新湘教版七年级数学下册《1章 二元一次方程组 1.2 二元一次方程组的解法 1.2.2加减消元法(2)》课件_4
七年级数学下册第1章二元一次方程组1、2二元一次方程组的解法第1课时代入消元法习题新版湘教版
A.nm==-2,1
B.mn==--12,
C.nm==12,
D.mn==1-2,
【点拨】根据题意得mm- +1n==n3, ,解得mn==12.,
13.由二元一次方程组2 2
002200xx+ =419y=-121y,可得
y
等于(
A
)
A.-4
B.-43
C.53
D.5
【点拨】把 2 020x=19-2y 代入 2 020x+4y=11,
【答案】A
7.若 x, y 满足2xx-+y=y=2,10,则 x + y=___6_____.
8.解方程组: x=y+3,
(1)3x+2y=14; 解:x3= x+y+2y3=,1①4,② 把①代入②,得 3(y+3)+2y=14,解得 y=1, 把 y=1 代入①,得 x=4,因此原方程组的解为xy==14.,
3x-2y=-1, (2)x+3y=7.
解:3xx+-32y=y=7, -②1,① 由②得 x=7-3y,③ 将③代入①,得 3(7-3y)-2y=-1,解得 y=2, 把 y=2 代入③,得 x=1,因此原方程组的解为xy==21.,
9.已知关于 x,y 的方程组m2mx+ x-n3y=ny=7,4的解为xy==21,,则 m,n 的值分别是( A ) A.5,1 B.1,5 C.3,2 D.2,3
所以原方程组的解为yx==1-254.7,
x+2(x+2y)=4,① (2)x+2y=2; ②
解:把②代入①,得 x+2×2=4,解得 x=0. 把 x=0 代入②,得 2y=2,解得 y=1. 所以原方程组的解是xy==10.,
(3)【中考·连云港】2xx=+1-4y=y. 5, 解:2xx=+1-4y=y,5,②① 把②代入①,得 2(1-y)+4y=5,解得 y=32. 把 y=32代入②,得 x=-12. 所以原方程组的解为xy==32-. 12,
湘教版初中七年级数学下册第一单元集体备课教案教学设计含教学反思
1.2 二元一次方程组的解法1.2.1 代入消元法【知识与技能】会用代入消元法解简单的二元一次方程组.【过程与方法】经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法.【情感态度】通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识.【教学重点】用代入消元法解二元一次方程组.【教学难点】探索如何用代入消元法解二元一次方程组,感受“消元”思想.一、情境导入,初步认识在上节课中,我们列出了二元一次方程组,并知道是这个方程组的一个解,这个解是这样得到的呢?【教学说明】通过建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的最近“发展区”,愉悦地接受教学活动.二、思考探究,获取新知探究:解二元一次方程组1.对于方程组方程①、②中的x都表示1月份的天然气费,y 都表示1月份的水费,由此方程②中的x、y分别与方程①中的x、y的值相同.由②式可得,x=y+20 ③.于是可以把③代入①式,得(y+20)+y=60 ④解方程④,得 y=20,把y的值代入③式,得x=40,因此原方程组的解是2.解方程解:把②代入①,得 2y-(3y-1)=7解得y= -6把y= -6代入②中,得 x= -19.所以原方程组的解为【归纳结论】解二元一次方程组的基本想法是:消去一个未知数(简称为消元),得到一个一元一次方程,然后解这个一元一次方程.在上面的例子中,消去一个未知数的方法是:把其中一个方程的某一个未知数用含有另一个未知数的代数式表示,然后把它代入到另一个方程中,便得到一个一元一次方程,这种解方程组的方法叫做代入消元法,简称代入法.3.解方程组观察分析此方程组与2中的方程组在形式上的差别. 易知2的方程组中直接将一个方程移项后代入另外一个方程, 而此方程组中两个方程未知数的系数都不是1,不能直接代入,这时怎么办呢? 能不能将其中一个方程适当变形, 用一个未知数来表示另一个未知数?显然, 这个变形是能够办到的. 我们有两个办法, 一个是某个方程两边同除以某个未知数的系数, 使这个未知数的系数化1, 化成例1的形式;另一个是将某个方程的某一个未知数移到方程的一边, 其他各项移到另一边 ,再把这个未知数的系数化1, 从而达到“用一个未知数来表示另一个未知数”的目的 .显然第二种方法更为直接, 因而考虑方程中各项的系数, 选择一个系数比较简单的方程. 易见①比较简单, 所以将方程①中的x 用y 来表示 .解:由①, 得 x=4+27y ,③ 将③代入②, 得 3(4+27y)-8y-10=0, y=-0.8 . 将y=-0.8代入③, 得 x=1.2.所以方程组的解是x=1.2,y=-0.8.【教学说明】这里是先消去x ,得到关于y 的一元一次方程 ,可不可以先消去y 呢?(让学生试一试, 并比较两种解法的优劣. 易知先消去x 使变形后的方程比较简单和代入后化简比较容易.)由上面的解题过程,你能总结出用代入法解二元一次方程组的步骤吗?【归纳结论】 代入法解二元一次方程组的步骤:(1)将方程组中的一个方程变形,使得一个未知数能用含另一未知数的代数式表示.(2)把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值.(3)把这个未知数的值代入代数式,求另一未知数的值.(4)写出方程组的解.三、运用新知,深化理解1.见教材P7例2.2.方程-x+4y=-15用含y 的代数式表示x 是( C )A .-x=4y-15B .x=-15+4yC .x=4y+15D .x=-4y+153.将y=-2x-4代入3x-y=5可得( B )A .3x-2x+4=5B .3x+2x+4=5C .3x+2x-4=5D .3x-2x-4=54.见教材P7例1.5.用代入法解方程组有以下过程: (1)由①得x=238y - ③; (2)把③代入②得3×238y --5y=5; (3)去分母得24-9y-10y=5;(4)解之得y=1,再由③得x=2.5.其中错误的一步是( C )A .(1)B .(2)C .(3)D .(4)6.把下列方程写成用含x 的代数式表示y 的形式:(1) 3x+4y -1=0;(2)5x -2y+9=0分析:即将方程作适当的变形, 把含有y 的项放在方程的一边, 其他的项移到方程另一边, 再把y 的系数化1.【教学说明】通过不同题型考察代入法解方程组,从而加强对所学知识点的巩固提高,加深对所学知识的理解与应用.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第12页“习题1.2”中第1题.2.完成同步练习册中本课时的练习.本课按照“数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的代入消元法——典型例题——归纳代入法”的一般步骤的思路进行设计.在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学.教师创设有趣的情境,引发学生自觉参与学习活动的积极性,将发现知识的过程融于有趣的活动中.重视知识的发生过程.将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的.1.2.2 加减消元法第1课时加减消元法【知识与技能】1.会阐述用加减法解二元一次方程组的基本思路:通过“加减”达到“消元”的目的,从而把二元一次方程组转化为一元一次方程来求解;2.会用加减法解简单的二元一次方程组.【过程与方法】在探究的过程中,获得用加减法解二元一次方程组的初步经验.【情感态度】培养学生观察、归纳、类比、联想以及分析问题、解决问题的能力.【教学重点】学会用加减法解简单的二元一次方程组.【教学难点】准确灵活地选择和运用加减消元法解二元一次方程组.一、情境导入,初步认识1.解二元一次方程组的基本思路是什么?2.用代入法解方程组的关键是什么?3.