函数导学案

合集下载

函数的极值、最值导学案

函数的极值、最值导学案

函数的极值、最值导学案(一)学习目标: 编辑:赵辉、李勤涛、王芳1.理解极大值、极小值的概念.2.能够运用判别极大值、极小值的方法来求函数的极值.3.掌握求可导函数的极值、最值的步骤。

自主学习:阅读课本27、28页之后回答下列问题1 求函数44313+-=x x y 的单调区间,并画出函数图象简图。

探究: 观察函数图形在x=2和2-=x 的函数值与其附近的函数值有什么关系? )2(f '和)2(-'f 的值呢?在x=2和2-=x 附近的导数值又有什么规律?2 观察下列函数图象分析当x 等于54321,,,,x x x x x 时导数怎样?在这些点附近导数的符号有什么规律?f(x 2)f(x 4)f(x 5)f(x 3)f(x 1)f(b)f(a)x 5x 4x 3x 2x 1b axOy归纳总结1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点都有 ,就说f(x 0)是函数f(x)的一个 ,记作 ,x 0是极大值点 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点都有 .就说 是函数f(x)的 ,记作 ,x 0是极小值点 3.极大值与极小值统称为在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值 思考 函数3)(x x f =有没有极值点?导数为0的点一定是函数的极值点吗?典型例题例1. 求函数44313+-=x x y 的极值,并求[-3 ,4]上的最大值和最小值。

变式1:将区间[3,4]-改为[0,3]【归纳】:一、求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数/()f x(2)求方程/()f x =0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查/()f x 在 方程根左右的值的符号:①如果左正右负,那么f (x )在这个根处取得极大值; ②如果左负右正,那么f (x )在这个根处取得极小值; ③ 如果左右不改变符号,那么f (x )在这个根处无极值 二、求闭区间[a,b]的最值的步骤: ① 先求出给定区间上的极值;再求出区间端点的函数值; ②最后从极值和区间端点的函数值中找出最大值和最小值。

导数与函数的极值、最值(经典导学案及练习答案详解)

导数与函数的极值、最值(经典导学案及练习答案详解)

§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

一、预习导入阅读课本60-65页,填写。

1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。

高一数学《基本初等函数》导学案(参考答案)

高一数学《基本初等函数》导学案(参考答案)

第二章 基本初等函数第二节 指数函数及其性质 (第2课时)参考答案【自主认知】 1.y 与x 之间满足y=2x (x ∈N *).2.y 与x 之间满足y= (x ∈N *).3.因为对于每一个x 都有唯一的y 与之对应,因此按照函数的定义这两个关系式都可构成函数.它们与函数y=x 2的区别在于前者的自变量都在指数的位置上,而y=x 2的自变量在底数的位置上.y=a x (a>0且a ≠1) 自变量 R【合作探究】不能.因为当a<0时,a x 不一定有意义,如(-2)x ;当a=0时,0x 不一定有意义,如00,0-2,故a 的取值范围不能小于或等于0.2.不一定,当限定a>0且a ≠1时,才是指数函数3.因为指数函数的解析式为y=a x (a>0,且a ≠1),故要确定指数函数的解析式,只需确定a 的值.【典型例题】 1.选B.y=2-x = 故此函数是指数函数,且为减函数,故选B. 2. 要使函数f(x)有意义,需2x -1≥0,即2x ≥1,故x ≥0.答案:[0,+∞)3.【解题指南】(1)观察函数解析式的形式看是否满足指数函数的定义,然后再下结论.(2)已知是指数函数时,需紧扣指数函数解析式的特点,让a x 的系数为1,列出a 的方程,进而求出a 的值,检验可得答案.【解析】(1)选B.函数y=2·3x ,y=3x+1,y=x x 均不符合指数函数解析式的特征,不是指数函数,而y=πx 符合指数函数的定义,是指数函数.(2)由题意a 2-3a+3=1,即a 2-3a+2=0.解得a=1或a=2,而a=1不符合指数函数的定义,故a=2.答案:24.选C.令(a-2)2=1,得a=3或a=1,当a=1时不符合题意舍去,故a=3.【变式拓展】【解题指南】1.取特殊值,令x=1,得到的y 值即为a,b,c,d 的值,通过观察图象即可确定大小关系.2.先考虑去掉绝对值,然后画出函数的图象求解.【解析】1.选D.过点(1,0)作直线x=1,在第一象限内分别与各曲线相交,可知1<d<c,b<a<1,故b<a<1<d<c.2.当x ≥0时,y=5|x|=5x ;当x<0时,y=5|x|=5-x = .所以函数y=5|x|的图象如图所示.四、随堂检测x 1(),2x 1()5x 1()21. 选C.①不是指数函数,自变量不在指数上;②中2x的系数为-1,故不是指数函数;③自变量不在指数上,不是指数函数;④⑤符合指数函数定义的形式,是指数函数.2. 选D.点(a,9)在函数y=3x的图象上,所以3a=9,a=2,所以tan=tan60°=.3. 选B.因为3x>0,所以3x+1>1,即函数的值域是(1,+∞).4. 选B.由函数的图象在第一、三、四象限可知,此函数应为递增的,故a>1,又过定点(0,-b),此点应在y轴的负半轴上,则-b<0,即b>0.5. 令t=x2-2x+2,则y=,又t=x2-2x+2=(x-1)2+1,因为0≤x≤3,所以当x=1时,t min=1;当x=3时,t max=5.故1≤t≤5,所以≤y≤,故所求函数的值域为.。

函数的表示方法导学案

函数的表示方法导学案

潍坊滨海中学 高三数学◆必修1◆导学案编写:张慧 校审:高三数学§2.1.2《函数的表示方法》导学案教学目的:(1)掌握函数的三种表示方法(图象法、列表法、解析法);(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数教学重点:(1)图像法、列表法、解析法表示函数(2)会画简单的函数图像教学难点:如何选择恰当的方法表示函数※ 理解概念1列表法:用列表来表示两个变量之间函数关系的方法,优点:不必通过计算就可以知道自变量取某个值时,相应的函数值是多少.2图像法:用图象表示两个变量之间函数关系的方法。

优点::可以从整体上直观而形象地表示出函数的变化情况.3解析法:用等式来表示两个变量之间函数关系的方法。

优点:函数关系清楚,容易从自变量求出其对应的函数值,便于用解析式研究函数性质.※ 合作探究问题:购买某种饮料x 听所需钱数为y 元,若每听2元,试分别用解析法,列表法,图像法将y 表示成x(x {1,2,3,4})的函数,并指出函数的值域. 讨论:(1)三种表示方法的各自的特点是什么? (2)函数图像上的点满足什么条件?满足函数关系式y =f (x )的点(x ,y )在什么地方?小结:这是一个实际问题,x 的取值只能为正整数.用三种方法表示这个函数问题,既体现了函数在生活中的用途,也体现了三种方法表示函数时的各自特点※ 典型例题例1:设x 是任意的一个实数,y 是不超过x 的最大整数,试问x 和y 之间是否是函数关系?如果是,画出这个函数的图像。

