2011届高考数学第一轮点拨复习测试题25
2011全国一高考数学(理)word版、可编辑、高清无水印
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅰ卷第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k =(A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A)13(B)3(C)6(D)9(6)已知直二面角α− ι−β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D 为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(A)23(B)33(C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种(B)10种(C)18种(D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14-(C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于(A)2 (B)3 (c)2 (D)1绝密★启用前2011年普通高等学校招生全国统一考试 理科数学(必修+选修II) 第Ⅱ卷 注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
高考数学一轮复习知识点与练习随机事件的概率
第卜二章概率、随机变就及其概率分布§12.1随机事件的概率基础知识自主学习U知识梳理要覇讲解深层娈破1. 概率和频率(1) 在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A 为事件A出现的频数,称事件A出现的比例f n(A)= nA为事件A出现的频率.(2) 对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).2. 事件的关系与运算定义付号表示包含关系如果事件A发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B? A(或A? B)相等关系若B? A且A? B A = B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A U B(或A + B)父事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A n B(或AB)互斥事件若A A B为不可能事件(A n B= ?),则称事件A与事件B互斥A nB = ?对立事件若A n B为不可能事件,A U B为必然事件,那么称事件A与事件B互为对立事件P(A)+ P(B)=13. 概率的几个基本性质(1) 概率的取值范围:0W P(A)w 1.(2) 必然事件的概率P(E) = 1.⑶不可能事件的概率P( F) = 0.(4) 概率的加法公式如果事件A与事件B互斥,则P(A U B)= P(A) + P(B).(5) 对立事件的概率若事件A与事件B互为对立事件,则P(A) = 1 —P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确(请在括号中打“V”或“X”)(1) 事件发生频率与概率是相同的. ()(2) 随机事件和随机试验是一回事. ()(3) 在大量重复试验中,概率是频率的稳定值. ()(4) 两个事件的和事件是指两个事件都得发生. ()(5) 对立事件- -定是互斥事件,互斥事件不一定是对立事件. ()(6) 两互斥事件的概率和为 1.( )考点自测伏速解普自查自纠1. 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________ .①至多有一次中靶②两次都中靶③只有一次中靶④两次都不中靶2. 从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为_________ .3. (2015湖北改编)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为___________ 石.专注•专业•口碑•极致-2 -4. ___________________________________________ 给出下列三个命题,其中正确的命题有个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,3结果3次出现正面,因此正面出现的概率是7;③随机事件发生的频率就是这个随机事件发生的概率.5. _____________________________________ (教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为.题型分类深度剖析题型一事件关系的判断例1某城市有甲、乙两种报纸供居民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订” •判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.思维升华对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件•这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.W' 判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中①恰有1名男生和恰有2名男生;②至少有1名男生和至少有1名女生;③至少有1名男生和全是女生.题型二随机事件的频率与概率例2 (2015北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整专注•专业•口碑•极致⑴估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;⑶如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?思维升华(1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.」艮打.Ul.^. 2 某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1) 计算表中乒乓球优等品的频率;(2) 从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)题型三互斥事件、对立事件的概率命题点1互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是*得到黑球或黄球的概率是—,得到黄球或绿球的概率也是—,试求得到黑球、黄球和绿球的概率各是多12 12少?命题点2对立事件的概率例4某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个•设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:(1) P(A), P(B), P(C);(2) 1张奖券的中奖概率;(3) 1张奖券不中特等奖且不中一等奖的概率.思维升华求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A) = 1- P( A)求解•当题目涉及“至多”“至少”型问题时,多考虑间接法.比二"和"国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7〜10环的概率如下表所示:求该射击队员射击一次:(1) 射中9环或10环的概率;(2) 命中不足8环的概率.21 •用正难则反思想求互斥事件的概率典例(14分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示(1) 确定x, y的值,并估计顾客一次购物的结算时间的平均值;(2) 求一位顾客一次购物的结算时间不超过..2分钟的概率.(将频率视为概率)思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反思想求解.温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式. 易错提示(1)对统计表的信息不理解,错求x, y,难以用样本平均数估计总体. (2)不能正确地把事件A转化为几个互斥事件的和或对立事件,导致计算错误.——■ ■思想方法感悟提高[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A).2•从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A的对立事件~A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集. [失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2•需准确理解题意,特别留心“至多””“至少””“不少于”” 等语句的含义.练出高分A组专项基础训练(时间:45分钟)事件N: “只有一次出现反面”,1.下列命题:①将一枚硬币抛两次,设事件M : “两次出现正面”,-6 -专注•专业•口碑•极致则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B互为对立事件;④若事件A与B互为对立事件,则事件A U B为必然事件,其中,真命题是_________________ .1 122•围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为刁,都是白子的概率是35,则从中任意取出2粒恰好是同一色的概率是___________ •3. 从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C= {抽到三等品},且已知P(A)= 0.65, P(B)= 0.2 , P(C)= 0.1,则事件“抽到的产品不是一等品”的概率为4. 从存放的号码分别为1,2,3 , , , 10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到次数138576131810119则取到号码为奇数的卡片的频率是__________5•对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图•根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品•用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为 ________ .6. 