初中数学八年级 第2章 轴对称图形测试卷
苏科版八年级上册 第2章 轴对称图形国庆假期作业(一)(无答案)
![苏科版八年级上册 第2章 轴对称图形国庆假期作业(一)(无答案)](https://img.taocdn.com/s3/m/92dfc142af45b307e971971e.png)
苏科版八年级上册 第2章 轴对称图形国庆假期作业(一)(无答案)1 / 6八上国庆假期作业(一)一、选择题1. 下面四个图形中,不是轴对称图形的是( )A.B.C.D.2. 如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画出射线OB ,则 ( )A.B.C.D.3. 如图, 与 关于直线l 对称,则 的度数为A.B.C.D.4. 已知等腰三角形的周长是20,其中一边长为6,则其它两边的长度分别是A. 6和8B. 7和7C. 6和8或7和7D. 3和115.如图,在中,,的平分线交BC于D,DE是AB的垂直平分线,垂足为若,则DE的长为( )A. 1B. 2C. 3D. 46.如下图,若,,,则等于A.B.C.D.7.如图,在中,点D在斜边AB上,且,则CD等于( )A. 3B. 2C. 6D. 48.如图,已知 ≌ ,,,则CE的长为( )A. 2B.C. 3D.9.如图, ≌ ,AC,BD相交于点O ,下列结论不一定正确的是A. AC平分B. y平分C. y平分BDD. BD平分y10.如图,中,BO平分,CO平分的外角,MN经过点O,与AB、AC相交于点M、N,且,则BM、CN、MN之间的关系是苏科版八年级上册第2章轴对称图形国庆假期作业(一)(无答案)A. B.C. D.二、填空题11.某公路急转弯处设立了一面圆形大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为.12.如图,等腰中,,AD是底边上的高,,则_______.13.在中,,,,则________cm.14.如图,DE是中AC边上的垂直平分线;如果,,则的周长为________cm.15.等腰三角形一边长等于4,一边长等于9,它的周长是______ .16.如图,是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE和DE,如果,则_______.3 / 617.如图,BD平分ABC,ED BC,AB,AD,则AED的周长为.18.如图,BD是的平分线,P为BD上的一点,于点E,,则点P到边BC的距离为_____cm.19.已知等腰的两边长a、b满足,则等腰的周长为______ .20.如图,和都等边三角形,点A、C、B在同一条直线上,AE、BD分别与CD、CE交于点M、N,有如下结论: ≌ ;;其中正确的结论是___________填序号.三、解答题21.在的正方形格点图中,有格点和格点,且和关于某直线成轴对称,请分别在下面四个图中各画出1个这样的,要求四个图互不一样.苏科版八年级上册第2章轴对称图形国庆假期作业(一)(无答案)22.如图,在中,,,,.求证: ≌23.如图,,,。
初中数学苏科版八年级上册第2章 轴对称图形2.5 等腰三角形的轴对称性-章节测试习题(8)
![初中数学苏科版八年级上册第2章 轴对称图形2.5 等腰三角形的轴对称性-章节测试习题(8)](https://img.taocdn.com/s3/m/6a6ba1fbb4daa58da1114a18.png)
章节测试题1.【题文】如图,AD是等边三角形ABC的中线,E是AB上的点,且AE=AD,求∠EDB的度数.【答案】15°【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得又由根据等边对等角与三角形内角和定理,即可求得的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠BAC=60°=30°,∴∠ADB=90°.∵AE=AD.∴∠ADE=∠AED==75°.∴∠EDB=∠ADB-∠ADE==15°.2.【题文】如图,等边三角形的边长为4,点是边上一动点(不与点重合),以为边在的下方作等边三角形,连接.(1)在运动的过程中,与有何数量关系?请说明理由.(2)当时,求的度数.【答案】(1) ,理由见解析;(2) .【分析】(1)AE=CD,证明△ABE≌△CBD,即可解决问题.(2)证明AE⊥BC;证明∠BDC=∠AEB,即可解决问题.【解答】解:(1)AE=CD;理由如下:∵△ABC和△BDE等边三角形∴AB=BC,BE=BD,∠ABC=∠EBD=60°;在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵BE=2,BC=4∴E为BC的中点;又∵等边三角形△ABC,∴AE⊥BC,由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=90°.3.【题文】如图点D、E分别在等边ΔABC边BC、CA上,且CD=AE,联结AD、BE.(1)求证:BE=AD;(2)延长DA交BE于F,求∠BFD的度数.【答案】(1)证明见解析;(2)60°【分析】(1)根据等边三角形的性质可以得到∠BAC=∠ACB=60°,AC=AB,则∠EAB=∠ACD,根据SAS即可证得△ABE≌△CAD,然后根据全等三角形的对应边相等,即可证得:AD=BE.(2)易证∠AFE=∠ACD,从而∠BFA=∠ACB=60°.【解答】解:证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°,∵在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE.(2)如图,∵△ABE≌△CAD∴∠E=∠D∵∠EAF=∠DAC∴∠BFD=∠E+∠EAF=∠D+∠DAC=60°4.【题文】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】详见解析.【分析】要证△ADE为等边三角形,可以先证它为等腰三角形,再证该等腰三角形的一个内角为60°. 综合分析已知条件可知,可以利用△ABD和△ACE全等证明AD=AE. 根据已知条件和等边三角形的性质,不难证明∠B=∠ACE,进而利用SAS 证明△ABD和△ACE全等. 利用全等三角形的性质可以得到△ADE是等腰三角形. 利用全等三角形的性质,通过相关角之间的和差关系,不难证明∠DAE=∠BAC=60°,从而证明△ADE为等边三角形.【解答】证明:∵△ABC为等边三角形,∴∠B=∠ACB=∠BAC=60°,AB=AC.∵∠ACB=60°,∴∠ACD=180°-∠ACB=180°-60°=120°,∵CE平分∠ACD,∴.∴∠B=∠ACE.∵在△ABD和△ACE中,,∴△ABD≌△ACE (SAS),∴AD=AE,∠BAD=∠CAE.∵∠BAD=∠CAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAC=∠DAE=60°.∵∠DAE=60°,AD=AE,∴△ADE为等边三角形.5.【题文】如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【答案】(1)=;(2)AE=BD.【分析】(1)△BCE中可证,∠BCE=30°,又EB=EC,则∠D=∠ECB=30°,所以△BCE 是等腰三角形,结合AE=BE即可;(2)过E作EF∥BC交AC于F,用AAS证明△DEB≌△ECF.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=BC.∵E为AB的中点,所以∠BCE=30°.∵ED=EC,∴∠D=∠BCE=30°,∴∠BED=30°,∴∠D=∠BED,∴BD=BE,∴BD=AE.(2)当点E为AB上任意一点时,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°.∴△AEF是等边三角形.∴AE=EF=AF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD.∴∠BED=∠ECF.在△DEB和△ECF中,∴△DEB≌△ECF(AAS).∴BD=EF=AE,即AE=BD.6.【题文】如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由。
苏科版数学八年级上《第2章轴对称图形》国庆提优测试(含答案)
![苏科版数学八年级上《第2章轴对称图形》国庆提优测试(含答案)](https://img.taocdn.com/s3/m/5fb349e1a1c7aa00b52acbff.png)
3.如图,在由相同的小正方形组成的 3 4 的网格中,有 3 个小正方形已经涂黑,请你再涂
黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小
A1B 翻折,得到 A1BC2 ;...,翻折 4 次后,得到图形 A2 BCAC1 A1C2 的周长
为 ,翻折 15 次后,所得图形的周长为 (结果用含有 a 、 b 、 c 的式子
表示).
5.如图, A 、 B 分别是 NOP 、 NOP 平分线上的点, AB OP 于点 E , BC MN
于点 C , AD MN 于点 D ,则下列结论错误的是( )
A. AD BC AB
B. AOB 90
2.把一张长方形纸片按如图①、②的方式从右向左连续对折两次后得到图③,再在图③中
挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )
7.已知顶角为 36º、90º、108º、 的四个等腰三角形都可以用一条直线分割成两个小
7
的等腰三角形,那么这四个等腰三角形中,能用两条直线分割成三个小的等腰三角形的
有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
10.如图, OE 是 AOB 的平分线, BD OA 于点 D , AC BO 于点 C ,则关于直线
OE 对称的三角形共有 对.
8.如图,在 ABC 中, ACB 90 , CAD 30 , AC BC AD , CE CD ,且
CE CD ,连接 BD 、 DE 、 BE ,有下列结论:① ECA 165 ;② BE BC ;③
11.如图, ABC 的边 BC 的垂直平分线 MN 交 AC 于点 D ,若 ADB 的周长是 10 cm,
2019-2020学年度初中数学八年级上册第二章 轴对称图形2.3 设计轴对称图案苏科版练习题五十四
![2019-2020学年度初中数学八年级上册第二章 轴对称图形2.3 设计轴对称图案苏科版练习题五十四](https://img.taocdn.com/s3/m/e45821482cc58bd63186bdbb.png)
2019-2020学年度初中数学八年级上册第二章轴对称图形2.3 设计轴对称图案苏科版练习题五十四第1题【单选题】下面四个图案中,既包含图形的旋转,又有图形的轴对称的设计是( )A、B、C、D、【答案】:【解析】:第2题【单选题】如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有( )A、5B、6C、4D、7【答案】:【解析】:第3题【单选题】在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则涂下列哪些正方形是正确的( )A、①或②B、③或⑥C、④或⑤D、③或⑨【答案】:【解析】:第4题【单选题】如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A、2种B、3种C、4种D、5种【答案】:【解析】:第5题【单选题】如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有( )A、5B、6C、4D、7【答案】:【解析】:第6题【单选题】如图为5×5的方格,其中有A、B、C三点,现有一点P在其它格点上,且A、B、C、P为轴对称图形,问共有几个这样的点P( )?A、5B、4C、3D、2【答案】:【解析】:第7题【单选题】如图,图2的图案是由图1中五种基本图形中的两种拼接而成,这两种基本图形是( )?A、①②B、①③C、①④D、③⑤【答案】:【解析】:第8题【填空题】如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.?【答案】:【解析】:第9题【填空题】在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有______种.A、4【答案】:【解析】:第10题【解答题】如图,在正方形ABCD(正方形四边相等,四个角均为直角)中,E、F、P、H分别为四边的中点,请分别在图1、2、3中画一个以A、B、C、D、E、F、P、H中的三点为顶点的三角形,所画三角形要求与△APH成轴对称(三个三角形的位置要有区别)并画出相应的一条对称轴.?【答案】:【解析】:第11题【解答题】如图所示的图案是由一个梯形经过旋转和对称形成的,则该梯形应该满足什么条件?【答案】:【解析】:第12题【解答题】以给出的图形“○,○,△,△,有误”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.【答案】:【解析】:第13题【作图题】用四块如图(1)所示的正方形瓷砖拼成一个新的正方形,请你在图(2)、图(3)中各画一种拼法.(要求是轴对称图形)A、解:如图所示:答案不唯一.【答案】:【解析】:第14题【综合题】已知在网格中每个小正方形的边长都是1,图1中的阴影图案是由一条对角线和以格点为圆心,半径为2的圆弧围成的弓形.图1中阴影部分的面积是______(结果保留π);请你在图2中以图1为基本图案,借助轴对称,平移或旋转设计一个轴对称的花边图案(要求至少含有两种图形变换).【答案】:【解析】:第15题【综合题】在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).是轴对称图形,又是中心对称图形;是轴对称图形,但不是中心对称图形;是中心对称图形,但不是轴对称图形.11/ 12【答案】:【解析】:12/ 12。
苏科版八年级数学上册第二章轴对称图形压轴题练习
![苏科版八年级数学上册第二章轴对称图形压轴题练习](https://img.taocdn.com/s3/m/9a11384ced630b1c58eeb55e.png)
2. 在 △ ������������������中,
,������������ = ������������,经过点 C 的直线 l 与 AB 平行,点 D 为直线 l 上
的动点(不与点 C 重合),作射线 DA,过点 D 作射线������������ ⊥ ������������,交直线 BC 于点 E.
(2) 如图 3,若������������ ≠ ������������,
,
BN 与 AB 的位置关系,并说明理由.
,点 M 在线段 AB 上运动,请判断
7. 如图在等腰▵������������������中,������������ = ������������ = 20������������,������������ = 16������������,
5. 在 △ ������������������中,������������ = ������������,
交直线 BC 于点 Q.
,P 为直线 AC 上一点,过点 A 作������������ ⊥ ������������于点 D,
(1)如图 1,当 P 在线段 AC 上时,求证:������������ = ������������;
������→������→������方向运动,且速度为每秒 2cm,它们同时出发,设出发的时间为 t 秒.
(1)出发 2 秒后,求 △ ������������������的面积;
(2)当点 Q 在边 BC 上运动时,出发几秒钟后, △ ������������������能形成等腰三角形?
(3)当点 Q 在边 CA 上运动时,求能使 △ ������������������成为等腰三角形的运动时间.