2009年第一学期◆高一 9月 23 日 班级: 姓名:2例2:已知函数y=f(n),满足f(0)=1,且f(n)=nf(n-1),n ∈N +。

求f(1),f(2),f(3),f(4),f(5)。

※当堂训练1、下图都是函数的图像吗?为什么?2、某人从甲镇去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示运动的时间,纵轴表示此人与乙村的距离,则较符合该人走法的图像是( ).3、用长为4m 的铁丝围成矩形,试将矩形面积S(m 2)表示为矩形一边长x(m)的函数,并画出函数的图像.4、函数解析式5,032.4 2.2,3x y x x <≤⎧=⎨->⎩,回答下列问题.(1)函数的定义域是_______________. (2)若x = 8,则y =_______________;若y = 12.2,则x =_______________. (3)画出函数的图像.(4)函数的值域是_______________.※课后练习:(1)画出函数f(x)=|x|的图像,并求出f(-3),f(3),f(-1),f(1)的值.(2)常州市出租车收费标准如下:在3km 以内(含3km )路程按起步价9元收费,超过3km 以外的路程按1.8元/km 收费,试写出收费额关于路程的函数解析式,并画出它的图象※ 归纳总结教材P 41~ P 42。

高中数学《函数的概念》导学案

高中数学《函数的概念》导学案

第一章 集合与函数概集合 1.2.1 函数的概念一、学习目标1.理解函数的概念,了解构成函数的三要素;2.会判断给出的两个函数是否是同一函数;3.能正确使用区间表示数集,会求函数定义域、值域及函数相等的判断。

【重点、难点】重点:理解函数的概念,用区间符号正确表示数的集合;难点:对函数概念及符号y=f(x)的理解,求函数定义域和值域。

二、学习过程【情景创设】初中的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。

【导入新课】问题1:对教科书中第15页的实例(1),你能得出炮弹飞行1s,5s,10s,20s 时距地面多高吗?其中t 的取值范围是什么?(点拨:用解析式刻画变量之间的对应关系,关注t 和h 的范围)解:h(1)= ,h(5)= , h(10)= , h(20)= 炮弹飞行时间t 的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。

从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。

问题2:对教科书中第15页的实例(2),你能从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞面积大约为2000万平方千米?其中t 的取值范围是什么?(点拨:用图像刻画变量之间的对应关系)。

例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。

《一次函数》导学案

《一次函数》导学案

(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?(3)当图象不过原点时,求出图象与两轴所围成的三角形面积.解:(四)一次函数y=kx+b的图象与正比例函数y=kx的图象之间的位置关系:1.当b>0时,直线y=kx+b由直线y=kx向平移个单位长度;2.当b<0时,直线y=kx+b由直线y=kx向平移个单位长度.【例2】.将一次函数y=2x-3向下平移5个单位的表达式为__________。

(五)用待定系数法求一次函数的解析式:1.常见的直接条件:(1)、对于正比例函数,需要__________个点的坐标。

(2)、对于一次函数,需要__________个点的坐标。

【例3】.(1)、已知正比例函数经过点(-1,2),则其表达式为__________。

(2)、已知一次函数经过点(0,3)和(-2,5),则其表达式为__________。

2.间接条件:围成图形的面积;平行关系等.【例4】.已知一次函数y=kx+2的图象过第一、二、三象限且与x、y轴分别交于A、B两点,O为原点,若ΔAOB的面积为2,求(1)A点坐标.(2) 该一次函数的表达式.解:(六)用函数观点看方程(组)和不等式①一次函数y=kx+b的图象与x轴交点的横坐标-bk⇔一元一次方程kx+b=0的解x=②一次函数y=k1x+b与y=k2x+b两个图象的交点1122y kx by kx b=+⎧⇔⎨=+⎩二元一次方程组的.③使一次函数y=kx+b的函数值y>0(或y<0)的自变量的取值范围⇔一元一次不等式kx+b>0(或kx+b<0)的__________.【例4】.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得二元一次方程组⎩⎪⎨⎪⎧y=ax+b,y=kx的解__________.三、综合演练见《新航标》P39(1——5、8)P40(3、8)P41( 1、3、7)四、课后提升见《新航标》P39——41其余题五、我的困惑第二课时《一次函数的应用》导学案【学习目标】能用一次函数解决实际问题.【点击中考】“命题趋势”见《新航标》第37页。

导学案007(函数的单调性)

导学案007(函数的单调性)

函数的单调性编号:007一、考纲要求:函数的基本性质二、复习目标:1.理解函数的单调性2.能判断或证明函数的单调性三、重点难点:判断或证明函数的单调性四、要点梳理:1.函数的单调性(1)单调函数的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.五、基础自测:1.判断下列说法是否正确:(1)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的单调增函数; (2)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是单调减函数; (3)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间[0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数;(4)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数.2、下列函数 (1)2()(1)f x x =- (2)()x f x e = (3)()ln(1)f x x =+ (4) 111y x =-- (5)||y x x =在(,0)x ∈-∞是减函数的序号是_________________ 4.六、典例精讲:例1 (1)判断函数()f x = (2)判断函数1()ln 1xf x x-=+的单调性,并证明你的结论.例2(1) 函数32()15336f x x x x =--+的单调递增区间为 . (2) 函数20.7log (32)y x x =-+的单调减区间是____________________例3.已知函数()f x 对任意x ,y ∈R ,总有()()()f x f y f x y +=+,且当0x >时,()0f x <, ,求证:()f x 是R 上的减函数.七、千思百练:1.函数1()f x x x=-的单调增区间为 . 2、设函数()f x 是减函数,且()0f x >,下列函数中为增函数的是_________(1)1()y f x =-(2)12log ()y f x = (3)()2f x y = (4)[]2()y f x =(5)32()y x f x =-3.函数()f x 是R 上的减函数,a ∈R ,记2()m f a =,(1)n f a =-,则m ,n 的大小关系是 .4、(必修1第37页第7题)函数21()21x x f x -=+的单调区间是_______________________5、(必修1第55页第12题)对于任意的12,,x x R ∈若函数1()()2xf x =,则1212()()()22f x f x x xf ++与的大小关系是__________________八、反思感悟:1、判断函数单调性的常见方法:(1)图像法 (2)定义法 (3)导数法2、复合函数单调性的判断:同增异减法。