在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________ 是必然事件;________ 是不可能事件; _________ 是随机事件.7. 已知某运动员每次投篮命中的概率都为40% ,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果•经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为 ____________ .&若随机事件A, B互斥,A, B发生的概率均不等于0,且P(A) = 2- a, P(B)= 4a —5,则实数a的取值范围是_______________9. (2014陕西)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1) 若额的概率;(2) 在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为 4 000元的概率.10. 从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为 4.(1)求第七组的频率;⑵估计该校的800名男生的身高的中位数以及身高在180 cm以上洽180 cm)的人数;(3) 若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x, y,事件E={|x—y|w5},事件 F = {|x—y|>15},求P(E U F).B组专项能力提升(时间:25分钟)11. 在一次随机试验中,彼此互斥的事件A, B, C, D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是_______________ .① A + B与C是互斥事件,也是对立事件;② B + C与D是互斥事件,也是对立事件;③ A + C与B+ D是互斥事件,但不是对立事件;④A与B+ C+ D是互斥事件,也是对立事件.12. 如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成均成绩超过乙的平均成绩的概率为__________甲乙9 £g 3 3 72 1 09■ 9绩,其中一个数字被污损,则甲的平4 113. 若A, B互为对立事件,其概率分别为P(A) = x,P(B)= y,且Q0,y>0,则X+ y的最小值为14. 如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查, 调查结果如下:选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;⑵分别求通过路径L i和L2所用时间落在上表中各时间段内的频率;⑶现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.15日期123456789101112131415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(2) 西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.。
2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc
2011 年普通高等学校招生全国统一考试数学理试题(全国卷,含答案)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。
第Ⅰ卷 1 至 2 页。
第Ⅱ卷 3 至 4 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前, 考生在答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
..........3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
一、选择题(1) 复数 z 1i , z 为 z 的共轭复数,则 zz z 1( A ) 2i( B ) i( C ) i( D ) 2i【答案】 B(2) 函数 y 2 x( x 0) 的反函数为( A ) yx 2( x R)( B )4( C )y 4x 2( x R)( )Dyx 2( x 0)4y 4x 2 ( x 0) 【答案】 B(3) 下面四个条件中,使 a b 成立的充分而不必要的条件是( A ) a >b 1( B ) a >b 1(C ) a 2> b 2( D ) a 3> b 3【答案】 A(4) 设 S n 为等差数列a n 的前 n 项和,若 a 1 1,公差 d2 , S k 2 S k 24 ,则 k( A ) 8 (B ) 7( C ) 6( D ) 5【答案】 D(5) 设函数 f ( x) cos x(0) ,将 yf ( x) 的图像向右平移个单位长度后,所得的图3像与原图像重合,则的最小值等于( A )1(B ) 3(C ) 6( D ) 93【答案】 C(6) 已知直二面角l , 点 A , AC l , C 为垂足 , B , BD l , D 为垂足.若 AB2, AC BD 1,则 D 到平面 ABC 的距离等于2 (B) 36 (D) 1(A)3 (C)33【答案】 CA(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友每位朋友 1 本,则不同的赠送方法共有(A) 4 种(B)10 种(C)18 种(D)20 种lD【答案】 BCB E(8) 曲线 y e 2 x1在点 (0,2) 处的切线与直线 y 0 和 y x 围 成的三角形的面积为(A)1(B)1 (C)2 (D)1323【答案】 A(9) 设 f ( x) 是周期为 2 的奇函数,当 0x 1 时, f (x)2x(1 x) , 则 f (5 )11112(A) -(B)(C)(D)2442【答案】 A(10) 已知抛物线C : y 24x 的焦点为 F ,直线 y2x 4 与 C 交于 A , B 两点.则cos AFB(A)4(B)3 (C)3 (D)4 5555【答案】 D(11) 已知平面 α截一球面得圆 M ,过圆心 M 且与 α 成 600 二面角的平面 β 截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4 ,则圆 N 的面积为(A) 7 (B) 9(C)11(D)13【答案】 D(12) r r rr rr r 1 rr r rr设向量 a , b , c 满足 | a | | b |1, agb, ac,bc60 ,则 | c | 的最大值2等于(A) 2 (B)3(c)2(D) 1【答案】 AB绝密★启用前2011 年普通高等学校招生全国统一考试ACD理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 答题前,考生先在答题卡上用直径0. 5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011届高考数学第一轮复习全套系列专项测试题(含详解):32
·高三数学·单元测试卷(十一)第十一单元 排列组合、二项式定理(时量:120分钟 150分)一、选择题:本大题共18小题,每小题5分,共90分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .1024更多成套系列资源请您访问: (请按ctrl 键单击网址) 成套资源仅2元,以最低成本为您服务,谢谢您的大力支持,欢迎您的宝贵意见!5.如果(n x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是A .6810C xB .5710C xC .468C xD .611C x6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有A.24种B.36种C.60种D.66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为A.8 B.9 C.10 D.11 17.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有A.36种B.42种C.50种D.72种18.若1021022 012100210139 ),()()x a a x a x a x a a a a a a =+++⋯+++⋯+-++⋯+则的值为A.0 B.2 C.-1 D.1答题卡二、填空题:本大题共6小题,每小题4分,共24分.把答案填在横线上.19.某电子器件的电路中,在A,B之间有C,D,E,F四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A,B间电路不通,则焊点脱落的不同情况有种.20.设f(x)=x5-5x4+10x3-10x2+5x+1,则f(x)的反函数f-1(x)=.21.正整数a1a2…a n…a2n-2a2n-1称为凹数,如果a1>a2>…a n,且a2n-1>a2n-2>…>a n,其中a i(i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3(a1≠a3)共有个(用数字作答).22.如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4.23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分):2.B 分三步:33425154545474.C C C C C C ++=3.C 46312.C -=4.B 分8类:34510121012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为555561010T C x C x==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0. 14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有2212264544242().C C A C A -+=种 18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
【步步高】高考数学第一轮密集复习(基础知识+题型分类+练出高分,单独配设思想方法详细点拨)第二章
基础知识·自主学习
要点梳理
2.函数的最值 前提 设函数 y=f(x)的定义域为 I, 如果存在实数 M 满足 (1)对于任意 x∈I,都 条件 有 f(x)≤M ; (2)存在 x0∈I,使得 (3)对于任意 x∈I,都 有 f(x)≥M ; . (4)存在 x0∈I,使得
知识回顾 理清教材
f(x0)=M .
