1.2《导数的计算》练习(B)
第一章1.2-1.2.2基本初等函数的导数公式及导数的运算法则(一)
1.几个常用函数的导数
原函数 导函数 f(x)=c f′(x)=0 f(x)=x f′(x)=1 f(x)=x2 f′(x)=2x
f(x)=1x
1 f′(x)=_2__x__
f(x)= x f′(x)=_-__x1_2__
2.基本初等函数的导数公式
原函数
导函数
y=c y=xn(n∈Q) y=sin x y=cos x y=ax(a>0,a≠1) y=ex
2.遇到含有根式的函数求导数一般先化为幂函数的 形式再求导.
程为 y-1=-xln 2,即 xln 2+y-1=0. 答案:xln 2+y-1=0.
5.曲线 y=13x3 在 x=1 处切线的倾斜角为________. 解析:由 y=13x3 得 y′=x2,y′|x=1=1,所以切线的倾 斜角 α 满足 tan α=1,因为 0≤α<π,所以 α=π4. 答案:π4
=-13. 1
(2)因为 f(x)=ln x(x>0), 所以 f′(x)=1x, 所以 f′(x0)=x10=x120,所以 x0=1. 答案:(1)-13 (2)1
类型 3 求切线方程(互动探究)
[典例 3] 已知曲线 y=1x,求曲线在点 P(1,1)处的 切线方程.
1
1
解:y=x,y′=-x2.显然 P(1,1)是曲线上的点,
即质点在 t=π3时的速度为12. (2)因为 v(t)=cos t, 所以加速度 a(t)=v′(t)=(cos t)′=-sin t.
归纳升华 1.速度是路程对时间的导数,加速度是速度对时间 的导数. 2.求函数在某定点(点在函数曲线上)的导数的步骤 是:(1)求函数的导函数;(2)把对应点的横坐标代入导函 数,求相应的导数值.
导数的计算练习题及答案
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
导数的运算练习题
导数的运算练习题在微积分学中,导数是非常重要的概念之一,它用于描述函数在某一点附近的变化率。
掌握导数的运算是学习微积分的基础,本文将为大家提供一些导数的运算练习题,帮助读者巩固掌握导数的计算方法。
1. 计算下列函数的导数:(1)f(x) = x^3 + 2x^2 - 5x + 1(2)g(x) = sin(x) - cos(x)(3)h(x) = e^x + ln(x)(4)i(x) = √(x^2 + 1)2. 计算下列函数的导数:(1)f(x) = 2x^3 - 3x^2 + 4x - 1(2)g(x) = cos(x) + sin(x) + tan(x)(3)h(x) = ln(x^2) - e^(2x)(4)i(x) = √x + 1/x3. 计算下列函数的导数:(1)f(x) = x^4 + 2x^3 - 3x^2 + 4x - 1(2)g(x) = sin(2x) - cos(2x)(3)h(x) = e^(x^2) + ln(x^3)(4)i(x) = ln(x) + e^x4. 计算下列函数的导数:(1)f(x) = x^5 + 2x^4 - 3x^3 + 4x^2 - 5x + 1(2)g(x) = sin(x)cos(x)(3)h(x) = ln(x) + e^x - x(4)i(x) = e^(2x) + ln(x^2)通过以上的练习题,读者可以熟悉导数的计算方法,掌握常用函数的导数运算规则。
在计算导数时,读者需要注意以下几点:1. 基本函数的导数规则:对于多项式函数,求导后,指数降低1,系数不变;对于三角函数,求导后,正弦变余弦,余弦变负正弦;对于指数函数,求导后,底数不变,指数变形式的导数。
2. 乘法法则:若函数为两个函数的乘积,则导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。
3. 除法法则:若函数为两个函数的商,则导数等于分子函数的导数乘以分母函数,减去分母函数的导数乘以分子函数,再除以分母函数的平方。
1.2导数的计算
p(t ) 5(1 5%) 5 1.05 当p0=5时,
t t
求p关于t的导数可以看成求函数f(t)=5与 g (t ) 1.05t 乘积的导数
法则1: [f(x) ±g(x)] '= f '(x) ± g'(x);
x
2.已知函数y=xlnx (1)求这个函数的导数 (2)求这个函数在点x=1处的切线方程
解: (1) y' x (ln x)' ln x( x)' 1 ln x
( 2)切线过点P (1,0) 斜率k 1 ln 1 1
切线方程是:y=x-1
思考?如何求函数 y ln x 2
复 习
导函数的定义
y f ( x x) f ( x) f ( x) y lim lim x 0 x x 0 x
今后我们可以直接使用的 基本初等函数的导数公式表
公式1.若f ( x) c, 则f '( x ) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x ) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x ) a x , 则f '( x ) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x ) e x ; 1 公式7.若f ( x) log a x, 则f '( x ) ( a 0, 且a 1); x ln a 1 公式8.若f ( x ) ln x, 则f '( x ) ; x
(完整版)导数的计算练习题及答案
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
导数的运算专项练习(含答案)
导数的运算一、单选题(共33题;共66分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -2.函数的导数为()A. B. C. D.3.设函数,若,则等于()A. B. C. D.4.设则等于( )A. B. C. D.5.已知函数的导函数,且满足,则=( )A. B. C. 1 D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B.C.D.8.已知函数的值为()A. B. C. D.9.下列求导运算正确的是()A. B. C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B. C. D.11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin 2xC. 1-2sin 2xD. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D. =13.设函数的导函数为,且,则=( )A. 0B. -4C. -2D. 214.设,若,则()A. B. C. D.15.已知函数,则其导数()A. B. C. D.16.若函数,则的值为()A. 0B. 2C. 1D. -117.已知函数,且,则的值为()A. B. C. D.18.已知函数,为的导函数,则的值为()A. B. C. D.19.下列求导运算正确的是()A. B. C. D.20.已知函数的导函数为,且满足,则()A. B. C. D.21.若,则函数的导函数()A. B. C. D.22.函数的导数为()A. B. C. D.23.下列导数式子正确的是()A. B. C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B. C. D.26.已知,则()A. B. C. D.27.设,,则x0=( )A. e2B. eC.D. ln 228.下列求导数运算正确的是()A. B. C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)30.下列求导运算正确的是( )A. B. C. D.31.已知,则 ( )A. B. C. D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B. eC.D. ln 233.下列导数运算正确的是()A. B. C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。
1.2 导数的计算
探究一
探究二
探究三
探究四
当堂检测
课堂篇探究学习
变式训练 2 求下列函数的导数: (1)y=14cos22������;(2)y=ln2x. 解:(1)因为 y=14cos2���2��� = 18(1+cos x)=18 + 18cos x,所以 y'=-18sin x. (2)因为 y=ln2x=ln x·ln x, 所以 y'=(ln x·ln x)'=1������·ln x+ln x·1������ = 2l���n��� ������.
[f1(x)±f2(x)±…±fn(x)]'=f1'(x)±f2'(x)±…±fn'(x).
课前篇自主预习
【做一做 3】 (1)函数 y=x2-ln x 的导数为
;
(2)函数 y=xcos x 的导数为
;
(3)函数 y=e������������的导数为
.
解析:(1)y'=(x2-ln x)'=(x2)'-(ln x)'=2x-1������;
当堂检测
解:(1)设 y=u2,u=4-3x,则 yu'=2u,ux'=-3, 于是 yx'=yu'·ux'=-6(4-3x)=18x-24,即 y'=18x-24. (2)设 y=cos u,u=2x-π4,则 yu'=-sin u,ux'=2,
于是 yx'=yu'·ux'=-2sin 2x-π4 ,即 y'=-2sin 2x-π4 . (3)设 y=ln u,u=4x-1,则 yu'=���1���,ux'=4,于是 yx'=yu'·ux'=4���4���-1, 即 y'=4���4���-1. (4)设 y=eu,u=x2,则 yu'=eu,ux'=2x,于是 yx'=yu'·ux'=e������2·2x, 即 y'=2xe������2.
1.2导数的计算(4课时)
作业: P18习题1.2A组:1.
1.2
导数的计算
1.2.2 基本初等函数的导数 公式及导数的运算法则 第一课时
问题提出 1.如何求函数f(x)的导数?
y= 2.函数y=c,y=x,y=x2,
,
f (x + Vx ) - f (x ) f¢ (x ) = lim Vx ® 0 Vx 1
x 的导数分别是什么?.
思考3:若y=c表示路程关于时间的函数, 则y′=0的物理意义如何解释?