你会解下面这个方程组吗?3x+5y=5,①3x-4y=23.②【教学说明】由问题导入新课,既复习了旧知识,又引出了新课题,最后设置悬念,既增强了学生的学习兴趣,又激发了学生的学习热情,对学生探究新知起到很好的推动作用,让学生发表自己的见解,又培养了学生的数学语言表达的能力,发挥了学生学习的主动性,使他们的注意力始终集中在课堂上.二、思考探究,获取新知1.解方程组我们可以用代入法来解这个方程组.你还有没有更简单的解法呢?我们知道解二元一次方程组的关键是消去一个未知数,使方程组转化为一元一次方程.分析方程①、②,可以发现未知数x的系数相同,因此只要把这两个方程的两边分别相减,就可以消去其中一个未知数x,得到一个一元一次方程.即①-②,得2x+3y-(2x-3y)=-1-5,解得6y=-6,y=-1.把y=-1代入①中,得2x+3×(-1)=-1解得x=1,因此原方程组的解是解上述方程组时,在消元的过程中,如果把方程①与方程②相加,可以消去一个未知数吗?试着做一做.2.解二元一次方程组看一看:y的系数有什么特点?想一想:先消去哪一个比较方便呢?用什么方法来消去这个未知数呢?解:①+②,得7x+3y+2x-3y=1+8解得x=1.把x=1代入①式,得7×1+3y=1,解得y=-2.因此原方程组的解是x=1,y=-2.【归纳结论】将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解.这种解法叫做加减消元法,简称加减法. 3.讨论:用加减法解二元一次方程组的时候,什么条件下用加法?什么条件下用减法?【教学说明】这个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性,不仅强化了学生对概念的理解,又培养了学生勤于动脑,勤于探究的好习惯,还可为之后灵活运用加减法解二元一次方程组打下良好的基础.【归纳结论】当方程组中同一未知数的系数互为相反数时,我们可以把两方程相加,当方程组中同一未知数的系数相等时,我们可以把两方程相减,从而达到消元的目的.4.用加减法解二元一次方程组:问题:能直接相加减消掉一个未知数吗?如何把同一未知数的系数变成一样呢?解:①×3,得6x+9y=-33,③②-③, 得-14y=42,解得y=-3,把y=-3代入①式,得2x+3×(-3)=-11,解得x=-1. 因此原方程组的解是x=-1,y=-3.如果先消去y应如何解?会与上述的结果一样吗?试着做一做.【教学说明】通过练习使学生掌握用加减法解二元一次方程组.三、运用新知,深化理解【教学说明】通过这一系列有层次、有梯度、形式多样的练习,使学生可以灵活熟练地选择准确的加减法完成二元一次方程组的求解,并能在解答的过程中摸索运算技巧,培养计算能力和观察问题、分析问题与解决问题的能力. 四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第10页“练习”.2.完成同步练习册中本课时的练习.用加减法消元的关键是根据方程组中同一未知数的系数的某种特点灵活消元;加减法、代入法都是解二元一次方程组的基本方法.虽然消元的途径不同,但是它们的目的相同,即把“二元”转化为“一元”,可谓“异曲同工”.第2课时选择适当方法解二元一次方程组【知识与技能】会根据方程组的具体情况选择适合的消元法.【过程与方法】通过对具体的二元一次方程组的观察、分析,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.【情感态度】通过学生比较两种解法的差别与联系,体会透过现象抓住事物的本质这一认识方法.【教学重点】会根据方程组的具体情况选择适合的消元法.【教学难点】在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.一、情境导入,初步认识1.代入法解二元一次方程组的步骤是什么?2.加减法解二元一次方程组的步骤是什么?3.代入法、加减法的基本思想是什么?4.我们在解二元一次方程组时,该选取何种方法呢?【教学说明】既复习了旧知识,又引出了新课题,最后设置悬念,增强了学生的学习兴趣.二、思考探究,获取新知加减消元法和代入消元法是解二元一次方程组的两种方法,它们都是通过消去其中一个未知数,使二元一次方程组转化为一元一次方程,从而求解,只是消元的方法不同.我们可以根据方程组的具体情况来灵活选择适当的消元方法.1.解二元一次方程组:这两个方程不能直接消去m或n,能不能使两个方程中某个未知数的系数相反或相等呢?解:①×10,得2m-5n=20.③②-③,得3n-(-5n)=4-20.解得n=-2.把n=-2代入②中,得2m+3×(-2)=4,解得m=5.因此原方程组的解是m=5,n=-2.2.解二元一次方程组:解:①×4,得12x+16y=32,③②×3, 得12x+9y=-3,④③ -④, 得16y-9y=32-(-3),解得y=5. 把y=5代入①式中, 得3x+4×5=8,解得x=-4. 因此原方程组的解是x=-4,y=5.3.分别用代入法、加减法解二元一次方程组解:代入法: 由①得 x=238y + ③, 把③代入②中,得5y-7×238y +=5, 解得y=-6.把y=-6代入③中,得x=-5.所以原方程组的解为:x=-5,y=-6.加减法: ① ×5得10x-15y=40,③②×3得: 15y-21x=15,④③+④得-11x=55.解得:x=-5.把x=-5代入①中,得y=-6.所以原方程组的解为: x=-5,y=-6.观察上面的解题过程,回答下列问题:①代入法和加减法有什么共同点?②什么样的方程组用代入法简单?什么样的方程组用加减法简单?【归纳结论】 ①关于二元一次方程组的两种解法:代入消元法和加减消元法.通过比较,我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”;②只有当方程组的某一方程中某一未知数的系数的绝对值是1时,用代入消元法较简单,其他的用加减消元法较简单.【教学说明】通过学生自学、对比、讨论以及互帮互助.既巩固了已学的用代入法解二元一次方程组的知识,又在此过程中学会根据方程组的具体情况选择适合的消元法.三、运用新知,深化理解1.见教材P12例7.【教学说明】通过练习,使学生熟练地用代入法、加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第12页“习题1.2”中第2、3、7 题.2.完成同步练习册中本课时的练习.本节课是让学生学会根据方程组的具体情况选择适合的消元法 .在学习二元一次方程组的解法中,关键是领会其本质思想——消元,体会“化未知为已知”的化归思想 .因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并通过精心设计的问题,引导学生在已有知识的基础上,自己比较、分析并总结出在解二元一次方程组时,根据方程组的特点选择恰当的方法.1.3 二元一次方程组的应用第1课时用二元一次方程组解决较为简单的实际问题【知识与技能】1.通过实际问题使学生感受二元一次方程组的广泛应用,体会列二元一次方程组是解决某些实际问题的一种有效的数学模型,增强应用意识;2.能够由题意找出等量关系,列出二元一次方程组并检验所得结果是否符合实际意义.【过程与方法】教师引导学生的自主探索,体会把实际问题转化到数学方程问题的数学思想方法,加强知识的综合运用,培养学生分析问题和解决问题的能力.【情感态度】使学生体验数学活动充满探索与创造,体会到经济社会中数学的应用价值,提高学生探索的精神与能力.【教学重点】把应用问题转化为数学问题的过程,即对实际问题的数学模型的建立.【教学难点】在实践探索中寻找解题方案.一、情景导入,初步认知“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”你知道这四句话的意思吗?你能应用所学知识解决这个问题吗?分析:本题涉及的等量关系有:鸡头数+兔头数=鸡的腿数+兔子的腿数=解:设鸡有x只,兔子有y只,根据等量关系,得答:笼中有23只鸡,12只兔.