导数大题10种主要题型导学案含详解

导数大题10种主要题型导学案含详解

导数大题10种主要题型(一)预习案题型一:构造函数1.1 “比较法”构造函数例1.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)求证:当x>0时,x2<e x.1.2 “拆分法”构造函数例2.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处的切线为y=e(x﹣1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.1.3 “换元法”构造函数例3.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)求证:当n>m>0时,lnn﹣lnm>﹣;(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求实数k的最大值.1.4 “二次(甚至多次)”构造函数例4.已知函数f(x)=e x+m﹣x3,g(x)=ln(x+1)+2.(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;(2)当m≥1时,证明:f(x)>g(x)﹣x3.题型二:隐零点问题例1.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.例2.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.导数大题10种主要题型(一)预习案答案例1. 解:(1)f ′(x )=e x ﹣a ,∵f ′(0)=﹣1=1﹣a ,∴a =2.∴f (x )=e x ﹣2x ,f ′(x )=e x ﹣2.令f ′(x )=0,解得x =ln 2.当x <ln 2时,f ′(x )<0,函数f (x )单调递减;当x >ln 2时,f ′(x )>0,函数f (x )单调递增.∴当x =ln 2时,函数f (x )取得极小值,为f (ln 2)=2﹣2ln 2,无极大值.(2)证明:方法一(作差法)令g (x )=e x ﹣x 2,则g ′(x )=e x ﹣2x ,由(1)可得:g ′(x )=f (x )≥f (ln 2)>0,∴g (x )在R 上单调递增,因此:x >0时,g (x )>g (0)=1>0,∴x 2<e x .方法二(作商法):即可只需证1)(,2)(<=x h e x x h x例2. 解:(Ⅰ) 函数f (x )的定义域为(0,+∞),, 由题意可得f (1)=2,f '(1)=e ,故a =1,b =2.(Ⅱ)证明:方法一(凹凸反转法)由(Ⅰ)知,,从而f (x )>1等价于,设函数g (x )=xlnx ,则g '(x )=1+lnx ,所以当时,g '(x )<0, 当时,g '(x )>0,故g (x )在单调递减,在单调递增,从而g (x )在(0,+∞)的最小值为.设函数,则h '(x )=e ﹣x (1﹣x ),所以当x ∈(0,1)时,h '(x )>0,当x ∈(1,+∞)时,h '(x )<0,故h (x )在(0,1)单调递增,在(1,+∞)单调递减,从而h (x )在(0,+∞)的最大值为.综上:当x >0时,g (x )>h (x ),即f (x )>1.方法二(放缩法)例3. 解:(Ⅰ)∵f (x )=ax 2+xlnx ,∴f ′(x )=2ax +lnx +1,∵切线与直线x +3y =0垂直,∴切线的斜率为3,∴f ′(1)=3,即2a +1=3,故a =1; (Ⅱ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), ∵f ′(x )在(0,+∞)上单调递增,∴当x >1时,有f ′(x )>f ′(1)=3>0,∴函数f (x )在区间(1,+∞)上单调递增,∵n >m >0,∴,∴f ()>f (1)=1即,∴lnn ﹣lnm >; (Ⅲ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), 令g (x )=2x +lnx +1,x ∈(0,+∞),则,x ∈(0,+∞),由g ′(x )>0对x ∈(0,+∞),恒成立,故g (x )在(0,+∞)上单调递增, 又∵011121)1(222<-=+-=e e e g ,而>0, ∴存在x 0∈,使g (x 0)=0 ∵g (x )在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,g (x )=f ′(x )<0,f (x )在(0,x 0)上单调递减;当x ∈(x 0,+∞)时,g (x )=f ′(x )>0,f (x )在(x 0,+∞)上单调递增;∴f (x )在x =x 0处取得最小值f (x 0)∵f (x )>k 恒成立,所以k <f (x 0)由g (x 0)=0得,2x 0+lnx 0+1=0,所以lnx 0=﹣1﹣2x 0,∴f (x 0)===﹣=﹣,又,∴f (x 0)∈, ∵k ∈Z ,∴k 的最大值为﹣1.例4. 解:(1)函数f (x )=e x +m ﹣x 3的导数为f ′(x )=e x +m ﹣3x 2,在点(0,f (0))处的切线斜率为k =e m =1,解得m =0;(2)证明:f (x )>g (x )﹣x 3即为e x +m >ln (x +1)+2.由y =e x ﹣x ﹣1的导数为y ′=e x ﹣1,当x >0时,y ′>0,函数递增;当x <0时,y ′<0,函数递减.即有x =0处取得极小值,也为最小值0.即有e x ≥x +1,则e x +m ≥x +m +1,由h(x)=x+m+1﹣ln(x+1)﹣2=x+m﹣ln(x+1)﹣1,h′(x)=1﹣,当x>0时,h′(x)>0,h(x)递增;﹣1<x<0时,h′(x)<0,h(x)递减.即有x=0处取得最小值,且为m﹣1,当m≥1时,即有h(x)≥m﹣1≥0,即x+m+1≥ln(x+1)+2,则有f(x)>g(x)﹣x3成立.例5.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.例6.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)≥0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)====,a∈[0,1),由(1)知,f(x)+a单调递增,对任意的a∈[0,1),f(0)+a=a﹣1<0,f(2)+a=a≥0,因此存在唯一的t∈(0,2],使得f(t)+a=0,当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(t)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].导数大题10种主要题型(二)预习案题型三:恒成立、存在性问题3.1 单变量恒成立、存在性问题例1.已知函数f (x )=xlnx ,g (x )=﹣x 2+ax ﹣3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x 0∈[,e ](e 是自然对数的底数,e =2.71828…),使不等式2f (x 0)≥g (x 0)成立,求实数a 的取值范围.3.2 双变量恒成立、存在性问题极值点偏移问题:由于函数左右增减速率不同导致函数图像失去对称性。

导学案012函数的应用教案

导学案012函数的应用教案

函数的应用【2013年高考会这样考】1.考查二次函数模型的建立及最值问题. 2.考查分段函数模型的建立及最值问题.3.考查指数(型)、对数(型)、幂函数(型)函数模型的建立及最值问题. 【复习指导】函数模型的实际应用问题,主要抓好常见函数模型的训练,解答应用问题的重点在信息整理与建模上,建模后利用函数知识分析解决问题.基础梳理1.常见的函数模型及性质 (1)几类函数模型①一次函数模型:y =kx +b (k ≠0). ②二次函数模型:y =ax 2+bx +c (a ≠0). ③指数函数型模型:y =ab x +c (b >0,b ≠1). ④对数函数型模型:y =m log a x +n (a >0,a ≠1). ⑤幂函数型模型:y =ax n +b . (2)三种函数模型的性质函数 性质 y =a x(a >1)y =log a x (a >1) y =x n(n >0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x一个防范特别关注实际问题的自变量的取值范围,合理确定函数的定义域. 四个步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质; (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题; (3)解模:用数学知识和方法解决转化出的数学问题; (4)还原:回到题目本身,检验结果的实际意义,给出结论.双基自测1.若22x x ,则x 的取值范围是____________。