物体的瞬时速度始终为0,即物体处于静 止状态.
探究(二):函数y=f(x)=x的导数 思考1:函数f(x)=x的图象是什么?相 对于x的函数值增量△y等于什么? y y =x
v= h(0.5) - h(0) = 4.05(m / s ) 0.5 - 0
f¢ (x ) = k
思考5:函数f(x)=kx(k≠0)的图象是什 么?其导数表示什么? y=kx的图象是过原点的一条直线
f¢ (x ) = k 表示直线y=kx的斜率.
思考6:函数f(x)=kx(k≠0)增(减)的快 慢与k的取值有什么关系? k>0时,k越大,f(x)增加得越快; k<0时,k越大,f(x)减少得越慢.
= ln x 的
导数是什么?
1 (loga x )¢= x ln a
1 (ln x )¢= x
探究(二):导数的四则运算法则
[f (x ) + g(x )]¢ (x ) + g (x ) 相等吗? 思考1: 与 fⅱ 为什么?
[f (x ) + g(x )]ⅱ = f (x ) + g (x )
(x ), g (x ) 有什么关 [f (x ) - g(x )]¢与 f ⅱ 思考2: 系? [f (x ) - g(x )]ⅱ = f (x ) - g (x )
1.2 导数的计算
2、积的导数
法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数的导数 , 即: f ( x)g ( x) f ( x) g ( x) f ( x) g ( x) 常数与函数的积的导数,等于常数乘函数的导数, 即 (Cf(x))=Cf (x)
1.2 导数运算
复1Biblioteka 函数在某点导数'习
f ( x0 x ) f ( x0 ) y y x x0 f ( x0 ) lim lim x 0 x x 0 x
2.导数的意义 (1)物理意义 ----- 瞬时速度,瞬时加速度 (2)函数 ----- 瞬时变化率 (3)几何意义 -----曲线在该点的切线斜率
2 2
2.判断下列求导是否正确,如果不正确,加 以改正: [(3+x )(2-x )]'=2x(2-x )+3x (3+x ). [(3+x )(2-x )]'=2x(2-x )-3x (3+x ).
2 3 3 2 2 2 3 3 2 2
3.下列函数在点x=0处没有切线的是( D ) (A)y=x3+sinx (B)y=x2-cosx (C)y=xsinx (D)y= x +cosx 4、P18 习题A组5,6 B组 3
公式1: C 0 (C为常数) .
静止物体的瞬时速度总是为0
请同学们求下列函数的导数:
2) y f ( x) x, y ' 1 3) y f ( x) x , y ' 2 x
2
P13探究 P13曲线变化状态
1 1 4) y f ( x) , y ' 2 x x
6.求切线方程的步骤: (1)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即
201x年秋高中数学 第一章 导数及其应用 1.2 导数的计算 1.2.2 基本初等函数的导数公式及
) B.3x-6 12 D.-3x-6 12
C [∵y=3x-1 12, ∴y′=-2×3x-1 13×(3x-1)′ =-3x-6 13.]
3.函数y= sin2x+1是由________三个函数复合而成的. [答案] y= u,u=v2+1,v=sin x
[合 作 探 究·攻 重 难]
复合函数的导数
[规律方法] 1.在对函数求导时,应仔细观察及分析函数的结构特征,紧扣 求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进 行等价变形,以达到化异求同、化繁为简的目的
2.复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合 过程,直接运用公式,从外层开始由外及内逐层求导.
求下列函数的导数.
(1)y=e2x+1;(2)y=2x-1 13; (3)y=5log2(1-x);(4)y=sin3x+sin 3x.
【导学号:31062030】
[解] (1)函数y=e2x+1可看作函数y=eu和u=2x+1的复合函数, ∴y′x=y′u·ux′=(eu)′(2x+1)′=2eu=2e2x+1. (2)函数y=2x-1 13可看作函数y=u-3和u=2x-1的复合函数, ∴y′x=y′u·ux′=(u-3)′(2x-1)′=-6u-4 =-6(2x-1)-4=-2x-6 14.
第一章 导数及其应用
1.2.2
1.2 导数的计算 基本初等函数的导数公式及导数的运算
法则(二)
学习目标:1.了解复合函数的概念(易混点).2.理解复合函数的求导法则,并 能求简单的复合函数的导数(重点、易错点).
[自 主 预 习·探 新 知]
1.复合函数的概念 一般地,对于两个函数 y=f(u)和 u=g(x),如果通过变量 u,y 可以表示成 x 的函数,那么称这个函数为函数 y=f(u)和 u=g(x)的复合函数,记作__y=__f_(_g_(x_)_)_. 思考:函数 y=log2(x+1)是由哪些函数复合而成的? [提示] 函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.
新课标高中数学导数和应用教材复习题答案
第一章 导数及其应用 1.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8) 函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P9)函数()r V =(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10) 1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高. 说明:平均变化率的应用,体会平均变化率的涵.2、(1)(1)4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降.3、物体在第5 s 的瞬时速度就是函数()s t 在5t=时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502kE =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>.由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=.因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -.说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固. 5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用. 6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题1.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18) 1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2xy e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin33x y '=-; (6)y '=.习题1.2 A 组(P18)1、()()2S S r r S r r r r rπ∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、()r V '=4、(1)213ln 2y x x '=+; (2)1n x n xy nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++.5、()8f x '=-+. 由0()4f x '=有 048=-+,解得0x =.6、(1)ln 1y x '=+; (2)1y x =-. 7、1x y π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P .x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h. 1.3导数在研究函数中的应用 练习(P26) 1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减.(2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减.(3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减.(4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+.(1)当0a >时,()0f x '>,即2b x a>-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2b x a<-时,函数2()(0)f x ax bx c a =++≠单调递减. (2)当0a <时,()0f x '>,即2b x a<-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2b x a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-.当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)是减函数.练习(P29) 1、24,x x 是函数()y f x =的极值点,其中2xx =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点.2、(1)因为2()62f x x x =--,所以()121f x x '=-.令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x=时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-.令2()3270f x x '=-=,得3x =±.注:图象形状不唯一.下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54;当3x =时,()f x 有极小值,并且极小值为54-.(3)因为3()612f x x x =+-,所以2()123f x x '=-.令2()1230f x x '=-=,得2x =±.下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x=时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-.令2()330f x x '=-=,得1x =±.下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x=时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =. 又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值.因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-.习题1.3 A 组(P31) 1、(1)因为()21f x x =-+,所以()20f x '=-<.因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数.(3)因为()24f x x =--,所以()20f x '=-<.因此,函数()24f x x =-是单调递减函数.(4)因为3()24f x x x =+,所以2()640f x x '=+>.因此,函数3()24f x x x =+是单调递增函数.2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减.(2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减. (3)因为3()3f x x x =+,所以2()330f x x '=+>.因此,函数3()3f x x x =+是单调递增函数.(4)因为32()f x x x x =+-,所以2()321f x x x '=+-.当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减. 3、(1)图略. (2)加速度等于0. 4、(1)在2x x =处,导函数()y f x '=有极大值;(2)在1x x =和4x x =处,导函数()y f x '=有极小值;(3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+.令()1210f x x '=+=,得112x =-.当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减. 所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-. (2)因为3()12f x x x =-,所以2()312f x x '=-.令2()3120f x x '=-=,得2x =±.下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x=时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+.令2()1230f x x '=-+=,得2x =±.下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x=时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-.令2()4830f x x '=-=,得4x =±.下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时.当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x=时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]-上,当112x=-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16;当2x=时,函数3()12f x x x =-有极小值,并且极小值为16-.由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值. 由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-.习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈.因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增, 2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减, 2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略 (3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1xe x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <.由(3)可知,1xe x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间. (2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++.下面分类讨论: 当0a≠时,分0a >和0a <两种情形: ①当0a>,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a>,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增.②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x,l x-,则这两个正方形的边长分别为4x,4l x -,两个正方形的面积和为22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2l x =. 当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>. 因此,2lx =是函数()f x 的极小值点,也是最小值点. 所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小. 2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x . (1)无盖方盒的容积2()(2)V x a x x =-,02a x <<. (2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6ax =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<. 因此,6ax =是函数()V x 的极大值点,也是最大值点. 所以,当6ax=时,无盖方盒的容积最大. 