【教学说明】通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.某业余运动员针对自行车和长跑项目进行专项训练,某次训练中,他骑自行车的平均速度为10米每秒,跑步的平均速度为103米每秒,自行车路段和长跑路程共5千米,共用时15分钟,求自行车路段和长跑路段的长度.分析:本题涉及的等量关系有:自行车路段长度+长跑路段长度=总路程.骑自行车的时间+长跑时间=总时间.解:设自行车路段的长度为xm,长跑路段长度为ym,依题意得:答:自行车路段和长跑路段的长度分别为3000米、2000米.2.某食品厂要配制含蛋白质15%的食品100千克,现在有含蛋白质分别为20%、12%的甲、乙两种配料,用这两种配料可以配制出所要求的食品吗?如果可以的话,它们各需多少千克?分析:本问题涉及的等量关系有:甲配料质量+乙配料质量=总质量,甲配料含蛋白质质量+乙配料含蛋白质质量=总蛋白质质量.解:设含蛋白质20%的配料需要xkg,含蛋白质12%的配料需要ykg,依题意,得答:可以配制出所要的食品,其中20%的配料需要37.5千克,12%的配料需要62.5千克.3.根据上面的两个例题,你能总结用二元一次方程组解决实际问题的步骤吗?【归纳结论】用二元一次方程组解实际问题的步骤:(1)审题,分析题目中的已知与未知;(2)找出数量关系;(3)设未知数列方程组;(4)求解方程组;(5)检验;(6)写出答案.【教学说明】感受方程模型思想的必要性和优越性,并从列一元一次方程和列二元一次方程组的方法中,领会列二元一次方程组,思维方式的简洁明了性和在解一些等量关系较为复杂的应用题时体现的优越性.三、运用新知,深化理解1.如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x 厘米,宽是y 厘米依题意得答:小长方形的长是36厘米,宽是12厘米.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的54;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?解:设订做的工作服是x 套,要求的期限是y 天,依题意,得答:订做的工作服是3375套,要求的期限是18天.3.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?解:设甲的速度为x 米/秒,乙的速度为y 米/秒,依题意得答:甲的速度为6米/秒,乙的速度为4米/秒.4.某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:设书包的单价为x元,随身听的单价为y元,根据题意,得答:该同学看中的随身听单价为360元,书包单价为92元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:360+2=362(元).因为362<400,所以也可以选择在超市B购买.因为362>361.6,所以在超市A购买更省钱.【教学说明】让学生通过练习巩固列二元一次方程组解应用题的技能. 四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第18页“习题1.3”中第1、2、3、4、5题.2.完成同步练习册中本课时的练习.列二元一次方程组和列一元一次方程解实际问题,是用两种不同的表达形式揭示了问题中的相等关系;反过来,求解实际问题的实质是把问题中的相等关系翻译成数学表达式,从而把实际问题转化为数学问题.学习各类实际问题,不仅要熟悉各类问题的基本数量关系,而且还要弄清各类问题之间的本质联系.第2课时用二元一次方程组解决较复杂的实际问题【知识与技能】1.通过对实际问题的探索与解决,逐步形成结合具体事例情境发现,提出数学问题的能力;2.学会用二元一次方程组解决简单的实际问题.【过程与方法】通过学生积极思考、互相讨论,经历探索事物之间的数量关系,形成方程模型.【情感态度】通过在解决实际问题的过程中同伴之间的讨论、交流与合作,体会与他人合作的重要性,逐步形成积极参与讨论、敢于发表见解并尊重与理解他人见解的合作意识.【教学重点】1.学生积极参与讨论和探究问题;2.抽象出数学模型.【教学难点】用二元一次方程组解决较复杂的实际问题.一、情景导入,初步认知通过前面的学习,你能说出列二元一次方程组解决实际问题的步骤吗?其中什么是关键?【教学说明】采用提问的形式,让学生对列二元一次方程组解决实际问题的步骤的复习,为本节课作铺垫.二、思考探究,获取新知1.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需要10min,从学校到家里需15min.问小华家离学校多远?探究:(1)你能画线段表示本题的数量关系吗?(2)列方程组;(在课本第16页填空)(3)解方程组;(4)检验写出答案.讨论:本题是否还有其它解法?2.某城市规定:出租车起步价所包含的路程为0至3千米,超过3千米的部分按每千米另收费,甲说“我乘这种出租车走了11千米,付了17元.”乙说“我乘这种出租车走了23千米,付了35元.”请你算一算:出租车的起步价是多少?超过3千米后,每千米的车费是多少元?解:设出租车的起步价x 元,超过3km 后每千米收费y 元,依题意,得答:这种出租车的起步价是5元,超过3千米后每千米1.5元.3.某装订车间的工人要将一批书打包后送往邮局,其中每包书的数目相等,第一次它们领来这批书的127,结果打了14个包还多35本,第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了11包,那么这批书共有多少本?解:设这批书共有x 本,每包书有y 本,依题意得答:这批书共有1500本.【教学说明】在学生探索解题方法的过程中,教师要鼓励学生多角度地思考,只要学生的方法有道理,就要给予肯定和鼓励,鼓励学生进行质问和大胆创新.三、运用新知,深化理解1.小明在拼图时,发现8个大小一样的长方形,恰好可以拼成如下图所示的一个大的长方形.小红看见了,说:“我来试一试”,结果小红拼成如下图所示的正方形,但中间还留有一个边长刚好为2mm的小正方形,你能解释一下吗?你能求出这些长方形的长和宽吗?分析:①观察小明的拼图你能发现小长方形的长xmm与宽ymm之间的数量关系吗?(根据矩形的对边相等,得3x=5y)②再观察小红的拼图,你能写出表示小长方形的长xmm与宽ymm之间的另一个关系式吗?(显然有x+2=2y)8个小矩形的面积和=8xy=8×10×6=480(mm2)大正方形的面积=x+2y2=10+2×62=484(mm2)484-480=4=22因此小红拼出的大正方形中间还留下了一个恰好是边长为2mm的小正方形.2.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?解:设甲服装的成本是x元,乙服装的成本是y元,依题意得解得x=300,y=200.答:甲、乙两件服装的成本分别为300元、200元.3.某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比支出多950万元.今年的总产值和总支出各是多少万元?分析:可列下表(去年总产值x万元,总支出y万元):题中有两个相等关系:(1)去年的总产值-去年的总支出=500万元;(2)今年的总产值-今年的总支出=950万元.解:设去年的总产值是x万元,去年的总支出是y万元,由题意,得所以(1+15%)x=2300,(1-10%)y=1350.故今年的总产值是2300万元,总支出是1350万元.4.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分做侧面,另一部分做底面,已知每张白卡纸可以做2个侧面,或者3个底面,如果1个侧面和2个底面可以做成一个包装盒,那么如何分才能使做成的侧面和底面正好配套?。
2023-2024学年湘教版七年级数学下册课件:第1章 二元一次方程组
7 − 4 = 13,
(2)ቊ
5 − 6 = 3;
= 3,
[答案] ቊ
=2
− 2 = 9,
(3)ቐ − = 3,
2 + = 47.
