初二一次函数与几何题(附答案)
人教版八年级数学下《一次函数与几何综合》专题练习题
八年级下册第十九章一次函数一次函数与几何综合专题练习题1. 如图,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.2. 如图,直线y=2x+6与x轴交于点A,与y轴交于点B,直线y=-12x+1与x轴交于点C,与y轴交于点D,两直线交于点E,求S△BDE和S四边形AODE.3.如图,直线y=-43x+8分别交x轴、y轴于A,B两点,线段AB的垂直平分线分别交x轴、y轴于C,D两点.(1)求点C的坐标;(2)求直线CE的解析式;(3)求△BCD的面积.4. 如图,在平面直角坐标系中,点A(-1,0),B(0,3),直线BC交坐标轴于B,C两点,且△CBA=45°.求直线BC的解析式.5. 如图,A(0,4),B(-4,0),D(-2,0),OE⊥AD于点F,交AB于点E,BM⊥OB 交OE的延长线于点M.(1)求直线AB和直线AD的解析式;(2)求点M的坐标;(3)求点E,F的坐标.6. 如图,正方形OBAC中,O(0,0),A(-2,2),B,C分别在x轴、y轴上,D(0,1),CE⊥BD交BD延长线于点E,求点E的坐标.7. 如图,在平面直角坐标系中,A(0,1),B(3,12),P 为x 轴上一动点,则PA +PB 最小时点P 的坐标为________.8. 如图,直线y =x +4与坐标轴交于点A ,B ,点C(-3,m)在直线AB 上,在y 轴上找一点P ,使PA +PC 的值最小,求这个最小值及点P 的坐标.答案:1. 分析:(1)令y =-3x +3=0,求出x 可得点D 的坐标;(2)设直线l 2的解析式为y =kx +b ,把A ,B 的坐标代入求出k ,b 可得;(3)先求出点C 的坐标,再求S △ADC ;(4)在l 2上且到x 轴的距离等于点C 纵坐标的相反数的点即为点P.解:(1)由y =-3x +3,令y =0,得-3x +3=0,∴x =1,∴D(1,0) (2)y =32x -6 (3)由⎩⎨⎧y =-3x +3,y =32x -6,解得⎩⎪⎨⎪⎧x =2,y =-3,△C(2,-3),△AD =3,△S △ADC =12×3×|-3|=92 (4)P(6,3)2. 解:易求A (-3,0),B(0,6),C(2,0),D(0,1),△BD =5,解⎩⎨⎧y =2x +6,y =-12x +1,得⎩⎪⎨⎪⎧x =-2,y =2, △E(-2,2),△S △BDE =5,S 四边形AODE =S △AOB -S △BDE =9-5=43. 解:(1)易得A(6,0),B(0,8),设C 点坐标为(x ,0),则BC =AC =6-x ,由勾股定理得x 2+82=(6-x)2,△x =-73,△C(-73,0) (2)△点E 是AB 的中点,△点E 的坐标为(3,4),易得直线CE 的解析式为y =34x +74 (3)由CE 解析式得,点D 坐标为(0,74),S △BCD =12×(8-74)×73=175244. 分析:过点A 作AD△AB ,AD 交BC 于点D ,可得△BAD 是等腰直角三角形,再过点D 作DE△x 轴于点E ,通过证△DEA△△AOB 求出点D 的坐标,最后由点B ,D 的坐标利用待定系数法可求出直线BC 的解析式.解:过点A 作AD△AB ,AD 交BC 于点D ,可得AD =AB ,过点D 作DE△x 轴于点E ,可证△DEA△△AOB ,△DE =OA =1,EA =OB =3,△D(-4,1),可求直线BC的解析式为y =12x +35. 解:(1)AB :y =x +4,AD :y =2x +4 (2)由△OBM△△AOD 得BM =OD ,△M(-4,2) (3)由(2)得OM :y =-12x ,联立⎩⎨⎧y =-12x ,y =x +4,得E(-83,43);联立⎩⎨⎧y =2x +4,y =-12x ,得F(-85,45)6. 解:延长CE 交x 轴于点F ,则有△BOD△△COF ,△OD =OF =1,△F(1,0),△C(0,2),△CF :y =-2x +2,△B(-2,0),D(0,1),△BD :y =12x +1,由⎩⎨⎧y =12x +1,y =-2x +2,得E(25,65)7. (2,0) 分析:先作出点A 关于x 轴对称的点A′,再连接A′B 交x 轴于点P ,则点P 即为所求.由题中条件易求出直线A′B 的解析式,再求出直线A′B 与x 轴的交点坐标即可.8. 解:作点A 关于y 轴的对称点A′,连接CA′交y 轴于P ,此时PA +PC 值最小,最小值为CA′,易求C(-3,1),△A′(4,0),△CA′:y =-17x +47,△P(0,47),作CE△x 轴于E ,△CA′=CE 2+A′E 2=52。
一次函数和几何综合题含答案