且在 CM 的下方(沿 CM 顺时针方向)作等腰直角三角形 CMN,
苏科版八年级上册数学第2章《轴对称图形》同步练习(7份)(全章含答案)初二数学试题.doc
![苏科版八年级上册数学第2章《轴对称图形》同步练习(7份)(全章含答案)初二数学试题.doc](https://img.taocdn.com/s3/m/d9a7a4189ec3d5bbfc0a7485.png)
2.5等腰三角形的轴对称性(3)【基础训练】在AABC 中,ZA=100° , ZB=40° ,则ZXABC 是 如图,求证:AE=AF. 6. 如图,在厶ABC 中,ZABC 和ZACB 的平分线相交于 点F,过点F 作DE 〃BC,交AB 于点D,交AC 于点E.若BD + CE=2013,则线段DE 的长为( ).A. 2014B. 2011C. 2012D. 20131.2. 三角形. CD 是 RtAABC 斜边 AB±的中线,CD=1006,贝ij AB= _______3・ 4. 长.如图, 如图, ZC=36° ZB = 72° 在ZXABC 中, 点D 、(第3题)找出图中所有的等腰三角形 ______ .cm,求Z\ADE 的周 E 在 BC 上,且Z1 = ZB, Z2=ZC, BC=10 5.如图,在AABC 中,AD 平分ZBAC, E 是CA 延长线上的一点,EG 〃AD, ,ZBAD=36° , DB交AB 于点F.7.如图,ZDAC是厶ABC的一个外角,AE平分ZDAC,且AE〃B(么?8.如图,在四边形ABCD中,ZABC=ZADC=90° , M. N分别是AC、BD的中点,试说明:(1)MD = MB:(2)M N 丄BD・【提优拔尖】9.已知:在RtAABC中,AB = BC;在RtAADE中,AD = DE;连接EC,取EC的中点M,连接DM 和BM.(1)若点D在边AC上,点E在边AB±且与点B不重合,如图(1),求证:BM = DM,且BM丄DM;(2)如果将图⑴中的AADE绕点A逆时针旋转小于45°的角,如图(2),那么⑴中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给出证明.(第9题)10.如图,在AABC屮,作ZABC的平分线BD,交AC于点D,作线段BD的垂直平分线EF, 分别交AB 于点E,交BC于点F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)11.⑴如图⑴,O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求ZAEB的大小;(2)如图(2), AOAB固定不动,保持AOCD的形状和大小不变,将AOCD绕着点O旋转(△ OAB 和AOCD不能重叠).求ZAEB的大小.12・如图,在AABC 中,AB = AC=10, BC = 8, AD 平分ZBAC交 BC 于点 D,点,连接DE,则ACDE 的周长为().4. 10cm5. 略6. D7. AB = AC8. 略9. ⑴略(2)当AADE 绕点A 逆时针旋转小于45°的角时,⑴中的结论仍成立. 10.13. A. 20 B. 12C ・14 如图,己知AC 丄BC, BD 丄AD, D. 13AC 与BD 交于点O, AC=BD ・求证:(1) B C = AD :(2) A OAB 是等腰三角形.参考答案1.等腰2. 20123. AABD, AABC, AADC 点E 为AC 的中△BOFMABOF、ABOF^ADOF 等,证明略.11.(l)ZAEB=60°(2)2AEB = 60° .12. C13.略我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
八年级数学上册 第2章 轴对称图形《2. 设计轴对称图案》同步练习苏科
![八年级数学上册 第2章 轴对称图形《2. 设计轴对称图案》同步练习苏科](https://img.taocdn.com/s3/m/46066048001ca300a6c30c22590102020740f205.png)
《2.3 设计轴对称图案》一、选择题1.(3分)羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.3.(3分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)7.以直线l为对称轴,画出图形的另一半.8.利用如图设计出一个轴对称图案.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.(每小格面积为1)13.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.《2。
苏科版八年级数学上册《2.2 轴对称的性质》
![苏科版八年级数学上册《2.2 轴对称的性质》](https://img.taocdn.com/s3/m/ee8f374403d8ce2f00662349.png)
初中数学试卷《2.2 轴对称的性质》一、选择题1.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°2.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°3.如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是()A.8 B.16 C.4 D.104.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP25.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变二、填空题6.成轴对称的两个图形.7.如果两个图形关于某直线成轴对称,那么对称轴是对称点的垂直平分线.8.设A、B两点关于直线MN对称,则垂直平分.9.画轴对称图形,首先应确定,然后找出.10.如图,如果△ABC沿直线MN折叠后,与△A'B'C完全重合,我们就说△ABC与△A'B'C'关于直线MN ;直线MN是;点A与点A'叫做点,图中还有类似的点是,图中还有相等的线段和角,分别为.11.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是.(填序号)12.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线l对称,则∠B= .13.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′= °.三、解答题14.画出如图轴对称图形的对称轴.15.画出如图图形关于直线l的轴对称图形.16.画出如图图形关于直线l的轴对称图形.17.把如图图形补成以直线l为对称轴的轴对称图形.18.如图,在公路a的同侧,有两个居民小区A、B,现需要在公路边建一个液化气站P,要使液化气站到A、B两小区的距离和最短,这个液化气站应建在哪一处?请在图中作出来.(不写作法)19.画出下列△ABC关于直线l的轴对称图形.20.如图,作四边形ABCD关于直线l的轴对称四边形,并回答:如果这两个四边形的原图形与其轴对称图形的对应线段或延长线相交,那么交点位置如何?《2.2 轴对称的性质》参考答案与试题解析一、选择题1.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°【考点】轴对称的性质;三角形内角和定理.【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.【点评】本题考查轴对称的性质及三角形内角和定理;把已知条件转化到同一个三角形中利用内角和求解是正确解答本题的关键.2.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.3.如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是()A.8 B.16 C.4 D.10【考点】翻折变换(折叠问题).【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【解答】解:∵将△ABC折叠,使得点A落在点B处,∴AF=BF,∵AB=AC,AB+BC=8,∴△BCF的周长是:BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=8.故选A.【点评】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.4.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2【考点】轴对称的性质.【专题】压轴题.【分析】作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.【解答】解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选:B.【点评】本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,作出图形更形象直观.5.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变【考点】轴对称的性质.【分析】根据轴对称不改变图形的形状与大小解答.【解答】解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.【点评】本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.二、填空题6.成轴对称的两个图形全等.【考点】轴对称的性质.【分析】根据轴对称图形的性质分别填空得出即可.【解答】解:成轴对称的两个图形全等.故答案为:全等.【点评】此题主要考查了轴对称的性质,正确把握轴对称图的性质是解题关键.7.如果两个图形关于某直线成轴对称,那么对称轴是对称点连线的垂直平分线.【考点】轴对称的性质;线段垂直平分线的性质.【分析】利用轴对称的性质直接回答即可.【解答】解:如果两个图形关于某直线成轴对称,那么对称轴是对称点连线的垂直平分线.故答案为:连线.【点评】本题考查了轴对称的性质及线段的垂直平分线的性质,解题的关键是牢记有关的定义及性质,难度不大.8.设A、B两点关于直线MN对称,则直线MN 垂直平分线段AB .【考点】轴对称的性质.【专题】应用题.【分析】此题考查了轴对称图形的性质2,即:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线(中垂线).【解答】解:根据性质2,可知直线MN垂直平分线段AB.故应填直线MN;线段AB.【点评】本题考查轴对称的性质与运用,对应点所连的线段被对称轴垂直平分.9.画轴对称图形,首先应确定对称轴,然后找出对称轴点.【考点】轴对称图形.【分析】根据轴对称图形的性质填空.【解答】解:画轴对称图形,首先应确定对称轴,然后找出对称轴点.故答案是:对称轴;对称点.【点评】考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.10.如图,如果△ABC沿直线MN折叠后,与△A'B'C完全重合,我们就说△ABC与△A'B'C'关于直线MN 对称;直线MN是对称轴;点A与点A'叫做对称点,图中还有类似的点是点B与点B',点C与点C' ,图中还有相等的线段和角,分别为AB=A'B'、AC=A'C、BC=B'C;∠A=∠A'、∠B=∠B'、∠C=∠C' .【考点】翻折变换(折叠问题);轴对称的性质.【分析】折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:∵△ABC沿直线MN折叠后,与△A'B'C完全重合,∴△ABC与△A'B'C'关于直线MN对称,直线MN是对称轴,点A与点A'叫做对称点;图中还有类似的点是点B与点B',点C与点C';图中还有相等的线段和角,分别为AB=A'B'、AC=A'C、BC=B'C;∠A=∠A'、∠B=∠B'、∠C=∠C'.故答案为:对称,对称轴,对称,点B与点B',点C与点C',AB=A'B'、AC=A'C、BC=B'C;∠A=∠A'、∠B=∠B'、∠C=∠C'.【点评】本题主要考查了折叠问题,翻折变换实质上就是轴对称变换.折叠是一种对称变换,它属于轴对称,折叠前后的图形全等,对应边和对应角相等.11.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是①②.(填序号)【考点】轴对称的性质.【分析】首先利用轴对称的性质分别判断正误即可.【解答】解:①∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠MAD=∠NAD,∠EAD=∠FAD,∴∠EAD﹣∠MAD=∠FAD﹣∠NAD,即:∠1=∠2,故正确;②∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠B=∠C,AC=AB,在△ANC与△AMB中,,∴△ANC≌△AMB,故正确;③易得:CD=BD,但在三角形DNB中,DN不一定等于BD,故错误.故答案为:①②.【点评】本题考查轴对称的性质,熟练掌握性质是解题的关键.12.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线l对称,则∠B= 90°.【考点】轴对称的性质;三角形内角和定理.【专题】探究型.【分析】先根据轴对称的性质得出△ABC≌△A′B′C′,由全等三角形的性质可知∠C=∠C′,再由三角形内角和定理可得出∠B的度数.【解答】解:∵△ABC 与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣30°﹣60°=90°.故答案为:90°.【点评】本题考查的是轴对称的性质及三角形内角和定理,熟知以上知识是解答此题的关键.13.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′= 40 °.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等求出∠EFG,再根据平角的定义求出∠EFD,然后根据折叠的性质可得∠EFD′=∠EFD,再根据图形,∠GFD′=∠EFD′﹣∠EFG,代入数据计算即可得解.【解答】解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.【点评】本题考查了平行线的性质,以及折叠变换,根据两直线平行,内错角相等求出∠EFG是解题的关键,另外,根据折叠前后的两个角相等也很重要.三、解答题14.画出如图轴对称图形的对称轴.【考点】作图-轴对称变换.【分析】根据轴对称图形的意义,如果一个图形沿着一条直线对折之后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此解答即可.【解答】解:如图所示.【点评】本题考查了轴对称图形的对称轴的确定,根据轴对称图形的对称轴两边的部分关于对称轴折叠能够完全重合作图即可.15.画出如图图形关于直线l的轴对称图形.【考点】作图-轴对称变换.【分析】根据轴对称图形的性质分别找出各点关于直线l的对称点,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用轴对称变换作图,熟练掌握轴对称的性质是解题的关键.16.画出如图图形关于直线l的轴对称图形.【考点】作图-轴对称变换.【分析】根据轴对称图形的性质分别找出各点关于直线l的对称点,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用轴对称变换作图,熟练掌握轴对称的性质是解题的关键.17.把如图图形补成以直线l为对称轴的轴对称图形.【考点】轴对称图形.【分析】根据轴对称图形的特点:沿一条直线对折后,直线两旁的部分能完全重合画图即可.【解答】解:如图所示:.【点评】此题主要考查了作图﹣轴对称变换,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.如图,在公路a的同侧,有两个居民小区A、B,现需要在公路边建一个液化气站P,要使液化气站到A、B两小区的距离和最短,这个液化气站应建在哪一处?请在图中作出来.(不写作法)【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】作A点关于直线a的对称点A′,连接A′B交直线a于点P,此处即为液化气站位置.【解答】解:如图所示:,点P即为所求.【点评】此题主要考查了垂直平分线的作法以及两点之间线段最短的知识,解答此题的关键是熟知轴对称的性质以及线段垂直平分线上的点到线段两个端点的距离相等这一性质.19.画出下列△ABC关于直线l的轴对称图形.【考点】作图-轴对称变换.【分析】(1)首先确定A、B、C三点关于l的对称点,然后再连接即可;(2)首先确定A、B、C三点关于l的对称点,然后再连接即可.【解答】解:如图所示:.【点评】此题主要考查了作图﹣﹣轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.20.如图,作四边形ABCD关于直线l的轴对称四边形,并回答:如果这两个四边形的原图形与其轴对称图形的对应线段或延长线相交,那么交点位置如何?【考点】作图-轴对称变换.【分析】分别得出对应点关于直线l的对称点,进而得出答案.【解答】解:如图所示:四边形A′B′C′D′即为所求,,这两个四边形的原图形与其轴对称图形的对应线段或延长线相交,那么交点在对称轴上.【点评】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.金戈铁制卷。
初中数学苏科版八年级上册第2章 轴对称图形2.5 等腰三角形的轴对称性-章节测试习题
![初中数学苏科版八年级上册第2章 轴对称图形2.5 等腰三角形的轴对称性-章节测试习题](https://img.taocdn.com/s3/m/377e185183d049649a665841.png)