利用函数的单调性求参数或参 数的取值范围,解题思路为视 参数为已知数,依据函数的图 象或单调性定义,确定函数的 单调区间,与已知单调区间比 较求参.
当 0<x1<x2≤ a时,0<x1x2<a,又 x1-x2<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2), 所以函数 f(x)在(0, a]上是减函数; 当 a≤x1<x2 时,x1x2>a,又 x1-x2<0,
所以 f(x1)-f(x2)<0,即 f(x1)<f(x2),
所以函数 f(x)在[ a,+∞)上是增函数.
又∵a>0,
∴x2-x1>0,x1x2+1>0,
的单调性.
∴f(x1)-f(x2)>0,
∴函数 f(x)在(-1,1)上为减函数.
题型分类·深度剖析
题型一 函数单调性的判断
思维启迪 解析 思维升华
利用定义法证明或判断函数单调
【例 1 】 讨论函数 f(x) = 性的步骤: ax (a>0)在 x∈(-1,1)上 2 x -1 的单调性.
结论 M 为最大值
f ( x0 ) = M
M 为最小值
基础知识·自主学习
夯基释疑
夯实基 (2) √ (3) × (4) × (5) √ (6) ×
高考数学一轮总复习 第十章 排列与组合
组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数
(1)从中任取4张,共有________种不同取法;
(3)甲、乙两人至少有一人参加,有多少种选法?
• 拓直展接提法高 求把解符排合列条应件用的问排题列的数主直要接方列法式计算
优先法 优先安排特殊元素或特殊位置
故共有 C16C25C33=60(种).
(2)有序不均匀分组问题. 由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑 再分配,共有 C16C25C33A33=360(种). (3)无序均匀分组问题. 先分三步,则应是 C26C24C22种方法,但是这里出现了重复.不 妨记六本书为 A,B,C,D,E,F,若第一步取了 AB,第二步 取了 CD,第三步取了 EF,记该种分法为(AB,CD,EF),则 C26C24C22种分法中还有(AB,EF,CD),
拓展提高 组合问题常有以下两类题型:
法二 (特殊位置优先法)首尾位置可安排另 6 人中的两人, 拓展提高 均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还
是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关;
正难则有反、A等价26种转化排的方法法 ,其他有 A55种排法,共有 A26A55=3 600(种).
• 思路点拨 要注意分析特殊元素是“含”、“不含”、“至少”、 “至多”.
[解] (1)共有 C318=816(种). (2)共有 C518=8 568(种). (3)分两类:甲、乙中有一人参加,甲、乙都参加,共有 C12C418+C318=6 936(种). (4)(间接法):由总数中减去五名都是内科医生和五名都是 外科医生的选法种数,得 C520-(C512+C58)=14 656(种).
函数的单调性与最值+课件——2025届高三数学一轮复习
例1 已知函数,且,讨论 的单调性.
[思路点拨] 先分离常数,再根据定义判断函数的单调性,注意分 和 两种情况进行讨论.
解:函数,设,,且 ,则 ,当时,在上单调递增,由,得 ,所以,又, ,所以,即 ,此时在 上单调递增;当时,在 上单调递减,由,得,所以 ,又,,所以 ,即,此时在 上单调递减.综上,当时,函数在 上单调递增;当时,函数在 上单调递减.
单调性
单调区间
续表
3.函数的最值
前提
一般地,设函数的定义域为,如果存在实数 满足
条件
,都有____________; ,使得_____________
,都有____________; ,使得_____________
结论
为最大值
为最小值
几何意义
图象上最高点的_________
图象上最低点的_________
变式题 (多选题)下列函数在其定义域内是增函数的为( )
BD
A. B. C. D.
[解析] 对于A,画出函数 的图象如图所示,易知函数 在其定义域内不是增函数,故A错误;对于B,因为函数是增函数, 是减函数,所以是 上的增函数,故B正确;对于C,函数是减函数,而 为增函数,
在定义域 上为减函数,故C错误;对于D,的定义域为,在上恒成立,故 是上的增函数,故D正确.故选 .
(2)开区间上的“单峰”函数一定存在最大值或最小值.
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 函数 的单调递增区间是_______,单调递减区间是________.
[解析] 由函数的图象可得 的单调递增区间是,单调递减区间是 .
2.[教材改编] 函数 的最大值为___,最小值为___.
高三数学第一轮复习 第十二章《概率和统计》课件
• 探究2 等可能事件的概率,首先要弄清楚试验结果是不 是“等可能”,其次要正确求出基本事件总数和事件A所 包含的基本事件的个数.
• 思考题2 某汽车站每天均有3辆开往省城济南的分为上、 中、下等级的客车,某天袁先生准备在该汽车站乘车前 往济南办事,但他不知道客车的车况,也不知道发车顺 序.为了尽可能乘上上等车,他采取如下策略:先放过 一辆,如果第二辆比第一辆好则上第二辆,否则上第三 辆.那么他乘上上等车的概率为__________.
4.一个坛子里有编号 1,2,…,12 的 12 个大小相同
的球,其中 1 到 6 号球是红球,其余的是黑球,若从中
任取两个球,则取到的都是红球,且至少有 1 个球的号
码是偶数的概率为( )
1
1
A.22
B.11
3
2
C.22
D.11
解析 分类:一类是两球号均为偶数且为红球,有 C32 种取法;另一类是两球号码是一奇一偶有 C31C31 种取 法
• 思考题1 掷两颗均匀的普通骰子,两个点数和为x(其中 x∈N*).