一次函数和几何综合题含答案1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共10小题)1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.(2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.(3)本题分三种情况进行讨论,设点P的坐标为(t,0):①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值.②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①.③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②.综合上面三种情况即可求出符合条件的t的值.解答:解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF==,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y=x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP=.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°=×=.DG=BD•sin60°=×=.∴OH=EG=,DH=∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP=,BE=2,AB=4,则有,解得BG=,DG=;∴OH=,DH=;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG=t,∴DH=2+t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在y轴上时,根据勾股定理求出BD==OP,∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t,∴GH=BF=2﹣(﹣t)=2+t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t≤时,如图3,BD=OP=﹣t,DG=﹣t,∴DH=﹣t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2+t)]=,解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).点评:本题综合考查的是一次函数的应用,包括待定系数法求解析式、旋转的性质、相似三角形的判定和性质、三角形面积公式的应用等,难度较大.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.专题:压轴题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,当t=﹣=时,S矩形PEFQ的最大,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题.专题:压轴题.分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过解一元二次方程x2﹣(+1)x+=0,求得方程的两个根,从而得到A、B两点的坐标,再根据两点之间的距离公式可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标;(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=QA三种情况讨论可求Q点的坐标.解答:解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q4(1,).点评:考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;角平分线的性质;勾股定理;菱形的性质.专题:计算题.分析:(1)根据A的坐标求出AH、OH,根据勾股定理求出即可;(2)根据菱形性质求出B、C的坐标,设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得到方程组,求出即可;(3)①过M作MN⊥BC于N,根据角平分线性质求出MN,P在AB上,根据三角形面积公式求出即可;P 在BC上,根据三角形面积公式求出即可;②求出P在AB的最大值和P在BC上的最大值比较即可得到答案.解答:(1)解:∵A(﹣3,4),∴AH=3,OH=4,由勾股定理得:AO==5,答:OA的长是5.(2)解:∵菱形OABC,∴OA=OC=BC=AB=5,5﹣3=2,∴B(2,4),C(5,0),设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得:,解得:,∴直线AC的解析式为,当x=0时,y=2.5∴M(0,2.5),答:直线AC的解析式是,点M的坐标是(0,2.5).(3)①解:过M作MN⊥BC于N,∵菱形OABC,∴∠BAC=∠OCA,∵MO⊥CO,MN⊥BC,∴OM=MN,当0≤t<2.5时,P在AB上,MH=4﹣2.5=,S=×BP×MH=×(5﹣2t)×=﹣t+,∴,当t=2.5时,P与B重合,△PMB不存在;当2.5<t≤5时,P在BC上,S=×PB×MN=×(2t﹣5)×=t﹣,∴,答:S与t的函数关系式是(0≤t<2.5)或(2.5<t≤5).②解:当P在AB上时,高MH一定,只有BP取最大值即可,即P与A重合,S最大是×5×=,同理在BC上时,P与C重合时,S最大是×5×=,∴S的最大值是,答:S的最大值是.点评:本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.解答:(1)证明:∵∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,∵,∴△AOG≌△ADG(HL);(2)解:PG=OG+BP.