章节测试题1.【答题】如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C. 3 D. +2【答案】C【分析】根据角的平分线的性质解答即可.【解答】解:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=32.【答题】如图所示,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于()A. 3cmB. 4cmC. 1.5cmD. 2cm【答案】A【分析】根据角的平分线的性质解答即可.【解答】解:根据角平分线的性质可得:∠DOC=∠COB,根据平行线的性质可得:∠DCO=∠COB,则∠DOC=∠DCO,则CD=OD=3cm,选A.3.【题文】如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC 于D,求证:AD=DC.【答案】答案见解析【分析】连接BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出∠A=∠C=∠ABD=30°,再求出∠DBC=90°,再根据直角三角形30°所对的直角边等于斜边的一半即可得证.【解答】解:如图,连接DB.∵BA=BC,∠B=120°,∴∠A=∠C=30°,∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°-30°=90°,Rt△CBD中,∠C=30°∴∴4.【题文】如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(1)若△CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.【答案】(1)AB=21 (cm);(2)∠ACB=115°【分析】(1)本题利用垂直平分线的性质即可解决,(2)利用等腰三角形的性质和外角性质得出.【解答】解:(1)∵DM、EN分别垂直平分AC和BC∴AM=MC, CN=NB∵△CMN的周长= CM+CN+MN =21∴AB=AM+MN+NB=CM+MN+CN=21 (cm)(2)∵∠MCN=50°∴∠CMN+∠CNM=180°-50°=130°∵AM=MC, CN=NE∴∠A=∠ACM, ∠B=∠BCN∵∠A+∠ACM=∠CMN, ∠B+∠BCN=∠CNM∴∠ACM=∠CMN, ∠BCN=∠CNM∴∠ACM +∠BCN= ( ∠CMN+∠CNM )=65°∴∠ACB=65°+50°= 115°5.【题文】如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.(1)若△CDE的周长为4,求AB的长;(2)若∠ACB=100°,求∠DCE的度数;(3)若∠ACB=a(90°<a<180°),则∠DCE=___________.【答案】(1)4;(2)20°;(3)2α-180°.【分析】(1)根据线段的垂直平分线的性质得到DC=DA,EC=EB,根据三角形的周长公式计算即可;(2)根据三角形内角和定理求出∠A+∠B的度数,根据等腰三角形的性质求出∠DCA+∠ECB,根据题意计算即可;(3)根据(2)的方法解答.【解答】解:(1)∵D、E分别是AC、BC的垂直平分线上一点,∴DC=DA,EC=EB,∵△CDE的周长=DC+DE+EC=4,∴DA+DE+EB=4,即AB的长为4;(2)∵∠ACB=100°,∴∠A+∠B=80°,∵DC=DA,∴∠DCA=∠A,∵EC=EB,∴∠ECB=∠B,∴∠DCA+∠ECB=80°,∴∠DCE=100°-80°=20°;(3)∵∠ACB=α,∴∠A+∠B=180°-α,∵DC=DA,∴∠DCA=∠A,∵EC=EB,∴∠ECB=∠B,∴∠DCA+∠ECB=180°-α,∴∠DCE=α-180°+α=2α-180°,故答案为:2α-180°.6.【题文】已知:如图, AB=AC,DE∥AC,求证:△BDE是等腰三角形.【答案】见解答。
苏科版本初中八年级的上第二章轴对称图形提优练习包括答案.docx
![苏科版本初中八年级的上第二章轴对称图形提优练习包括答案.docx](https://img.taocdn.com/s3/m/2762095acc175527072208f9.png)
苏科版八年级上第二章《轴对称图形》提优练习(含答案)第2 章轴对称图形第1 课时轴对称与轴对称图形1.下列图形中,对称轴的数量小于 3 的是 ()2.已知各边相等,各角也相等的多边形叫做正多边形,也称为正数 ).如图,请你探究下列正多边形的对称轴的条数,并填在表格中正多边形的边教345678n 边形(这里.n 3 且n为整对称轴的条数(1) 猜想 :正n边形有条对称轴;(2) 当n越来越大时,正多边形接近于,该图形有条对称轴.3.小明学习了轴对称知识后,忽然想起了参加数学兴趣小组时老师布置的一道题,当时小明没做出来,题目是这样的:有一组数据排列成方阵,如图.试用简便方法计算这组数据的和.小明想 :不考虑每个数据的大小,只考虑每个数据的位置,这个图形是个轴对称图形,能不能用轴对称思想来解决这个问题呢 ?小明顺着这个思路很快解决了这个题目,请你写出他的解题过程 .第 2 课时轴对称的性质(1)1.如图,把一张长方形纸片点 B 处,若 2 40ABCD 沿 EF,则 1 的度数为折叠后,点()A 落在 CD边上的点A处,点B 落在A. 115 °B. 120 °C. 130°D. 140 °2.如图,点P 关于 OA, OB 的对称点分别是P1, P2, PP12分别交OA,OB于点D, C, PP12=16cm,则PCD 的周长为cm.如图, O 为 ABC 内部一点13., OB 3 .2(1)分别画出点 O 关于直线 AB, BC 的对称点 P, Q ;(2) 请指出当ABC 的度数为多少时,PQ =7,并说明理由;(3) 请判断当ABC 的度数不是(2)中的度数时,PQ 的长度是小于7 还是大于7,并说明你的判断的理由.第 3 课时轴对称的性质(2)1.如图,点A, B 在方格纸的格点位置上,若要再找一个格点 C ,使它们所构成的三角形为轴对称图形,则这样的格点 C 在图中共有()A. 4 个B. 6 个C. 8 个D. 10 个2.如图,在 2× 2 的正方形网格纸中,有一个以格点为顶点的ABC .请你找出网格纸中所有与ABC 成轴对称且也以格点为顶点的三角形,这样的不角形共有个.3.如图,在由边长为 1 的正方形组成的6× 5 方格中,点A, B 都在格点上.(1) 在给定的方格中将线段AB 平移到 CD ,使得四边形ABDC 是长方形,且点 C , D 都落在格点上 .画出四边形ABDC ,并叙述线段AB 的平移过程.(2) 在方格中画出ACD 关于直线 AD 对称的AED .(3)求五边形 AEBDC 的面积.第 4 课时轴对称的性质—习题课7.如图,线段AB在直线l的一侧,请在直线l上找一点P,使PAB 的周长最短.画出图形,保留画图痕迹,不写画法.2.如图,在直线l 上找一点 Q ,使得 QA,QB 与直线 l 的夹角相等.画出图形,保留画图痕迹,不写画法 .3. (1) 如图① ,P 是 AOB 内一点,在 OA, OB 上分别找点 C , D ,使得PCD 的周长最短.画出图形,保留画图痕迹,不写画法.(2) 如图② ,P, Q 是AOB 内的两点,在 OA, OB 上分别找点 C , D ,使得以 P,Q, C , D 为顶点的四边形的周长最短.画出图形,保留画图痕迹,不写画法.第 5 课时设计轴对称图案1.在一次数学活动课上,小颖将一个四边形纸片依次按如图①②所示的方式对折,然后按图③中的虚线裁剪成图④样式,将纸片展开铺平,所得到的图形是()2.在 4× 4 的方格中,有五个同样大小的正方形按如图所示的方式摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.3.在 3× 3 的正方形网格图中,有格点三角形ABC 和格点三角形DEF关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的均不相同 ),且ABCDEF和DEF.( 每种方案第 6 课时线段、角的轴对称性(1)1.ABC 中, AC 的垂直平分线分别交AC , BC于点E, D , EC = 4 ,ABC 的周长如图,在为 23,则ABD 的周长为()A. 13B. 15C. 17D. 192.如图,在ABC 中, AB 的垂直平分线分别交AB, BC 于点 D , E, AC 的垂直平分线分别交 AC , BC 于点 F ,G .若 AEG 的周长为2018,则线段 BC 的长为.如图,在ABC 中, AB 的垂直平分线EF 交 BC 于点 E ,交 AB 于点F , D 为线段 CE的3.中点,且CAD 18 , ACB 72.求证 :BE AC .第 7 课时线段、角的轴对称性(2)1.设P是ABC 内一点,满足PA PB PC ,则 P 是ABC()A.三条内角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.如图,在EDC ABC 的周长为中, BC24,边上的垂直平分线ABC 与四边形DEAEDC交边 BC 于点的周长之差为D,交边 AB12 ,则线段于点DEE .若的长为.3.在ABC 中, AB AC, O 为平面上一点,且OB OC .点 A 到 BC 的距离为8,点O到BC 的距离为 3.求 AO 的长.第 8 课时线段、角的轴对称性(3)1.如图,上的点ABC 的面积为6, ACC 处, P 为直线 AD=3,现将ABC上的一点,则线段沿AB 所在直线翻折,使点BP 的长不可能是()C 落在直线ADA. 3B. 4C. 5. 5D. 102.AB // CD , BP, CP分别平分ABC , DCB , AD.=8,如图,过点 P ,且与 AB 垂直若 AD 则点 P 到 BC 的距离为.3.ABC 的边 AC 的垂直平分线,过点 M 作ABC 另外两边AB, BC所在直如图, MN 为线的垂线,垂足分别为 D , E ,且 AD CE ,作射线 BM.求证 : BM平分ABC .第 9 课时线段、角的轴对称性(4)1.ABC , EAC的平分线BP, AP交于点 P ,过点 P作PM BE , PN BF,垂如图,足分别为 M , N .下列结论:① CP 平分 A C F;②ABC APC180 ;③AM CN AC ;④BAC 2 BPC .其中正确的是()A. ①②③B.①③④C. ②③④D.①③如图, AD 是ABC 的角平分线,DE , DF 分别是ABD 和 ACD 的高,连接 EF 交 AD2.,于点 O .下列结论:① DE DF ;② OA OD ;③ AD EF ;④ AE DF AF DE ;⑤AD垂直平分EF.其中一定正确的是.(填序号 )3.如图 .在 ABC 中,ABAC,边BC 的垂直平分线DE交ABC 的外角BAM的平分线于点D ,垂足为 E, DFAB ,垂足为F.求证 :BFACAF .第 10 课时 等腰三角形的轴对称性 (1)如图,在ABC 中,B55 , C 30,分别以点 A 和点 C 为圆心,大于 1的长1.AC2为半径画弧,两弧相交于点 M , N ,作直线 MN ,交 BC 于点 D ,连接 AD ,则 BAD的度数为 ()A. 65 °B. 60°C. 55°D. 45 °2. 如 图 , 在ABC 中 , D 为AB 上 一 点 , E 为 BC 上 一 点 , 且A C C D,则CDE 的度数为.B D, B E5 0 A3.如图,在 ACB 中,ACB90 , D , E 为斜边 AB 上的两点, 且 BD BC, AE AC ,求DCE 的度数 .第 11 课时 等腰三角形的轴对称性(1)—习题课1.已知等腰三角形一腰上的高与另一腰的夹角为 60°,则这个等腰三角形的底角的度数为()A. 30 °B. 75 °C. 15°或 30°D. 75 °或15°2.如图,在ABC 中, ACBABP 是等腰三角形,此时90 , ABCAPB 的度数为60,在边AC .所在的直线上找一点P ,使3.在ABC 中, ABAC, AB 的垂直平分线DE 与 AC 所在的直线相交所成的锐角为40°,求B 的度数 .第12 课时 等腰三角形的轴对称性(2)1.如图,在ABC 中, ABAC ,A 36 , BD , CE分别是ABC , ACB的平分线,且相交于点A. 5 个F ,则图中的等腰三角形有B. 6 个()C. 7个D. 8 个2.在 ABC 中, A 50 ,当 B 的度数为 时, ABC 为等腰三角形 .如图①,在 ABC 中, AB AC, ABC , ACB 的平分线交于点 O ,过点 O 作 EF // BC3.交 AB , AC 于点 E, F .(1)图中有几个等腰三角形 ?EF 与 BE, CF 之间有怎样的数量关系,并说明理由 .猜想(2) 如图②,若 AB AC ,其他条件不变,则图中还有等腰三角形吗?如果有,分别写出来 ;另外在 (1)中 EF 与 BE, CF 之间的数量关系还存在吗 ?(3) 如图③, 若在 ABC 中 ,ABC 的平分线 BO 与 ABC 的外角平分线交于点O ,过点 O 作 OE // BC 交 AB 于点 E 、交 AC 于点 F .这时图中还有等腰三角形吗 ? EF 与BE, CF 之间的数量关系又如何?并说明你的理由 .第 13 课时等腰三角形的轴对称性(2)—习题课1.如图,AOB120 , OP平分AOB ,且OP=2.若点M , N分别在OA,OB上,且PMN A. 1 个为等边三角形,则满足上述条件的B. 2 个PMNC. 3有 (个)D. 3个以上2.ABC 中,AE CD , AD, BE相交于点P, BQ AD于点Q ,如图,在等边三角形则线段BP, PQ 的数量关系为.3. 如图,C为线段AB上一点, ACM , CBN 是等边三角形. AN , BM 相交于点O, AN ,CM 交于点 P ,BM ,CN 交于点 Q ,连接 PQ .(1)求证 : AN MB ;(2)求 AOB 的度数;(3)求证 : PQ // AB .第 14 课时等腰三角形的轴对称性(3)1.如图,在ABC 中,BE AC ,CF AB ,垂足分别为E, F .若 M 是 BC 的中点,则图中等腰三角形有 ()A. 1 个B. 3 个C. 4 个D. 5 个2.如图,在四边形ABCD 中,BCD BAD 90 , AC , BD 相交于点 E,G , H 分别是AC, BD 的中点如果 BEC80,那么GHE 的度数为..如图,在 Rt ABC 中, ACB 90 ,点 D 在边 AC 上不与点A,C 重合),DE AB 于3.(点 E ,连接BD, F 为 BD 的中点.试猜想 A 与CEF 的关系并证明.第 2 章 轴对称图形第 1 课时 轴对称与轴对称图形1.D2. 3 4 5 6 7 8(1)n(2) 圆无数3. 从方阵的数据看出, 正方形的一条对角线上的数据都是10.若把这条对角线所在的直线作 为对称轴,把这个方阵对折,对称轴两侧重合的小正方形内的数据之和都是 10,相加后如图所示,这样方阵中的所有数据之和为10 10 100第 2 课时 轴对称的性质 (1)1.A2. 163. (1) 如图,过点 O 画 OH AB ,垂足为 H ,在垂线段 OH 的延长线上取一点P ,使得PHOH P ,此时点 P 就是点 O 关于直线 AB 的对称点,同理画出点Q .(2) 当 ABC90 时, PQ 7理由:如图,连接 BP 、 BQ ∵点 O 、 P 关于直线 AB 对称 ∴直线 AB 垂直平分 OP∴ BHO BHP 90 , PH OH∵ BH BH∴ BHO BHP∴ OBPB 3 1, OBHPBH2同理 OBQB 3 1, OBCQBC2 ∴ PBQB 313172 2若 PQ 7 ,则 PB QB PQ ,此时 P 、 B 、 Q 三点共线∴ PBQ 180∴ABCOBH OBC1PBQ 902(3) 当 ABC90 时, PQ 7理由:∵ABC90∴ P 、 B 、 Q 三点不在同一直线上,此时构成PBQ ∴ PB BQ PQ .由 (2) ,得 PB BQ 7∴ PQ7第 3 课时 轴对称的性质 (2)1.D2. 53.(1) 如图,将线段AB 先向右平移 1 个单位长,再向上平移2 个单位长度,得线段CD (平移过程不唯一 ).(2) 如图,画点 C 关于直线 AD 的对称点 E ,连接 AE 、 DE ,则 AED 即为所求 .( 3) S 五边形 AEBDC S ACD S 梯形 AEBD1 52 1(3 5)2 1322第 4 课时 轴对称的性质—习题课1. 由干线段 AB 的长度是固定的,要使PAB 的周长最短,只要 PA PB 最短即可 .如图,过点 A 作它关于直线 l 的对称点 A ' ,连接 A' B 交直线 l 于点 P ,连接 PA 、 PB ,此时PAB 就是周长最短的三角形,∴点P 即为所求 .2.如图,过点A 作它关干直线 l 的对称点 A' ,连接 A 'B 交直线 l 于点 Q .连接 QA 、 QB ,此时AQHBQD ,∴点 Q 即为所求 .3. (1) 如图①,过点P分别作关于射线OA 、 OB的对称点 P1、 P2,连接 PP12,分别交OA、OB 于点 C 、D ,连接 PC 、 PD 、CD ,此时PCD 的周长最短,∴点 C 、 D 和 PCD即为所求 .(2) 如图② .过点P、Q分别作射线OA、OB的对称点P、Q,连接PQ,分别交OA、11 1 1OB 于点 C 、D ,连接 PC 、PQ 、QD 、CD ,此时四边形PCDQ 的周长最短,∴点 C 、D 和四边形 PCDQ 即为所求.第 5 课时设计轴对称图案1.A2. 133.要使DEF 和ABC 于某条直线成轴对称,关键是确定适当的对称轴.再根据轴对称的性质画出符合条件的图案,可以以 3 3 的正方形网格图的对称轴为对称轴画出所求的DEF,有四个不同位置的三角形;也可以以ABC的边AC、 BC的中点连线所在的直线为对称轴画出所求的DEF 的直线作为对称轴画出所求的,有一个三角形 ; 还可以把过ABC 的顶点DEF ,也有一个三角形.如图① ~⑥中的C 与边DEFAB 平行即为所求第 6 课时线段、角的轴对称性(1)1.B2. 20183.连接 AE ,∵EF 是 AB 的垂直平分线∴ AE BE∵在ADC 中.,CAD ∴ADC 180CAD 18 ,ACBACB9072即AD EC∵D 为线段 CE 的中点∴ ED CD∴AD 垂直平分 EC∴AE AC∴BE AC第 7 课时线段、角的轴对称性(2)1.D2. 