• ①记事件A:x=5,写出事件A包含的基本事件,并求P(A);
• ②求x≥10时的概率.
• 【分析】 每一次试验得到的是两颗骰子的点数,所以 每一个基本事件都对应着有序数对.
【解析】 ①每次试验两颗骰子出现的点数分别记为
m、n
最短路线的概率是( )
1
1
A.2
B.3
1
1
C.5
D.6
解析 基本事件,等可能事件的概率. • 答案n=3D×2=6,m=1. ∴P(A)=16.
• 3则.剩有下五两答个个案数数字字1130都、是2、奇3数、的4、概5率中是,_若__随__机__取__出__三_(个结数果字用, 数值表示解)析. 任取的三个数字中有 2 个偶数,1 个奇数,
函数模型及其应用+课件-2025届高三数学一轮复习
a
b
c
A.① B.①② C.①③ D.①②③
[解析] 由题图a,得进水的速度为1,出水的速度为2.在题图c中, 时到3时直线的斜率为2,即蓄水量每小时增加2, 只进水不出水(即两个进水口都进水),故①一定正确;若不进水只出水1小时后,则蓄水量减少2,故②一定错误;若两个进水口和一个出水口同时打开,则蓄水量也可以保持不变,故③不一定正确.故选A.
[思路点拨](1)根据与 的关系图可得正确的选项.
(2) 水池有两个相同的进水口和一个出水口,其进水量和出水量随时间的变化如图a, 所示,某天0时到6时该水池的蓄水量如图c所示,给出以下3个说法:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则说法一定正确的是( )
,,为常数,且,
对数函数模型
,,为常数,且,
幂函数模型
,, 为常数,,
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 已知函数,,,则随着 的增大,增长速度的大小关系是_______________.(填关于,, 的关系式)
[解析] 根据指数函数、一次函数、对数函数的增长速度关系可得 .
2.[教材改编] 在如图所示的锐角三角形空地中,欲建一个面积不小于的矩形花园(阴影部分),则其中 的取值范围是_________.
[思路点拨](2)蓄水量增加,说明进水速度大于出水速度,蓄水量减少,说明出水速度大于进水速度,再结合具体数据进行分析即可.
[总结反思]判断函数图象与实际问题变化过程是否相吻合时:首先要关注横轴与纵轴所表达的变量的实际意义;其次根据实际问题中两变量的变化快慢等特点,结合图象变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际的答案.
高考数学复习点拨:一题多解平面向量题
一题多解平面向量题通过一题多解的训练可以激发学生把问题想得广、想得深。
激活解法,而一题多解的目的不在于“多解”,而在于思维的“多层性”与“创造性”,在于让学生从多解中分析出解法的优与劣,获得思维水平更高的解法。
下面是一道平面向量试题的三种解法.希望对你学习平面向量有所帮助.题目如下图,与的夹角为150°,与的夹角为30°,,用表示。
分析1:由平面向量的基本定理,设,通过构造数量积,列方程解得。
解法1:设(),两边同时乘以向量得。
∴。
由已知得,即。
①而与的夹角为150°-30°=120°,同理在等式两边同时乘以向量得。
∴由已知得,即。
②由①②可得:分析2:把向量在与方向上分解,构造平行四边形,借助正弦定理求得(如下图所示)。
解法2:以与所在直线为邻边,为对角线作平行四边形,则。
由已知,且(),与同向,与同向,所以,。
由正弦定理得:,即。
,可得分析3:向理可以用坐标表示,因此可建立直角坐标系,转化为坐标运算。
解法2:如下图所示,以O为原点,方向为x轴建立直角坐标系xOy,得A(1,0),B(cos150°,sin150°),C(5cos30°,5sin30°)。
由,得(5cos30°,5sin30°)=(1,0)+(cos150°,sin150°)。
,即,可得。
点评:上述三种解法,虽然一目了然,但繁简不一。
一道向量问题通过多角度的认识,使思维的方法与知识的应用各不相同。
一题多思,值得同学们尝试,它有益于知识的对比,更有利于思维批判性的养成。
2011年高考一轮复习数学精品课件系列《两条直线的位置关系》
课堂互动讲练
(解题示范)(本题满分14分) 已知直线l过点P(3,1)且被两 平行线l1:x+y+1=0,l2:x +y+6=0截得的线段长为5, 求直线 l的方程. 【思路点拨】 可设点斜式方程,
例3
求与两直线的交点.利用两点间距离公 式求解.
课堂互动讲练
【解】 法一:若直线l的斜率 不存在,则直线l的方程为x=3,此 时与l1,l2的交点分别是A(3,-4), B(3,-9),截得的线段长AB=|-4 +9|=5,符合题意.3分 当直线l的斜率存在时, 则设直线l的方程为y=k(x-3) +1, 分别与直线l1,l2的方程联立.
课堂互动讲练
跟踪训练
1.(2009年高考上海卷改 编)已知直线l1:(k-3)x+(4 -k)ቤተ መጻሕፍቲ ባይዱ+1=0与l2:2(k-3)x- 2y+3=0平行,则k的值是 ________.
课堂互动讲练
跟踪训练 解析:k=3时,l1:y+1=0, l2:-2y+3=0,显然平行; k=4时,l1:x+1=0,l2:2x k- 3 -2y+3=0,显然不平行; 有
课堂互动讲练
例1
已知两条直线l1:ax-by+ 4=0和l2:(a-1)x+y+b=0, 求满足下列条件的a、b的值. (1)l1⊥l2,且l1过点(-3,- 1); (2)l1∥l2,且坐标原点到这 两条直线的距离相等.