由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,所以,2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,故∠PAG=∠DAG+∠DAP=45°,∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP;(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,AG=2OG,AG2=AO2+OG2,∴OG=,则G点坐标为:(,0),CG=3﹣,在Rt△PCG中,PG=2CG=2(3﹣),PC==3﹣3,则P点坐标为:(3,3﹣3),设直线PE的解析式为y=kx+b,则,解得,所以,直线PE的解析式为y=x﹣3.点评:本题考查了一次函数的综合运用.关键是根据正方形的性质证明三角形全等,根据三角形全等的性质求角、边的关系,利用特殊角解直角三角形,求P、G两点坐标,确定直线解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.考点:一次函数综合题.专题:压轴题;探究型.分析:(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P(1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.解答:解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数的性质和点的意义表示出相应的线段的长度,再结合三角形全等和等腰三角形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.考点:一次函数综合题.专题:综合题;数形结合.分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.解答:解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:开放型.分析:(1)已知直线解析式,令y=0,求出x的值,可求出点A,B的坐标.联立方程组求出点P的坐标.推出AO=QO,可得出∠PAB=45°.(2)先根据CQ:AO=1:2得到m、n的关系,然后求出S△AOQ,S△PAB并都用字母m表示,根据S四边形PQOB=S△PAB ﹣S△AOQ积列式求解即可求出m的值,从而也可求出n的值,继而可推出点P的坐标以及直线PA与PB的函数表达式.(3)本题要依靠辅助线的帮助.求证相关图形为平行四边形,继而求出D1,D2,D3的坐标.解答:解:(1)在直线y=x+m中,令y=0,得x=﹣m.∴点A(﹣m,0).在直线y=﹣3x+n中,令y=0,得.∴点B(,0).由,得,∴点P(,).在直线y=x+m中,令x=0,得y=m,∴|﹣m|=|m|,即有AO=QO.又∵∠AOQ=90°,∴△AOQ是等腰直角三角形,∴∠PAB=45°.(2)∵CQ:AO=1:2,∴(n﹣m):m=1:2,整理得3m=2n,∴n=m,∴==m,而S四边形PQOB=S△PAB﹣S△AOQ=(+m)×(m)﹣×m×m=m2=,解得m=±4,∵m>0,∴m=4,∴n=m=6,∴P().∴PA的函数表达式为y=x+4,PB的函数表达式为y=﹣3x+6.(3)存在.过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3.①∵PD1∥AB且BD1∥AP,∴PABD1是平行四边形.此时PD1=AB,易得;②∵PD2∥AB且AD2∥BP,∴PBAD2是平行四边形.此时PD2=AB,易得;③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.∵BD3∥AP且B(2,O),∴y BD3=x﹣2.同理可得y AD3=﹣3x﹣12,得,∴.点评:本题的综合性强,主要考查的知识点为一次函数的应用,平行四边形的判定以及面积的灵活计算.难度较大.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)先求出A、B两点的坐标,再由一个角等于30°,求出AC的长,从而计算出面积;(2)过P作PD⊥x轴,垂足为D,先求出梯形ODPB的面积和△AOB的面积之和,再减去△APD的面积,即是△APB的面积;根据△APB与△ABC面积相等,求得m的值;(3)假设存在点Q,使△QAB是等腰三角形,求出Q点的坐标即可.解答:解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD==,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q2(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.。
初二:一次函数综合题(与几何、方程、不等式综合)
一次函数与方程和不等式
重难点易错点辨析
一次函数与一元一次方程
题一:直线 y=2x+b 与 x 轴的交点坐标是(2,0),则关于 x 的方程 2x+b=0 的解是( )
A.x=2
B.x= 4
C.x=8
D.x=10
一次函数与一元一次不等式
题二:已知一次函数 y=ax+b 的图象如图所示,则 ax+b>0 的解集为
金题精讲
题一:如图,一次函数 y 3 x 3 的图像分别与 x 轴、y 轴交于点 A、B,以线段 AB 为边在第一象限内 4
作等腰 Rt△ABC,∠BAC=90°,则过 B、C 两点直线的解析式为( ) A. y 1 x 3