2.(2012·新乡月考)某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ).A .100台B .120台C .150台D .180台3.有一批材料可以围成200米长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为( ).A .1 000米2B .2 000米2C .2 500米2D .3 000米24.(2011·湖北)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震最大振幅的________倍.5.(2012·东三校联考)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________. 解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x-2,解得x =4. 答案4考点一 一次函数、二次函数函数模型的应用【例1】►(2011·武汉调研)在经济学中,函数f (x )的边际函数Mf (x )定义为:Mf (x )=f (x +1)-f (x ).某公司每月生产x 台某种产品的收入为R (x )元,成本为C (x )元,且R (x )=3 000x -20x 2,C (x )=500x +4 000(x ∈N *).现已知该公司每月生产该产品不超过100台. (1)求利润函数P (x )以及它的边际利润函数MP (x ); (2)求利润函数的最大值与边际利润函数的最大值之差. [审题视点] 列出函数解析式,根据函数性质求最值. 解 (1)由题意,得x ∈[1,100],且x ∈N *.P (x )=R (x )-C (x )=(3 000x -20x 2)-(500x +4 000) =-20x 2+2 500x -4 000,MP (x )=P (x +1)-P (x )=[-20(x +1)2+2 500(x +1)-4 000]-(-20x 2+2 500x - 4 000)=2 480-40x .(2)P (x )=-20⎝⎛⎭⎪⎫x -12522+74 125,当x =62或x =63时,P (x )取得最大值74 120元; 因为MP (x )=2 480-40x 是减函数, 所以当x =1时,MP (x )取得最大值2 440元.故利润函数的最大值与边际利润函数的最大值之差为71 680元.二次函数是我们比较熟悉的基本函数,建立二次函数模型可以求出函数的最值,解决实际中的最优化问题,值得注意的是:一定要注意自变量的取值范围,根据图象的对称轴与定义域在数轴上表示的区间之间的位置关系讨论求解.【训练1】 经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ).前30天价格为g (t )=12t +30(1≤t ≤30,t∈N ),后20天价格为g (t )=45(31≤t ≤50,t ∈N ). (1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值. 解 (1)根据题意,得S =⎩⎨⎧-2t +200⎝ ⎛⎭⎪⎫12t +30,1≤t ≤30,t ∈N ,45-2t +200,31≤t ≤50,t ∈N=⎩⎨⎧-t 2+40t +6 000,1≤t ≤30,t ∈N ,-90t +9 000,31≤t ≤50,t ∈N .(2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400,∴当t =20时,S 的最大值为6 400; ②当31≤t ≤50,t ∈N 时,S =-90t +9 000为减函数, ∴当t =31时,S 的最大值为6 210. ∵6 210<6 400,∴当t =20时,日销售额S 有最大值6 400.考点二 指数函数模型的应用【例2】►某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线. (1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?[审题视点] 根据图象用待定系数法求出函数解析式,再分段求出时间长.解(1)设y =⎩⎨⎧kt ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -a,t >1.当t =1时,由y =4得k =4,由⎝ ⎛⎭⎪⎫121-a =4得.a =3.则y =⎩⎨⎧4t , 0≤t ≤1,⎝ ⎛⎭⎪⎫12t -3,t >1.(2)由y ≥0.25得⎩⎨⎧0≤t ≤1,4t ≥0.25,或⎩⎨⎧t >1,⎝ ⎛⎭⎪⎫12t -3≥0.25. 解得116≤t ≤5, 因此服药一次后治疗有效的时间是5-116=7916小时. 可根据图象利用待定系数法确定函数解析式,然后把实际问题转化为解不等式问题进行求解.【训练2】 某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题: (1)写出该城市人口总数y (万人)与年份x (年)的函数关系式; (2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后,该城市人口将达到120万人(精确到1年);(4)如果20年后该城市人口总数不超过120万人,年自然增长率应该控制在多少?(参考数据:1.0129≈1.113,1.01210≈1.127,lg 1.2≈0.079,lg 2≈0.3010,lg 1.012≈0.005,lg 1.009≈0.003 9)解 (1)1年后该城市人口总数为y =100+100×1.2%=100×(1+1.2%) 2年后该城市人口总数为y =100×(1+1.2%)+100×(1+1.2%)×1.2% =100×(1+1.2%)2. 3年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3.x 年后该城市人口总数为y =100×(1+1.2%)x .(2)10年后,人口总数为100×(1+1.2%)10≈112.7(万人).(3)设x 年后该城市人口将达到120万人, 即100×(1+1.2%)x=120,x =log 1.012120100=log 1.0121.20≈16(年). (4)由100×(1+x %)20≤120,得(1+x %)20≤1.2,两边取对数得20lg(1+x %)≤lg 1.2=0.079,所以lg(1+x %)≤0.07920=0.003 95, 所以1+x %≤1.009,得x ≤0.9,即年自然增长率应该控制在0.9%.一、选择题1.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p %为( )A .10%B .12%C .25%D .40%2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A .36万件B .18万件C .22万件D .9万件3.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A .100元B .110元C .150元D .190元4.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,汽车离开A 地的距离x (千米)与时间t (小时)之间的函数表达式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5150-5t x >3.5D .x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5,150 2.5<t ≤3.5150-50t -3.5 3.5<t ≤6.55.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100二、填空题6.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.7.(2011·浙江高考)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.三、解答题8.某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 0≤x ≤40080 000 x >400.其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)9.当前环境问题已成为世界关注的焦点,2009年哥本哈根世界气候大会召开后,为减少汽车尾气对城市空气的污染,某市决定对出租车实行使用液化气替代汽油的改装工程,原因是液化气燃烧后不产生二氧化硫、一氧化氮等有害气体,对大气无污染,或者说污染非常小.现有以下数据:①当前汽油价格为2.8元/升,市内出租车耗油情况是一升汽油大约跑12千米;②当前液化气价格为3元/千克,一千克液化气平均可跑15~16千米;③一辆出租车日平均行程为200千米.请根据以上数据回答问题:(1)从经济角度衡量一下使用液化气和使用汽油哪一种更经济(即省钱);(2)假设出租车改装液化气设备需花费5 000元,请问多长时间省出的钱等于改装设备花费的钱?。

6.1函数导学案

6.1函数导学案

第六章函数导学案一.学习目标1、会说出函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

二.自主学习学习内容1、课本上三个例题有什么共同特点?2、函数的概念:一般地,在某个变化过程中,有两个变量x和y,如果给定一个,相应地就确定一个,那么我们称是的函数,其中因变量,是因变量。

3、思考:常见的函数表示方法有那几种?(可以根据例题概括)三.合作交流组内互测1、课本上三个例题有什么共同特点?2、表示两个变量之间的关系有几种方法?3、小组交流,把疑难问题写在黑板上。