63.∵AB AC∴点 A 在线段 BC 的垂直平分线上∵OB OC∴点 O 也在线段 BC 的垂直平分线上∴ AO 所在的直线即为线段BC 的垂直平分线.设直线 AO 与 BC 交于点 M .由题意,得 AM8, OM3如图① .当点A、O在BC的同侧时,AO AM OM83 5 ;如图②,当点 A 、 O 在 BC 的异侧时, AO AM OM8311第 8 课时线段、角的轴对称性(3)1.A2. 43.连接MA、MC∵点 M 在 AC 的垂直平分线上∴MA MC∵MD AB , ME BC∴ADM CEM 90在Rt MAD 和 Rt MCE 中MA MCAD CE∴Rt MAD Rt MCE∴点 M 在ABC的平分线上,即第 9 课时BM 平分ABC .线段、角的轴对称性(4)1.B2. ①③④⑤3.如图 .在ABC 中,AB AC,边的垂直平分线DE交ABC 的外角BAM的平分线于点 D ,垂足为 E, DF AB ,垂足为F.求证 :BF AC AF.3.过点D 作 DN MC ,垂足为N,连接DB 、 DC.∵ DN MC , DF AB∴AND AFD 90∵AD 平分 BAM∴NAD FAD在DNA 和 DNA 中,AND AFDNAD FADAD AD∴DNA DFA∴AN AF , DN DF∵ DE 是边 BC 的垂直平分线∴ DB DC∵ DN MC , DF AB∴DNC DFB90在 Rt DFB和 Rt DNC 中DB DCDF DN∴Rt DFB Rt DNC∴BF CN∵ CN ∴ BF ACACANAFAC AF第 10 课时等腰三角形的轴对称性(1)1.A2. 52.5°3.设BDC x,AEC y∵BD BC∴BDC BCD x∵BDC 的内角和为180°∴ B 180 2x同理可求 A180 2 y∵在ACB 中,ACB90∴A B90即1802x180 2 y90整理,得 x y135∵DEC 的内角和为180°第 11 课时等腰三角形的轴对称性(1) —习题课1.D 2. 15°或 30°或 75°或 120°3.分三种情况讨论:①当顶角BAC 为锐角时,如图①.∵DE 垂直平分 AB∴ADE 90∵AED 40∴在 Rt ADE 中, A 90 4050∵AB AC ∴ B C 1(180 50 )65 2②当顶角BAC 为直角时, BA AC ,此时 DE // AC ,不合题意,舍去.③当顶角BAC 为钝角时,如图②.∵DE 垂直平分 AB∴ ADE 90∵AED 40∴在 Rt ADE 中,BAE50∵BAE B C∴B C50∵ AB AC∴B C 150 25 2综上所述, B 的度数为 65或 25第 12 课时等腰三角形的轴对称性(2)1.D2. 50 °或 80°或 65°2.在ABC 中, A 50 ,当 B 的度数为时,ABC 为等腰三角形.3. (1) 图中有 5 个等腰三角形:ABC 、AEF 、OBC 、EBO 、 FOCEF 与 BE 、 CF 之间的数量关系是EF BE CF理由:∵ BO 平分 ABC∴ EBO OBC∵EF // BC∴EOB ∴EBO OBC EOB∴BE OE同理可证 CF OF∴EF OE OF BE CF(2) 若AB AC ,则图中仍旧存在 2 个等腰三角形:EBO 和FOC , EF 与 BE 、CF之间的数量关系是EF BE (3) 图中存在等腰三角形CFEBO仍旧存在 .和FOC, EF与 BE、 CF之间的数量关系是E F B E C F理由:∵ BO 平分ABC ∴EBO OBC∵EF // BC∴EOB ∴EBO OBC EOB∴BE OE同理可证 CF ∴ EF OEOFOF BE CF第 13 课时等腰三角形的轴对称性(2)—习题课1.D2. BP2PQ3.(1) 如图,∵ACM , CBN都是等边三角形∴6 1 60 , AC CM ,CN BC∵ACB 180∴ 3 60 , ACN MCB 120在ACN 和 MCB 中AC MCACN MCBCN CB∴ACN MCB∴AN MB(2) 如图,由 (1) ,知ACN MCB∴54∵OQN与CQB 的内角和均为180°,且 OQNCQB ∴NOQ 1 60∵AOB NOQ180∴AOB 120(3) 如图,∵ 1 60 , 3 60∴31在PCN 和 QCB 中3 1CN CB5 4∴ PCNQCB∴ PC QC又 3 60∴ PCQ 为等边三角形∴ 2 60 ∴21∴ PQ // AB第 14 课时等腰三角形的轴对称性 (3)1.D2. 10°3. ACEF证明:EBF x, CBF y∵在 Rt ABC 中, ACB 90∴ A 180 90 x y 90 x y∵ACB 90 , F 为 BD 的中点∴ CF1BDBF2∴FCB FBC y∴DFCFCBFBC2 y∵ DE AB , F 为 BD 的中点∴ EF1BD BF2∴ FEB FBE x∴ DFE FEB FBE 2x ∴EFCDFEDFC2x 2 y又∵ CF1BD , EF1BD22∴ CF EF∴ CEFECF∵ CEF 的内角和为 180° ∴CEF 1(180EFC )1(180 2x 2y) 90 x y2 2∴ACEF。
青岛版八年级上册数学第2章 图形的轴对称含答案
![青岛版八年级上册数学第2章 图形的轴对称含答案](https://img.taocdn.com/s3/m/2a29f213fe00bed5b9f3f90f76c66137ee064faa.png)
青岛版八年级上册数学第2章图形的轴对称含答案一、单选题(共15题,共计45分)1、如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为()A.55°B.45°C.40°D.42.5°2、如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E (异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A. B. C.2 D.33、如图,矩形中,,点分别在上,则的最小值是()A.6B.C.12D.4、如图所示,AE⊥AB,且AE=AB,BC⊥CD且BC=CD,若点E、B、D到直线AC 的距离分别为6,3,4,则图中实现所围成的图像面积是()A.50B.44C.38D.325、下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.6、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1B.C.D.7、下列四幅图案中,能通过轴对称由图案1得到的是()A. B. C. D.8、下列图形既是轴对称图形也是中心对称图形的是()A. B. C. D.9、如图,直线a,b,c表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等,则可供选择的站址有()A.一处B.两处C.三处D.四处10、已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A.21B.20C.19D.1811、判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果()A.①②都正确B.①②都错误C.①正确,②错误D.①错误,②正确12、如图,将⊙O沿弦折叠,恰好经过圆心O,若⊙O的半径为6,则的长为()A. B.π C. D.13、下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.14、如图,在△ABC中,∠BAC.∠BCA的平分线交于点I,若∠ACB=75°,AI=BC-AC,则∠B的度数为()A.30°B.35°C.40°D.45°15、如图,在中,,平分,垂直平分,,,则的长为( )A.5B.6C.10D.12二、填空题(共10题,共计30分)16、如图,在每个小正方形边长为1的网格中,的顶点A,B,C均在格点上,D为边上的一点.(Ⅰ)线段的值为________;(Ⅱ)在如图所示的网格中,是的角平分线,在上求一点P,使的值最小,请用无刻度的直尺,画出和点P,并简要说明和点P的位置是如何找到的(不要求证明)________.17、如图,∠BAC=100°,若MP和NQ分别垂直平分AB和AC,则∠PAQ=________.18、作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA , OB的垂线,分别交BO 的延长线于M 、N ,线段________的长表示点P到直线BO的距离;线段________的长表示点M到直线AO的距离 ; 线段ON的长表示点O到直线________的距离;点P到直线OA的距离为________.19、已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是________.20、如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1,则∠BDA1的度数为________.21、如图,Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,则△AMB的面积为________.22、如图,等腰三角形纸片ABC中,AD⊥BC与点D,BC=2,AD= ,沿AD剪成两个三角形.用这两个三角形拼成平行四边形,该平行四边形中较长对角线的长为________.23、如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=4,则AB与CD之间的距离等于________.24、如图,将沿DE折叠,使点A与BC边的中点F重合,下列结论中:;;;,正确的是________ 填序号25、如下图,已知:中,,,平分交于,,则点到的距离是________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。
苏科版八年级上《第2章轴对称图形》单元测试(2)含答案解析
![苏科版八年级上《第2章轴对称图形》单元测试(2)含答案解析](https://img.taocdn.com/s3/m/a32e8c75793e0912a21614791711cc7931b77849.png)
《第2章轴对称图形》一、选择题1.北京车展上,我国自主品牌的轿车不论在设计上还是在性能上,都引起了外国许多专家的赞叹,下面是我国自主品牌的轿车的车标,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.如图,该图案对称轴的条数是()A.4条B.3条C.2条D.1条3.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBD B.∠CAD=∠CBD C.∠CAD>∠CBD D.无法判断4.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形5.有两个角相等的梯形是()A.等腰梯形 B.直角梯形C.一般梯形 D.直角梯形和等腰梯形6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.57.若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是()A.等腰三角形B.等边三角形C.任意三角形D.不能确定8.如图,在等边△ABC中,BD、CE是两条中线,则∠1的度数为()A.90° B.30° C.120°D.150°9.A,B是平面内的两个定点,在平面内找一点C,使△ABC构成等腰直角三角形,这样的C点可找()A.2个B.4个C.6个D.8个10.如图,D、E是等边△ABC的边BC上的三等分点,O为△ABC内一点,且△ODE为等边三角形,则图中等腰三角形的个数是()A.4个B.5个C.6个D.7个二、填空题11.线段AB关于直线MN对称,则垂直平分.12.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .13.如图,点Q在∠AOB的平分线上,QA⊥OA,QB⊥OB,A、B分别为垂足,则AQ= .14.等腰三角形的周长为18cm,其中一边为8cm,则另两边的长分别为.15.如图,在△ABC中,∠ACB=130°,AC、BC的垂直平分线分别交AB于点M、N,则∠MCN= .16.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.17.给出一个梯形ABCD,AD∥BC,下面四个论断:①∠A=∠D;②AB=CD;③∠B=∠C;④AC=BD.其中能判断梯形ABCD为等腰梯形的是(填序号).18.如图,在梯形ABCD中,AD∥BC,AB=DC,BC=AC,∠ACD=30°,则∠D= .三、解答题19.如图,在正方形网格内有∠AOB,请你利用网格画出∠AOB的平分线,并说明理由.20.如图,△ABC绕点A旋转到AB′C′,BC与B′C′交于P,试说明AP平分∠BPC′.21.如图,已知AB=AC,BD=DC,AD的延长线交BC于点E.(1)试说明BE=EC;(2)试说明AD⊥BC.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在等边△ABC的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR为何种三角形?试说明理由.24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.《第2章轴对称图形》参考答案与试题解析一、选择题1.北京车展上,我国自主品牌的轿车不论在设计上还是在性能上,都引起了外国许多专家的赞叹,下面是我国自主品牌的轿车的车标,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】结合车标图案,根据轴对称图形的概念求解.【解答】解:第一个图形,不是轴对称图形,故选项错误;第二个图形,是轴对称图形,故选项正确;第三个图形,不是轴对称图形,故选项错误;第四个图形,不是轴对称图形,故选项错误;第五个图形,是轴对称图形,故选项正确.故选B.【点评】本题考查了轴对称图形的概念:熟记轴对称的关键是寻找对称轴,两边图象折叠后可重合是解题的关键.2.如图,该图案对称轴的条数是()A.4条B.3条C.2条D.1条【考点】轴对称图形.【分析】根据该图形的特点结合轴对称图形的定义得出即可.【解答】解:该图案对称轴的条数是2条.故选C.【点评】本题考查了轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBD B.∠CAD=∠CBD C.∠CAD>∠CBD D.无法判断【考点】线段垂直平分线的性质.【分析】首先根据题意画出图形,然后由MN是线段AB的垂直平分线,C,D是MN上任意两点,根据线段垂直平分线的性质可得:AC=BC,AD=BD,则可证得∠DAB=∠CBA,∠DAB=∠DBA,继而求得答案.【解答】解:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB﹣∠DAB,∠CBD=∠CBA﹣∠DBA,∴∠CAD=∠CBD.故选B.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.4.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形【考点】生活中的轴对称现象.【分析】三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形,即可作出判断.【解答】解:因为三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形.故选A.【点评】本题主要考查了等边三角形的判定方法,是需要熟记的内容.5.有两个角相等的梯形是()A.等腰梯形 B.直角梯形C.一般梯形 D.直角梯形和等腰梯形【考点】梯形.【分析】由直角梯形中有两个直角,等腰梯形同一底上的两个角相等,即可求得答案.【解答】解:∵直角梯形中有两个直角,等腰梯形同一底上的两个角相等,∴有两个角相等的梯形是直角梯形和等腰梯形.故选D.【点评】此题考查了直角梯形与等腰梯形的性质.此题比较简单,解题的关键是注意直角梯形中有两个直角,等腰梯形同一底上的两个角相等.6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】由题意推出BD=AD,然后,在Rt△BCD中,CP=BD,即可推出CP的长度.【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选A.【点评】本题主要考查角平分线的性质、等腰三角形的判定和性质、折角三角形斜边上的中线的性质,关键在于根据已知推出BD=AD,求出BD的长度.7.若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是()A.等腰三角形B.等边三角形C.任意三角形D.不能确定【考点】因式分解的应用.【分析】利用完全平方公式进行局部因式分解,再根据非负数的性质进行分析.【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ca=0,(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a=b=c,∴三角形是等边三角形.故选B.【点评】此题考查了完全平方公式的运用和非负数的性质,即几个非负数的和为0,则这几个非负数同时为0.8.如图,在等边△ABC中,BD、CE是两条中线,则∠1的度数为()A.90° B.30° C.120°D.150°【考点】等边三角形的性质.【分析】先根据在等边△ABC中,BD、CE是两条中线得出∠AEC与∠ADB的度数,再根据四边形内角和定理即可得出结论.【解答】解:∵△ABC是等边三角形,BD、CE是两条中线,∴∠AEC=∠ADB=90°,∠A=60°,∴∠1=360°﹣90°﹣90°﹣60°=120°.故选C.【点评】本题考查的是等边三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.9.A,B是平面内的两个定点,在平面内找一点C,使△ABC构成等腰直角三角形,这样的C点可找()A.2个B.4个C.6个D.8个【考点】等腰直角三角形.