7 B. y 1 x 3
5 C. y 1 x 3
答案见微信公众号:绿爱生活
题四:某花农要将规格相同的 800 件水仙花运往 A,B,C 三地销售,要求运往 C 地的件数是运往 A 地件
数的 3 倍,各地的运费如下表所示:
A地 B地 C地
运费(元/件) 20
10
15
(1)设运往 A 地的水仙花 x(件),总运费为 y(元),试写出 y 与 x 的函数关系式和 x 的取值范围;
部编数学八年级下册专题09一次函数与几何图形综合的七种考法(解析版)含答案
专题09 一次函数与几何图形综合的七种考法类型一、面积问题例.如图,直线AB 的表达式为364y x =-+,交x 轴,y 轴分别与B ,A 两点,点D 坐标为()4,0-点C 在线段AB 上,CD 交y 轴于点E .(1)求点A ,B 的坐标.(2)若CD CB =,求点C 的坐标.(3)若ACE △与DOE V 的面积相等,在直线AB 上有点P ,满足DOC △与DPC △的面积相等,求点P 坐标.∵CD CB =,∴DF BF =,∵点D 坐标为()4,0-,点B 的坐标为(∴12BD =,8OB =,∴6BF =,∴2OF =,∵DOC △与DPC △的面积相等,∴点O 和点P 到距离相等,此时OP ∥∴直线OP 的解析式为35y x =,联立得:36435y x y xì=-+ïïíï=ïî,解得:x y ì=ïïíï=ïî【变式训练1】如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)填空:k =________;b =________;m =________;(2)在x 轴上是否存在一点E ,使BCE V 的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(3)若动点P 在射线DC 上从点D 开始以每秒1个单位的速度运动,连接AP ,设点P 的运动时间为t 秒.是否存在t 的值,使ACP △和ADP △的面积比为1:2?若存在,直接写出t 的值;若不存在,请说明理由.(3)∵点P 在射线DC 上从点∴(2,0)D -,∵(2,2)C ,∴22(22)225CD =++=,∵点P 的运动时间为t 秒.②点P 在线段DC 的延长线上,∵ACP △和ADP △的面积比为1:∴12CP DP =,∴22545DP =´=,综上:存在t 的值,使ACP △和【变式训练2】在平面直角坐标系中,O 为原点,点()4,0A ,()2,0B -,()3,2C -,点D 是y 轴正半轴上的动点,连接CD 交x 轴于点E .(1)如图①,若点D 的坐标为()0,2,求ACD V 的面积;(2)如图②,若12ABD ABC S S =V V ,求点D 的坐标.(3)如图③,若BDE ACE S S =△△,请直接写出点D 的坐标.【变式训练3】如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点()0,1A ,交x 轴于点B .过点()1,0E 且垂直于x 轴的直线DE 交AB 于点D ,P 是直线DE 上一动点,且在点D 的上方,设()1,P n .(1)求直线AB 的解析式和点B 的坐标;(2)求ABP V 的面积(用含n 的代数式表示);(3)当ABP V 的面积为2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.,则90PEB BP CGB Ð=Ð=Ð=°,PB BC =,∴90PBE BPE Ð+Ð=°,90BPE CPG Ð+Ð=°,∴BPE CPG Ð=Ð,∴()AAS BEP PGC ≌V V ,∴2BE PG ==,2PE CG ==,∴点()3,4C ;②以PB 为底时,如图,过点C 作CG PE ^于点G ,作CH x ^轴于点H ,则90PGC CGE CHB PEB PCB Ð=Ð=Ð=°=Ð=Ð,CP CB =,∴90GCH PCB Ð=°=Ð,∴PCG BCH Ð=Ð,∴∴()AAS BCH PCG ≌V V ,∴BH PG =,CH CG =,∴BE BH PE PG +=-,即22BH BH +=-,∴0BH PG ==,∴点()3,2C ;综上,符合题意的点C 坐标为()5,2或()3,4或()3,2.类型二、最值问题例.如图,在平面直角坐标系xOy 中,一次函数()0y kx b k =+¹的图像经过()4,0A 、()0,4B 两点.(1)k =______,b =______.(2)已知()1,0M -、()3,0N ,①在直线AB 上找一点P ,使PM PN =.用无刻度直尺和圆规作出点P (不写画法,保留作图痕迹);②点P 的坐标为______;③点Q 在y 轴上,那么PQ NQ +的最小值为______.【答案】(1)1-,4;(2)①见解析;②()1,3;③5【详解】(1)解:将()4,0A 、()0,4B 代入()0y kx b k =+¹中,得:044k b b =+ìí=î,解得;14k b =-ìí=î,故答案为:1-,4;(2)①如图,点P 即为所求;【变式训练1】在平面直角坐标系中,已知直线l经过1,32Aæöç÷èø和()3,2B-两点,且与x轴,y轴分别相交于C,D两点.(1)求直线l的表达式;V的面积等于2时,求点E的坐标;(2)若点E在直线AB上,当ODE-的值最小,则点P的坐标为______;(3)①在x轴上找一点P,使得PA PB-的值最大,则点Q的坐标为______.②在x轴上找一点Q,使得QA QB【变式训练2】如图,一次函数2y x =+的图象分别与x 轴和y 轴交于C ,A 两点,且与正比例函数y kx=的图象交于点()1,B m -.