= 31,
[答案] ቐ = 11,
=8
18.已知关于,的方程组ቐ
[答案] = 1, = 1
1
−
2
=
+ = 5
关系.
2.设:选择适当的未知数用字母表示.
续表
3.找:找出题中的等量关系(有时可采用画图、
二元
列方程组 列表等方法挖掘相等关系).
一次
解应用题
4.列:根据等量关系列出方程组.
方程
的一般步
5.解:解所列的方程组,求出未知数的值.
组
骤
6.验:检验求得的值是否正确和符合实际情形.
7.答:写出答案.
真题剖析1
1
,
2
的解为ቊ
= 2,
求,的值.
= 3.
19.阅读下列解方程组的部分过程,回答下列问题.
− 2 = 5,①
ቊ
3 − 2 = 3. ②
现有两位同学的解法如下.
解法一:由①,得 = 2 + 5,③
把③代入②,得3 2 + 5 − 2 = 3. ⋯ ⋯
解法二:① − ②,得−2 = 2. ⋯ ⋯
A.4
B.−4
C.8
D.−8
3 − 4 = 7,
①
6.下列解方程组ቊ
的方法中,比较简便的是( C ) .
9 − 10 + 25 = 0②
A.由①式得 =
B.由②式得 =
湘教版七年级数学下册1.2二元一次方程组的解法(代入消元法)
这种解方程组的方法叫做代入 消元法,简称为代入法.
下面我们用代入法再解一个方程组: 例 2 用代入法解方程组:
2x - 3 y = 0 , 5x -7 y = 1 .
① ②
2x - 3 y = 0 , 5x -7 y = 1 .
① ②
③
3x+y=1.
解 由②式得
①
②
y= -3x+1.
③
把③代入①式得,5x-(-3x+1)=-9.
解得 x = -1
把x = -1代入③式,得y=4. x =﹣ 1 , 因此原方程组的解是 y=4.
怎样检验求得的x、y的值是否为方程组的解?
可以把求得的x,y 的值代入原方程组的 每一个方程,看是否 满足方程组.
① ②
③
把x=1代入② ,得 y = 1. 因此原方程组的一个解是
x=1, y = 1.
5a+ 2b = 11 , ( 3) 3a+b = 7
解: 从②得, b=7-3a
① ②
③
把③代入① ,得
5a+2(7-3a)=11 解得 a = 3.
3 5 y - 7 y =1. 2
3y x = 解 由①式得, 2
把③代入 ②式 ,得 解得 y = 2.
把y=2代入③ 式,得 x = 3
因此原方程组的解是
x= 3, y = 2.
在例2中,用含x的代数式表示y来解原方程组.
2x-3y=0, 5x-7y=1.
① ②
试一试,看求得的方程组的解与上面 求得的结果相同吗?
湘教版七年级数学下册第一章1.2.2加减消元法(1)教案
第1章二元一次方程组第4课时1.2 二元一次方程组的解法1.2.2 加减消元法(1)主备:审核:日期:2021.2.18 全册课时序号:4课题 1.2.2 加减消元法(1)课型新授课教学目标知识与技能1、理解并掌握用加减消元法的概念;2、能熟练地用加减消元法解二元一次方程组;3、进一步体验转化思想在二元一次方程组过程中的运用。
4、树立模型意识,认识二元一次方程组的应用价值。
过程与方法1、通过探究,学生发现:当方程组中有一个未知数的系数相同或相反时,可以把两个方程相减或相加,消去一个未知数,从而解出方程组的解;2、通过示范、讲授例3,师生讨论,学生能总结出加减消元法的概念;3、通过教学例4,学生能掌握用加减消元法解方程组中没有同一个未知数的系数相同的二元一次方程组。
情感态度与价值观进一步体会数学模型与现实生活的联系,感受数学的应用价值,增强克服困难的勇气和信心,提高学习数学的兴趣。
教学重点1、解二元一次方程组的基本思路。
2、用加减法解二元一次方程组。
教学难点1、理解加减消元法的消元原理。
2、用加减法解解方程组中没有同一个未知数的系数相同的二元一次方程组。
教学准备 1.制作ppt教学课件;2.选编习题教学方法探究法、讨论法、练习法教学过程一、情景展示,温故导新说一说:1、解二元一次方程组的基本思路是什么?ppt 展示:消去一个未知数(简称消元),得到一个一元一次方程,然后解这个一元一次方程。
2、 用代入法解二元一次方程组的方法是什么?ppt 展示:从一个方程得出用含一个未知数的代数式表示另一 个未知数,代入另一个方程,从而消去一个未知数,把 二元一次方程组转化为一个一元一次方程。
二、教学新知,启智赋能(一)探究问题出示问题:如何解下面的二元一次方程组?⎩⎨⎧=--=+②532①132y x y x 1、 学生回答并用代入消元法解得方程组的解为⎩⎨⎧-==.11y x ,2、 提出问题:还有没有更简单的解法呢?3、 分析探讨用加减消元法解这个方程组引导:观察方程组,想一想,除代入法外还有什么方法消去一个未知数?分析:方程①和②,可以发现:未知数x 的系数相同,我们把这两个方程的两边分别相减,可以消去哪一个未知数?学生回答后,用ppt 展示:4、 边讲解边用ppt 展示用加减法解方程组的过程:解:①-②式得, 2x+3y-(2x-3y)=-1-5 ③化简,得 6y=-6,解得 y=-1.把y=-1代入①式,得 2x+3×(-1)=-1.解得 x=1.因此原方程组的解是 ⎩⎨⎧-==.11y x ,5、 做一做解上述方程组时,在消元的过程中,如果把方程①与方程②相加,可以消去一个未知数吗?学生做后回答,教师点评。
七年级数学下册第1章二元一次方程组湘教版
x-2y=9m ②
3x+2y=19,求 m
解: ①+②,得 x=7m; ①-②,得 y=-m
∵3x+2y=19,∴21m-2m=19,得 m=1
1
2x+3y=k
练习 2: 已知方程组
3x+5y=k+1 的解的和是-12,求 k 的值
形式 3:给出两个方程组同解,求待定系数的值。
常规解法:把二个方程组中不含待定系数的方程组合,求出方程的解,再把方程的解代入含
的解相同,求【
1 2
(a-b)】 2009
的值.