课堂互动讲练
【思路点拨】 由条件可知,直线l2的斜率 为1-a,可通过对1-a的取值情况的讨论来解决 该题.
课堂互动讲练
自我挑战
3.(本题满分14分)在直线l:3x-y -1=0上求一点P,使点P到点A(1,7)和B (0,4)的距离之和最小.
解:设点B关于直线l的对称点 B′(m,n). n-4 则kBB′· kl=-1,即m · 3=-1, ∴m+3n-12=0. m 又由于线段 BB′的中点坐标为 n+4 ( 2 , 2 ),且在直线l上,
高考数学一轮复习第8章解析几何第2讲两条直线的位置关系
第二讲 两条直线的位置关系知识梳理·双基自测 知识梳理知识点一 两条直线的位置关系平面内两条直线的位置关系包括__平行、相交、重合__三种情况. (1)两条直线平行对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2⇔k 1=k 2,且b 1≠b 2. 对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)两条直线垂直对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2⇔k 1·k 2=-1.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔__A 1A 2+B 1B 2=0__. 知识点二 两条直线的交点直线l 1和l 2的交点坐标即为两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.相交⇔方程组有__唯一解__; 平行⇔方程组__无解__; 重合⇔方程组有__无数个解__. 知识点三 三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=x 1-x 22+y 1-y 22.特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=x 2+y 2. (2)点P(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C|A 2+B 2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B2. 重要结论1.求解距离问题的规律运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线间的距离公式时,需先把两平行线方程中x,y 的系数化为相同的形式.2.对称问题的求解规律(1)中心对称:转化为中点问题处理.(2)轴对称:转化为垂直平分线问题处理.特殊地:点P(a,b)关于直线x +y +m =0对称的点坐标为(-b -m,-a -m),点P(a,b)关于直线x -y +m =0对称的点坐标为(b -m,a +m).双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两直线的斜率相等,则两直线平行,反之,亦然.( × )(2)如果两条直线l 1与l 2垂直,那么它们的斜率之积一定等于-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P(x 0,y 0)到直线y =kx +b 的距离为|kx 0+b|1+k2.( × ) (5)若点A,B 关于直线l :y =kx +b(k≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l上.( √ )题组二 走进教材2.(课本习题改编)过点(1,0)且与直线x -2y -2=0平行的直线方程是( A ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=03.(必修2P 110B 组T2)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( C ) A . 2 B .2- 2 C .2-1D .2+1[解析] 由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1-2. ∵a >0,∴a =-1+2. 题组三 走向高考4.(2020·高考全国Ⅲ)点(0,-1)到直线y =k(x +1)距离的最大值为( B ) A .1 B . 2 C . 3D .2 [解析] 解法一:由y =k(x +1)可知直线过定点P(-1,0),设A(0,-1),当直线y =k(x +1)与AP 垂直时,点A 到直线y =k(x +1)距离最大,即为|AP|=2,故选B .解法二:因为点(0,-1)到直线y =k(x +1)距离d =|1+k|k 2+1=k 2+2k +1k 2+1=1+2kk 2+1;∵要求距离的最大值,故需k >0;可得d =1+2k +1k≤2,当且仅当k =1时取等号,故选B .5.(2018·全国)坐标原点关于直线x -y -6=0的对称点的坐标为__(6,-6)__. [解析] 设坐标原点关于直线x -y -6=0的对称点的坐标为(a,b),则⎩⎪⎨⎪⎧b a ×1=-1a 2-b2-6=0,解得a =6,b =-6,∴坐标原点关于直线x -y -6=0的对称点的坐标为(6,-6).考点突破·互动探究考点一 两条直线平行、垂直的关系——自主练透例1 (1)(2021·高安期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( A )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0(2)“m=3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(3)(2021·青岛调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( C ) A .2 B .-3 C .2或-3D .-2或-3(4)(多选题)等腰直角三角形斜边的中点是M(4,2),一条直角边所在直线的方程为y =2x,则另外两边所在直线的方程为( CD )A .3x +y -14=0B .x +2y -2=0C .x -3y +2=0D .x +2y -14=0[解析] (1)因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.(2)由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.(3)由题意知⎩⎪⎨⎪⎧m m +1=6,4m≠-4,解得m =2或-3.故选C .(4)设斜边所在直线的斜率为k,由题意知tan π4=2-k 1+2k =1,∴k =13,∴斜边所在直线方程为y -2=13(x -4),即x -3y +2=0,由⎩⎪⎨⎪⎧y =2x x -3y +2=0可知A ⎝ ⎛⎭⎪⎫25,45,∴A 关于M 的对称点B ⎝ ⎛⎭⎪⎫385,165,∴另一条直角边的方程为y -165=-12⎝ ⎛⎭⎪⎫x -385,即x +2y -14=0,故选C 、D .名师点拨(1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 〔变式训练1〕(1)(2021·吉林长春模拟)曲线f(x)=2sin x 在x =π3处的切线与直线ax +y -1=0垂直,则a =__1__.(2)(2012·浙江)设a ∈R,则“a=1”是“直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0平行的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)由题得f′(x)=2cos x,∴k =f′⎝ ⎛⎭⎪⎫π3=1.所以1×(-a)=-1,∴a =1. (2)l 1∥l 2⇔a 2+a -2=0⇔a =1或-2,∴a =1是l 1∥l 2的充分不必要条件.故选A . 考点二 两直线的交点、距离问题——师生共研例2 (1)两条垂直直线l 1:2x +y +1=0与l 2:ax +4y -6=0的交点到原点的距离为__2__.(2)已知点P(2,-1).①求过点P 且与原点的距离为2的直线l 的方程;②求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?③是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. (3)(2020·上海)已知直线l 1:x +ay =1,l 2:ax +y =1,若l 1∥l 2,则l 1与l 2的距离为__2__. [解析] (1)kl 1=-2,kl 2=-a 4,由l 1⊥l 2知-2×⎝ ⎛⎭⎪⎫-a 4=-1,∴a =-2,∴l 2:x -2y +3=0,由⎩⎪⎨⎪⎧2x +y +1=0x -2y +3=0得交点A(-1,1),∴|AO|=2.