【分析】分三种情况考虑:当A为直角顶点时,过A作AB的垂线,以A为圆心,AB长为半径画弧,与垂线交于C3、C4两点;当B为直角顶点时,过B作AB的垂线,以B为圆心,BA长为半径画弧,与垂线交于C 5、C6;当C为直角顶点时,以上两种情况的交点即为C1、C2,综上,得到所有满足题意的点C的个数.【解答】解:A,B是平面内的两个定点,在平面内找一点C,使△ABC构成等腰直角三角形,如图所示:则这样的C点有6个,故选C.【点评】此题考查了等腰直角三角形,利用了分类的思想,根据等腰直角三角形的性质找全满足题意的C 点是本题的关键.10.如图,D、E是等边△ABC的边BC上的三等分点,O为△ABC内一点,且△ODE为等边三角形,则图中等腰三角形的个数是()A.4个B.5个C.6个D.7个【考点】等腰三角形的判定;等边三角形的性质.【分析】根据等腰三角形判定和等边三角形性质得出△ODE、△ABC,求出∠ODE=∠OED=60°,OE=EC,OD=OB,求出∠OBC=∠OCB=30°,求出∠OBA=∠OCB=30°,即可得出、△OEC、△OBC、△AOB、△AOC也是等腰三角形.【解答】解:等腰三角形有△ODE、△ABC、△ODB、△OEC、△OBC、△AOB、△AOC,共7个,故选D.【点评】本题考查了等腰三角形的判定和等边三角形的性质的应用,注意:有两边相等的三角形是等腰三角形,有两角相等的三角形是等腰三角形.二、填空题11.线段AB关于直线MN对称,则MN 垂直平分AB .【考点】线段垂直平分线的性质.【分析】根据对称轴垂直平分对应点的连线可知:线段AB关于直线MN对称,则MN垂直平分AB.【解答】解:线段AB关于直线MN对称,则MN垂直平分AB.故填MN,AB.【点评】主要考查了轴对称的性质.对称轴垂直平分对应点的连线.12.在等腰△ABC中,AB=AC,∠A=50°,则∠B= 65°.【考点】等腰三角形的性质.【分析】根据等腰三角形性质即可直接得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B=(180°﹣50°)÷2=65°.故答案为:65°.【点评】本题考查学生对等腰三角形的性质的理解和掌握,此题难度不大,属于基础题.13.如图,点Q在∠AOB的平分线上,QA⊥OA,QB⊥OB,A、B分别为垂足,则AQ= BQ .【考点】角平分线的性质.【分析】由角平分线的性质可得AQ=BQ.【解答】解:∵OQ平分∠AOB,且QA⊥OA,QB⊥OB,∴AQ=BQ,故答案为:BQ.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.14.等腰三角形的周长为18cm,其中一边为8cm,则另两边的长分别为2cm、8cm或5cm、5cm .【考点】等腰三角形的性质;三角形三边关系.【分析】分8cm是腰长与底边长两种情况讨论求解.【解答】解:①8cm是腰长时,18﹣8×2=2cm,所以,其余两边长为2cm、8cm,②8cm是底边时,(18﹣8)=5cm,所以,其余两边长为5cm、5cm,故答案为:2cm、8cm或5cm、5cm.【点评】本题主要考查了等腰三角形两腰相等的性质,难点在于要分情况讨论求解.15.如图,在△ABC中,∠ACB=130°,AC、BC的垂直平分线分别交AB于点M、N,则∠MCN= 80°.【考点】线段垂直平分线的性质.【分析】首先由在△ABC中,∠ACB=130°,可求得∠A+∠B的度数,然后由AC、BC的垂直平分线分别交AB于点M、N,根据线段垂直平分线的性质,可得AM=CM,BN=CN,即可得∠ACM=∠A,∠BCN=∠B,继而求得∠ACM+∠BCN的度数,则可求得答案.【解答】解:∵在△ABC中,∠ACB=130°,∴∠A+∠B=50°,∵AC、BC的垂直平分线分别交AB于点M、N,∴AM=CM,BN=CN,∴∠ACM=∠A,∠BCN=∠B,∴∠ACM+∠BCN=∠A+∠B=50°,∴∠CMN=∠ACB﹣(∠ACM+∠BCN)=80°.故答案为:80°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意求得∠ACM+∠BCN=∠A+∠B是关键.16.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于12 cm2.【考点】角平分线的性质.【分析】过点P作PD⊥OA于点D,根据角平分线的性质求出PD的长,再由三角形的面积公式即可得出结论.【解答】解:过点P作PD⊥OA于点D,∵OP平分∠AOB,PB⊥OB,PB=3cm,∴PD=PB=3cm,∵OA=8cm,=OA•PD=×8×3=12cm2.∴S△POA故答案为:12.【点评】本题考查的是角平分线的性质,根据题意作出辅助线是解答此题的关键.17.给出一个梯形ABCD,AD∥BC,下面四个论断:①∠A=∠D;②AB=CD;③∠B=∠C;④AC=BD.其中能判断梯形ABCD为等腰梯形的是①②③④(填序号).【考点】等腰梯形的判定.【分析】由同一底上两个角相等的梯形是等腰梯形得出①③能判定梯形ABCD为等腰梯形;由两腰相等的梯形是等腰梯形得出②能判定梯形ABCD为等腰梯形;由两条对角线相等的梯形是等腰梯形得出④能判定梯形ABCD为等腰梯形;即可得出结果.【解答】解:①能判定;理由如下:在梯形ABCD,AD∥BC,∵∠A=∠D,∴四边形ABCD是等腰梯形(同一底上两个角相等的梯形是等腰梯形),∴①能判定;同理:③能判定;②能判定;理由如下:在梯形ABCD,AD∥BC,∵AB=CD,∴四边形ABCD是等腰梯形(两腰相等的梯形是等腰梯形),∴②能判定;④能判定;理由如下:在梯形ABCD,AD∥BC,∵AC=BD,∴四边形ABCD是等腰梯形(两条对角线相等的梯形是等腰梯形),∴④能判定;故答案为:①②③④.【点评】本题考查了等腰梯形的判定方法;熟练掌握等腰梯形的判定方法,并能进行推理论证是解决问题的关键.18.如图,在梯形ABCD中,AD∥BC,AB=DC,BC=AC,∠ACD=30°,则∠D= 110°.【考点】等腰梯形的性质.【分析】由等腰梯形的性质得出∠B=∠BCD,设∠ACB=x,则∠B=∠BCD=x+30°,由等腰三角形的性质和平行线的性质得出∠BAC=∠B=x+30°,∠DAC=∠ACB=x,∠B+∠BAD=180°,得出方程,解方程求出∠BCD,即可得出∠D的度数.【解答】解:∵四边形ABCD是等腰梯形,AB=DC,∴∠B=∠BCD,设∠ACB=x,则∠B=∠BCD=x+30°,∵BC=AC,∴∠BAC=∠B=x+30°,∵AD∥BC,∴∠DAC=∠ACB=x,∠B+∠BAD=180°,即x+30+x+30+x=180°,解得:x=40°,∴∠D=180°﹣∠BCD=180°﹣70°=110°.故答案为:110°.【点评】本题考查了等腰梯形的性质、等腰三角形的性质、平行线的性质;熟练掌握等腰梯形和等腰三角形的性质,由角的关系得出方程是解决问题的关键.三、解答题19.如图,在正方形网格内有∠AOB,请你利用网格画出∠AOB的平分线,并说明理由.【考点】作图—复杂作图.【分析】利用边边边构造全等三角形,可得对应角相等,从而画出∠AOB的平分线.【解答】解:如图所示:OC即为所求∠AOB的平分线.【点评】考查角平分线上一点的确定;构造三角形全等或确定等腰三角形底边中点是解决本题的主要方法.20.如图,△ABC绕点A旋转到AB′C′,BC与B′C′交于P,试说明AP平分∠BPC′.【考点】旋转的性质.【专题】证明题.【分析】作AD⊥BC于D,AD′⊥B′C′于D′,如图,先根据旋转的性质得到△ABC≌△A′B′C′,则根据全等三角形的性质得到AD=AD′,然后根据角平分线的性质即可得到AP平分∠BPC′.【解答】证明:作AD⊥BC于D,AD′⊥B′C′于D′,如图,∵△ABC绕点A旋转到AB′C′,∴△ABC≌△A′B′C′,∴AD=AD′,∴AP平分∠BPC′.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了角平分线的性质.21.如图,已知AB=AC,BD=DC,AD的延长线交BC于点E.(1)试说明BE=EC;(2)试说明AD⊥BC.【考点】全等三角形的判定与性质.【分析】(1)根据SSS证明△ABD与△ACD全等,再利用等腰三角形的性质证明即可;(2)根据等腰三角形的性质证明即可.【解答】证明:在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∴△ABC是等腰三角形,∴BE=EC;(2)∵△ABC是等腰三角形,BE=EC,∴AD⊥BC.【点评】此题考查全等三角形的判定和性质,以及等腰三角形的性质解答,关键是根据SSS证明△ABD与△ACD全等.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.【考点】等腰梯形的性质.【分析】由AB=AD=CD,可知∠ABD=∠ADB,又AD∥BC,可推得BD为∠B的平分线,而由题可知梯形ABCD 为等腰梯形,则∠B=∠C,那么在RT△BDC中,∠C+∠C=90°,可求得∠C=60°.【解答】解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°【点评】先根据已知条件可知四边形为等腰梯形,然后根据等腰梯形的性质和已知条件求解.23.如图,在等边△ABC的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR为何种三角形?试说明理由.【考点】等边三角形的判定与性质;全等三角形的判定与性质.【分析】(1)由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形;(2)由(1)证得△ADF≌△BED,得到BD=AF,通过△ABF≌△CBD,得到∠ABF=∠BCD,求得∠RPQ=∠FBC+∠BCD=60°,同理∠PQR=∠PRQ=60°,于是得到结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形;(2)△PQR是等边三角形,理由:由(1)证得△ADF≌△BED,∴BD=AF,在△ABF与△CBD中,,∴△ABF≌△CBD,∴∠ABF=∠BCD,∵∠ABF+∠CBF=60°,∴∠CBF+∠BCF=60°,∵∠RPQ=∠FBC+∠BCD=60°,同理∠PQR=∠PRQ=60°,∴△PQR是等边三角形.【点评】此题考查了等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定和性质是解题的关键.24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.【考点】等腰梯形的性质.【专题】证明题.【分析】过P作PH⊥BG,把BG分成两段,根据矩形得到PF=HG,再证明△BPH和△PBE全等得到PE=BH,继而可得出结论.【解答】证明:过点P作PH⊥BG,垂足为H,∵BG⊥CD,PF⊥CD,PH⊥BG,∴∠PHG=∠HGC=∠PFG=90°,∴四边形PHGF是矩形,∴PF=HG,PH∥CD,∴∠BPH=∠C,在等腰梯形ABCD中,∠PBE=∠C,∴∠PBE=∠BPH,又∠PEB=∠BHP=90°,BP=PB,在△PBE和△BPH中∴△PBE≌△BPH(AAS),∴PE=BH,∴PE+PF=BH+HG=BG.【点评】本题考查了等腰梯形的性质,利用“截长补短法”的截长,即把较长的线段截为两段,再分别证明线段相等,从而问题得以解决.。
苏科版八年级上册数学第2章《轴对称图形》单元测试卷(基础卷)(含解析)
![苏科版八年级上册数学第2章《轴对称图形》单元测试卷(基础卷)(含解析)](https://img.taocdn.com/s3/m/a5591bbabb0d4a7302768e9951e79b8969026852.png)
第2章 轴对称图形(基础卷)一、选择题(每小题3分,共18分)1.2022年冬奥会在北京举行,以下历届冬奥会会徽是轴对称图形的是( )A .B .C .D .2.如图,将一张长方形纸片ABCD沿EF折叠,点A 、B 分别落在点、处,若,则的度数是( )A .65°B .60°C .50°D .57.5°3.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形.则这个格子内标有的数字是( )A .1B .2C .3D .44.如图,在△ABC 中,cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是13cm ,则BC 的长为( )A .6cmB .7cmC .8cmD .13cm5.如图,点在正五边形的内部,为等边三角形,则等于( )A 'B '165∠=︒A ED '∠6AC =F ABCDE ABF EAF ∠一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为19cm(第13题图)13.图中阴影部分是由4个完全相同的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形应该添加在区域___________.(填序号)14.如图,在中,,点在延长线上,于点,交于点,若,,则的长度为___________.(第14题图)(第15题 图)15.如图,在中,,是的角平分线,若,,则的面积是__________.16.已知在中,,,,点E 为边上的动点,点F 为边上的动点,则线段的最小值是_______________.三、解答题(共62分)17.(6分)如图,已知△ABC 的顶点分别为A (-2,2),B (-4,5),C (-5,1)和直线m (直线上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形,并写出点的坐标;(2)作出△ABC 关于y 轴对称的图形,并写出点的坐标.ABC AB AC =E CA EP BC ⊥P AB F 10CE =3AF =BF Rt ABC 90C ∠=︒AD ABC 4CD =15AB =ABD △Rt ABC △90C ∠=︒75ABC ∠=︒6AB =AC AB FE EB +111A B C △1B 222A B C △2B18.(8分)如图,把长方形ABCD 的两角折叠,折痕分别为EF 、HG ,点B 、D 折叠后的对应点分别是、D',并且使与在同一直线上,已知长方形的两组对边分别平行,试说明两条折痕EF 、GH 也相互平行.19.(8分)如图,是的角平分线,、分别垂直于、,垂足为、,求证:垂直平分.B 'HD 'B F 'AD ABC ∆DE DF AB AC E F AD EF20.(10分)如图,在中,的平分线与的外角的平分线交于点,于点,,交的延长线于点.(1)若点到直线的距离为5cm ,求点到直线的距离;(2)求证:点在的平分线上.21.(10分)如图,BD 是△ABC 中AC 边上的中线,过点C 作,交BD 的延长线于点E ,F 为△ABC 外一点,连接CF 、DF ,且DE =DF 、∠ADF =∠CDE .求证:(1)△ABD ≌△CED ;(2)CA 平分∠BCF.ABC ∆ABC ∠ABC ∆ACE ∠P PD AC ⊥D PH BA ⊥BA H P BA P BC P HAC ∠CE AB ∥22.(10分)如图所示,点E ,F 在BC 上且.(1)求证:;(2)若PO 平分,则PO 与线段BC 有什么关系?为什么?23.(10分)如图(1),在中,的平分线交边于点D .(1)求证:为等腰三角形;(2)若的平分线交边于点E ,如图(2),求证:;(3)若外角的平分线交的延长线于点E ,请你探究(2)中的结论是否仍然成立,若不成立,请写出正确的结论,并说明理由.90,A D AB DC ∠=∠=︒=BE CF =E F ∠=∠EPF ∠ABC 75,35,BAC ACB ABC ∠=︒∠=︒∠BD AC BCD BAC ∠AE BC BD AD AB BE +=+BAC ∠AE CB参考答案一、选择题(每小题3分,共18分)1、B【解析】解:选项A 、C 、D 不能找到这样一条直线使图形沿着一条直线折叠,直线旁的两个部分能够互相重合,所以不是轴对称图形;选项B 能能找到这样一条直线使图形沿着一条直线折叠,直线旁的两个部分能够互相重合,所以是轴对称图形.故选B .2、C【解析】解:由折叠可得,∠1=∠A 'EF =65°,∴∠AEA '=130°,∴∠A 'ED =180°-130°=50°,故选:C .3、C【解析】解:由轴对称图形的定义可知,这个格子内标有的数字是3,故选:C .4、B【解析】解:线段的垂直平分线交于点,,,又的周长是,,故选:B .5、B【解析】∵五边形ABCDE 是正五边形,∴ ,∵△ABF 为等边三角形,∴,∴,故选:B .AB AC N AN BN ∴=6BN CN AN CN AC cm ∴+=+==BCN ∆ 13cm ()()131367BC BN CN cm ∴=-+=-=(52)1805108BAE =-⋅︒÷=︒∠60FAB ABF AFB ===︒∠∠∠1086048EAF EAB BAF =-=︒-︒=︒∠∠∠6、D【解析】解:由作图可知,在△OCD 和△OCE 中,,∴△OCD ≌△OCE (SSS ),∴∠DCO =∠ECO ,∠1=∠2,∵OD =OE ,CD =CE ,∴OC 垂直平分线段DE ,故A ,B ,C 正确,没有条件能证明CE =OE ,故选:D .二、填空题(每小题2分,共20分)7、圆(答案不唯一)【解析】解:若一个图形是轴对称图形,则这个图形可以是圆.故答案为:圆(答案不唯一).8、22【解析】解:①当4为腰时,边长为4、4、9, 4+4<9,不能构成三角形,舍去;②当9为腰时,边长为4、9、9, 能构成三角形,此时三角形的周长为.故答案为22.9、H•8379【解析】解:如图所示:该车牌照号码为:H•8379.故答案为:H•8379.10、7【解析】解:∵AD 平分∠BAC 交BC 于点D ,,DE ⊥AB ,∴CD =ED .∵,∴BD +CD =7,∴,故答案为:7.11、9cm 、1cm 或5cm 、5cm .