3、如图,设圆柱的高为h ,底半径为R , 则表面积222SRh R ππ=+由2VR h π=,得2V h R π=. 因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40VS R R Rπ'=-+=,解得R =.当R ∈时,()0S R '<;(第2题)(第3题)当)R ∈+∞时,()0S R '>.因此,R=是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省. 4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2x m ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x al x x x x xπππ=++-=++,0x <<令22()104al x x π'=+-=,得x =(负值舍去).当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省.6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588Rq p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+ 令0L '=,即12104q -+=,84q =. 当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<; 因此,84q=是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大, 习题1.4 B 组(P37)1、设每个房间每天的定价为x 元, 那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =. 当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时, 利润4()()(4)()(5)b x L x x a c cc x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<. 当458a bx +=是函数()L x 的极大值点,也是最大值点. 所以,销售价为458a b+元/件时,可获得最大利润. 1.5定积分的概念 练习(P42)83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45) 1、22112()[()2]()ii i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =L .于是 111()nnni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+L2231[12]2n n=-++++L 31(1)(21)26n n n n ++=-⋅+ 111(1)(1)232n n=-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑ 说明:进一步体会“以不变代变”和“逼近”的思想.2、223km. 说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=L L将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i in ξ=L作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)3114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰. 由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得22333110115444x dx x dx x dx --=+=-+=⎰⎰⎰ 由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为2331x dx x dx -+⎰⎰,这样,3x在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出31x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50) 1、该物体在0t=到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m ); 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-,记第i 个区间为(1)[,]i l iln n-(1,2,i n =L ),其长度为 (1)il i l lx n n n-∆=-=. 把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆L ,则细棒的质量1nii m m==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n -上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]ii l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l iln n-上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =L ). (3)求和得细棒的质量 2111()n n ni i i i i i l m m x nρξξ====∆≈∆=∑∑∑.(4)取极限 细棒的质量 21lim ni n i l m nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理 练习(P55)(1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-. 说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-; (4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分. 2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]224x ππ=-; (3)原式=3126[]ln 2ln 2x =. 2、(1)cos 1sin [][cos cos()]0mx mxdx m m m mππππππ--=-=---=⎰; (2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰; (3)21cos 2sin 2sin []224mx x mx mxdx dx mπππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245tkt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰. (2)由题意得 0.2492452455000tt e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值围. 根据指数函数的性质,当0t>时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<.因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000tt e-+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1. 说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59) 1、52533(23)[3]22st dt t t =+=+=⎰(m ).2、424003(34)[4]402Wx dx x x =+=+=⎰(J ).习题1.7 A 组(P60)1、(1)2; (2)92. 2、2[]bb a aq q q q Wkdr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 42400(4010)[405]80ht dt t t =-=-=⎰(m ).4、设t s 后两物体相遇,则 20(31)105ttt dt tdt +=+⎰⎰,解之得5t=. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ).5、由Fkl =,得100.01k =. 解之得1000k =.所做的功为 0.120.10010005005Wldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112st dt t t t t =-+=-++=+⎰(m ).习题1.7 B 组(P60)1、(1)22aaa x dx --⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此2222aaa a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,212111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b=.从而抛物线的方程为224h y x b =. 于是,抛物线拱的面积232202204422()2[]33b b h h Sh x dx hx x bh b b =-=-=⎰.3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =.于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.4、证明:2[]()R hR h R RMm Mm MmhWGdr G G r r R R h ++==-=+⎰.第一章 复习参考题A 组(P65) 1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x x y x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2xxy x x'=+; (4)2422(21)x x y x -'=+.3、32GMmF r'=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.yxh b O(第2题)5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+.当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--.当()0f x '=,即3c x =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >.由于所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x ax a--=--,即1()1y x a a=--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -.因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a=,或2a =时,()0S a '=,0a =不合题意舍去.由于所以,当2a =,即直线AB 的倾斜角为135︒时,AOB ∆的面积最小,最小面积为2.9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m.所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60xx -++=.所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3. 11、设旅游团人数为100x +时, 旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤.令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =.所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大. 因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x =--,5.0898.38x <<.令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)唯一极值点,且为极大值,从而是最大值点. 所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q=是函数()y p 在(0,400]唯一极值点,且为极大值点,从而是最大值点.所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰;(5)原式=22001cos sin 2[]224x x x dx πππ---==⎰.15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J ) 第一章 复习参考题B 组(P66) 1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t≤<时,()0b t '>,所以细菌在增加;当55t<<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S . 因为212Sr α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r-=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l唯一极值点,且是极大值点,从而是最大值点. 所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大. 3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222rh R +=.因此,222231111()3333Vr h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,3hR =是函数()V h 的极大值点,也是最大值点.所以,当3h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得α=.所以,圆心角为α=时,容积最大.4、由于28010k =⨯,所以45k=. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x > 令0y '=,即29600160x -=,24x ≈. 容易知道,24x =是函数y 的极小值点,也是最小值点.当24x =时,960020(1624)()9412424⨯+÷≈(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x=++⨯,50100x ≤≤ 令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元)容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元. 6、原式=4404422022[]2xx x x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰. 7、解方程组 2y kxy x x =⎧⎨=-⎩得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰. 由题设得1120()2k k S x x dx kxdx --=--⎰⎰ 31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=. 于是1k =说明:本题也可以由面积相等直接得到111220()()kkkx x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.。
1.2.2导数的计算(复合函数的导数)
法则3:两个函数的积的导数 等于第一个函数的导数乘第二个 法则 两个函数的积的导数,等于第一个函数的导数乘第二个 两个函数的积的导数 函数,减去第一个函数乘第二个函数的导数 再除以第二个函 函数 减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即 数的平方 即:
f (x)′ f ′(x)g(x) − f (x)g′(x) (g(x) ≠ 0) g(x) = 2 [ g(x)]
'
y = y ⋅u
= e
( ) ⋅ (− 0.05x + 1)
u '
'
= −0.05eu = −0.05e −0.05 x +1.
(3)函数y = sin (πx + φ )可以看作函数y = sin u和
u = πx + φ的复合函数.
由复合函数求导法则有
' ' ' y x = yu ⋅ u x
例 3 日常生活中的饮用水 通常是 经过 净化的 .随着水 纯净度的提高 , 所需净化费 用不断增加.已知将1吨水净 用(单位 : 元 )为 化到纯净度为x%时所需费
5284 (80 < x < 100).求净化到下纯度 c( x ) = 100 − x 时, 所需净化费用的瞬时变化率 : (1) 90% ; (2)98% .