x=2
5
解:由① 、③组成方程组,得
y=-2
2a-2b=-4
11
a=-
2
把解代入 ②、④得方程组,得
得
7 1 】 2009 = -1 22
【
1 2
(a-b)】 2009 =【
1 2
2b+2a=-18
11 7
b=-
(- + )】 2009 =【(-2)×
x-y=2,(另一个舍去了,你知道是为什么吗);再回头审视一下题目的选择支,就知道选项
A、B 都是正确的;把 x+y=7 、 x-y=2,联立成方程组
x x
y y
7
2
,解这个方程 组,得 x=
9 2
,
y=
5 2
, 所
9 2
×5 2
=
45 4
, 以所445× 也4是=4正5,确所以
4xy+4=49,所以选项
形式 6:三个未知数而只有二个方程的求值问题。
常规解法:把其中一个未知数看成字母已知数,用这个字母表示未知数(即解关于另二个未
湘教版七年级数学下册1.2二元一次方程组的解法1.2.1代入消元法(1)教学设计
湘教版七年级数学下册1.2二元一次方程组的解法1.2.1代入消元法(1)教学设计一. 教材分析湘教版七年级数学下册1.2节主要介绍二元一次方程组的解法,其中1.2.1节是代入消元法。
这部分内容是在学生已经掌握了二元一次方程组的基础上进行讲解,通过代入消元法,让学生学会如何解决更复杂的二元一次方程组问题。
教材通过具体的例子引导学生理解并掌握代入消元法的步骤和原理。
二. 学情分析七年级的学生已经具备了一定的数学基础,对二元一次方程组有一定的了解。
但是,对于代入消元法这种解题方法,他们可能还比较陌生。
因此,在教学过程中,需要通过具体的例子,让学生逐步理解和掌握代入消元法。
三. 教学目标1.让学生理解代入消元法的概念和原理。
2.让学生能够运用代入消元法解决实际的数学问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.代入消元法的步骤和原理。
2.如何将实际问题转化为代入消元法可以解决的问题。
五. 教学方法采用讲解法、示范法、练习法、讨论法等多种教学方法,通过具体的例子,引导学生理解并掌握代入消元法。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际的数学问题,用于让学生进行练习和巩固。
七. 教学过程1.导入(5分钟)通过一个简单的二元一次方程组,引导学生思考如何解决更复杂的方程组问题。
2.呈现(15分钟)讲解代入消元法的步骤和原理,通过具体的例子,让学生理解并掌握代入消元法。
3.操练(15分钟)让学生分组合作,解决一些实际的数学问题,运用代入消元法进行解答。
4.巩固(10分钟)对学生在操练中遇到的问题进行讲解和解答,帮助学生巩固代入消元法的运用。
5.拓展(10分钟)引导学生思考如何将代入消元法应用到更复杂的问题中,让学生进行一些拓展练习。
6.小结(5分钟)对本节课的内容进行小结,让学生明确代入消元法的概念和运用。
7.家庭作业(5分钟)布置一些相关的家庭作业,让学生进一步巩固和掌握代入消元法。
七年级下册数学知识点1-4单元(湘教版)
七年级数学下册知识点归纳【湘教版】第一章 二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:已知二元一次方程组当a 1/a 2 ≠ b 1/b 2 时,有唯一解; 当a 1/a 2 = b 1/b 2 ≠ c 1/c 2时,无解; 当a 1/a 2 = b 1/b 2 = c 1/c 2时,有无数解。
例如:对应方程组:① ② ③例:判断下列方程组是否为二元一次方程组:① ② ③ ④3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y ,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X ,则相当于把Y 看成已知数,把X 看成未知数。
例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x 为:____________。
4、根据二元一次方程的定义求字母系数的值:要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a-2)x^(/a/-1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。
湘教版七年级数学下册课件 第一章 二元一次方程组 1.3 第1课时 解决所列方程组中含“x+y=”形式的实际问题
第1章 二元一次方程组
1.3 二元一次方程组的应用
第1课时 解决所列方程组中含“x+y=”形式 的实际问题
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.能够根据具体的数量关系,列出二元一次方程 组解决的简单的实际问题.(重点) 2.学会利用二元一次方程组解决行程问题和百分 比问题.(重点、难点)
x 190, 解这个方程组得 y 60.
答:这块合金中含金为190克,银60克.
2. 甲、乙两种商品原来的单价和为100元,因市场变化, 甲商品降价10%,乙商品提价40%,调价后两种商品的单 价和比原来的单价和提高了20%.求甲、乙两种商品原来 的单价.
解: 设甲商品原来的单价为x 元,乙商品原来的单价 为y 元. x y 100, 根据等量关系得 x(1-0.1) y(1 0.4) 100(1 0.2). x 40, 解这个方程组得 y 60. 答:甲商品原来的单价为40元,乙商品原来的单价 为60元.
胜场 场数 得分 平场 合计
x
3x
y
y
11
27
解:设市第二中学足球队胜x场,平y场.依题意可得 x_ _ _ _ y __ 11 _ _ _ _ _ 3x y __ 27 _
解得:
8_ _ x _ 3_ _ y _
通过上述两题,总结 用二元一次方程组解 决实际问题的步骤
平均运土300m3,正好能使挖出的土及时运走,问挖
掘机有多少台?装卸机有多少台? 解:设挖掘机x台,装卸机y台,
根据题意列出方程组得
x y 21, 750 x 300 y.