(2)①过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P(2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k(x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.②作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式,得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5=5.③由②可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.(3)直线l 1:x +ay =1,l 2:ax +y =1, 当l 1∥l 2时,a 2-1=0,解得a =±1;当a =1时l 1与l 2重合,不满足题意; 当a =-1时l 1∥l 2,此时l 1:x -y -1=0,l 2:x -y +1=0; 则l 1与l 2的距离为d =|-1-1|12+-12=2.名师点拨距离的求法(1)点到直线的距离:可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离:①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离; ②利用两平行线间的距离公式.提醒:在应用两条平行线间的距离公式时,应把直线方程化为一般形式,且使x 、y 的系数分别相等. 〔变式训练2〕(1)(2021·西南名校联盟联考)设直线l 1:3x -y -1=0与直线l 2:x +2y -5=0的交点为A,则A 到直线l :x +by +2+b =0的距离的最大值为( C )A .4B .10C .3 2D .11(2)(多选题)已知两点A(3,2)和B(-1,4)到直线mx +y +3=0距离相等,则m 的值可以为( AC ) A .-6 B .-12C .12D .1(3)(2021·绵阳模拟)若P,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ|的最小值为( C )A .95B .185C .2910D .295[解析] (1)解法一:显然l 1与l 2的交点A(1,2),又直线l 过点B(-2,-1),∴所求最大距离为|AB|=32,故选C .解法二:显然l 1与l 2的交点为A(1,2),则A 到直线l 的距离d =|1+2b +2+b|1+b2=31+b 2+2b1+b2=31+2b 1+b2≤32(当且仅当b =1时取等号),故选C . (2)直线mx +y +3=0与直线AB 平行或过AB 中点,∴-m =4-2-1-3=-12,即m =12;AB 中点(1,3),∴m+3+3=0即m =-6,故选A 、C .(3)因为36=48≠-125,所以两直线平行,由题意可知|PQ|的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ|的最小值为2910. 考点三 对称问题——多维探究 角度1 线关于点的对称例3 (2021·河北五校联考)直线ax +y +3a -1=0恒过定点M,则直线2x +3y -6=0关于M点对称的直线方程为( D )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0[解析] 由ax +y +3a -1=0,可得y -1=-a(x +3),所以M(-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c≠-6),则|-6+3-6|4+9=|-6+3+c|4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D .另解:在直线2x +3y -6=0上取点A(0,2)、B(3,0),则A 、B 关于M 的对称点分别为A′(-6,0),B′(-9,2),又k A′B′=2-0-9--6=-23,故所求直线方程为y =-23(x +6),即2x +3y +12=0.故选D .角度2 点关于线的对称例4 (2021·长沙一模)已知入射光线经过点M(-3,4),被直线l :x -y +3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为__6x -y -6=0__.[解析] 设点M(-3,4)关于直线l :x -y +3=0的对称点为M′(a ,b),则反射光线所在直线过点M′,所以⎩⎪⎨⎪⎧b -4a --3=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N(2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. (代入法)当x =-3时,由x -y +3=0得y =0, 当y =4时,由x -y +3=0得x =1.∴M(-3,4)关于直线l 的对称点为M′(1,0).又k NM′=6-02-1=6,∴所求直线方程为y =6(x -1),即6x -y -6=0.[引申]本例中入射光线所在直线的方程为__x -6y +27=0__.[解析] N(2,6)关于直线l 的对称点N′(3,5),又k MN′=5-43--3=16,∴所求直线方程为y -4=16(x+3),即x -6y +27=0.角度3 线关于线的对称例5 (2021·合肥模拟)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( B )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0[解析] 解法一:因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x,y),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.解法二:在l 1上取两点A(0,-2),B(1,0),则A 、B 关于l 的对称点分别为A′(-1,-1),B′(1,0),∴k A′B′=0--11--1=12.∴l 2的方程为y -0=12(x -1),即x -2y -1=0.故选B .解法三:设P(x,y)是直线l 2上任一点,则P 关于直线l 的对称点为P′(y+1,x -1),又P′∈l 1,∴2(y +1)-(x -1)-2=0,即直线l 2的方程为x -2y -1=0.故选B .名师点拨对称问题的解法以光线反射为代表的很多实际问题,都可以转化为对称问题,关于对称问题,一般常见的有: (1)中心对称①点P(x,y)关于O(a,b)的对称点P′(x′,y′)满足⎩⎪⎨⎪⎧x′=2a -x ,y′=2b -y.②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称 ①点A(a,b)关于直线Ax +By +C =0(B≠0)的对称点A′(m ,n),则有⎩⎪⎨⎪⎧n -b m -a ×-AB=-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.特别地,当对称轴的斜率为±1时,可类比关于y =x 的对称问题采用代入法,如(1,3)关于y =x +1的对称点为(3-1,1+1),即(2,2).〔变式训练3〕已知直线l :2x -3y +1=0,点A(-1,-2).求: (1)(角度2)点A 关于直线l 的对称点A′的坐标;(2)(角度3)直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3)(角度1)直线l 关于点A(-1,-2)对称的直线l′的方程. [解析] (1)设A′(x ,y),由已知条件得 ⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上. 设对称点M′(a ,b),则 ⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N(4,3).又∵m′经过点N(4,3),∴由两点式得直线m′的方程为9x -46y +102=0. (3)设P(x,y)在l′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y), ∵点P′在直线l 上,∴2(-2-x)-3(-4-y)+1=0, 即2x -3y -9=0.名师讲坛·素养提升 巧用直线系求直线方程例6 (1)求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R)恒过定点,并求出定点坐标;(2)求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.[解析] (1)证明:解法一:令m =0,则直线方程为 3x +y +1=0.再令m =1时,直线方程为6x +y +4=0.①和②联立方程组⎩⎪⎨⎪⎧3x +y +1=0,6x +y +4=0,得⎩⎪⎨⎪⎧x =-1,y =2.