3
4). y = x 1 + x
2
( +2x2) 1+ x2 1 ' 4).y = 1+ x2
又y x = y u y u v x
' ' '
∴ yx =
'
1
ex + 2 ex = x 3((e x + 2 )2
高二数学导数计算试题
高二数学导数计算试题1.已知函数,则它的导函数是()A.B.C.D.【答案】B【解析】,【考点】复合函数的导数.2.记,,…,.若,则的值为 .【答案】【解析】由f(x)=xcosx,得f(1)(x)=cosx﹣xsinx,f(2)(x)=﹣sinx﹣sinx﹣xcosx=﹣2sinx﹣xcosx,f(3)(x)=﹣2cosx﹣cosx+xsinx=﹣3cosx+xsinx,f(4)(x)=3sinx+sinx+xcosx=4sinx+xcosx,f(5)(x)=4cosx+cosx﹣xsinx=5cosx﹣xsinx,…,则f(0)+f(1)(0)+f(2)+…+f(2013)(0)=0+1+0﹣3+0+5+0﹣…+2013=(1﹣3)+(5﹣7)+…+(2009﹣2011)+2013=﹣2×503+2013=1007,故答案为:1007.【考点】导数的运算.3.定义在区间上的连续函数的导函数为,如果使得,则称为区间上的“中值点”.下列函数:①;②;③;④在区间上“中值点”多于一个的函数序号为 .【答案】①④【解析】根据“中值点”的定义,设为区间上的中值点,则,①中,因为,此时区间的任一实数都为“中值点”;对于②,即;对于③即;对于④即;综上可知,选①④.【考点】1.新定义;2.导数的计算.4.设,若,则()A.B.C.D.【答案】A【解析】因为,所以当时,解得,所以。
故A正确。
【考点】导数的计算。
5.函数的单调递增区间是()A.B.C.D.【答案】D【解析】,解得,故选D.【考点】利用导数求函数的单调区间6.若的大小关系 ( )A.B.C.D.与x的取值有关【答案】D【解析】令g(x)=2x-3sinx,g′(x)=2-3cosx,当0<x<arccos时,g′(x)<0,g(x)单调减,g(x)<g(0)=0,2x<3sinx.当arccos<x<时,g'(x)>0,g(x)单调增加,但是g(arccos)<0,g()>0,所以在区间[arccos,)有且仅有一点θ使g(θ)=0.当arccos≤x<θ时,g(x)<g(θ)=0,2x<3sinx.当θ<x<时,g(x)>g(θ)=0,2x>3sinx.所以当 0<x<θ 时,2x<3sinx;当x="θ" 时,2x=3sinx;当θ<x<时,2x>3sinx.故选D.【考点】利用导数研究函数的单调性.7.下列求导运算正确的是()A.B.C.D.【答案】B【解析】;;.故选B.【考点】本题考查导数的运算.8.设,若,则()A.B.C.D.【答案】A【解析】因为,所以,即,解得。
导数的计算训练题
1.2导数的计算基础巩固题:1.下列结论不正确的是( ) A .若y =3,则y ′=0 B .若y =1x ,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′=3答案:B解析:∵y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x 3,评析:简单函数的求导,关键是将函数关系式合理地转化为可以直接应用公式的基本函数的模式.2. 设2π=y ,则y '等于( )A .π2B .2π C .0 D .以上都不是 答案:C解:因为π是常数,常数的导数为零,所以选C . 3.质点运动方程是51t s =, 求质点在2=t 时的速度. 解:∵ 51t s =, ∴ 6555)()1(---='='='t t ts , ∴ 6452562-=⨯-='-=t s .答:质点在2=t 时的速度是645-.4.已知奇函数y =f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则切点横坐标为1的切线方程是( )A .x +y +1=0B .x +y -1=0C .3x -y -1=0D .3x -y +1=0 答案:B解析:由题意得,x >0时,-x <0,f (-x )=(-x )2+(-x )=x 2-x .又因为f (x )为奇函数,所以f (x )=-f (-x )=-x 2+x . 又函数f (x )过(1,0),k =f ′(1)=-1.所以所求的切线方程为y -0=-1×(x -1),即x +y -1=0.5.过点(0,1)且与曲线11x y x +=-在点(3,2)处的切线垂直的直线的方程为( ) A .210x y -+= B .210x y +-= C .220x y +-= D .220x y -+= 【答案】A【解析】221221(),,1(1)(31)2x y k x x +--''==∴==---- 所求直线的斜率为2,又过点(0,1),故直线方程为210x y -+=6.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.7.(2011·济南第一次质检)某物体作直线运动,其运动规律是s =t 2+3t (t 的单位是s ,s的单位是m),则它在第4秒末的瞬时速度应该为________.解析:s ′=2t -3t 2,∴v =s ′|t =4=12516(m/s).答案:12516m/s8.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ;9.已知函数32()f x x bx ax d =+++的图像过点P (0,2),且在点(1,(1))M f --处的切线方程为670x y -+=,求函数的解析式。
新人教A版高中数学(选修22)1.2《导数的计算》word教案4篇
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
1.2 导数的计算 导学案(教师版)
§1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)内容要求 1.能根据定义,求函数y=c,y=x,y=x2,y=1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数. 3.会使用导数公式表.知识点1几个常用函数的导数原函数导函数f(x)=c f′(x)=0f(x)=x f′(x)=1f(x)=x2f′(x)=2xf(x)=1x f′(x)=-1x2f(x)=x f′(x)=1 2x【预习评价】思考根据上述五个公式,你能总结出函数y=xα的导数是什么吗?提示y=xα的导数是y′=αxα-1.知识点2基本初等函数的导数公式原函数导函数f(x)=c f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x f′(x)=a x ln__a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1x ln a(a>0,且a≠1)f (x )=ln xf′(x )=1x求下列函数的导数:(1)f (x )=4x 5;(2)g (x )=cos π4;(3)h (x )=3x . 解 (1)f (x )=x 54,∴f ′(x )=54x 14; (2)g (x )=cos π4=22,∴g ′(x )=0; (3)h ′(x )=3x ln 3.题型一 利用导数定义求函数的导数【例1】 利用导数的定义求函数f (x )=2 019x 2的导数. 解 f ′(x )=0limx ∆→2 019(x +Δx )2-2 019x 2x +Δx -x=0lim x ∆→2 019[x 2+2x ·Δx +(Δx )2]-2 019x 2Δx=0lim x ∆→4 038x ·Δx +2 019(Δx )2Δx =0lim x ∆→(4 038x +2 019Δx )=4 038x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤.(2)当Δx 趋于0时,k ·Δx (k ∈R ),(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 【训练1】 利用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=0lim x ∆→(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=0lim x ∆→x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -bΔx=0lim x ∆→2x ·Δx +a ·Δx +(Δx )2Δx=0lim x ∆→ (2x +a +Δx )=2x +a .题型二 利用导数公式求函数的导数 【例2】 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3; (5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4; (4)y ′=(4x3)′=(x 34)′=34x -14=344x; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较烦琐;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【训练2】 求下列函数的导数: (1)y =x 13; (2)y =4x ; (3)y =sin x ; (4)y =15x 2.解 (1)y ′=(x 13)′=13x 13-1=13x 12; (2)y ′=(4x )′=(x 14)′=14x 14-1=14x -34;(3)y ′=(sin x )′=cos x ; (4)y ′=(15x 2)′=(x -25)′=-25x -25-1=-25x -75.方向1 利用导数求曲线的切线方程【例3-1】 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与在这点处的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23(x -π6),即2x +3y -32-π3=0. 方向2 切线方程的综合应用【例3-2】 设P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 解 如图,设l 是与直线y =x 平行,且与曲线y =e x 相切的直线,则切点到直线y =x 的距离最小.设与直线y =x 平行的直线l 与曲线y =e x 相切于点P (x 0,y 0). 因为y ′=e x ,所以e x 0=1,所以x 0=0. 代入y =e x ,得y 0=1,所以P (0,1). 所以点P 到直线y =x 的最小距离为|0-1|2=22. 规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.【训练3】 (1)求曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程;(2)求曲线y =sin ⎝ ⎛⎭⎪⎫π2-x 在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线方程.解 (1)∵y =cos x ,∴y ′=-sin x ,y ′|x =π6=-sin π6=-12.∴曲线在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即6x +12y -63-π=0. (2)∵sin ⎝ ⎛⎭⎪⎫π2-x =cos x ,∴y ′=(cos x )′=-sin x .∴曲线在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线的斜率为k =-sin ⎝ ⎛⎭⎪⎫-π3=32.∴切线方程为y -12=32⎝ ⎛⎭⎪⎫x +π3,即33x -6y +3π+3=0.课堂达标1.已知f (x )=x 2,则f ′(3)等于( ) A.0B.2xC.6D.9解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 答案 C2.函数f (x )=x ,则f ′(3)等于( ) A.36B.0C.12xD.32解析 ∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.答案 A3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角α的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B.[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 解析 ∵(sin x )′=cos x ,∴k l =cos x ,∴-1≤tan α≤1,又∵α∈[0,π), ∴α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×|-e 2|=12e 2. 答案 12e 25.已知f(x)=52x2,g(x)=x3,若f′(x)-g′(x)=-2,则x=________.解析因为f′(x)=5x,g′(x)=3x2,所以5x-3x2=-2,解得x1=-13,x2=2.