四、展示解疑点拨提升常见的函数表示方法有那几种?五、课堂检测:1.下列变量之间的关系中,具有函数关系的有()①三角形的面积与底边②多边形的内角和与边数③圆的面积与半径④y=12x中的y与xA.1个B.2个C.3个D.4个2.下列函数中,自变量x的取值范围是x≥2的是()A .y =x -2B .y =21-x C .y =24xD .y =2+x ·2-x3.已知函数y =212+-x x ,当x =a 时的函数值为1,则a 的值为( ) A .3B .-1C .-3D .14.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是()5.轮子每分钟旋转60转,则轮子的转数n 与时间t (分)之间的关系是__________.其中______是自变量,______是因变量.6.计划花500元购买篮球,所能购买的总数n (个)与单价a (元)的函数关系式为______,其中______是自变量,______是因变量.7.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为______.8.已知矩形的周长为24,设它的一边长为x ,那么它的面积y 与x 之间的函数关系式为______.10.已知等腰三角形的周长为20 cm ,则腰长y (cm )与底边x (cm )的函数关系式为______,其中自变量x 的取值范围是______.六、课后反思回顾本节课的内容,你有哪些收获?你还有哪些不明白的地方?。

1.2.1函数的概念导学案

1.2.1函数的概念导学案

1.2.1《函数的概念》导学案【使用说明】1、认真阅读课本,提前预习,明确基本概念,完成课前导学与自测部分, 要求:人人参与并独立完成;2、课堂积极讨论,大胆展示,发挥高效学习小组作用,完成合作探究部分;3、针对学生在预习环节可能解决不了的问题,课堂上教师进行点拨指导。

【学习目标】1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2、了解构成函数的要素,会求简单函数的定义域与值域;3、能够正确使用“区间”的符号表示某些集合.【课前导学与自测】预习教材第15-18页,找出疑惑之处,完成新知学习阅读课本,理解函数、定义域与值域的概念。

函数的定义:设A 、B 是 ,如果按照某种确定的对应关系f ,使对于集合A 中的 一个数x ,在集合B 中都有 确定的数()f x 和它对应,那么称::f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.(简称:函数()f x )其中,x 叫自变量,x 的取值范围A 叫作 (domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫 (range ).1. 在实例(1)中对应关系“f ”可以用一个式子来表示,我们就把该式子称作函数的解析式,实例(1)中的函数解析式为:2()1305h f t t t ==-,其定义域为___________;值域为___________.2.(1)已知2()23f x x x =-+,求(0)f 、(1)f 、(2)f 、(1)f -的值.(2)函数223,{1,0,1,2}y x x x =-+∈-值域是 .4.用区间表示.(1){x |x ≥a }= 、{x |x >a }= 、{x |x ≤b }= 、{x |x <b }= .(2){|01}x x x <>或= .(3)函数y 的定义域是 ,值域是 . (观察法)5.已知函数()f x =(1)求(3)f 的值;(2)求函数的定义域(用区间表示);(3*)求2(1)f a -的值.我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。

(导学案)1.1二次函数

(导学案)1.1二次函数

第一章二次函数1.1二次函数【教学目标】知识与技能1.探索并归纳二次函数的概念,熟练掌握二次函数的一般形式及自变量的取值范围。

2.能够表示简单变量之间的二次函数关系。

过程与方法:通过用二次函数表示变量之间关系的体验过程,增强对函数的感性认识,培养学生分析问题,解决问题的能力。

情感态度价值观:通过学生之间的交流合作的过程,培养学生的合作意识,体验与他人交流合作的重要性。

【教学重难点】重点:建立二次函数数学模型和理解二次函数概念。

难点:建立二次函数数学模型。

【导学过程】【情景导入】我们已知道,可以建立数学模型一次函数y=kx+b(k≠0)来刻画直线,反比例函数y=k/x(k≠0)来刻画双曲线,那么像前面所看到的曲线,我们又该建立一个什么样的数学模型来刻画它们呢?要刻画它,我们今天还需要学习一种新的函数关系———二次函数.【新知探究】探究一、植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段和篱笆墙围成一个矩形植物园。

如下图所示,已知篱笆墙的总长度为100m。

大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化. 解:设与围墙相邻的每一面墙的长度都为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积S为1)学生阅读审题,独立思考,自主探索.设与围墙相邻的每一面墙的长都为xm,则与围墙相对的一面墙的长为(100-2x)m,于是矩形植物园的面积S=x(100-2x),即S=-2x2+100x.(2)学生合作讨论x的取值范围.由x>0,100-2x>0,得0<x<50.(3)概括.由上述(1)、(2)可得关系式S=-2x2+100x,0<x<50,有了这个关系式,我们对植物园的面积S随着砌法的不同而变化的情况就了如指掌了.S=-2x2+100x,0<x<50 ①①式表示植物园的面积S与围墙相邻的一面篱笆墙长度x之间的关系,而且对于X的每一个取值,S都有唯一确定的值与它对应,即S是X的函数。

1.2.1函数的概念导学案

1.2.1函数的概念导学案

x ,输入“加工器” f (对 x 实行加工程序 f )后,生产出来产品 y 。 y f x 的
意义是: y 就是 x 在关系 f 下的对应值,而 f 是“对应”得以实现的方法和途径。 如 f x 2 x 6, f 表示 2 倍的自变量再加上 6,如 f 3 2 3 6 12 。“定义 域”就是一堆待加工的原材料,“对应法则”就是加工的程序(方法)。将每一个 原材料 x 经过加工的到相应的产品, 将所有的原材料经过加工得到的全部产品 收集起来,所形成的集合就是函数的值域,“值域”是产品,是被动生成的。函 数的定义域、对应法则、、值域被称为函数的三要素,其实起决定作用的只是 函数的定义域和对应法则。 对于“原料→加工→产品”的生产流程,显然“原料”是重要的。巧妇难为无 米之炊, “米”一定是要有的, 即函数的定义域不能是空集。 而且有什么样的“米”, 有多少“米”,一般都会影响整个加工过程。由此可见,对于函数而言,“米”是 重要的。故要研究函数先看“米”,有人甚至说:“定义域是函数的灵魂!” 从产品的角度来看,既要有“米”,还要看加工的流程工艺(方法)。不
,与 x 值相对应的 y 值叫做 .
2. y x ( x 0) 是函数吗?
3. y
x - 3 1 x 是函数吗?
1
4. 问题 1:下列给出的四个图形中,是函数图象的是: (

A、①
B、①③④
B、①②③
D、③④
5.下列对应是否是 A 到 B 的函数 A:A=Z,B= N ,f:x→y=|x| B:A={0,1,2,4},B={0,1,4,9,64},f:x→y=(x-1) C:A=B=R,f:x→y=
【强调】①值域由_________和______________唯一确定;f(x)是函数符号,f 表示对应 关系,f(x)表示 x 对应的函数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等.函数除了可用符号 f(x)表示外, 还可用 g(x),F(x)等表示. ②常见函数的定义域与值域. 函数 一次函数 二次函数 解析式 定义域 值域