湘教版七年级数学下册电子课本课件【全册】
4.1 平面上两条直线的位置关系
湘教版七年级数学下册电子课本课 件【全册】
4.2 平移
湘教版七年级数学下册电子课本课 件【全册】
第1章 二元一次方程组
湘教版七年级数学下册电子课本课 件【全册】
1.1 建立二元一次方程组
湘教版七年级数学下册电子课本课 件【全册】
1.2 二元一次方程组的解法
湘教版七年级数学下册电子课本课 件【全册】
1.3 二元一次方程组的应用
湘教版七年级数学下册电子课本课 件【全册】
数学与文化 高斯消元法
湘教版七年级数学下册电子课本课 件【全册】
第2章 整式的乘法
湘教版七年级数学下册电子课本课 件【全册】
2.1 整式的乘法
湘教版七年级数学下册电子课本课 件【全册】
3.2 提公因式法
湘教版七年级数学下册电子课本课 件【全册】
3.3 公式法
湘教版七年级数学下册电子课本课 件【全册】
第4章 相交线与平行线
湘教版七年级数学下册电子课本 课件【全册】目录
0002页 0060页 0086页 0109页 0139页 0192页 0239页 0300页 0302页 0363页 0435页 0471页 0503页 0530页 0570页
第1章 二元一次方程组 1.2 二元一次方程组的解法 数学与文化 高斯消元法 2.1 整式的乘法 第3章 因式分解 3.2 提公因式法 第4章 相交线与平行线 4.2 平移 4.4 平行线的判定 4.6 两条平行线间的距离 5.1 轴对称 5.3 图形变换的简单应用 数学与文化 建筑学上的几何变换 第6章 数据的分析 6.2 方差
湘教版七年级数学下册电子课本课 件【全册】
2021最新湘教版七年级数学下册全册完整课件
0002页 0051页 0120页 0165页 0275页 0380页 0409页 0411页 0436页 0477页 0509页 0565页 0607页 0624页 0661页
第1章 二元一次方程组 1.2 二元一次方程组的解法 数学与文化 高斯消元法 2.1 整式的乘法 第3章 因式分解 3.2 提公因式法 第4章 相交线与平行线 4.2 平移 4.4 平行线的判定 4.6 两条平行线间的距离 5.1 轴对称 5.3 图形变换的简单应用 数学与文化 建筑学上的几何变换 第6章 数据的分析 6.2 方差
第1章 二元一次方程组
2021最新湘教版七年级数学下册全 册完整课件
1.1 建立二元一次方程组
2021最新湘教版七年级数学下册全 册完整课件
1.2 二元一次方程组的解法
2021最新湘教版七年级数学下册全 册完整课件
湘教版七年级下册数学教案(全册)
(此文档为word格式,下载后您可任意编辑修改!)七年级(下册)数学教案第一章一元一次不等式组1.1 一元一次不等式组第1教案教学目标1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法探索方法,合作交流。
教学过程一、引入课题:1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:教师举例说出什么是一元一次不等式组。
什么是一元一次不等式组的解集。
(渗透交集思想)四、拓展:合作解决第4页“动脑筋”1.分组合作:每人先自己读题填空,然后与同组内同学交流。
2.讨论交流,求出这个不等式的解集。
五、练习:P5练习题。
六、小结:通过体课学习,你有什么收获?七、作业:第5页习题1.1A组。
选作B组题。
后记:1.2 一元一次不等式组的解法第2教案教学目标1.会解由两个一元一次不等式组成的不等式组,会用数轴确定解决。
2.让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要思想方法。
3.培养勇于开拓创新的精神。
教学重点解决由两个不等式组成的不等式组。
教学难点学生归纳解一元一次不等式组的步骤。
教学方法合作交流,自己探究。
教学过程一、做一做。
1.分别解不等式x+4>3。
2.将1中各不等式解集在同一数轴上表示出来。
3.说一说不等式组的解集是什么?4.讨论交流,怎样解一元一次不等式组?二、新课1.解不等式组的概念。
2.例1:解不等式组:教师讲解,提醒学生注意防止出现符号错误和运算错误。
注意“<”和“”在数轴表示时的差别。
湘教版数学七年级下册1.2二元一次方程组的解法.docx
湘教版数学七年级下册1.2二元一次方程组的解法.docx初中数学试卷1.2 二元一次方程组的解法第2课时加减消元法核心笔记:加减消元法:两个二元一次方程中同一未知数的系数相同或相反时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.基础训练1.方程组{x +y =5, ①2x +y =10,②由②-①,得正确的方程是( ) A.3x=10 B.x=5C.3x=-5D.x=-52.二元一次方程组{x +y =5,2x -y =4的解为( ) A.{x =1y =4 B.{x =2y =3 C.{x =3y =2 D.{x =4y =1 3.若方程mx+ny=6的两个解是{x =1,y =1和{x =2,y =?1, 则m,n 的值分别为( ) A.4,2 B.2,4C.-4,-2D.-2,-44.用加减消元法解方程组{3x -5y =6,①2x -5y =7②的具体步骤如下:第一步:①-②,得x=1;第二步:把x=1代入①,得y=-35;第三步:所以{x =1,y =?35.其中开始出现错误的是( )A.第一步B.第二步C.第三步D.没有出错5.已知方程组:①{4x -3y =5,4x +6y =14,②{y =3x +4,3y +5x =0,其中方程组①采用消元法解简单,方程组②采用消元法解简单.6.若a+b=3,a-b=7,则ab=______________.7.用加减法解方程组:(1) {x +y =6,①2x -y =9;②(2) {3x -2y =?1,①x +3y =7.②8.已知-2x m-1y 3与12x n y m+n 是同类项,求m,n 的值.培优提升1.利用加减消元法解方程组{2x +5y =?10,①5x -3y =6,②下列做法正确的是() A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.已知x,y 满足方程组{x +6y =12,3x -2y =8,则x+y 的值为( )A.9B.7C.5D.33.已知5|x+y-3|+2(x-y)2=0,则( )A.{x =1y =0B.{x =2y =2C.{x =0y =0D.{x =32y =32 4.二元一次方程组{x +2y =1,3x -2y =11的解是______________. 5.对于X,Y 定义一种新运算“@”:X@Y=aX+bY,其中a,b 为常数,等式右边是通常的加法和乘法的运算.已知:3@5=15,4@7=28,那么2@3=_____________.6.已知{x =2,y =1是二元一次方程组{mx +ny =7,nx -my =1的解,则 m+3n=_____________.7.用加减消元法解方程组:(1){4m +5n =460, ①2m +3n =240; ② (2){3x +4y =5, ①4x +3y =9. ②8.在解方程组{ax +by =2,cx -7y =8时,哥哥正确地解得{x =3,y =?2. 弟弟因把c 写错而解得{x =?2,y =2.求a+b+c 的值. 9.阅读理解题特殊的题有特殊的解法,阅读下面的解题过程,我们从中可以得到启发:解方程组{253x +247y =777, ①247x +253y =723. ②解:由①+②得:500x+500y=1 500,即x+y=3, ③由①-②得:6x-6y=54,即x-y=9, ④由③+④得:2x=12,解得:x=6,又由③-④得:2y=-6,解得:y=-3,所以原方程组的解为{x =6,y =?3.