答案-13或2课堂小结1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin 2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.基础过关1.函数y=3x在x=2处的导数为()A.9B.6C.9ln 3D.6ln 3解析y′=(3x)′=3x ln 3,故所求导数为9ln 3.答案 C2.下列结论中,不正确的是()A.若y=1x3,则y′=-3x4B.若y=3x,则y′=3x3C.若y=1x2,则y′=-2x-3D.若f(x)=3x,则f′(1)=3 解析由(x n)′=nx n-1知,选项A,y=1x3=x-3,则y′=-3x-4=-3x4;选项B ,y =3x =x 13,则y ′=13x -23≠3x3;选项C ,y =1x 2=x -2,则y ′=-2x -3; 选项D ,由f (x )=3x 知f ′(x )=3, ∴f ′(1)=3.∴选项A ,C ,D 正确.故选B. 答案 B3.已知f (x )=cos x ,f ′(x )=-1,则x 等于( ) A.π2B.-π2C.π2+2k π,k ∈ZD.-π2+2k π,k ∈Z解析 ∵f ′(x )=-sin x ,则sin x =1, ∴x =π2+2k π,k ∈Z . 答案 C4. 曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +15.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 解析∵y =x -12,∴y ′=-12x -32,∴曲线在点(a ,a -12)处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 答案 646.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1. 由f ′(x )+g ′(x )≤0, 得-sin x +1≤0, 即sin x ≥1, 但sin x ∈[-1,1],∴sin x =1,∴x =2k π+π2,k ∈Z .7.求下列函数的导数:(1)y =5x 3;(2)y =1x 4;(3)y =-2sin x 2(1-2cos 2x 4);(4)y =log 2x 2-log 2x .解 (1)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2. (2)y ′=⎝⎛⎭⎫1x 4′=(x -4)=-4x -4-1=-4x -5=-4x 5. (3)∵y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4 =2sin x 2⎝⎛⎭⎫2cos 2x 4-1=2sin x 2cos x2=sin x , ∴y ′=(sin x )′=cos x .(4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2. 能力提升8.函数f (x )=x 3的斜率等于1的切线有( ) A.1条 B.2条 C.3条D.不确定解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处分别有斜率为1的切线.答案 B9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B.-1e C.-eD.e解析y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0,y 0=e x0,k =e x 0,∴e x 0=e x 0·x 0,∴x 0=1,∴k =e. 答案 D10.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 解析 ∵y ′=1x ,∴y ′|x =a =1a =1. ∴a =1. 答案 111.若y =10x ,则y ′|x =1=________. 解析 y ′=10x ln 10,∴y ′|x =1=10ln 10. 答案 10ln 1012.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =⎪⎪⎪⎪⎪⎪12-14-22=728, 所以抛物线上的点到直线x -y -2=0的最短距离为728.创新突破13.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,试求f 2 019(x ). 解 ∵f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,∴f n +4(x )=f n (x ),可知f (x )的周期为4,∴f 2 019(x )=f 3(x )=-cos x .。
高中数学人教A版选修2-2(课时训练):1.2 导数的计算1.2.1-1.2.2 Word版含答案
1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)[学习目标]1.能根据定义求函数y=c(c为常数),y=x,y=x2,y=1x,y=x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.[知识链接]在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?类比用导数定义求函数在某点处导数的方法,如何用定义求函数y=f(x)的导数?答(1)计算ΔyΔx,并化简;(2)观察当Δx趋近于0时,ΔyΔx趋近于哪个定值;(3)ΔyΔx趋近于的定值就是函数y=f(x)的导数.[预习导引]1.几个常用函数的导数2.基本初等函数的导数公式要点一利用导数定义求函数的导数例1用导数的定义求函数f(x)=2 013x2的导数.解f′(x)=limΔx→02 013(x+Δx)2-2 013x2x+Δx-x=limΔx→02 013[x2+2x·Δx+(Δx)2]-2 013x2Δx=limΔx→04 026x·Δx+2 013(Δx)2Δx=limΔx→0(4 026x+2 013Δx)=4 026x.规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤. (2)当Δx 趋于0时,k ·Δx (k ∈R )、(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 跟踪演练1 用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx =lim Δx →0 x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -b Δx =lim Δx →0 2x ·Δx +a ·Δx +(Δx )2Δx =lim Δx →0(2x +a +Δx )=2x +a . 要点二 利用导数公式求函数的导数 例2 求下列函数的导数(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4;(4)y ′=⎝⎛⎭⎫4x 3′=⎝ ⎛⎭⎪⎫x 34′=34x -14=344x ; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.跟踪演练2 求下列函数的导数:(1)y =x 8;(2)y =⎝ ⎛⎭⎪⎫12x ;(3)y =x x ;(4)y =log 13x .解 (1)y ′=8x 7;(2)y ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2;(3)∵y =x x =x 32,∴y ′=32x 12; (4) y ′=1x ln 13=-1x ln 3.要点三 利用导数公式求曲线的切线方程例3 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与过这点的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝ ⎛⎭⎪⎫x -π6,即2x +3y -32-π3=0.规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.跟踪演练3 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 ∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0,又∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,∴k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14.∴所求的切线方程为y -14=x -12,即4x -4y -1=0.1.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( ) A.36 B .0 C .12xD .32答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C .⎣⎢⎡⎦⎥⎤π4,3π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2;④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C .⎝ ⎛⎭⎪⎫-12,-2D .⎝ ⎛⎭⎪⎫12,-2答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B. 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5 D .-5 答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4.4.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条 D .不确定答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________.答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0.6.若曲线y =x -12在点⎝ ⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点⎝ ⎛⎭⎪⎫a ,a -12处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ). 令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 7.求下列函数的导数:(1) y =5x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e答案 D解析y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=kx 0y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________. 答案 22 解析根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0, 即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14,切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 三、探究与创新13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 014(x ).解 f 1(x )=(sin x )′=cos x ,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.1.2.2基本初等函数的导数公式及导数的运算法则(二)[学习目标]1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.[知识链接]前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.[预习导引]1.导数运算法则2.复合函数的求导法则要点一 利用导数的运算法则求函数的导数 例1 求下列函数的导数: (1) y =x 3-2x +3; (2)y =(x 2+1)(x -1); (3)y =3x -lg x .解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10,利用函数差的求导法则可得 (3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10. 规律方法 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪演练1 求下列函数的导数: (1)y =5-4x 3;(2)y =3x 2+x cos x ;(3)y=e x·ln x;(4)y=lg x-1 x2.解(1)y′=-12x2;(2)y′=(3x2+x cos x)′=6x+cos x-x sin x;(3)y′=e xx+ex·ln x;(4)y′=1x ln 10+2x3.