导学案013函数的应用教案

导学案013函数的应用教案

函数的应用考纲要求1.考查二次函数模型的建立及最值问题.2.考查分段函数模型的建立及最值问题.3.考查指数(型)、对数(型)、幂函数(型)函数模型的建立及最值问题.考情分析1.现实生活中的生产经营、环境保护、工程建设等热点问题中的增长、减少问题,一次函数、二次函数、指数函数、对数函数模型等问题是重点,也是难点,主要考查建模能力及分析问题和解决问题的能力;2.题型方面选择题、填空题及解答题都有所体现,但以解答题为主.教学过程基础梳理1.常见的函数模型及性质(1)几类函数模型①一次函数模型:y=kx+b(k≠0).②二次函数模型:y=ax2+bx+c(a≠0).③指数函数型模型:y=ab x+c(b>0,b≠1).④对数函数型模型:y=m log a x+n(a>0,a≠1).⑤幂函数型模型:y=ax n+b.(2)三种函数模型的性质函数性质y=a x(a>1) y=logax(a>1) y=x n(n>0)在(0,+∞)上的增减性增长速度图象的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x双基自测1.若22x x ,则x 的取值范围是____________。

2.(2012·新乡月考)某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ).A .100台B .120台C .150台D .180台3.有一批材料可以围成200米长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为( ).A .1 000米2B .2 000米2C .2 500米2D .3 000米24.(2011·湖北)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震最大振幅的________倍.5.(2012·东三校联考)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x -2,解得x =4.答案 4典例分析考点一一次函数、二次函数函数模型的应用【例1】(2012·温州模拟)西部大开发是中华人民共和国中央政府的一项政策,提高了西部的经济和社会发展水平.西部山区的某种特产由于运输原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=-1160(x-40)2+100万元.当地政府借助大开发拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划前后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=-159160(60-x)2+1192(60-x)万元.问从10年的总利润看,该规划方案是否具有实施价值?变式1.(2012·嘉兴月考)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系如图所示.则通话费y1,y2与通话时间x之间的函数关系式分别为________,________.:1.在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0),构建一次函数模型,利用一次函数的图象与单调性求解.2. 有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图象与单调性解决.3.在解决二次函数的应用问题时,一定要注意定义域.考点二、分段函数模型例2 经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=12t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).(1)写出该种商品的日销售额S与时间t的函数关系;(2)求日销售额S的最大值.1.分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.2.构造分段函数时,要力求准确、简洁,做到分段合理不重不漏.考点三、指数函数模型的应用【例3】►某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?:可根据图象利用待定系数法确定函数解析式,然后把实际问题转化为解不等式问题进行求解.变式:某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后,该城市人口将达到120万人(精确到1年);(4)如果20年后该城市人口总数不超过120万人,年自然增长率应该控制在多少?(参考数据:1.0129≈1.113,1.01210≈1.127,lg 1.2≈0.079,lg 2≈0.3010,lg 1.012≈0.005,lg 1.009≈0.003 9)解(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%)2年后该城市人口总数为y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2.3年后该城市人口总数为y=100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3.x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后,人口总数为100×(1+1.2%)10≈112.7(万人).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.20≈16(年).(4)由100×(1+x%)20≤120,得(1+x%)20≤1.2,两边取对数得20lg(1+x%)≤lg1.2=0.079,所以lg(1+x%)≤0.07920=0.003 95,所以1+x%≤1.009,得x≤0.9,即年自然增长率应该控制在0.9%.[考题范例](12分)(2012·天津质检)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支 2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?[规范解答]设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2000,①由销量图易得Q =⎩⎪⎨⎪⎧ -2P +50 (14≤P ≤20),-32P +40 (20<P ≤26),(2分)代入①式得L =⎩⎪⎨⎪⎧ (-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝ ⎛⎭⎪⎫-32P +40(P -14)×100-5 600 (20<P ≤26),(4分)(1)当14≤P ≤20时,L max =450元,此时P =19.5元;当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元. (8分)(2)设可在n 年内脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫. (12分)一个防范特别关注实际问题的自变量的取值范围,合理确定函数的定义域.四个步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质;(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题;(3)解模:用数学知识和方法解决转化出的数学问题;(4)还原:回到题目本身,检验结果的实际意义,给出结论.本节检测1.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为( ) A.10% B.12%C.25% D.40%2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A.36万件 B.18万件C.22万件 D.9万件3.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A.100元 B.110元C.150元 D.190元4.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.5.(2011·浙江高考)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________.自我反思。

【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc

【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc

1-2.1《函数的概念》(1)导学案【学习目标】1.通垃事富更例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2.了解构成函数的要素;3.能够正确使用“区间”的符号表示某些集合.【重点难点】重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念;难点:对函数概念及符号y于(兀)的理解。

【知识链接】(预习教材PQ Pm找出疑惑之处)复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?复习2:(初中对函数的定义)在一个变化过程中,有两个变量兀和y,对于兀的每一个确定的值,y 都有唯一的值与之对应,此时y是兀的函数,x是自变量,y是因变量.表示方法有:解析法、列表法、图象法.【学习过程】探学习探究探究任务一:函数模型思想及函数概念问题:研处下面三个实例:A.一枚炮弹发射,经26秒后落地击屮目标,射高为845米, 且炮弹距地面高度h(米)与吋间t(秒)的变化规律是/? = 130r-5r2.B.近儿十年,大气层屮臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.C.国际上常用恩格尔系数(食物支出金额三总支出金额)反映一个国家人民生活质量的高低.“八五”计划以來我们城镇居民的恩格尔系数如下表.年份19911992199319941995• • •恩格尔系53.852.950. 149.949.9• • •数%讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集力屮的每一个x,按照某种对应关系在数集〃屮都与唯一确定的y和它对应,记作:£A T B.新知:函数定义.设儿〃是非空数集,如果按照某种确定的对应关系使对于集合/中的任意一个数兀,在集合B中都有唯一确定的数/(x)和它对应,那么称f A T B为从集合A到集合B的一个函数(/unction),记作:y = /'(x), XG A.其中,x叫自变量,无的取值范围力叫作定义域(domain),与兀的值对应的y值叫函数值,函数值的集合{/(X)\XE A}叫值域(range).试试:(1)已知/(X)= X2-2X +3,求/(0)、/(I)、/⑵、/(-I)的值.(2)函数尸兀$ 一?兀+ 3, {-1,0,1,2}值域是,反思:(1)值域与〃的关系是__________ ;构成函数的三要素是________________(2)常见函数的定义域与值域.探究任务二:区间及写法新知:设e?、b是两个实数,且曰〈力,贝】J:{x\a<x<b} = [a9b]叫闭区间;{x\a<x<b} = (a,b)叫开区间;{x\a<x<b} = [a,b) , {x\a<x<b} = (a,b]都叫半开半闭区间.实数集R用区间(-OO,+OO)表示,其中“8”读“无穷大”;“一8”读“负无穷大”;“+8”读“正无穷大”・试试:用区间表示.(1){x\x^a\ -_____________ 、{x\x>a} = __________{兀 | xW份二________ 、{x | x< b} = _________(2){无|兀vO弧>1}= __________ .(3)函数y=旅的定义域_____________ ,值域是 ___________ .(观察法)探典型例题例1已知函数f(X)= Vx + 1 .(1)求于⑶的值;(2)求函数的定义域(用区间表示);(3)求f(a2-})的值.变式: 己知函数f(x)=(1)求/⑶的值;(2)求函数的定义域(用区间表示);(3)求的值.探动手试试练].已知函数f(x) = 3x2+5x-29求/⑶、/(-血)、f(a +1)的值.练2.求函数/心治的定义域.【学习反思】探学习小结①函数模型应用思想;②函数概念;③二次函数的值域;④区间表示. 探知识拓展求函数定义域的规则:①分式:y 则&(兀)工0;• g(x)②偶次根式:y = 2V7w(«e/v4),贝Ij/(x)>o;③零次幕式:y = [/(x)]°,则/(x)^0.【基础达标】探自我评价你完成本节导学案的情况为( ).A.很好B.较好C. 一般D.较差探当堂检测(时量:5分钊|满分:10分)计分:1.已知函数g(/) = 2/2—l,贝ijg(l)=( ).A. 一1 ・・B. 0C. 1D. 22.函数f(x) = Vl-2x的定义域是( ).A- [g,+°°)丘(*,+°°)C.(-°°,*]D.(-汽*)3.已知函数/(x) = 2x + 3,若f(a) = i ,则沪().A. -2B. -1C. 1D. 24.函数y = x2,XG {-2,-1,0,1,2}的值域是__________ .25.函数y =--的定义域是__________________________ ,值域是 _______________ (用区间表示)心…丄拓展提升】1.求函数y =—的定义域与值域.x-12.已知y = f ⑴=&- 2 , t(x) = x2 +2x+ 3 .(1)求r(0)的值;(2)求/⑴的定义域;(3)试用x表示y.亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的, 在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!。