将点A(-1,2)的坐标代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中,(m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1=(3-1-2)m 2+(-2+2)m +2+1-3=0, 故动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A .解法二:将动直线方程按m 降幂排列整理,得m 2(x -y +3)+m(2x +y)+3x +y +1=0,① 不论m 为何实数,①式恒为零, ∴有⎩⎪⎨⎪⎧x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2.故动直线恒过点A(-1,2).(2)解法一:解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P(0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.解法二:设所求直线方程为4x +3y +m =0,将解法一中求得的交点P(0,2)代入上式可得m =-6, 故所求直线方程为4x +3y -6=0.解法三:设直线l 的方程为x -2y +4+λ(x+y -2)=0, 即(1+λ)x+(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.[引申]若将本例(2)中的“垂直”改为“平行”,则直线l 的方程为__3x -4y +8=0__.名师点拨1.确定方程含参数的直线所过定点的方法:(1)将直线方程写成点斜式y -y 0=f(λ)(x-x 0),从而确定定点(x 0,y 0).(2)将直线方程整理成关于参数的方程,由方程中各项系数及常数项为0确定定点.(3)给参数取两个不同值,再解直线方程构成的方程组,从而确定定点坐标.2.直线系的主要应用(1)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中A 1B 2-A 2B 1≠0,待定系数λ∈R .在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)过定点(x 0,y 0)的直线系方程为y -y 0=k(x -x 0)(k 为参数)及x =x 0.(3)平行直线系方程:与直线y =kx +b 平行的直线系方程为y =kx +m(m 为参数且m≠b);与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠C ,λ是参数).(4)垂直直线系方程:与直线Ax +By +C =0(A≠0,B≠0)垂直的直线系方程是Bx -Ay +λ=0(λ为参数).如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,那么可选用直线系方程来求解. 〔变式训练4〕(1)(2021·启东模拟)不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( D )A .⎝⎛⎭⎪⎫1,-12 B .(-2,0) C .(2,3) D .(9,-4)(2)与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程是__5x -12y +32=0或5x -12y -20=0__.[解析] (1)解法一:由(m -1)x +(2m -1)y =m -5,得(x +2y -1)m -(x +y -5)=0,由⎩⎪⎨⎪⎧ x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D .解法二:令m =1,则y =-4;令m =12,则-12x =-92,即x =9,∴直线过定点(9,-4),故选D . 解法三:将直线方程化为(2m -1)(y +a)=(1-m)(x +b),则⎩⎪⎨⎪⎧ a +b =-52a +b =-1,即⎩⎪⎨⎪⎧ a =4b =-9,∴y +4=1-m 2m -1(x -9),故直线过点(9,-4),故选D .(2)设所求直线的方程为5x-12y+c=0,则|c-6|52+122=2,解得c=32或-20,故所求直线的方程为5x-12y+32=0或5x-12y-20=0.。
高考数学一轮复习(函数与基本初等函数)
阶段性测试题(函数与基本初等函数).第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知log a 2=m ,log a 3=n ,则a 2m +n的值为( )A .6B .18C .12D .72.下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是( ) A .f (x )=-x +1 B .f (x )=x 2-1 C .f (x )=2xD .f (x )=ln(-x )3.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )ln x 的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.设a =log 13 12,b =log 13 23,c =log 343,则a 、b 、c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0)3x (x ≤0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫14的值是( ) A .9 B.19 C .-9D .-196.若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是( ) A .a =-1或3 B .a =-1 C .a >3或a <-1D .-1<a <37.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0-x +2, x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]8.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f [f (5)]=( )A .-5B .-15C.15D .59.已知函数f 1(x )=a x ,f 2(x )=x a ,f 3(x )=log a x (其中a >0,且a ≠1)在同一坐标系中画出其中两个函数在第一象限的图像,其中正确的是( )10.已知函数f (x )=2x +ln x ,若a n =0.1n (其中n ∈N +),则使得|f (a n )-2012|取得最小值的n 的值是( )A .100B .110C .11D .10第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.函数f (x )=log 2(2x +1)的单调增区间是________.12.设奇函数f (x )的定义域为R ,且周期为5,若f (1)<-1,f (4)=log a 2(a >0,且a ≠1),则实数a 的取值范围是________.13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1]则b -a 的最小值为________.14.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a , x <1-x -2a , x ≥1,若f (1-a )=f (1+a ),则a 的值为________.15.设a >1,若对于任意的x ∈[a,2a ],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值集合为________.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.17.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图像恒在y=2x+m的图像上方,试确定实数m的范围.18.已知f(x)=x2-x+k,且log2f(a)=2,f(log2a)=k(a>0,a≠1).(1)求a,k的值;(2)当x为何值时,f(log a x)有最小值?并求出该最小值.19.函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.20.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)21.已知二次函数f (x )=ax 2+bx +c (a ≠0)且满足f (-1)=0,对任意实数x, 恒有f (x )-x ≥0,并且当x ∈(0,2)时,f (x )≤⎝⎛⎭⎫x +122.(1)求f (1)的值; (2)证明:a >0,c >0;(3)当x ∈[-1,1]时,函数g (x )=f (x )-mx (x ∈R )是单调函数,求证:m ≤0或m ≥1.。
2011届高考数学第一轮复习课件之等差数列
随堂即时巩固
点击进入
课时活页训练
点击进入
9分
于是-171<d≤-113.