要点二求复合函数的导数例2求下列函数的导数:(1)y=ln(x+2);(2)y=(1+sin x)2;解(1)y=ln u,u=x+2∴y′x=y′u·u′x=(ln u)′·(x+2)′=1u·1=1x+2.(2)y=u2,u=1+sin x,∴y x′=y u′·u x′=(u2)′·(1+sin x)′=2u·cos x=2cos x(1+sin x).规律方法应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.跟踪演练2(1)y=e2x+1;(2)y=(x-2)2.解(1)y=e u,u=2x+1,∴y′x=y′u·u′x=(e u)′·(2x+1)′=2e u=2e2x+1.(2)法一∵y=(x-2)2=x-4x+4,∴y′=x′-(4x)′+4′=1-4×12x-12=1-2x.法二 令u =x -2,则y x ′=y u ′·u x ′=2(x -2)·(x -2)′= 2(x -2)⎝ ⎛⎭⎪⎫12·1x -0=1-2x .要点三 导数的应用例3 求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程. 解 设P (x 0,y 0)为切点,则切线斜率为 k =f ′(x 0)=3x 20-2故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ②又∵(1,-1)在切线上, ∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解. 跟踪演练3 已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327 m/s.1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin x 答案 D解析 利用求导公式和导数的加、减运算法则求解.D 项,∵y =sin x +cos x , ∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C .cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案 A解析∵y′=x′(x+2)-x(x+2)′(x+2)2=2(x+2)2,∴k=y′|x=-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.答案ln 2-1解析设切点为(x0,y0),∵y′=1x,∴12=1x0,∴x0=2,∴y0=ln 2,ln 2=12×2+b,∴b=ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、基础达标1.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=()A.a B.±aC .-aD .a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12 C .-12 D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D .⎝ ⎛⎭⎪⎫-12,-18答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B .12 C .-22 D .22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, ∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16, 即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +bx 2, ∴f ′(2)=74, ② 由①,②得⎩⎪⎨⎪⎧2a -b 2=12a +b 4=74.解之得⎩⎨⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)[学习目标]1.能根据定义求函数y=c(c为常数),y=x,y=x2,y=1x,y=x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.[知识链接]在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?类比用导数定义求函数在某点处导数的方法,如何用定义求函数y=f(x)的导数?答(1)计算ΔyΔx,并化简;(2)观察当Δx趋近于0时,ΔyΔx趋近于哪个定值;(3)ΔyΔx趋近于的定值就是函数y=f(x)的导数.[预习导引]1.几个常用函数的导数2.基本初等函数的导数公式要点一利用导数定义求函数的导数例1用导数的定义求函数f(x)=2 013x2的导数.解f′(x)=limΔx→02 013(x+Δx)2-2 013x2x+Δx-x=limΔx→02 013[x2+2x·Δx+(Δx)2]-2 013x2Δx=limΔx→04 026x·Δx+2 013(Δx)2Δx=lim Δx →0 (4 026x +2 013Δx ) =4 026x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤. (2)当Δx 趋于0时,k ·Δx (k ∈R )、(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 跟踪演练1 用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx =lim Δx →0 x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -b Δx =lim Δx →0 2x ·Δx +a ·Δx +(Δx )2Δx =lim Δx →0(2x +a +Δx )=2x +a . 要点二 利用导数公式求函数的导数 例2 求下列函数的导数(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4;(4)y ′=⎝⎛⎭⎫4x 3′=⎝ ⎛⎭⎪⎫x 34′=34x -14=344x ; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.跟踪演练2 求下列函数的导数:(1)y =x 8;(2)y =⎝ ⎛⎭⎪⎫12x ;(3)y =x x ;(4)y =log 13x .解 (1)y ′=8x 7;(2)y ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2;(3)∵y =x x =x 32,∴y ′=32x 12; (4) y ′=1x ln 13=-1x ln 3.要点三 利用导数公式求曲线的切线方程例3 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与过这点的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝ ⎛⎭⎪⎫x -π6,即2x +3y -32-π3=0.规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.跟踪演练3 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 ∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0, 又∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14.∴所求的切线方程为y -14=x -12,即4x -4y -1=0.1.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( ) A.36 B .0 C .12xD .32 答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C .⎣⎢⎡⎦⎥⎤π4,3π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1.∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2;④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C .⎝ ⎛⎭⎪⎫-12,-2D .⎝ ⎛⎭⎪⎫12,-2答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( )A .4B .-4C .5D .-5答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条 D .不确定答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0.6.若曲线y =x -12在点⎝ ⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点⎝ ⎛⎭⎪⎫a ,a -12处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ). 令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64.7.求下列函数的导数:(1) y =5x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e答案 D解析y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=kx 0y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________.答案 22 解析根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0, 即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14,切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 三、探究与创新13.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,试求f2 014(x).解f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.1.2.2基本初等函数的导数公式及导数的运算法则(二)[学习目标]1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.[知识链接]前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.[预习导引]1.导数运算法则2.复合函数的求导法则要点一 利用导数的运算法则求函数的导数 例1 求下列函数的导数: (1) y =x 3-2x +3; (2)y =(x 2+1)(x -1); (3)y =3x -lg x .解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10,利用函数差的求导法则可得 (3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10.规律方法 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪演练1 求下列函数的导数:(1)y=5-4x3;(2)y=3x2+x cos x;(3)y=e x·ln x;(4)y=lg x-1 x2.解(1)y′=-12x2;(2)y′=(3x2+x cos x)′=6x+cos x-x sin x;(3)y′=e xx+ex·ln x;(4)y′=1x ln 10+2x3.要点二求复合函数的导数例2求下列函数的导数:(1)y=ln(x+2);(2)y=(1+sin x)2;解(1)y=ln u,u=x+2∴y′x=y′u·u′x=(ln u)′·(x+2)′=1u·1=1x+2.(2)y=u2,u=1+sin x,∴y x′=y u′·u x′=(u2)′·(1+sin x)′=2u·cos x=2cos x(1+sin x).规律方法应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.跟踪演练2(1)y=e2x+1;(2)y=(x-2)2.解(1)y=e u,u=2x+1,∴y′x=y′u·u′x=(e u)′·(2x+1)′=2e u=2e2x+1.(2)法一∵y=(x-2)2=x-4x+4,∴y′=x′-(4x)′+4′=1-4×12x -12=1-2x .法二 令u =x -2,则y x ′=y u ′·u x ′=2(x -2)·(x -2)′= 2(x -2)⎝ ⎛⎭⎪⎫12·1x -0=1-2x .要点三 导数的应用例3 求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程. 