【解析】解:①当9cm 为腰长时,则腰长为9cm ,底边=19-9-9=1cm ,因为9+1>9,所以能构成三角形;②当9cm 为底边时,则腰长=(19-9)÷2=5cm ,因为5+5>9,所以能构成三角形.OD OE DC EC OC OC =⎧⎪=⎨⎪=⎩49922++=90C ∠=︒7CB =7DE DB +=14、4【解析】(1)解:过点作于,点在的平分线,,,cm ,即点到直线的距离为;(2)证明:点在的平分线,,,,同理:,,,,点在的平分线上.21.(1)证明见解析;(2)证明见解析【解析】(1)证明:∵,∴∠ABD =∠CED ,∠BAD =∠DCE ,∵BD 是△ABC 中AC 边上的中线,∴AD =CD ,在△ABD 和△CED 中,∵,∴△ABD ≌△CED (AAS ).(2)证明:∵△ABD ≌△CED ,∴BD =DE ,∠ADB =∠CDE ,又∵DE =DF ,∴BD =DF ,∵∠ADF =∠CDE ,∠CDE =∠ADB ,∴∠ADB =∠ADF ,∴,∴∠BDC =∠FDC ,在△BDC 和△FDC中,P PF BE ⊥F P ABC ∠PH BA ⊥PF BE ⊥5PF PH ∴==P BC 5cm P ACE ∠PD AC ⊥PF BE ⊥PF PD ∴=PF PH =PD PH ∴=PD AC ⊥ PH BA ⊥∴P HAC ∠CE AB ∥ABD CED BAD DCE AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩180180ADB ADF ︒-∠=︒-∠∵,∴△BDC ≌△FDC (SAS ),∴∠BCD =∠FCD ,∴CA 平分∠BCF .22.(1)见详解;(2)PO 垂直平分BC ;理由见详解【解析】(1)证明:∵BE =CF ,BC =CB ,∴BF =CE ,在Rt △ABF 与Rt △DCE 中,∵∴Rt △ABF ≌Rt △DCE (HL ),∴;(2)解:PO 垂直平分BC ,∵Rt △ABF ≌Rt △DCE ,∴∠E =∠F ,∴△PEF 为等腰三角形,又∵PO 平分∠EPF ,∴PO ⊥BC (三线合一),EO =FO (三线合一),又∵EB =FC ,∴BO =CO ,∴PO 垂直平分BC .23.(1)见解析;(2)见解析;(3)不成立,正确结论:,理由见解析【解析】(1)【证明】在中,,,∴.∵平分,∴,∴,∴,∴为等腰三角形.(2)【证明】如图(1),在AC 上截取,连接.由(1)得为等腰三角形,∴,∴.∵平分,∴,∴,∴,∴,∴,∴,∴,∴.BD DF BDC FDC DC DC =⎧⎪∠=∠⎨⎪=⎩BF CE AB DC =⎧⎨=⎩E F ∠=∠BD AD BE AB +=-ABC 75BAC ∠=︒35ACB ∠=︒18070∠=︒-∠-∠=︒ABC BAC ACB BD ABC ∠1352∠=∠=︒DBC ABC DBC ACB ∠=∠BD DC =BCD AH AB =EH BCD BD CD =+=+=BD AD CD AD AC AE BAC ∠∠=∠EAB EAH ABE AHE ≌△△,70=∠=∠=︒BE EH AHE ABE 35∠=∠-∠=︒HEC AHE ACB ∠=∠HEC ACB EH HC =+=+=AB BE AH HC AC BD AD AB BE +=+。
第2章 轴对称图形知识梳理+热考题型原卷版
![第2章 轴对称图形知识梳理+热考题型原卷版](https://img.taocdn.com/s3/m/5fd564d7cd22bcd126fff705cc17552707225ec9.png)
内容预览第2章 轴对称图形本章知识综合运用●●1、轴对称:把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴.◆轴对称的性质:1.成轴对称的两个图形全等;2.成轴对称的两个图形中,对应点的连线被对称轴垂直平分.拓展:成轴对称的两个图形的任何对应部分也成轴对称.●●2、轴对称图形:把一个图形沿着某一条直线翻折,如果直线两旁的部分能够完全重合,那么这个图形叫轴对称图形,这条直线叫对称轴.◆轴对称图形与轴对称的区别与联系:●●3、线段的垂直平分线的概念:垂直并且平分一条线段的直线,叫做这条直线的垂直平分线.◆线段的垂直平分线必须满足两个条件:1.经过线段的中点;2.垂直于这条线段.注意:线段的垂直平分线是一条直线,而不是一条线段,且只有一条.●●4、等边三角形:三边相等的三角形叫做等边三角形或正三角形.●●1、线段:线段是轴对称图形,有2条对称轴,分别是线段所在直线和线段的垂直平分线.◆线段的垂直平分线性质定理:线段的垂直平分线上的点到线段两端的距离相等.拓展:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.◆线段的垂直平分线判定定理:到线段两端距离相等的点在线段的垂直平分线上.●●2、角:角是轴对称图形,有1条对称轴,角平分线所在的直线是它的对称轴.◆角平分线性质定理:角平分线上的点到角两边的距离相等.拓展:三角形三个内角的平分线交于一点,这一点到三角形三条边的距离相等.◆角平分线判定定理:角的内部到角两边距离相等的点在角的平分线上.●●3、等腰三角形:等腰三角形是轴对称图形,顶角平分线(也可以说是底边上的中线或底边上的高)所在的直线是它的对称轴.◆等腰三角形性质定理:1.等腰三角形的两个底角相等(简称“等边对等角”);2.等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合(简称“三线合一”).◆等腰三角形判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).◆直角三角形性质定理:直角三角形斜边上的中线等于斜边的一半.注意:该定理需满足两个条件:1.直角三角形;2.斜边上的中线.●●4、等边三角形:等边三角形是轴对称图形,角平分线(也可以说是三边上的中线或三边上的高)所在的直线是它的对称轴◆等边三角形性质定理:等边三角形的每个内角都等于60°.拓展:等边三角形每条边都能运用三线合一这性质.◆等边三角形判定定理:1.三个角都相等的三角形是等边三角形.2.有一个角是60°的等腰三角形是等边三角形.●●1、画已知图形的对称图形(“三步法”):轴对称图形的识别题型一一找——找已知图形的关键点;二画——根据对称点的位置关系画出各关键点的对称点;三连——按照已知图形的形状连接各对称点,得到所要求作的图形.●●2、用尺规作线段的垂直平分线●●3、已知底边及底边上的高作等腰三角形【例题】(2023秋·江苏·八年级专题练习)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【变式1】(2023·江苏扬州·二模)垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.轴对称的性质与应用题型二【变式2】(2023秋·江苏·八年级专题练习)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【变式3】(2023·江苏·八年级假期作业)如图(1),小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是( )A.B.C.D.【变式4】(2023秋·江苏·八年级专题练习)如图,在44´的正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)若将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,涂法共有 种.(2)请在备用图中至少画出具有不同对称轴的三个方案,并画出对称轴.【例题1】(2023秋·江苏·八年级专题练习)如图,若△ABC与111A B C△关于直线MN对称,1BB交MN于点O,则下列说法不一定正确的是()A.11AC A C=B.1BO B O=C.1CC MN^D.11AB B C∥【变式1-1】(2023秋·江苏南京·八年级南京市金陵汇文学校校考阶段练习)如图,Rt △ABC 中,9055ACB A ÐÐ==o o ,,将其折叠,使点A 落在边CB 上A ¢处,折痕为CD ,则A DB Т=( )A .40oB .30oC .20oD .10o【变式1-2】(2023秋·江苏·八年级专题练习)将一张长方形纸片按图2所示折叠后,再展开.如果1=66а,那么2Ð的度数为( )A .66°B .48°C .52°D .无法确定【变式1-3】(2023·江苏·八年级假期作业)如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC D (即三角形的顶点都在格点上).(1)在图中作出ABC D 关于直线l 的对称图形111A B C D (要求点A 与1A ,B 与1B ,C 与1C 相对应).线段的轴对称性题型三(2)在直线l 上找一点P ,使得PAC D 的周长最小.【例题2】((2023春·全国·八年级专题练习)如图,为了做好元旦期间的交通安全工作,自贡市交警执勤小队从A 处出发,先到公路m 上设卡检查,再到公路n 上设卡检查,最后再到达B 地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.【变式2-1】((2023·江苏·八年级假期作业)如图,直线l 是一条公路,A 、B 是两个村庄.欲在l 上的某点处修建一个车站,直接向A 、B 两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是( )A .B .C .D .【变式2-2】(2023春·江苏·八年级专题练习)如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为.【例题1】(2023·全国·单元测试)如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC 于点D,若△DBC的周长为35cm,则BC的长为( )A. 5cmB. 10cmC. 15cmD. 17.5cm【变式1-1】(2023·湖南省·单元测试)如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P 为直线EF上一动点,则BP+CP的最小值( )A. 10B. 6C. 4D. 2【变式1-2】(2023秋·江苏无锡·八年级校联考期末)在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠EAG=30°,则∠BAC=°.【变式1-3】(2023秋·江苏·八年级专题练习)三个村庄A、B、C(其位置如图所示)准备修建一口水井,要求水井到三个村庄的距离相等,水井应该修在什么地方呢,你能找到吗?(写出作法,并保留作图痕迹)【变式1-4】(2023秋·江苏·八年级专题练习)如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB 于点F,D为线段CE的中点,且BE=AC.(1)求证:AD⊥BC;(2)若∠C=70°,求∠BAC的度数.【例题2】(2023·陕西省渭南市·模拟题)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.求证:AD垂直平分EF.【变式2-1】(2022·广西梧州·梧州市第一中学校考三模)将长方形纸片沿AC折叠后点B落在点E处,则线段BE与AC的关系是( )A.AC=BE B.AC⊥BE且AC=BEC.AC⊥BE D.AC⊥BE且AC平分BE【变式2-2】(2023秋·江苏·八年级专题练习)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)设直线DM、EN交于点O①试判断点O是否在BC的垂直平分线上,并说明理由;②若∠BAC=100°,求∠BOC的度数【例题3】(2023·甘肃陇南·统考二模)今年是“一带一路”倡议提出及建设开启的十周年.十年来,我国与151个国家、32个国际组织签署了200余份共建“一带一路”合作文件,在基础设施建设、能源建设、交通运输、脱贫等多个方面取得成果,为多个国家的合作发展带来好消息.如图,北京与雅典、莫斯科建立了“一带一路”贸易合作关系,记北京为A地,莫斯科为B地,雅典为C地,若想建一个货物中转仓,使其到A,B,C三地的距离相等,那么如何选择中转仓的位置?请你用尺规作图设计出中转仓的位置P,保留作图痕迹,不用说明理由,并在答题卡上描黑作图痕迹.【变式3-1】(2023秋·江苏扬州·八年级统考期末)如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A.B.角的轴对称性题型四C.D.【变式3-2】(2023春·河南平顶山·七年级统考期末)如图2,一条笔直的公路MN同一侧有两个村庄A和B,现准备在公路MN上修一个公共汽车站点P,使站点P到两个村庄A和B的距离相等.请你用尺规作图找出点P 的位置,不写作法,保留作图痕迹.【例题1】(2021·福建泉州·八年级南区中学校考期中)如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE ⊥AB于E,点F在边AC上.(1)求证:DC=DE;(2)若AC=4,AB=5,且△ABC的面积等于6,求DE的长.【变式1-1】(2023春·江苏·八年级开学考试)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线.若AC=6,AB=10,则S△ABD:S△ACD为( )A.5:3B.5:4C.4:3D.3:5【变式1-2】(2023秋·江苏·八年级专题练习)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B,下列结论中不一定成立的是( )A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【例题2】(2023秋·江苏·八年级专题练习)如图,某个居民小区C附近有三条两两相交的道路MN、OA、OB,拟在MN上建造一个大型超市,使得它到OA、OB的距离相等,请确定该超市的位置P.【变式2-1】(2023秋·江苏·八年级专题练习)三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果要在三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场可选的位置有()A.1处B.2处C.3处D.4处【变式2-2】(2023春·山东淄博·七年级统考期末)如图,某地有两个村庄M,N,和两条相交的公路OA,OB,现计划在∠AOB内修建一个物资仓库P,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你确定物资仓库P的位置.(保留画图痕迹,不写画法)【例题3】(2022春·湖南娄底·八年级统考期末)如图,已知EF⊥CD,EF⊥AB,MN AC^,M是EF的中点,只需添加,就可使CM,AM分别为∠ACD和∠CAB的平分线.【变式3-1】(2020秋·河南南阳·八年级校考阶段练习)如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的角平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的个数是()A.1个B.2个C.3个D.4个【变式3-2】(2023秋·江苏·八年级专题练习)如图,四边形ABCD中,∠B=∠C=90°,E是BC的中点,DE 平分∠ADC.(1)求证:AE平分∠BAD;等腰三角形的轴对称性(2)判断AB、CD、AD之间的数量关系,并证明;(3)若AD=10,CB=8,求S△ADE.【变式1-1】(2023秋·江苏宿迁·八年级统考期末)如图,在△ABC中,AC=BC,∠C=50°,点P在线段AC上且不与A、C重合,则∠BPC的度数可能是()A.60°B.65°C.80°D.130°【变式1-2】(2023秋·江苏·八年级专题练习)如图,在3×3的正方形网格中,点A,B在格点上,若点C 也在格点上,且△ABC是等腰三角形,则符合条件的点C的个数为()A.1B.2C.3D.4【变式1-3】(2023秋·河南省直辖县级单位·八年级校联考期末)在△ABC中,点D,E是边BC上的两点.若AB=AC,AD=AE.求证:BD=CE;【例题2】(2023秋·江苏·八年级专题练习)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是()A.0个B.1个C.2个D.3个【变式2-1】(2023秋·江苏·八年级专题练习)如图,在△ABC中,AB=AC,∠BAC=108°,点D在AC的垂直平分线DF上,AE平分∠BAD,则图中等腰三角形的个数是( )A.3B.4C.5D.6【变式2-2】(2023春·江苏淮安·八年级统考期末)如图,在一个直角三角形中,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形,其作法不一定正确的是()A.B.C.D.【变式2-3】(2023秋·江苏·八年级专题练习)如图,△ABC中,D为AC边上一点,DE⊥AB于E,ED的延长线交BC的延长线于F,且CD=CF.(1)求证:△ABC是等腰三角形;(2)当∠F=______ 度时,△ABC是等边三角形?请证明你的结论.【变式2-4】(2023秋·江苏·八年级专题练习)已知:如图△ABC中AB=6cm,AC=8cm,BD平分∠ABC,CD平分∠ACB,过D作直线平行于BC,交AB,AC于E,F,(1)求证:△DFC是等腰三角形;(2)求△AEF的周长.【变式2-5】(2023秋·江苏南京·八年级统考期末)如图,已知线段a,b.求作:等腰△ABC,使得△ABC的底边BC等于a,底边上的高等于b.(要求:尺规作图,不写作法,保留作图痕迹,写出必要的文字说明)【例题2】(2023秋·江苏·八年级专题练习)下列推理中,不能判断△ABC是等边三角形的是()A.∠A=∠B=∠C B.AB=AC,∠B=60°C.∠A=60°,∠B=60°D.AB=AC,且∠B=∠C【变式2-1】(2023秋·江苏·八年级专题练习)如图,在△ABC中,AB=AC,D是边BC上的中点,若∠BAD =30°,BD=2,则△ABC的周长为()A.6B.8C.10D.12【变式2-2】(2023春·全国·八年级专题练习)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,下列结论错误的是()A.AD=BE B.∠DOE=60°C.DE=DP D.PQ∥AE【变式2-3】(2023春·江苏·八年级开学考试)如图,在ΔABC中,BA=BC,BD⊥AC,延长BC至E,恰好使得CE=CD,BD=DE.(1)求:∠E的度数;(2)求证:△ABC为等边三角形.【变式2-4】(2023春·山西太原·八年级山西大附中校考期中)如图,在△ABC中,已知D是边BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF,∠BDE=30°.求证:△ABC是等边三角形.【例题】(2023秋·江苏·八年级专题练习)如图,在△ABC中,∠ABC=90°,D为AC中点,若BD=2,则AC的长是()A.6B.5C.4D.3【变式1】(2023秋·江苏·八年级专题练习)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若∠A =28°.则∠BDC的度数为()A.26°B.52°C.56°D.64°【变式2】(2023秋·江苏·八年级专题练习)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB的中点,则DE的长为()A.1B.2C.3D.4【变式3】(2023春·江苏·八年级专题练习)如图,△ABC中,AB=AC=12,BC=8,AD平分∠BAC交BC 于点D,点E为AC的中点,连接DE,则△CDE的周长是()A.20B.12C.16D.13【变式4】(2023秋·江苏徐州·八年级统考期末)已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD=______°时,△BED是等边三角形.。