课堂互动讲练
又d∈Z,故d=-1.④ 将④代入①②得10<a1≤12.11分 又a1∈Z,故a1=11或a1=12. 所以,所有可能的数列{an}的通 项公式是an=12-n和an=13-n,n= 1,2,3,….12分
规律方法总结
1.等差数列的单调性 当d>0时,{an}是递增数列. 当d=0时,{an}是常数列. 当d<0时,{an}是递减数列.
故当p=0时,数列{an}是等差数列.
课堂互动讲练
(2)证明:∵an+1-an=2pn+p+q, ∴an+2-an+1=2p(n+1)+p+q. 而(an+2-an+1)-(an+1-an)=2p为 一个常数, ∴{an+1-an}是等差数列. 【误区警示】 在(2)中,要证明(an +2-an+1)-(an+1-an)是一个与n无关的 常数,而不是证an+1-an是一个常数.
则由 a5=5a3 知 a1=-32d. ∴SS95=95((aa11+ +42dd))=9.
答案:9
三基能力强化
5.(教材习题改编)已知{an}为等 差数列,a3+a8=22,a6=7,则a5= ________.
答案:15
课堂互动讲练
考点一 等差数列的判定
证明一个数列{an}是等差数列的 基本方法有两种:一是利用等差数列 的定义法,即证明an+1-an= d(n∈N*),二是利用等差中项法,即 证明:an+2+an=2an+1(n∈N*).在
(4)S2n-1=(2n-1)an. (5)若 n 为偶数,则 S 偶-S 奇=n2d. 若n为奇数,则S奇-S偶=a中(中 间项). (6)数列{c·an},{c+an},{pan+ qbn}也是等差数列,其中c、p、q均为 常数,{bn}是等差数列.
2011届高三数学一轮复习精品课件:一元二次不等式及其解法
课堂互动讲练
例1 解下列不等式: 解下列不等式: (1)2x2+4x+3<0; + ; (2)-3x2-2x+8≤0; - + ; (3)8x-1≥16x2. - 【思路点拨】 首先将二次项系 思路点拨】 数转化为正数, 数转化为正数,再看二次三项式能否 因式分解,若能, 因式分解,若能,则可得方程的两 大于号取两边,小于号取中间, 根,大于号取两边,小于号取中间, 若不能,则再看“”,利用求根公式 若不能,则再看 , 求解方程的根,而后写出解集. 求解方程的根,而后写出解集.
课堂互动讲练
法一: 【解】 法一: f(x)=(x-a)2+2-a2,此二次函 = - - 数图象的对称轴为x= , 数图象的对称轴为 =a, (1)当a∈(-∞,- 时,结合图 当 ∈ - ,-1)时 ,- 象知, ,+∞)上单调递增 象知,f(x)在[-1,+ 上单调递增, 在 - ,+ 上单调递增, f(x)min=f(-1)=2a+3, - = + , 要使f(x)≥a恒成立,只需 恒成立, 要使 恒成立 f(x)min≥a, , 即2a+3≥a,解得a≥-3. + ,解得 - 又a<-1,∴-3≤a<-1. - , -
第2课时 一元二次不等式及 其解法
基础知识梳理
1.一元二次不等式与相应的二次 . 函数及一元二次方程的关系如下表: 函数及一元二次方程的关系如下表:
基础知识梳理
判别式 =b2-4ac = 二次函数 y=ax2+bx+c = + (a>0)的图象 的图象 >0 =0 = <0
基础知识梳理
判别式 =b2-4ac = >0 =0 = <0 没有实 数根 {x|x∈R} ∈
课堂互动讲练
考点二 含有参数的一元二次不等式的解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关函数单调性、奇偶性的综合应用
河北 韩志庚
函数的单调性是对于函数定义域内某个子区间而言的“局部”性质,它反映了函数()f x 在区间上函数值的变化趋势;函数的奇偶性是相对于函数的定义域来说的“整体”性质,主要讨论的是函数的对称性.作为函数的两个最重要的性质,我们往往将二者结合起来研究.本文将针对这一方面的综合应用举例说明.
例1 已知()y f x =是奇函数,它在(0,)+∞上是增函数,且()0f x <,试问
()F x =Y ∆=1)0x >.
∴1()()
F x f x =在(,0)-∞上是减函数. 【评析】本题最容易发生的错误是一开始就在(0,)+∞内任取21x x <,展开证
明,这样就不能保证12,x x --在(,0)-∞内的任意性而导致错误.
例2 已知函数()y f x =,(1,1)x ∈-,即是偶函数又是减函数,解不等式(1)(23)0f x f x -+-<.
【解析】先求(1)(23)f x f x -+-的定义域:
111
1231x x -<-<⎧⎨-<-<⎩得0212x x <<⎧⎨<<⎩,∴定义域为{|12}x x << ∴不等式(1)(23)0f x f x -+-<即可写为:(1)[(23)]0f x f x ----<, 因为函数()y f x =是偶函数,有(23)(23)f x f x --=-,
原不等式就是(1)(23)0f x f x ---<,
由于f 去。