(1)求正比例函数的表达式;(2)点D 是一次函数图象上的一点,且OCD V 的面积是4,求点D 的坐标;(3)点P 是y 轴上一点,当BP CP +的值最小时,若存在,点P 的坐标是______.取点C 关于y 轴的对称点C ¢,则PC PC =CP BP C P BP C B ¢¢\+=+³,即点P 位于C B ¢与x 轴的交点时,BP +∵点(2,0)C - ,【变式训练3】如图,在平面直角坐标系内,()3,4A -,()3,2B ,点C 在x 轴上,AD x ^轴,垂足为D ,BE x ⊥轴,垂足为E ,线段AB 交y 轴于点F .若AC BC =,ACD CBE Ð=Ð.(1)求点C 的坐标;(2)如果经过点C 的直线y kx b =+与线段BF 相交,求k 的取值范围;(3)若点P 是y 轴上的一个动点,当PA PC -取得最大值时,求BP 的长.类型三、等腰三角形存在性问题例.如图,在平面直角坐标系中,一次函数21y x =--的图像分别交x 轴、y 轴于点A 和B .已知点C 的标为()3,0-,若点P 是x 轴上的一个动点.(1)A 的坐标是______,B 的坐标是______;(2)过点P 作y 轴的平行线交AB 于点M ,交BC 于点N ,当点P 恰好是MN 的中点时,求出P 点坐标.(3)若以点B 、P 、C 为顶点的BPC △为等腰三角形时、请求出所有符合条件的P 点坐标.【变式训练1】直线8y kx =-与x 轴、y 轴分别交于B C 、两点,且43OC OB =.(1)求OB 的长和k 的值:(2)若点A 是第一象限内直线8y kx =-上的一个动点,当它运动到什么位置时,AOB V 的面积是12?(3)在(2)成立的情况下,y 轴上是否存在点P ,使POA V 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(写过程)由题意得,12OB AD ´´=6OB =Q ,\解得,AD当21294OA OP =+==当397OA OP ==时,3P 当22AP OP =时,作2P H ^22AP OP =Q Q 2P 为线段OA 垂直平分线与【变式训练2】在平面直角坐标系中,直线MN 交x 轴正半轴于点M ,交y 轴负半轴于点()0,3N -,30Ð=°ONM ,作线段MN 的垂直平分线交x 轴于点A ,交y 轴于点B .(1)如图1,求直线MN 的解析式和A 点坐标;(2)如图2,过点M 作y 轴的平行线l ,P 是l 上一点,若ANP S =△P 坐标;(3)如图3,点Q 是y 轴的一个动点,连接QM 、AQ ,将MAQ V 沿AQ 翻折得到1M AQ △,当1M MN △是等腰三角形时,求点Q 的坐标.过T 作TS AM ^于S ,则AT ∴22333322AS æö=-=ç÷èø,同理2315Q P y x =--:,综上:()3,6P ,(3,P -(3)①如图,当MN MM =由轴对称的性质可得:AM ∵()223323AN =+=,∴()0,1Q .②当1NM NM =时,如图,由23AN NM AM ===,∴ANM V 为等边三角形,此时Q ,N 重合,∴()0,3Q -;③当11M M M N =时,1M 在直线∵30OAB Ð=°,【变式训练3】如图,一次函数()0y kx b k =+¹的图象与x 轴交于点C ,与y 轴交于点()0,5A ,与正比例函数12y x =的图象交于点B ,且点B 的横坐标为2,点P 为y 轴上的一个动点.(1)求B 点的坐标和k 、b 的值;(2)连接CP ,当ACP △与AOB V 的面积相等时,求点P 的坐标;(3)连接BP ,是否存在点P 使得PAB V 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.③当PA PB =时,如图2,设(0,P m 22(5)PA m =-,1PH m =-,所以PB 所以222(5)(1)2m m -=-+,解得m类型四、直角三角形存在性问题例.如图1,在平面直角坐标系xOy 中,点O 为坐标原点,直线AB :3y 4x b =+与直线AC :9y kx =+交于点(2,)A n ,与x 轴分别交于点0()6,B -和点C .点D 为线段BC 上一动点,将ABD △沿直线AD 翻折得到ADE V ,线段AE 交x 轴于点F .(1)直线AC 的函数表达式.(2)当点D 在线段BO 上,点E 落在y 轴上时,求点E 的坐标.(3)若DEF V 为直角三角形,求点D 的坐标.【变式训练1】综合与探究:如图,在平面直角坐标系中,直线2y x =+与x 轴,y 轴分别交于点A ,B ,与直线11433y x =-+交于点C .直线11433y x =-+与x 轴交于点D ,若点P 是线段AD 上的一个动点,点P 从点D 出发沿DA 方向,以每秒2个单位长度匀速运动到点A (到 A 停止运动).设点P 的运动时间为s t .(1)求点A 和点B 的坐标;△的面积为12时,求t的值;(2)当ACP△为直角三角形?若存在,请直接写出t的值;(3)试探究,在点P运动过程中,是否存在t的值,使ACP若不存在,请说明理由.【变式训练2】如图,平面直角坐标系中,直线AB 与x 轴交于点()30A -,与y 轴交于点()06B ,,点C 是直线AB 上的一点,它的坐标为()4m ,,经过点C 作直线CD x ∥轴交y 轴于点D .(1)求点C 的坐标;(2)已知点P 是直线CD 上的动点,①若POC △的面积为4,求点P 的坐标;②若POC △为直角三角形,请求出所有满足条件的点P 的坐标.