八年级下册数学第二章检测题(附答案)
![八年级下册数学第二章检测题(附答案)](https://img.taocdn.com/s3/m/9dd1e9f4d5bbfd0a7956734b.png)
八年级下册数学第二章检测题(附答案)学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,精品编辑老师为大家整理了八年级下册数学第二章检测题,供大家参考。
一、选择题(每小题3分,共24分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.如图所示,在□ 中,,,的垂直平分线交于点,则△ 的周长是( )A.6B.8C.9D.103.如图所示,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为( )A.3B.4C.6D.84.如图为菱形与△ 重叠的情形,其中在上.若,,,则 ( )A.8B.9C.11D.125. (2019江苏连云港中考)已知四边形ABCD,下列说法正确的是( )A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,ACBD时,四边形ABCD是正方形6. (2019湖北孝感中考)已知一个正多边形的每个外角等于60,则这个正多边形是( )A.正五边形B.正六边形C.正七边形D.正八边形7.若正方形的对角线长为2 cm,则这个正方形的面积为( )A.4B.2C.D.8.(2019贵州安顺中考)如图,点O是矩形ABCD的中心,E 是AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )A.2B.C.D.6二、填空题(每小题3分,共24分)9.如图,在□ABCD中,已知,,,那么 _____ ,______ .10.如图,在□ 中,分别为边的中点,则图中共有个平行四边形.11. (2019湖北襄阳中考)在?ABCD中,AD=BD,BE是AD边上的高,EBD=20,则A的度数为_________.12.如图,在△ 中,点分别是的中点,,则C的度数为________.13.(2019上海中考)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么FAD=________.14.若凸边形的内角和为,则从一个顶点出发引出的对角线条数是__________.15.如图所示,在矩形ABCD中,对角线与相交于点O,且,则BD的长为_____cm,BC的长为_____cm.16.如图所示,在菱形中,对角线相交于点,点是的中,则 ______ .三、解答题(共52分)17.(6分)已知□ 的周长为40 cm,,求和的长.18.(6分)已知,在□ 中,的平分线分成和两条线段,求□ 的周长.19.(6分)如图所示,四边形是平行四边形,,,求,及的长.20.(6分)如图所示,在矩形中,相交于点,平分交于点 .若,求的度数.21.(6分)如图所示,点是正方形中边上任意一点,于点并交边于点,以点为中心,把△ 顺时针旋转得到△ .试说明:平分 .22.(6分) 如图,在Rt△ 中,C=90,B=60,,E,F分别为边AC,AB的中点.(1)求A的度数;(2)求的长.23.(8分)已知:如图,四边形是菱形,过的中点作的垂线,交于点,交的延长线于点 .(1)求证: .(2)若,求菱形的周长.24.(8分)如图,M是△ABC的边BC的中点,AN平分BAC,BNAN 于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.第2章四边形检测题参考答案1.C 解析:选项A、B是中心对称图形但不是轴对称图形,选项C既是中心对称图形又是轴对称图形,选项D是轴对称图形但不是中心对称图形.2.B 解析:在平行四边形中,因为的垂直平分线交于点,所以所以△ 的周长为3.B 解析:因为矩形ABCD的面积为,所以阴影部分的面积为,故选B.4.D 解析:连接,设交于点.5.B 解析:一组对边平行,另一组对边相等的四边形可能是等腰梯形,故A项错误;两组对边分别相等的四边形一定是平行四边形,故B项正确;对角线相等且一条对角线平分另一条对角线的四边形不一定是矩形,故C项错误;对角线相等且互相垂直的四边形不一定是正方形,故D项错误.6.B 解析:设正多边形为n边形,因为正多边形的外角和为360,所以n= .7.B 解析:如图所示,在正方形中,,所以正方形的面积为2 ,故选B.8.A 解析:根据图形折叠的性质可得:BCE=ACE= ACB,COE=90,BC=CO= AC,所以BAC=30,所以BCE=ACE= ACB=30.因为BC=3,所以CE=2 .9. 12 解析:因为四边形是平行四边形,又因为,所以,所以 .10.4 解析:因为在□ABCD中,E、F分别为边AB、DC的中点,所以 .又AB∥CD,所以四边形AEFD,CFEB,DFBE都是平行四边形,再加上□ABCD本身,共有4个平行四边形,故答案为4. 11.55或35 解析:当高BE的垂足在AD上时,如图(1),第11题答图(1)ADB=90-20=70.由AD=BD得到DBA= =55.当垂足E在AD的延长线上时,如图(2),第11题答图(2)BDE=90-20=70,则ADB=110,由AD=BD得到ABD= =35.12. 解析:由题意,得,∵ 点D,E分别是AB,AC的中点, DE是△ABC的中位线,13. 22.5 解析:由四边形ABCD是正方形,可知BAD=D=90,CAD= BAD=45.由FEAC,可知AEF=90.在Rt△AEF与Rt△ADF中,AE=AD,AF=AF,Rt△AEF≌Rt△ADF(HL),FAD=FAE= CAD= 45=22.5.16. 解析:∵ 四边形是菱形, , .在Rt△ 中,由勾股定理,得 .∵ 点是的中点, 是△ 的中位线, .22.解:(1)∵ 在Rt△ABC中,C=90,B=60,A=90B=30,即A的度数是30.(2)由(1)知,A=30.在Rt△ABC中,C=90,A=30,AB=8 cm,.又E,F分别为边AC,AB的中点,EF是△ABC的中位线,所以△ 是等腰三角形,所以菱形的周长是 .24.(1)证明:在△ABN和△ADN中,∵ 2 ,AN=AN ,ANB=AND,△ABN≌△ADN, BN= DN.(2)解:∵ △ABN≌△ADN, AD=AB=10,DN=NB.又∵点M是BC的中点, MN是△BDC的中位线,CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41. 为大家推荐的八年级下册数学第二章检测题的内容,还满意吗?相信大家都会仔细阅读,加油哦!。
(苏科版)初中数学八年级上册 第2章综合测试试卷03及答案
![(苏科版)初中数学八年级上册 第2章综合测试试卷03及答案](https://img.taocdn.com/s3/m/5247586a82c4bb4cf7ec4afe04a1b0717ed5b312.png)
第2章综合测试一、选择题(共10小题)1.如图,AD 是ABC △的角平分线,DF AB ^,垂足为F ,DE DG =,ADG △和AED △的面积分别为60和35,则EDF △的面积为( )A .25B .5.5C .7.5D .12.52.如图,80A Ð=°,点O 是AB ,AC 垂直平分线的交点,则BCO Ð的度数是()A .40°B .30°C .20°D .10°3.如图,已知AB AC BD ==,那么()A .1=2ÐÐB .21+2=180Ðа C .1+32=180ÐаD .312=180-Ðа4.如图,B 是直线l 上的一点,线段AB 与l 的夹角为()0180a a °°<<,点C 在l 上,若以A 、B 、C 为顶点的三角形是等腰三角形,则满足条件的点C 共有( )A .2个B .3个C .2个或4个D .3个或4个5.如图,在ABC △中,AB AC =,AD 平分BAC Ð,DE AB ^,DF AC ^,E 、F 为垂足,则下列四个结论:(1)DEF DFE Ð=Ð;(2)AE AF =;(3)AD 平分EDF Ð;(4)EF 垂直平分AD .其中正确的有( )A .1个B .2个C .3个D .4个6.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到()A B C D7.如图,ABC △与ADC △关于AC 所在的直线对称,35BCA Ð=°,80B Ð=°,则DAC Ð的度数为()A .55°B .65°C .75°D .85°8.下列“表情”中属于轴对称图形的是()A B C D9.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A .10:05B .20:01C .20:10D .10:0210.如图,将ABC △沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE △沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2018次操作后得到的折痕20172017D E 到BC 的距离记为2018h ,若11h =,则2018h 的值为( )A .2017122-B .201712C .2016112-D .2016122-二、填空题(共8小题)11.如图,AD 是ABC △的角平分线,DE AB ^,垂足为E ,若ABC △的面积为9,2DE =,5AB =,则AC 长是________.12.如图,等腰ABC △中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,15DBC Ð=°,则A Ð的度数是________度.13.等腰三角形有一个角为70°,则底角的度数为________.14.在ABC △中,80A Ð=°,当B Ð=________时,ABC △是等腰三角形.15.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,12Ð=Ð,若330Ð=°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证1Ð等于________.16.一个等边三角形的对称轴有________条.17.在字母A B C D E F G I J 、、、、、、、、中不是轴对称图形的有________个.18.在上学的路上,小刚从电瓶车的后视镜里看到一辆汽车,车顶字牌上的字在平面镜中的像是IXAT ,则这辆车车顶字牌上的字实际是________.三、解答题(共8小题)19.如图,已知在Rt ABC △中,90A Ð=°,BD 是ABC Ð的平分线,DE 是BC 的垂直平分线.试说明2BC AB =.20.如图,已知ABE △,AB 、AE 边上的垂直平分线1m 、2m 交BE 分别为点C 、D ,且BC CD DE ==,求BAE Ð的度数.21.如图,在ABC △中,2C ABC A Ð=Ð=Ð,BD 是AC 边上的高,求DBC Ð的度数.22.如图,点D 、E 在ABC △的边BC 上,AD AE =,BD CE =,(1)求证:AB AC =;(2)若108BAC Ð=°,36DAE Ð=°,直接写出图中除ABC △与ADE △外所有的等腰三角形.23.如图,已知ABC △中,AB AC =,D 是ABC △外一点且60ABD Ð=°,1902ADB BDC Ð=°-Ð.求证:AC BD CD =+.24.ABC △的三边长分别为:227AB a a =--,210BC a =-,AC a =,(1)求ABC △的周长(请用含有a 的代数式来表示);(2)当 2.5a =和3时,三角形都存在吗?若存在,求出ABC △的周长;若不存在,请说出理由;(3)若ABC △与DEF △成轴对称图形,其中点A 与点D 是对称点,点B 与点E 是对称点,24EF b =-,3DF b =-,求a b -的值.25.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)求出ABC △的面积;(2)在图中作出ABC △关于y 轴的对称图形111A B C △;(3)写出点1A ,1B ,1C 的坐标.26.请你在图中以直线l 为对称轴作出所给图形的另一半.第2章综合测试答案解析一、1.【答案】D【解析】解:如图,过点D 作DH AC ^于H ,AD Q 是ABC △的角平分线,DF AB ^,DF DH \=,在Rt ADF △和Rt ADF △中,AD AD DF DH =ìí=î,()Rt ADF Rt ADH HL \△≌△,t R ADF Rt ADH S S \=△△,在Rt DEF △和Rt DGH △中,DE DG DF DH =ìí=î,()Rt DEF Rt DGH HL \△≌△,t R DEF Rt DGH S S \=△△,ADG Q △和AED △的面积分别为60和35,3560Rt DEF Rt DGH S S \+=-△△,252Rt DEF S \=△.故选:D .2.【答案】D【解析】解:连接OA 、OB ,80A Ð=°Q ,100ABC ACB \Ð+Ð=°,O Q 是AB ,AC 垂直平分线的交点,OA OB \=,OA OC =,OAB OBA \Ð=Ð,OCA OAC Ð=Ð,OB OC =,80OBA OCA \Ð+Ð=°,1008020OBC OCB \Ð+Ð=°-°=°,OB OC =Q ,10BCO CBO \Ð=Ð=°,故选:D .3.【答案】D【解析】解:AB AC BD ==Q ,B C \Ð=Ð,1BAD Ð=Ð,12C Ð=Ð+ÐQ ,12BAD C \Ð=Ð=Ð+Ð,1180B BAD Ð+Ð+Ð=°Q ,21180C \Ð+Ð=°12C Ð=Ð-ÐQ ,1221180\Ð-Ð+Ð=°,即312=180-Ðа°.故选:D .4.【答案】C 【解析】解;如图1,当=90a °,\只有两个点符合要求,如图2,当a 为锐角与钝角时,符合条件的点有4个,分别是3AC AB =,2AB BC =,1AC BC =,AB BC =.\满足条件的点C 共有:2或4个.故选:C .5.【答案】C【解析】解:AB AC =Q ,AD 平分BAC Ð,DE AB ^,DF AC ^,ABC \△是等腰三角形,AD BC ^,BD CD =,90BED DFC =Ð=°Ð,DE DF \=,AD \垂直平分EF ,\(4)错误;又AD Q 所在直线是ABC △的对称轴,\(1)DEF DFE Ð=Ð;(2)AE AF =;(3)AD 平分EDF Ð.故选:C .6.【答案】C【解析】解:观察选项可得:只有C 是轴对称图形.故选:C .7.【答案】B【解析】解:35BCA Ð=°Q ,80B Ð=°,180180358065BAC BCA B \Ð=°-Ð-Ð=°-°-°=°,ABC Q △与ADC △关于AC 所在的直线对称,65DAB BAC \Ð=Ð=°.故选:B .8.【答案】C【解析】解:A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .是轴对称图形,故本选项正确;D .不是轴对称图形,故本选项错误;故选:C .9.【答案】B【解析】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B .10.【答案】A【解析】解:连接1AA .由折叠的性质可得:1AA DE ^,1DA DA =,又D Q 是AB 中点,DA DB \=,1DB DA \=,1BA D B \Ð=Ð,12ADA B \Ð=Ð,又12ADA ADE Ð=ÐQ ,ADE B \Ð=Ð,DE BC \∥,1AA BC \^,12AA \=,1211h \=-=,同理,2122h =-,3211122222h =-´=-…\经过第n 次操作后得到的折痕11u n D E --到BC 的距离1122n n h -=-.20182017122h \=-,故选:A .二、11.【答案】4【解析】解:过D 作DF AC ^于F ,AD Q 是ABC △的角平分线,DE AB ^,2DE DF \==,1152522ADB S AB DE =´=´´=Q △,ABC Q △的面积为9,ADC \△的面积为954-=,142AC DF \´=,1242AC \´=,4AC \=故答案为:4.12.【答案】50【解析】解:DM Q 是AB 的垂直平分线,AD BD \=,ABD A \Ð=Ð,Q 等腰ABC △中,AB AC =,1802A ABC C °-Ð\Ð=Ð=,180152A DBC ABC ABD A °-Ð\Ð=Ð-Ð=-Ð=°,解得:50A Ð=°.