解 设P (x 0,y 0)为切点,则切线斜率为 k =f ′(x 0)=3x 20-2故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ②又∵(1,-1)在切线上, ∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解. 跟踪演练3 已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327 m/s.1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin x 答案 D解析 利用求导公式和导数的加、减运算法则求解.D 项,∵y =sin x +cos x , ∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C .cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案A解析∵y′=x′(x+2)-x(x+2)′(x+2)2=2(x+2)2,∴k=y′|x=-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.答案ln 2-1解析设切点为(x0,y0),∵y′=1x,∴12=1x0,∴x0=2,∴y0=ln 2,ln 2=12×2+b,∴b=ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、基础达标1.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=()A .aB .±aC .-aD .a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D .⎝ ⎛⎭⎪⎫-12,-18答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0), 令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B .12 C .-22 D .22答案 B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, ∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16, 即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +bx 2, ∴f ′(2)=74, ② 由①,②得⎩⎪⎨⎪⎧2a -b 2=12a +b 4=74.解之得⎩⎨⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.。
2023高考数学二轮复习专项训练《导数的计算》(含答案)
2023高考数学二轮复习专项训练《导数的计算》一、单选题(本大题共12小题,共60分)1.(5分)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A. f(a)>eaf(0)B. f(a)>f(0)C. f(a)<f(0)D. f(a)<eaf(0)2.(5分)直线y=kx+1与曲线y=x3+bx2+c相切于点M(1, 2),则b的值为()A. −1B. 0C. 1D. 23.(5分)设f(x)=x3,f(a-bx)的导数是()A. 3(a-bx)B. 2-3b(a-bx)2C. 3b(a-bx)2D. -3b(a-bx)24.(5分)已知函数f(x)=2lnx+f′(2)x2+2x+3,则f(1)=()A. −2B. 2C. −4D. 45.(5分)设f0(x)=sin2x+cos2x,f1(x)=f0′(x),f2(x)=f1′(x),…,f1+n(x)=fn′(x),n∈N*,则f2013(x)=()A. 22012(cos2x-sin2x)B. 22013(sin2x+cos2x)C. 22012(cos2x+sin2x)D. 22013(sin2x+cos2x)6.(5分)曲线y=2sinx+cosx在点(π,−1)处的切线方程为()A. x−y−π−1=0B. 2x−y−2π−1=0C. 2x+y−2π+1=0D. x+y−π+1=07.(5分)若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()] B. (−∞,3]A. (−∞,518,+∞) D. [3,+∞)C. [5188.(5分)[2021湖南省郴州市月考]随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设在放射性同位素钍−234的衰变过程中,其含量N(单位:贝克)与时间t(单位:天)满足函数关系N(t)=N02−124,其中N0为t=0时针-234的含量.已知t=24时,钍−234含量的瞬时变化率为−8ln2,则N(96)=A. 12B. 12ln2C. 24D. 24ln29.(5分)设(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,则|a1|+2|a2|+3|a3|+4|a4|+5|a5|+6|a6|+7|a7|=()A. 10206B. 5103C. 729D. 72810.(5分)函数f(x)=2f′(1)·x+xlnx在x=1处的切线方程为()A. y=2x−2B. y=2x+1C. y=−x−1D. y=x−111.(5分)设f(x)=sin2x,则f′(x)等于()A. cos2xB. 2cos2xC. -sin2xD. 2(sin2x-cos2x)12.(5分)函数y=cos(1+x2)的导数是()A. 2xsin(1+x2)B. -sin(1+x2)C. -2xsin(1+x2)D. 2cos(1+x2)二、填空题(本大题共5小题,共25分)13.(5分)函数f(x)=xsin(2x+5)的导数为____.14.(5分)已知f(x)=ekx,则f′(x)=____.15.(5分)设函数f(x)=x3+(a−1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(1,f(1))处的切线方程为__________.16.(5分)若函数f(x)满足f(x)=2lnx−xf′(1),则f′(1)=__________.17.(5分)写出一个同时具有下列性质①②③的函数f(x):_______.①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=ae x lnx+be xx.(1)求导函数f′(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x+1),求a,b的值. 19.(12分)求下列函数在给定点的导数.(1)f(x)=x14,x=5;(2)f(x)=3(x+1)x2,x=1.20.(12分)已知函数f(x)=12x2−x+lnx.(1)求y=f(x)的导数;(2)求曲线y=f(x)在点(1,f(1))处的切线方程.21.(12分)求下列函数的导数.(1)y=(2+3x)(3−5x+x2);(2)y=(2x−1)2(2−3x)3;(3)y=(3x+2)sin5x;(4)y=e2x cos3x.22.(12分)已知函数f(x)=−13x3−a−12x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.(1)若存在x<0,使得f′(x)=−9,求a的最大值;(2)当a>0时,求函数f(x)的零点个数.23.(12分)求下列函数在指定x处的导数值.(1)y=xsinx,x=π4;(2)y =xe x ,x =1.四 、多选题(本大题共5小题,共25分)24.(5分)若(1+2x)+(1+2x)2+⋅⋅⋅+(1+2x)n =a 0+a 1x +a 2x 2+⋅⋅⋅+a n x n (n ∈N ∗),a 0=6,则下列结论中正确的是()A. n =6B. a 1=42C. ∑ai n i=0=64D. ∑n i=1(−1)i iai =625.(5分)下列说法中正确的有()A. (sin π4)′=cos π4B. 已知函数f(x)在R 上可导,且f ′(1)=1,则limΔx→0f(1+2Δx)−f(1)Δx=2C. 一质点的运动方程为S =t 2,则该质点在t =2时的瞬时速度是4D. 已知函数f(x)=cosx ,则函数y =f ′(x)的图象关于原点对称 26.(5分)下列求导错误的是()A. (log 23)′=13ln2 B. (ln2x)′=12x C. (sin 2x)′=sin2x D. (cosx x)′=−cosx+sinxx 227.(5分)下列选项正确的有( )A. 若f(x)= x sin x +cos2x , 则f′(x) =sin x −x cos x +2sin2xB. 设函数f(x)=x ln x ,若f′(x 0)=2,则x 0=eC. 已知函数f(x)=3x 2e 2x ,则f′(1) =12e 2D. 设函数f(x)的导函数为f′(x ),且f(x)=x 2+3xf ′(2)+ln x ,则f′(2)=−94 28.(5分)设b 为实数,直线y =3x +b 能作为曲线f(x)的切线,则曲线f(x)的方程可以为()A. f(x)=−1xB. f(x)=12x 2+4lnxC. f(x)=x 3D. f(x)=e x答案和解析1.【答案】A;【解析】解:∵对任意实数x,f′(x)>f(x),令f(x)=-1,则f′(x)=0,满足题意显然选项A成立故选A.2.【答案】A;【解析】y=x3+bx2+c的导数为y′=3x2+2bx,可得切线的斜率为3+2b,由条件可得k=3+2b,1+b+c=2,1+k=2,解得k=1,b=−1,c=23.【答案】D;【解析】解;因为f(x)=x3,所以y=f(a-bx)=(a-bx)3,所以y′=3(a-bx)2(a-bx)′=-3b(a-bx)2故选D.4.【答案】D;【解析】此题主要考查导数的运算,属于基础题.先求出f′(2),再求f(1)即可.+f′(2)·2x+2,解:由题意,f′(x)=2x故f′(2)=1+4f′(2)+2,∴f′(2)=−1,∴f(1)=2ln1+f′(2)×12+2×1+3=4,故选D.5.【答案】A;【解析】解:∵f0(x)=sin2x+cos2x,∴f1(x)=f0′(x)=2(cos2x-sin2x),f2(x)=f1′(x)=22(-sin2x-cos2x),f3(x)=f2′(x)=23(-cos2x+sin2x),f4(x)=f3′(x)=24(sin2x+cos2x),…通过以上可以看出:f n(x)满足以下规律,对任意n∈N,fn+4(x)=24fn(x).∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x-sin2x).故选:B.6.【答案】C;【解析】设f(x)=2sinx+cosx,则f′(x)=2cosx−sinx,∴f′(π)=2cosπ−sinπ=−2,∴切线方程为:y+1=−2(x−π),即2x+y−2π+1=0,故选C.7.【答案】C;【解析】解:∵函数f(x)=x3−tx2+3x,∴f′(x)=3x2−2tx+3,若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则f′(x)⩽0即3x2−2tx+3⩽0在[1,4]上恒成立,∴t⩾32(x+1x)在[1,4]上恒成立,令y=32(x+1x),则函数在[1,4]为增函数,当x=4时,函数取最大值518,∴t⩾518,即实数t的取值范围是[518,+∞),故选:C.由题意可得f′(x)⩽0即3x2−2tx+3⩽0在[1,4]上恒成立,由函数的单调性可知t的范围.这道题主要考查函数的单调性和导数符号间的关系,属于中档题.8.【答案】C;【解析】由N(t)=N02−t24方得N′(t)=N02−t24×ln2×(−124),当t=24时,N′(24)=N02−2424×ln2×(−124)=−8ln2,解得N0=384,所以N(t)=384·2−t24,则N(96)=384·2−9624=384·2−4=24.故选C.9.【答案】A;【解析】此题主要考查二项式定理的运用,属于中档题.将(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7两边求导,令x=−1,即可得到答案.解:将(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7两边求导,可得14(2x−1)6=a1+2a2x+3a3x²+……+7a7x6,可得x的奇次方的系数为负数,令x=−1可得14(−2−1)6=a1−2a2+3a3+……+7a7,故|a1|+2|a2|+3|a3|+4|a4|+5|a5|+6|a6|+7|a7|=14×36=10206.故选A.10.【答案】C;【解析】此题主要考查曲线的切线方程的求法,导数的几何意义,属于基础题.先求出f′(1)=−1,再求出f(1)=−2,由此可解.解:因为f′(x)=2f′(1)+lnx+1,所以f′(1)=2f′(1)+1,即f′(1)=−1,所以f(1)=2f′(1)=−2,所以切线方程为y=−(x−1)−2=−x−1.故选C.11.【答案】B;【解析】解:因为设f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.