②Q OCP Ð一定不是直角,当90OPC Ð=°时,点P 恰好在点D ,\()04P ,,当90POC Ð=°时,,由题可得221417OC =+=,2222416OP DP DP =+=+,()221CP DP =+,Q 222CP OC OP =+,\()2211716DP DP +=++,\16DP =,\()164P ,,综上所述,所有满足条件的点P 的坐标为()04,或()164P ,.【变式训练3】如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+的图象经过点()0,1B -,与x 轴以及1y x =+的图象分别交于点C ,D ,且点D 的坐标为()1,n .(1)则k =______,b =______,n =______;(2)关于x ,y 的二元一次方程组y =x +1,y =kx +b的解为______;(3)求四边形AOCD 的面积;(4)在x 轴上是否存在点P ,使得以点P ,C ,D 为顶点的三角形是直角三角形,请求出点P 的坐标.①当P D DC ¢^时,22P C P D ¢¢=类型五、等腰直角三角形存在性问题例.模型建立:如图1,等腰直角三角形ABC 中,90ACB Ð=°,CB CA =,直线ED 经过点C ,过A 作AD ED ^于D ,过B 作BE ED ^于E .(1)求证:BEC CDA V V ≌.(2)模型应用:已知直线14:43l y x =+与y 轴交与A 点,将直线1l 绕着A 点顺时针旋转45°至2l ,如图2,求2l 的函数解析式.(3)如图3,矩形ABCO ,O 为坐标原点,B 的坐标为()8,6,A 、C 分别在坐标轴上,P 是线段BC 上动点,设PC m =,已知点D 在第一象限,且是直线26y x =-上的一点,若APD △是不以A 为直角顶点的等腰直角三角形,请直接写出点D 的坐标.∵45BAC Ð=°,∴ABC V 为等腰直角三角形,由(1)得:CBD BAO V V ≌∴BD AO =,CD OB =,∵直线4:4l y x =+,∴()626122AE x =--=-由(1)得:ADE DPF △△≌∴DF AE =,即1228x x -=-,解得:4x =;∴()4,2D ;∴266212BF x x =--=-;同(1)得,APB PDF △≌△∴8AB PF ==,PB DF ==∴()88BF PF PB x =-=--=∴21216x x -=-,解得:283x =;∴2838,33D æöç÷èø;【变式训练1】综合与探究:如图1,平面直角坐标系中,一次函数334y x =-+的图像分别与x 轴、y 轴交于点A ,B ,点C 是线段OA 的中点,点D 与点C 关于y 轴对称,作直线BD .(1)求A ,B 两点的坐标;(2)求直线BD 的函数表达式;(3)若点P 是直线BD 上的一个动点.请从A ,B 两题中任选一题作答.我选择______题.A .如图2,连接AP ,CP .直接写出ACP △为直角三角形时点P 的坐标.B .如图3,连接CP ,过点P 作PQ x ^轴于点Q .直接写出CPQ V 为等腰直角三角形时点P 的坐标.【变式训练2】如图,平面直角坐标系中,直线1:3AB y x b =-+交y 轴于点()0,1A ,交x 轴于点B .直线1x =交AB 于点D ,交x 轴于点E ,P 是直线1x =上一动点,且在点D 的上方,设()1,P n .(1)求直线AB 的解析式;(2)当2ABP S =△时,在第一象限内找一点C ,使BCP V 为等腰直角三角形,求点C 的坐标.∵1x =时,12133y x =-+=,P 在点∴23PD n =-,∴12PAB APD BPD S S S PD AM =+=×+V V V ∵2ABP S =△,3∵90,45CPB EPB Ð=°Ð=°,∴45NPC EPB Ð=Ð=°.又∵90,CNP PEB BP PC Ð=Ð=°=,∴CNP BEP ≌V V ,∴2PN =NC =EB =PE =,∴224NE NP+PE ==+=,∴()3,4C ;若90,PBC BP BC Ð=°=,如图,过点C 作CF x ^轴于点F .∵90,45PBC EBP Ð=°Ð=°,∴45CBF PBE Ð=Ð=°.又∵90,CFB PEB BC BP Ð=Ð=°=,∴CBF PBE ≌V V .∴2BF CF PE EB ====,∴325OF OB BF =+=+=,∴()5,2C ;若90,PCB CP EB Ð=°=,如图,∴45CPB EBP Ð=Ð=°,∵,,CP EB CPB EBP BP BP =Ð=Ð=,∴PCB PEB ≌V V ,∴2PC CB PE EB ====,∴()3,2C ;∴点C 的坐标是()3,4或()5,2或()3,2.【变式训练3】如图,在平面直角坐标系xOy 中,直线AP 交x 轴于点(),0P p ,与y 轴交于点()0,A a ,且a ,p ()230a +=.(1)求直线AP 的解析式;(2)如图1,直线2x =-与x 轴交于点N ,点M 在x 轴上方且在直线2x =-上,若MAP △的面积等于6,请求出点M 的坐标;(3)如图2,已知点()2,4C -,若点B 为射线AP 上一动点,连接BC ,在坐标轴上是否存在点Q ,使BCQ △是以BC 为底边,点Q 为直角顶点的等腰直角三角形,若存在,请直接写出点Q 坐标;若不存在,请说明理由.