导学案011(函数与方程)

导学案011(函数与方程)

函数与方程一、考纲要求函数与方程是紧密联系、相辅相成的关系,在一定条件下,它们可以相互转化,初等函数的解析式就是二元方程,函数的研究离不开方程,而研究方程的问题有需要函数的性质和图象辅助,函数与方程是高考考查的重点内容.在高考中一般一填空的形式考查函数零点、二分法等知识.函数与方程(A 级要求); 二、复习目标1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法. 三、重点难点函数零点的概念及用“二分法”求方程的近似解,使学生初步形成用函数观点处理问题的意识. 四、要点梳理1.函数的零点:一般地,如果函数()y f x =在实数c 处的值等于_____,即:______,则c 叫做这个函数的零点。

2.函数零点的判断 : 如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有_______________,则函数()y f x =在区间________内有零点,即存在(),c a b ∈使得()0f c =,即c 为函数()y f x =的一个零点,即c 为方程()0f x =的一个根。

对函数零点存在性定理的理解(1)并不是所有的函数都有零点,如函数y =1x.(2)函数y =f(x)如果满足:①函数在区间[a ,b]上的图象是连续不断的一条曲线,②f(a)·f(b)<0,则函数y =f(x)在区间(a ,b)内有零点.(3)对于有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数y =x 2有零点x 0=0,但显然函数值没有变号.但是,对于任意一个函数,相邻的两个零点之间所有的函数值保持同号.(4)函数在区间[a ,b]上的图象是连续不断的一条曲线,且在区间(a ,b)上单调,若f(a)·f(b)<0,则函数y =f(x)在(a ,b)内有且只有一个零点.但要注意:如果函数y =f(x)在[a ,b]上的图象是连续不断的曲线,且x 0是函数在这个区间上的一个零点,却不一定有f(a)·f(b)<0.3.二分法 对于在区间[],a b 上连续不断,且__________________的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两端点逐步逼近零点,近而得到零点的近似值的方法叫做二分法。

函数的基本性质导学案

函数的基本性质导学案

1.3.1函数的基本性质使用说明:“自主学习”7分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。

“巩固练习”8分钟,组长负责,组内点评。

“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。

能力展示10分钟,教师作出总结性点评。

通过本节学习应达到如下目标:1,初步理解增函数、减函数、函数的单调性、单调区间的概念, 2,掌握判断一些简单函数单调性的方法.3,学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;领会数形结合的数学思想方法,培养发现问题、分析问题、解决问题的能力.4,在函数单调性的学习过程中,学生体验数学的科学价值和应用价值,培养善于观察、勇于探索的良好习惯和严谨的科学态度.重点、难点1,函数单调性的有关概念的理解和证明; 2,利用函数单调性的概念判断或证明函数单调性.学习过程: (一)、自主学习1.观察函数 y=x+2, y=-x+2, y=x 2, y=x1的图象.思考:1)上述图象有什么变化规律?对于自变量的变化,相应的函数值有哪些变化规律?2)对于2x y ,列出y x ,的对应值表,并体会图象在y 轴右侧的上升x…… -3 -2 -1 0 1 2 3 ……2x y =3)在数学上规定:2x y =在区间(0,+∞)是增函数,请给出增函数的定义。

4)增函数定义中“当21x x <时,都有)()(21x f x f <”反映了函数值有什么变化?函数的图象有什么特点?5)增函数的几何意义是什么?6)类比增函数的定义,请给出减函数的定义,并说明其几何意义。

(7)函数的单调性和单调区间的定义是什么?(二) 合作探究例1 、如图,定义在闭区间[-5,5]上的函数y=f (x)的图象,根据图象说出y=f (x)的单调区间,以及在每一单调区间上,函数y=f (x)是增函数还是减函数。

人教版新课程《3.4 函数的应用(一)》导学案(2套)

人教版新课程《3.4   函数的应用(一)》导学案(2套)

3.4 函数的应用(一)1.能够利用给定的函数模型或建立函数模型解决实际问题;2.经历建立函数模型解决实际问题的过程,提高综合运用数学知识和方法解决实际问题的能力。