故选B.12.【答案】C;【解析】解:y′=-sin(1+x2)•(1+x2)′=-2xsin(1+x2)故选C13.【答案】sin(2x+5)+2xcos(2x+5);【解析】解:f′(x)=x′sin(2x+5)+x(sin(2x+5))′=sin(2x+5)+2xcos(2x+5),故答案为:sin(2x+5)+2xcos(2x+5),14.【答案】k e kx;【解析】解:∵f(x)=e kx,∴f′(x)=e kx•(kx)′=k e kx,故答案为:k e kx.15.【答案】4x−y−2=0;【解析】此题主要考查函数奇偶性,利用导数研究曲线上某点切线方程,属于基础题.由奇函数的定义求出a的值,然后利用导数的几何意义求出切线的斜率,进而写出切线方程.解:因为函数f(x)=x3+(a−1)x2+ax为奇函数,所以f(−x)=−f(x),所以(−x)3+(a−1)(−x)2+a(−x)=−[x3+(a−1)x2+ax],所以2(a−1)x2=0.因为x∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(1)=4,f(1)=2,所以曲线y=f(x)在点x=1处的切线方程为4x−y−2=0,故答案为:4x−y−2=0.16.【答案】1;【解析】此题主要考查导数的加法与减法的法则,解决此题的关键是对f(x)进行正确求导,属于基础题.利用求导公式对f(x)进行求导,再把x=1代入,即可求解.解:∵函数f(x)的导函数为f′(x),且满足f(x)=2lnx−xf′(1),−f′(1),把x=1代入f′(x)可得f′(1)=2−f′(1),∴f′(x)=2x解得f′(1)=1.故答案为:1.17.【答案】f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足);【解析】本题是开放性问题,合理分析所给条件找出合适的函数是关键,属于中档题.根据幂函数的性质可得所求的f(x).解:取f(x)=x4,则f(x1x2)=(x1x2)4=x14x24=f(x1)f(x2),满足①,f′(x)=4x3,x>0时有f′(x)>0,满足②,f′(x)=4x3的定义域为R,又f′(−x)=−4x3=−f′(x),故f′(x)是奇函数,满足③.故答案为:f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)18.【答案】略。
1.2导数的计算练习题
基本初等函数的导数公式及导数的运算法则一、知识自测:1、几个常用函数的导数:(1)f(x)=C ,则f ’(x)=_______ (2)f(x)=x ,则f ’(x)=_______ (3)f(x)=2x ,则f ’(x)=_______ (4)f(x)=x1,则f’(x)=_______ (5)f(x)=x ,则f ’(x)=_______ 2、基本初等函数的导数公式:(1)f(x)=C (C 为常数),则f ’(x)=_______ (2)f(x)=)(Q a x a∈,则f ’(x)=_______ (3)f(x)=sinx ,则f ’(x)=_______ (4)f(x)=cosx ,则f ’(x)=_______ (5)f(x)=x a ,则f ’(x)=_______ (6)f(x)=x e ,则f ’(x)=_______ (7)f(x)=x a log ,则f ’(x)=_______ (8)f(x)=x ln ,则f ’(x)=_______ 3、导数的运算法则:已知)(),(x g x f 的导数存在,则:(1)_______________])()([='±x g x f(2)__________________])()([='⋅x g x f (3)='])()([x g x f ____________________ 二、典型例题:(一)利用求导公式和运算法则求导数1、345x y -=2、x x x y sin 32-=3、x e y xln = 4、x x xy 21ln -+=5、)3)(2)(1(+++=x x x y6、)11)(1(-+=xx y 7、2cos 2sin )2(2xx x y --=基本初等函数的导数公式及导数的运算法则一、知识自测:1、几个常用函数的导数:(1)f(x)=C ,则f ’(x)=_______ (2)f(x)=x ,则f ’(x)=_______ (3)f(x)=2x ,则f ’(x)=_______ (4)f(x)=x1,则f’(x)=_______ (5)f(x)=x ,则f ’(x)=_______2、基本初等函数的导数公式:(1)f(x)=C (C 为常数),则f ’(x)=_______ (2)f(x)=)(Q a x a∈,则f ’(x)=_______ (3)f(x)=sinx ,则f ’(x)=_______ (4)f(x)=cosx ,则f ’(x)=_______ (5)f(x)=x a ,则f ’(x)=_______ (6)f(x)=xe ,则f ’(x)=_______ (7)f(x)=x a log ,则f ’(x)=_______ (8)f(x)=x ln ,则f ’(x)=_______ 3、导数的运算法则:已知)(),(x g x f 的导数存在,则:(1)_______________])()([='±x g x f(2)__________________])()([='⋅x g x f (3)='])()([x g x f ____________________ 二、典型例题:(一)利用求导公式和运算法则求导数1、345x y -=2、x x x y sin 32-=3、x e y xln = 4、x x xy 21ln -+=5、)3)(2)(1(+++=x x x y6、)11)(1(-+=xx y 7、2cos 2sin )2(2xx x y --=(二)求曲线的切线方程:1、函数4722)(23---=x x x x g 在x=2处的切线方程为_________________2、求过曲线y=cosx 上点P (21,3π)且与过这点的切线垂直的直线方程3、在曲线106323-++=x x x y 的切线中,求斜率最小的切线方程。
导数极限练习题
导数极限练习题在数学学科中,导数和极限是非常重要的概念。
导数是描述函数变化率的工具,而极限则是描述函数趋于某个值的概念。
为了帮助大家更好地理解和掌握导数和极限,本文将提供一些导数和极限的练习题,并附上详细解答。
问题一:求函数 f(x) = 2x^2 + 3x - 5 在点 x = 2 处的导数。
解答一:首先,我们需要使用导数的定义来计算该函数在点 x = 2处的导数。
导数的定义如下:f'(x) = lim(h→0) [f(x + h) - f(x)] / h带入函数 f(x) = 2x^2 + 3x - 5 和 x = 2,我们可以得到:f'(2) = lim(h→0) [(2(2 + h)^2 + 3(2 + h) - 5) - (2(2)^2 + 3(2) - 5)] / h化简后得到:f'(2) = lim(h→0) [(2(4 + 4h + h^2) + 6 + 3h - 5) - (4 + 6 - 5)] / h = lim(h→0) [(8 + 8h + 2h^2 + 6 + 3h - 5) - 5] / h= lim(h→0) [2h^2 + 11h + 4] / h继续化简得到:f'(2) = lim(h→0) 2h + 11 + 4/h= 2(0) + 11 + 4/0= 11因此,函数 f(x) = 2x^2 + 3x - 5 在点 x = 2 处的导数为 11。
问题二:求函数 g(x) = (3x^3 + 2x^2 - 5x) / (2x^2 + 4x + 1) 的导数。
解答二:我们可以使用导数的基本运算法则来求解上述函数的导数。
根据基本运算法则,我们可以将g(x) 表示为两个函数相除的形式,即:g(x) = f(x) / h(x)其中,f(x) = 3x^3 + 2x^2 - 5x,h(x) = 2x^2 + 4x + 1。
根据导数的商法则,函数 g(x) 的导数可以表示为:g'(x) = [f'(x)h(x) - f(x)h'(x)] / (h(x))^2首先,我们计算 f'(x) 和 h'(x):f'(x) = 9x^2 + 4x - 5h'(x) = 4x + 4带入上述公式,可以得到:g'(x) = [(9x^2 + 4x - 5)(2x^2 + 4x + 1) - (3x^3 + 2x^2 - 5x)(4x + 4)] /(2x^2 + 4x + 1)^2化简后得到:g'(x) = (18x^4 + 36x^3 + 9x^2 + 8x^3 + 16x^2 + 4x - 10x^2 - 20x -5x^2 - 10x + 12x^3 + 24x^2 + 6x) / (2x^2 + 4x + 1)^2= (18x^4 + 8x^3 + 9x^2 + 4x - 10x^2 - 5x^2 - 10x + 12x^3 + 24x^2+ 6x) / (2x^2 + 4x + 1)^2= (18x^4 + 20x^3 + 19x^2) / (2x^2 + 4x + 1)^2因此,函数 g(x) 的导数为 g'(x) = (18x^4 + 20x^3 + 19x^2) / (2x^2 + 4x + 1)^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:
1.已知命题:p :函数y =f (x )的导函数是常数函数;命题q :函数()y f x =是一次函数,则命题p 是命题q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件 2.函数2cos y x x =的导数为( )
A.22cos sin y x x x x =-¢
B.22cos sin y x x x x =+¢
C.2cos 2sin y x x x x =-¢
D.2cos sin y x x x x =-¢ 3.曲线3y x =在点P 处的切线斜率为3,则P 点的坐标为( )
A.()2,8--
B.()1,1--
C.()2,8--或()2, 8
D.()1,1-- 或()1, 1 4.曲线3231y x x =-+在点()1,1-处的切线方程为( ) A .32y x =-+ B .34y x =- C .43y x =-+ D .45y x =- 5.
函数y x 的导数为( )
A.y x x =¢
B.y x ¢
C.y x ¢
D.y x ¢
6.设(ln f x x x =,若()02f x =¢,则0x =( ) A .2e B .e C .ln 2
2
D .ln2 二、填空题:
7.若()()22234y x x =--,则y =¢___________. 8.若3cos 4sin y x x =-,则y =¢____________. 9.物体运动方程为240.3s t t =-,则2t =时的速度为_______.
10.函数ln x y e x =的导数为____________. 三、解答题:
11.求过曲线cos y x =上的点1, 32π⎛⎫
⎪⎝⎭
且与过这点的切线
垂直的直线方程
12.已知抛物线2y ax bx c =++经过()1, 1点和()2,1-点,
且在点()2,1-处的切线的斜率为1,求, , a b c 的值.
(教 师 版)
一、选择题:
1.已知命题:p :函数y =f (x )的导函数是常数函数;命题q :函数()y f x =是一次函数,则命题p 是命题q 的(B )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件 解:函数()3f x =不是一次函数,()()0f x =常数函数¢
∴有q p ⇒,而p 却不能推出q 2.函数2cos y x x =的导数为(A )
A.22cos sin y x x x x =-¢
B.22cos sin y x x x x =+¢
C.2
cos 2sin y x x x x =-¢ D.2
cos sin y x x x x =-¢ 3.曲线3y x =在点P 处的切线斜率为3,则P 点的坐标为(D )
A.()2,8--
B.()1,1--
C.()2,8-
-或()2, 8 D.()1,1-- 或()1, 1 4. A .32y x =-+ B .34y x =- C
43y x =-+45y x
=-
5.
A.y x
x =¢
B.y x ¢
C.y x ¢
D.y x ¢
6.设()ln f x x x =,若()02f x =¢,则0x =(B ) A .2e B .e C .
ln 2
2
D .ln2 解:()ln 1f x x =+¢,()00ln 12f x x =+=¢,0ln 1x =
二、填空题:
7.若()()22234y x x =--,则
y =¢3 822 x x -. 8.若3cos 4sin y x x =-,则y =¢3sin 4cos x x --. 9.物体运动方程为240.3s t t =-,则2t =时的速度为10.函数ln x y e x =的导数为 ln x e x x
+.
三、解答题:
11.求过曲线cos y x =上的点1, 32π⎛⎫
⎪⎝⎭
且与过这点的切线
垂直的直线方程
12.已知抛物线2y ax bx c =++经过()1, 1点和()2,1-点,
且在点()2,1-处的切线的斜率为1,求, , a b c 的值.。