∵MD AP P ,MAP △的面积等于∴DAP V 的面积等于6,∴162A DP y ××=,即12DP ×∴4DP =,∴()3,0D -,y∴,33OE t BE t ==-,∵BCQ △是以BC 为底边的等腰直角三角形,∴BQ CQ =,90BQC Ð=∴90BQE NQC Ð=°-Ð=又∵BEQ QNC Ð=Ð,∴()AAS BEQ QNC V V ≌,∴BG t =,33OG t =-,∴BT t =,33OT t =-,同②可证CFQ QTB V V ≌∴QF BT t ==,QT CF =∴OQ OT QT OF =+=+∴52t =,∴513422OQ =+=,类型六、平行四边形存在性问题例.在平面直角坐标系xOy 中,直线36y x =+分别与x 、y 轴相交于A 、B 两点,将线段AB 绕点A 顺时针旋转90°得到线段AC .连接BC 交x 轴于点D .(1)求点C 的坐标;(2)P 为x 轴上的动点,连接PB ,PC ,当PB PC -的值最大时,求此时点P 的坐标.(3)点E 在直线AC 上,点F 在x 轴上,若以B 、D 、E 、F 为顶点的四边形是平行四边形,请直接写出点F 的坐标;【答案】(1)点C 的坐标为()4,2-(2)()6,0P (3)点F 的坐标为()17,0-或()13,0或()23,0【详解】(1)解:令0y =,则2x =-,()2,0A \-,令0x =,则6y =,()0,6B \,26OA BO \==,,过点C 作CH x ^轴于H ,9090CAD BAO BAO ABO ÐÐÐÐ+=°+=°Q ,,CAD ABO ÐÐ\=,90AHC BOA ÐÐ\==°,由旋转得AB AC =,()AAS ABO CAH \V V ≌,26CH OA AH BO \====,,4OH AH OA \=-=,\点C 的坐标为()4,2-;(2)作点C 关于x 轴的对称点C ¢,连接BC ¢延长交x 轴于点P ,则点P 就是所求的最大值点,\()4,2C ¢设直线BC ¢的解析式为y kx b =+,\642b k b =ìí+=î,解得16k b =-ìí=î,6y x \=-+,()6,0P \;(3)()()()2,04,20,6A C B --Q ,,,设直线AC 的解析式为y mx n =+,则2042m n m n -+=ìí+=-î【变式训练1】如图1,在平面直角坐标系中,直线AB 与x 轴交于点(),0A m ,与y 轴交于点()0,B n ,且m n ,满足:()260m n n ++-=.(1)求:AOB S V 的值;(2)D 为OA 延长线上一动点,以BD 为直角边作等腰直角BDE V ,连接EA ,求直线EA 与y 轴交点F 的坐标;(3)在(2)的条件下,当2AD =时,在坐标平面内是否存在一点P ,使以B E F Р、、、为顶点的四边形是平行四边形,如果存在,直接写出点Р的坐标,若不存在,说明理由.∵EDB △为等腰直角三角形,∴,90DE DB EDB =Ð=°,∴18090EDG ODB Ð+Ð=°-。
一次函数与几何及动点综合题(含解析)
一、选择题(题型注释)1.如图反映的过程是:矩形ABCD 中,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x , ABP S y △.则矩形ABCD 的周长是(P )D A BC61295Oy xA .6B .12C .14D .15 【答案】C 【解析】试题分析:结合图象可知,当P 点在AC 上,△ABP 的面积y 逐渐增大,当点P 在CD 上,△ABP 的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD 的周长为:2×(3+4)=14.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP 的面积和函数图象,求出AC 和CD 的长.2.小芳步行上学,最初以某一速度匀速前进,中途遇红灯,稍作停留后加快速度跑步去上学,到校后,她请同学们画出她行进路程s (米)与行进时间t (分钟)的函数图象的示意图.你认为正确的是( )【答案】C 【解析】试题分析:运用排除法解答本题,中间的停留路程不变,可排除BD 两项,最后的加速图象应为比最初的路程增加直线增速更快的图象,C 对3.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S n 为( )A.121nn++B.31nn-C.221nn-D.221nn+【答案】D.【解析】试题分析:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,∴A1(1,0),A2(2,0),A3(3,0),…A n(n,0),A n+1(n+1,0),∵分别过点A1、A2、A3、…、A n、A n+1,作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6),…B n(n,2n),B n+1(n+1,2n+2),根据题意知:P n是A n B n+1与 B n A n+1的交点,设:直线A n B n+1的解析式为:y=k1x+b1,直线B n A n+1的解析式为:y=k2x+b2,∵A n(n,0),A n+1(n+1,0),B n(n,2n),B n+1(n+1,2n+2),∴直线A n B n+1的解析式为:y=(2n+2)x﹣2n2﹣2n,直线B n A n+1的解析式为:y=﹣2n x+2n2+2n,∴P n(22221n nn++,24421n nn++)∴△A n B n P n的A n B n边上的高为:22221n nnn+-+=21nn+,△A n B n P n的面积S n为:21222121n nnn n⨯⋅=++.