故答案为:50.13.【答案】70°或55°【解析】解:根据题意,一个等腰三角形的一个角等于70°,①当这个角是底角时,即该等腰三角形的底角的度数是70°,②当这个角是顶角时,设该等腰三角形的底角是x ,则270180x +°=°,解得55x =°,即该等腰三角形的底角的度数是55°.故答案为:70°或55°.14.【答案】80° 50° 20°【解析】解:80A Ð=°Q ,\①当80B Ð=°时,ABC △是等腰三角形;②当()18080250B Ð=°-°¸=°时,ABC △是等腰三角形;③当18080220 B Ð=°-°´=°时,ABC △是等腰三角形;故答案为:80°、50°、20°.15.【答案】60°【解析】解:Q 由题意可得:2390+Ð=°Ð,330Ð=°,260\Ð=°,12Ð=ÐQ ,160\Ð=°.故答案为:60°.16.【答案】3【解析】解:如图:一个等边三角形的对称轴有 3条,故答案为:3.17.【答案】3【解析】解:A ,B ,C ,D ,E ,H 、I 是轴对称图形,F 、G 、J 都不是轴对称图形.故不是轴对称图形的有3个,故答案为:3.18.【答案】TAXI【解析】解:IXAT 是经过镜子反射后的字母,则这车车顶上字牌上的字实际是TAXI .故答案为TAXI .三、19.【答案】证明:DE Q 是BC 的垂直平分线,BE EC \=,DE BC ^,90A Ð=°Q ,DA AB \^.又BD Q 是ABC Ð的平分线,DA DE \=,又BD BD =Q ,ABD EBD \△≌△,AB BE \=,2BC AB \=.【解析】DE 垂直平分BC ,则有2BC BE =,只要证明BE AB =即可,由BD 是B Ð的平分线,90DAB DEB Ð=Ð=°,BD BD =,可证ABD EBD △≌△,从而有BE AB =.20.【答案】解:AB Q 、AE 边上的垂直平分线1m 、2m 交BE 分别为点C 、D ,AC BC \=,AD DE =,B BAC \Ð=Ð,E EAD Ð=Ð,BC CD DE ==Q ,AC CD AD \==,ACD \△是等边三角形,60CAD ACD ADC \Ð=Ð=Ð=°,30BAC EAD \Ð=Ð=°,120BAE BAC CAD EAD \Ð=Ð+Ð+Ð=°.【解析】由AB 、AE 边上的垂直平分线1m 、2m 交BE 分别为点C 、D ,根据线段垂直平分线的性质,可得AC BC =,AD DE =,又由BC CD DE ==,易得ACD △是等边三角形,继而求得BAE Ð的度数.21.【答案】解:2C ABC A Ð=Ð=ÐQ ,5180C ABC A A \Ð+Ð+Ð=Ð=°,36A \Ð=°.则272C ABC A Ð=Ð=Ð=°.又BD 是AC 边上的高,则9018DBC C Ð=°-Ð=°.【解析】根据三角形的内角和定理与2C ABC A Ð=Ð=Ð,即可求得ABC △三个内角的度数,再根据直角三角形的两个锐角互余求得DBC Ð的度数.22.【答案】(1)证明:过点A 作AF BC ^于点F ,AD AE =Q ,DF EF \=,BD CE =Q ,BF CF \=,AB AC \=.(2)B BAD Ð=ÐQ ,C EAC Ð=Ð,BAE BEA =ÐÐ,ADC DAC Ð=Ð,\除ABC △与ADE △外所有的等腰三角形为:ABD △、AEC △、ABE △、ADC △.【解析】(1)首先过点A 作AF BC ^于点F ,由AD AE =,根据三线合一的性质,可得DF EF =,又由BD CE =,可得BF CF =,然后由线段垂直平分线的性质,可证得AB AC =.(2)根据等腰三角形的判定解答即可.23.【答案】证明:以AD 为轴作ABD △的对称'AB D △(如图),则有'B D BD =,'AB AB AC ==,'60B ABD Ð=Ð=°,1'902ADB ADB BDC Ð=Ð=°-Ð,所以'180180ADB ADB BDC BDC BDC Ð+Ð+Ð=°-Ð+Ð=°,所以C 、D 、'B 在一条直线上,所以'ACB △是等边三角形,所以'+'CA CB CD DB CD BD ===+.【解析】以AD 为轴作ABD △的对称'AB D △,后证明C 、D 、'B 在一条直线上,及'ACB △是等边三角形,继而得出答案.24.【答案】(1)ABC △的周长22227103AB BC AC a a a a a =++=--+-+=+.(2)当 2.5a =时,2272 6.25 2.573AB a a =--=´--=,21010 6.25 3.75BC a =-=-=, 2.5AC a ==,3 2.5 3.75+Q >,\当 2.5a =时,三角形存在,23 6.2539.25a =+=+=周长;当3a =时,22729378AB a a =--=´--=,2101091BC a =-=-=,3AC a ==,318+Q <.\当3a =时,三角形不存在.(3)ABC Q △与DEF △成轴对称图形,点A 与点D 是对称点,点B 与点E 是对称点,EF BC \=,DF AC =,22104a b \-=-,即226a b -=;3a b =-,即3a b +=、把3a b +=代入226a b -=,3()6a b -= 2a b \-=.【解析】(1)利用三角形周长公式求解: ABC △的周长AB BC AC =++.(2)利用三角形的三边关系求解:AB BC AC +>,AB AC BC +>,AC BC AB +>,再分别代入a 的两个值验证三边关系是否成立即可.(3)利用轴对称图形的性质求解:ABC DEF △≌△,可得,EF BC =,DF AC =,代入值再分解因式即可.25.【答案】(1)如图所示:ABC △的面积:1357.52´´=.(2)如图所示:(3)1(1,5)A,1(1,0)B,1(4,3)C.【解析】(1)利用三角形的面积求法即可得出答案.(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可.(3)根据坐标系写出各点坐标即可.26.【答案】解:【解析】利用轴对称图形的性质,从图形中的各点向l引垂线并延长相同的距离,找到对应点顺次连接.。
人教版八年级上册数学 第2章 轴对称图形 单元培优测试卷
![人教版八年级上册数学 第2章 轴对称图形 单元培优测试卷](https://img.taocdn.com/s3/m/bc49aa8727284b73f342505e.png)
人教版八年级上册数学第2章轴对称图形单元培优测试卷一.选择题(共10小题)1.下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个2.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或103.下列图形(含阴影部分)中,属于轴对称图形的有()A.1个B.2个C.3个D.4个4.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.OA=OB C.PO平分∠APB D.AB垂直平分OP5.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分AB C.AB与CD互相垂直平分 D.CD平分∠ACB6.琪琪在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A.B.C.D.7.如图,在△ABC中,AB=AC,∠A=36°,两条角平分线BD、CE相交于点F,则图中的等腰三角形共()A.6个B.7个C.8个D.9个8.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点 B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点 D.P为AC、AB两边的垂直平分线的交点9.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.D.10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列五个结论:①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF垂直平分AD;⑤△ABD与△ACD的面积相等.其中,正确的个数是()A.4 B.3 C.2 D.1二.填空题(共8小题)11.若直角三角形斜边上的高和中线长分别是5cm,6cm,则它的面积等于cm2.12.等腰三角形的一边长为10,另一边长为5,则它的周长是.13.如图,镜子中号码的实际号码是.14.如图,AB=AC=4cm,DB=DC,若∠ABC为60度,则BE为.15.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10cm,则BC的长为cm.(2)若∠EAF=100°,则∠BAC .16.如图,在∠MON的两边上顺次取点.使DE=CD=BC=AB=OA,若∠MON=22°,则∠NDE=°.17.(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD=2.2cm,AC=3.7cm,则点D到AB边的距离是cm.(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B的度数为.18.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数是.三.解答题(共4小题)19.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=36°.求∠BAC,∠C的度数.20.用圆规和直尺作图,不写作法,但要保留作图痕迹一辆汽车在直线型的公路AB上由A向B行驶M、N分别是位于公路AB两侧的村庄,汽车行驶到哪一点时,与村庄M、N的距离相等?请在图上找到这一点.(不写作法,保留作图痕迹)21.如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.求证:(1)G是CE的中点;(2)∠B=2∠BCE.22.如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC的大小变化吗?若变化,说明理由;若不变,请直接写出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学八年级第2章轴对称图形测试卷一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.下列图形中,不是轴对称图形的是()A. B.C.D.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.4.下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.5.下列四个艺术字中,不是轴对称的是()A.B.C.D.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.7.下列图形中,是轴对称图形的是()A.B.C.D.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A .1条B .2条C .4条D .8条9.下列图形中,不是轴对称图形的是( )A .B .C .D .10.正方形是轴对称图形,它的对称轴有( )A .2条B .4条C .6条D .8条11.下列图形中,不是轴对称图形的是( )A .B .C .D .12.下列图形一定是轴对称图形的是( )A .平行四边形B .正方形C .三角形D .梯形13.下列交通标志图案是轴对称图形的是( )A .B .C .D .14.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .15.下列图案中,不是轴对称图形的是( )A .B .C .D .16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( )A .等边三角形B .矩形C .菱形D .正方形17.下列图形是轴对称图形的是( )A.B.C.D.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.422.下列四个图形中,不是轴对称图形的是()A.B. C.D.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.824.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个26.下列图形中,是轴对称图形的是()A.B.C.D.27.在下列图形中,是轴对称图形的是()A.B.C.D.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个29.下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.第2章轴对称图形参考答案与试题解析一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,找到各选项中的对称轴即可.【解答】解:A、有一条对称轴,故本选项正确;B、没有对称轴,故本选项错误;C、有两条对称轴,故本选项错误;D、有两条对称轴,故本选项错误;故选:A.【点评】本题考查了轴对称图形,解答本题的关键是掌握轴对称图及对称轴的定义,属于基础题.5.(2013•台州)下列四个艺术字中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选C.【点评】本题考查了轴对称图形的知识,判断是轴对称图形的关键是寻找对称轴.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.【点评】本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.7.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:所给图形有4条对称轴.故选C.【点评】本题考查了轴对称图形的知识,解答本题的关键掌握轴对称及对称轴的定义.9.(2014•成都)下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条【考点】轴对称图形.【专题】常规题型.【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【解答】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.【点评】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.11.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.(2014•甘孜州)下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2014•黑龙江)下列交通标志图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.15.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.17.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形及对称轴的定义求解.【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;22.下列四个图形中,不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项判断即可.【解答】解:A、是轴对称图形,不符合题意,故A选项错误;B、不是轴对称图形,符合题意,故B选项正确;C、是轴对称图形,不符合题意,故C选项错误;D、是轴对称图形,不符合题意,故D选项错误;故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】轴对称图形.【分析】根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.24.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的定义即可得出结论.【解答】解:由轴对称图形的性质可知,四个字中的轴对称图形有:美、赤.故选B.【点评】本题考查的是轴对称图形,熟知轴对称图形的定义是解答此题的关键.26.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.27.在下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】计算题.【分析】利用轴对称图形的性质判断即可得到结果.【解答】解:是轴对称图形,故选:D.【点评】此题考查了轴对称图形,轴对称图形即为在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形.28.下面几何图形中,一定是轴对称图形的有()A .1个B .2个C .3个D .4个【考点】轴对称图形.【分析】利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选:C .【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.29.(2014•湘西州)下列图形既是轴对称图形,又是中心对称图象的是( )A .B .C .D .【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A 、是轴对称图形,不是中心对称图形,故A 错误;B 、不是轴对称图形,是中心对称图形,故B 错误;C 、是轴对称图形,不是中心对称图形,故C 错误;D 、既是轴对称图形,又是中心对称图形,故D 正确.故选D .【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.。