【归纳】对于大系数的二元一次方程组,当用代入法和加减法解非常麻烦时,可以通过观察各项系数的特点,寻求特殊解法.根据上述例题的解题方法解下面的方程组:{2 012x +2 013y =8 000, ①2 013x +2 012y =8 100. ②参考答案【基础训练】1.【答案】B解:注意符号问题.2.【答案】C3.【答案】A4.【答案】A5.【答案】加减;代入6.【答案】-10解:两个方程相加,解得a=5,将a=5代入a+b=3,解得b=-2,故ab=-10.7.解:(1)①+②得3x=15,所以x=5.将x=5代入①,得5+y=6,所以y=1,所以方程组的解为{x =5,y =1.(2)②×3,得3x+9y=21,③③-①,得11y=22.所以y=2.把y=2代入②,得x+6=7,所以x=1,所以原方程组的解为{x =1,y =2.8.解:因为-2x m-1y 3与12x n y m+n 是同类项, 所以{m -1=n,3=m +n,经变形可得{m -n =1,m +n =3, 所以{m =2,n =1. 【培优提升】1.【答案】D2.【答案】C解:{x +6y =12,①3x -2y =8,②①+②得4x+4y=20,则x+y=5.故选C.3.【答案】D解:由绝对值和数的平方的性质可以得到{x +y -3=0,x -y =0,解得{x =32,y =32,故选D. 4.【答案】{x =3,y =?15.【答案】2解:因为3@5=15,4@7=28,所以3a+5b=15①,4a+7b=28②,由②-①,得a+2b=13③,由①-③,得2a+3b=2,所以2@3=2a+3b=2.6.【答案】8解:本题运用整体思想解题更简便.把{x =2,y =1代入方程组{mx +ny =7,nx -my =1,得{2m +n =7,2n -m =1.两式相加得m+3n=8. 7.解:(1)②×2-①,得n=20,把n=20代入②,得2m+3×20=240,解得m=90.所以原方程组的解为{m =90,n =20.(2)①×4-②×3得:7y=-7,解得y=-1, 将y=-1代入①得:3x-4=5,解得x=3,所以原方程组的解为{x =3,y =?1.8.解:把x=3,y=-2代入{ax +by =2,cx -7y =8,得{3a -2b =2,3c +14=8.把x=-2,y=2代入ax+by=2.得-2a+2b=2.因为弟弟把c 写错了,所以弟弟的解不满足cx-7y=8.联立方程组:{3a -2b =2,-2a +2b =2. 解得{a =4,b =5,由3c+14=8得c=-2. 故a+b+c=4+5-2=7.9.解:由①+②得:4 025x+4 025y=16 100, 即x+y=4,③由②-①得:x-y=100,④由③+④得:2x=104,解得x=52, 由③-④得:2y=-96,解得y=-48, 则原方程组的解为{x=52, y=?48.。
湘教版七年级数学下册 期末复习(一) 二元一次方程组 知识梳理
A.①×3+②×2
B.①×3-②×2
C.①×5+②×3
D.①×5-②×3
5.二元一次方程组2xx--2yy==-0,3的解为( C )
A.xy= =21
D.yx==1-2
6.若5a7xby+7和-6a2-4yb2x是同类项,则x,y的值分别是( B )
18.(8分)小明用代入消元法解二元一次方程组x2+x-y=y=-31,2.①② 第一步:将方程①变形,得y=2x-3.③ 第二步:把方程③代入方程①,得2x-(2x-3)=3. 第三步:整理,得3=3. 第四步:因为x可取一切有理数,所以原方程组有无数个解.
问题: (1)以上解法,造成错误的一步是 第二步; (2)请你给出用加减消元法解此二元一次方程组的正确过程. 解:①+②,得3x=-9. 解得x=-3. 把x=-3代入②,得y=-9. 所以方程组的解为xy= =- -39.,
数学
期末复习(一) 二元一次方程组
01 知识结构图
02 重难点突破
重难点1 二元一次方程组的解法 【例1】 解方程组:42xx- +3y=y=62.②,① 【解答】 解法一:②×2-①,得5y=10,解得y=2. 把y=2代入②,得x=2. 所以原方程组的解为yx==22.,
解法二:由②,得y=6-2x.③ 将③代入①,得4x-3(6-2x)=2,解得x=2. 将x=2代入③,得y=2. 所以原方程组的解为yx==22.,
19.(8分)已知甲、乙两辆汽车同时、同方向从同一地点出发行 驶.若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车 相遇,相遇时乙车走了1小时.求甲、乙两车的速度.
解:设甲、乙两车的速度分别是x千米/时和y千米/时.根据题 意,得
xx×=12+y,y×1=90×2.解得yx==6102.0, 答:甲、乙两车的速度分别是120千米/时、60千米/时.
七年级下第一章二元一次方程组教案(新湘教版数学)
年月日集体备课纸第页2.3二元一次方程组的应用(3)教学目标1.会列二元一次方程组解简单应用题。
2.提高分析问题解决问题能力。
3.进一步渗透数学建模思想,培养坚韧不拔的意志。
教学重点根据实际问题列二元一次方程组。
教学难点1.彻底把握题意。
2.找等量关系。
教学过程一、引入。
生活中处处有数学,就连住的地方也不例外,引出P18练习题。
二、新课。
1.学生完成p18练习1,2,完成互相检查。
找出错误及原因,学生解决不了的可举手问老师。
学生读题回答:1)、讨论:从图中表格包含哪两个等量关系?设未知数,列方程组。
思考:怎样解出方程组?较复杂的方程能否化简?学生解出方程,检验,写出答案。
三、练习。
1、(2012•株洲)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?2、(2012•东营)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2.P18.练习题。
学习有困难的学生可讨论完成。
四、小结。
讨论:列二元一次方程组解应用题基本步骤是什么?哪一步(几步)最关键?五、作业。
P18.习题1.3A组第3.4题。
选作B组题。
教学后记:。
最新湘教版七年级数学下册电子课本课件【全册】
0002页 0025页 0080页 0103页 0133页 0201页 0243页 0245页 0258页 0260页 0262页 0311页 0333页 0360页 0412页
第1章 二元一次方程组 1.2 二元一次方程组的解法 数学与文化 高斯消元法 2.1 整式的乘法 第3章 因式分解 3.2 提公因式法 第4章 相交线与平行线 4.2 平移 4.4 平行线的判定 4.6 两条平行线间的距离 5.1 轴对称 5.3 图形变换的简单应用 数学与文化 建筑学上的几何变换 第6章 数据的分析 6.2 方差
ቤተ መጻሕፍቲ ባይዱ
第1章 二元一次方程组
最新湘教版七年级数学下册电子课 本课件【全册】
1.1 建立二元一次方程组
最新湘教版七年级数学下册电子课 本课件【全册】
湘教版七年级数学下册 第1章 二元一次方程组 第1课时 解决所列方程组中含“x+y=”形式的实际问题
《孙子算经》中记载的算法:
金鸡独立,兔子站起
脚数: 94÷2=47(只)
头数:
兔 47-35=12(只) 鸡 35-12=23(只)
2
1
讲授新课
一 解决所列方程组中含“x+y=”形式的实际问题 《孙子算经》中的算法,主要是利用了兔和鸡的脚数分别是4和2,4
又是2的倍数.可是当其他问题转化成这类问题时,脚数就不一定是4和2, 上面的计算方法就行不通.
19
解: 设这块合金中含金为x 克,含银为y 克.