1.教学重点:建立函数模型解决实际问题;2.教学难点:选择适当的方案和函数模型解决实际问题。

1.一次函数、反比例函数、二次函数、幂函数的解析式分别是什么?一次函数:;反比例函数:;二次函数:;幂函数:。

一、探索新知例1 .设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元).(1)求y关于x的函数解析式;(2)如果小王全年的综合所得由189600元增加到249600元,那么他全年应缴纳多少综合所得个税?例2 一辆汽车在某段路程中的行驶速率v(单位:km/h)与时间t(单位:h)的关系如图1所示,(1)求图1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.1.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.3.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费多少元;(2)当x⩾100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?这节课你的收获是什么?参考答案:知识梳理:一次函数:)0(≠+=k b kx y 反比例函数:)0(≠=k x k y二次函数:)0(2≠++=a c bx ax y 幂函数 )(为常数ααx y = 学习过程:例题解析见教材93页例1.,94页例2. 达标检测1.【解析】 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,∴0.12a =270,解得a =2 250. ∴每台彩电的原价为2 250元. 【答案】 2 2502.【解析】 L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500,当Q =300时,L (Q )的最大值为2 500万元. 【答案】 2 500【新教材】3.4 函数的应用(一)(人教A 版)1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.一、预习导入阅读课本93-94页,填写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数的概念导学案
一、集合有关概念 1、集合:(原始概念)具有某种共同特征的事物的全体 2、元素:确定性;互异性;无序性。

二、集合与集合的关系
1、子集:若
,则

若集合中元素个数为 2、真子集:
,且
中至少有一个元素不属于
; 若集合中元素个数为真子集为

3、空集:
(1)是任何集合的子集; (2)是任何非空集合的真子集。

例、求满足
的集合有___________个;满足
的集合有___________个。

三、集合的运算及运算律 1、交集: 2、并集:
3、补集: a 、交换律: b 、结合律:;
四、求函数的定义域:
示例:求函数y =4-x 2+
1
x -1
的定义域 五、求函数的值域与最值: 示例:求下列函数的值域:
①y =2x +1,x ∈{1,2,3,4,5} ②y =x 2-2x -3,x ∈[0,3]
③y =2x -x +1 ④y =1
x 2-2x +3
六、求函数的解析式:
示例:若f (x )为二次函数,且f (0)=2,f (2-x )-f (x )=0,f (1)=-2,求f (x )的解析式 解:∵f (x )为二次函数,∴设f (x )=ax 2+bx +c (a ≠0) ∵f (0)=2,f (2-x )-f (x )=0,f (1)=-2, ∴c =2,a +b +c =-2,∴a +b =-4,
ax 2+bx +c =a (2-x )2+b (2-x )+c , ∴b =-2a , ∴a =4,b =-8,
∴f (x )=4x 2-8x +2 (待定系数法) 已知f (x +1 )=x +3,求f (x )的解析式子 (换元法)
解:令x +1=t ,则t ≥1,x =(t -1)2, ∴f (t )=(t -1)2+3=t 2-2t +4,t ≥1, ∴f (x )=x 2-2x +4,x ≥1,
七、判断、证明函数的单调性
判断函数y =x +1
x -1
的单调性,证明你的结论
解:函数y =x +1
x -1
在区间(1,+∞)递数,在区间(-∞,1) 递数
任取x 1,x 2 ∈(-∞,1), x 1<x 2,y 1-y 2=x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)
(x 1-1)(x 2-1),
∵x 1,x 2∈(1,+∞),∴x 1-1>0,x 2-1>0,又∵x 1<x 2,∴x 2-x 1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),
∴f (x )=x +1
x -1
在区间(1,+∞)上是减函数.
八、判断函数的奇偶性:
示例;判断下列函数的奇函数:①f (x )=x 3+5x ②f (x )=|x |(x 2+1) ③f (x )=1-x 2+x 2-1 方法:①先求函数定义域,并判断定义域是否关于数“0”对称;
②计算f (-x ),
③根据f (-x )与f (x )的关系判断函数的奇偶性
已知函数f (x )=(m -2)x 2+(m -1)x +3是偶函数,则m =___________. 九、作函数的图象:
示例:作下列函数的单调性,并根据函数图象说出函数的值域,单调区间 ①f (x )=2x +1 ②f (x )=x 2+3x -4 ③y =|x -2|+|2x +3| ④y =|x |(x +1)
十、函数性质的应用:
示例:偶函数f (x ),当x ≥0时,f (x )=x 2-x ,求当x <0时, f (x )的解析式 解:当x <0时,-x >0,f (-x )=(-x )2-(-x )=x 2+x ,
∵f (x )为偶函数,∴f (x )=f (-x )=x 2+x , ∴当x <0时, f (x )=x 2+x
定义在(-1,1)上的奇函数f (x ),若f (x )在(-1,1)上递减,若f (2a -1)+f (a -1)>0,
求实数a 的取值范围
解:∵f (x )为奇函数,∴f (2a -1)+f (a -1)>0可化为f (2a -1)>-f (a -1)=f (1-a )
∵f (x )在(-1,1)上递减,∴⎩⎪⎨⎪⎧-1<2a -1<1,-1<1-a <1,2a -1<1-a .
∴0<a <2
3
奇函数f (x )在区间(-∞,0)上单调递增,判断f (x )在区间(0, +∞)上的单调性,并证明
解:f (x )在区间(0, +∞)上的单调递增
任取x 1,x 2 ∈(0, +∞), x 1<x 2,则-x 1,-x 2∈ (-∞,0),-x 1>-x 2, ∵f (x )在区间(-∞,0)上单调递增,∴f (-x 1)>f (-x 2), ∵f (x )为奇函数,∴-f (x 1)>-f (x 2),即f (x 1)<f (x 2), ∴f (x )在区间(0, +∞)上的单调递增
十一、判断一个对应是否是映射?
判断下列映射是不是集合A 到集合B 的映射;
①A ={1,2,3},B ={1,4,5,6},对应法则f :求平方.
②A ={1,2,-1,-2},B ={1,-1,2,-2},对应法则f :求平方根. ③A ={1,2,3},B ={1,3
2,3
3},对应法则f :求立方根. ④A ={0,1,2,
3},B ={0,1,12,1
3},对应法则f :求倒数.
判别方法:A中的每一个元素在f 下,在B中都有惟一的元素与之对应
训练案
1、设全集U R =,集合2
{|1},{|1}M x x P x x =>=>,则下列关系中正确的是( )
A. P=M
B. P M ⊆
C. M P ⊆
D. ()U C M P =∅
2、已知全集U R =,则正确表示集合{1,0,1}M =-和{}
2
|0N x x x =+=关系的韦恩(Venn )
图是 ( )
3、设集合22
{|},{|}A s s t B t s t ====,则下列关系正确的是( ) A .A B ⊆ B. A B = C. A B B =
D.
A B B =
二、填空题
4、集合{}0,2,A a =,{}
2
1,B a =,若{}0,1,2,4,16A B = ,则a 的值为
_________.
5、设集合{(,)|46},{(,)|327}A x y x y B x
y x y =+=
=+=,则满足()C A B ⊆ 的集合C 是__________-
6、函数2(),()21,f x x g x x ==-则(0)g =__________; [(0)]f g =__________; 三、解答题
7、(共30分)
(1)求下列函数的定义域。

(每小题5分,共15分)
①1()2f x x =- ②0
()f x =
③()f x =
8、设集合22
{|20},{|220}A x x x B x x kx =--==-+=,若A B A = ,求实数k 的取值范围。

相关文档
最新文档