照物有关。
所选参照平面和参照物的不同,图形物体的平移和旋转的运动状态不同。
图形的平移与旋转知识点
图形的平移与旋转知识点第三章图形的平移与旋转复要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移是由移动的方向和距离决定的。
2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。
(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。
(3)平移后两图形的对应点所连的线段平行且相等。
专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。
(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。
(3)经过旋转,图形上的每点都绕着旋转中央沿相同的方向转动了相同的角度。
(4)任意一对对应点与旋转中央的间隔相称。
考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中央对称的两个图形,对称点连线都经过对称中央,而且被对称中央中分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,而且被这一点中分,那末这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的枢纽点(线段两个端点,三角形三个极点,n边形n个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个枢纽点的对应点,所得的图形就是平移后的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第十七周测试试题(2016、12、20)
一、选择题
1、下列是一元二次方程的是( )
A .2
21
0x x
+= B .20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --= 2、
3、如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针
旋转900
得到月牙②,则点A 的对应点A ’的坐标为( )
A.(2,2)
B.(2,4)
C.(4,2)
D.(1,2)
4、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形
5、如图,在△ABC 中,∠CAB =70°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( ) 二、填空题
6、若关于x 的一元二次方程2
(3)0x k x k +++=的一个根是2-,则另一个根是 。
7、如图所示,以点O 为旋转中心,将∠1按顺时针方向旋转110°得到∠2, 若∠1=40°, 则∠2的余角为_____________度.
8、如图,用等腰直角三角板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线 处后绕点M 按逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为______°. 9、如果方程2210kx x ++=有两个不等实数根,则实数k 的取值范围是 .
10、设a b ,是方程020122=-+x x 的两个不相等的实数根,则22a a b ++的值为 。
11、如图,四边形EFGH 是由四边形ABCD 经过旋转得到的.如果用有序数对(2,
1)表示方格纸上A 点的位置,用(1,2)表示B 点的位置,那么四边形ABCD 旋转得到四边形EFGH 时的旋转中心用有序数对表示是 。
12、如图,已知梯形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC =5,AB =1,把线段
CD 绕点D 逆时针旋转90°到DE 位置,连结AE ,则AE 的长为______.
三、综合应用
13、用适当方法解方程:(1)01422=--x x (2)240x x -=
14、关于的一元二次方程x 2
+2x +k +1=0的实数解是x 1和x 2。
(1)求k 的取值范围;
(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。
15、如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;
(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?判断并说明理由.
16、把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC
交于点H (如图). (1)试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想. (2)若正方形的边长为2cm ,重叠部分(四边形ABHG )的面积为
2cm 3
,求旋转的角度.
17、已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB,DC (或它们的
延长线)于点M,N .
当∠MAN 绕点A 旋转到BM=DN 时(如图1),易证BM+DN=MN . (1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM,DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM,DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.
D C A B G H F E
B
B
M B
C N C
N
M C N
图1 图2 图3 A A A D D D。