根据等量关系得 解这个方程组得
x
y
250,
x
1
y
1
16.
19
10
x
190,
y
60.
答:这块合金中含金为190克,银60克.
2. 甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%, 乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.求甲 、乙两种商品原来的单价.
什么长方形的面问积题分. 割
我们可以画出示意图来帮助分析
01 竖着画,把长分成两段,则宽不变
02 横着画,把宽分成两段,则长不变
试着画一画
01 竖着画,把长分成两段,则宽不变
D
F
C
等量关系式有几个?
A
E
B
1.大长方形的长=200m
2.甲、乙两种作物总产量比=3:4
D
100
A
总产量=
01 竖着画,把长分成两段,则宽不变
解: 设自行车路段的长度为x m,长跑路段的长度为ym.
根据等量关系,得 解这个方程组,得
x
y
5000,
1x0
湘教版七年级数学下册 第1章二元一次方程组 第2课时 解决所列方程组中x、y系数不为1形式的实际问题
当堂练习
1. 某星期日,七年级与八年级分别有20,30人去颐和园参观,有30,15 人去圆明园参观.七年级买门票花去450元,八年级买门票花去525元. 试问:颐和园和圆明园的门票各多少元?
解:设颐和园门票为x元,园明园门票为y元,
根据等量关系得
20x30y 450 , 30x15y 525.
解这个方程组得
根据等量关系得
24x12y 2220 , 2x-15 y.
解这个方程组得
x
50
,
y
85.
答:购买彩色地砖数为50块,购买单色地砖数为85块.
3. 某装订车间的工人要将一批书打包后送往邮局, 其中每包书的数目 相等.第一次他们领来这批书的 ,结果打了14个包还多35本;第二172次 他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了 11包. 那么这批书共有多少本?
答:这批产品的销售款比原料费与运输费的和多1887800元.
总结归纳
实际问题
设未知数、找等量关系、列方程(组)
实际问题的答 案
双检验
数学问题 [方程(组)]
解 方 程 ( 组 )
数学问题的解
练一练:一批货物要运往某地,货主准备用汽车运输公司的甲乙两种货 车,已知过去两次租用这两种货车的情况如下表:
x 200 8y 40 1.6 y 5
因为x,y为非负整数
x 32, x 24, x 16, x 8, x 0,
y
5; y
10; y
15; y
20; y
25;
知识拓展 5. 汽车在上坡时速度为28km/h,下坡时速度42km/h,从甲地到乙地用了4
小时30分,返回时用了4小时40分,从甲地到乙地上、下坡路各是多少千米?
【最新】湘教版七年级数学下册第一章《二元一次方程组解法加减消元法 (三)》公开课课件
本节内容 1.2
二元一次方程组的解法
——消元法(三)小结
解二元一次方程组有哪几种方法 ?它们的实质是什么?
消元
二元一次方程组
代入
加减
一元入法。 的系数是1或-1
同一未知数的系数 方程组具有 特征用加减法。 相等(成倍数)或 互为相反数。
解得
x 4 ∴原方程组的解是 y 2
2
七年级 数学
多媒体课件
解:①×2 得:10x 4 y 48 ③
②×5得: 10x 25y 90 ④
③ -④得: 21y 42
解得 y 2
把 y 2代入①得:x 4
x4 ∴原方程组的解是 y 2
x=200
y=50 是原方程组的解。
• 解法四 先化简再选加减消元或代入消元法解 化简得: x+y=250 (1) x-y=150 (2)
小结1:当方程组中的一个未知数系数的绝对值
是1或一个方程的常数项为0时用代入消元法较 方便。 当两个方程中同一个未知数的系数绝对值相等 或成整数倍时,用加减消元法较方便。
是原方程组的解。 y=50
• 解法二(消x) 解:两式相减得:8y=400,y=50 把y=50代入(1)得: 4x+200=1000,x=200 x=200
y=50 是原方程组的解。
• 解法三(整体代入) 解:由(2)式得:4x=600+4y (3) 将(3)式代入(1)得:600+4y+4y=1000,y=50 将y=50代入(3)得:4x=600+200 x=200
x=2
y=2
是原方程组的解
备选题:根据方程组的特点选择更适合它的解法 . X+4y=2 2x+3y=3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<1>若a=b,那么a±c= b±c .(等式性质1) 思考:若a=b,c=d,那么a+c=b+d吗?
Байду номын сангаас
<2>若a=b,那么ac= bc .(等式性质2)
2、用代入法解方程的关键是什么?
二元
消元 转化
一元
3、解二元一次方程组的基本思路是什么?
消元: 二元
一元
1、解二元一次方程组的基本思路是什么?
三.指出下列方程组求解过程中 有错误步骤,并给予订正:
7x-4y=4 ①
5x-4y=-4② 解:①-②,得
2x=4-4, x=0
解: ①-②,得 2x=4+4, x=4
3x-4y=14① 5x+4y=2 ②
解 ①-②,得
-2x=12
x =-6 解: ①+②,得
8x=16 x =2
作业
1、课本P12 练习 P12(习题1.2) 1题和2题
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
二.选择题
6x+7y=-19①
1. 用加减法解方程组
应用(B)
6x-5y=17②
A.①-②消去y B.①-②消去x
C. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
消去y后所得的方程是(B)
3x-2y=5
A.6x=8 B.6x=18 C.6x=5 D.x=18
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么?
主要步骤: 用含有一个未知数的代数式
1、变形
表示另一个未知数,写成 y=ax+b或x=ay+b
2、代入
把变形后的方程代入到另一个方程中, 消去一个元
3、求解
分别求出两个未知数的值
4、写解
写出方程组的解
用代入法怎样解下面的二元一次方程组呢?
x y 22 ① 2x y 40 ②
x y 22 ① 2x y 40 ②
观察方程组中的两个方程,未知数y的系 数相等。把两个方程两边分别相减,就可以
消去未知数y,得到一个一元一次方程。
即-,消去未知数y,得 x=18 把x=18代入 ,得 y=4
所以原方程组的解是
x= 18
y=4
加减消元法
3x 5y 21 ① 2x 5y -11 ②
x+y=10 ① 2x+y=16 ②
由①+②得: 5x=10 由 ②-①得:x=6
两个二元一次方程中同一未知数的系数相反
或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
解方程组
3x+10y=2.8 ①
15x-10 y=8 ② 分析:
观察方程组中的两个方程,未知数y的系数相 反。把两个方程两边分别相加,就可以消去未知 数y,同样得到一个一元一次方程。
一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
25x-7y=16
2.已知方程组
x y 22 ① 2x y 40 ②
怎样解下面的二元一次方程组呢?
x y 22 ① 2x y 40 ②
把②变形得:
代入消元 法
y 40 2x
代入①,消去 y 了!
还别的方法吗?
认真观察此方程组中各个未知数的系数有 什么特点,并分组讨论看还有没有其它的解法. 并尝试一下能否求出它的解