故选D .考点:一次函数图象上点的坐标特征. 4.如图,已知直线l :x y 33,过点A (0,1)作y 轴的垂线 交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过 点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为 A.(0,64) B.(0,128) C.(0,256) D.(0,512)【答案】C. 【解析】试题分析:∵直线l 的解析式为;3, ∴l 与x 轴的夹角为30°, ∵AB ∥x 轴, ∴∠ABO=30°, ∵OA=1, ∴OB=2, ∴3,∵A 1B ⊥l ,∴∠ABA 1=60°, ∴A 1O=4, ∴A 1(0,4),同理可得A 2(0,16), …∴A 4纵坐标为44=256, ∴A 4(0,256). 故选C .考点:一次函数综合题.5.如图,在矩形ABCD 中,O 是对角线AC 的中点,动点P ,Q 分别从点C ,D 出发,沿线段CB ,DC 方向匀速运动,已知P ,Q 两点同时出发,并同时到达终点B ,C .连接OP ,OQ .设运动时间为t ,四边形OPCQ 的面积为S ,那么下列图象能大致刻画S 与t 之间的关系的是【答案】A . 【解析】试题分析:作OE ⊥BC 于E 点,OF ⊥CD 于F 点,如图,设BC=a ,AB=b ,点P 的速度为x ,点F 的速度为y , 则CP=xt ,DQ=yt ,所以CQ=b-yt , ∵O 是对角线AC 的中点,∴OE 、OF 分别是△ACB 、△ACD 的中位线, ∴OE=12b ,OF=12a , ∵P ,Q 两点同时出发,并同时到达终点, ∴a bx y=,即ay=bx , ∴S=S △OCQ +S △OCP =12•12a•(b-yt )+12•12b•xt=14ab-14ayt+14bxt=14ab (0<t <a x), ∴S 与t 的函数图象为常函数,且自变量的范围为0<t <ax).故选A .考点:动点问题的函数图象.6.函数321+=x y 的图象与x 、y 轴分别交于点A 、B ,点P )(y x ,为直线AB 上的一动点(0>x )过P 作PC ⊥y 轴于点C ,若使PBC ∆的面积大于AOB ∆的面积,则P的横坐标x 的取值范围是( )A 、30<<xB 、3>xC 、63<<xD 、6>x【解析】试题分析:由题意知:PC=x ,OC=132x + ∴BC=12x ∵PBC ∆的面积大于AOB ∆的面积∴x >6. 故选D.考点: 一次函数综合题.7.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为 ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .6 【答案】A 【解析】 试题分析:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,则△ABP 面积y 在BC 段随x 的增大而增大;在CD 段,△ABP 的底边不变,高不变,因而面积y 不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是12×2×3=3. 故选A .考点:动点问题的函数图象.8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .【解析】当点P 由点A 向点D 运动时,y 的值为0; 当点p 在DC 上运动时,y 随着x 的增大而增大; 当点p 在CB 上运动时,y 不变;当点P 在BA 上运动时,y 随x 的增大而减小。
一次函数与几何综合(通用版)(含答案)
一次函数与几何综合(通用版)试卷简介:一次函数与几何综合一、单选题(共10道,每道10分)1.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移与x轴,y轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:由题意可求得直线AB的解析式为y=-2x+2,AB∥CD.由DB=DC,DO⊥BC可得,OC=OB=1,∴C(-1,0).由AB∥CD可设直线CD的解析式为y=-2x+b,把C点坐标代入可得,b=-2,∴直线CD的函数解析式为y=-2x-2.试题难度:三颗星知识点:一次函数图象与几何变换2.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B 经过的路径长为( )A. B.C. D.5答案:D解题思路:如图,延长AC交x轴于点B′.则点B,B′关于y轴对称,CB=CB′.作AD⊥x轴于点D,则AD=3,DB′=3+1=4,AB′=5.∴AC+CB=AC+CB′=AB′=5.即光线从点A到点B经过的路径长为5.试题难度:三颗星知识点:坐标与图形性质3.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为,则tanA的值是( )A. B.C. D.答案:B解题思路:根据三角形内心的定义可知∠ABO=∠CBO,∵C(2,0),B(0,2),∴OB=OC,∠CBO=∠ABO=45°,,∴∠ABC=90°即AB⊥BC,可求得直线AB的表达式为:,由得,,即A(-6,-4),∴,在Rt△ABC中,.试题难度:三颗星知识点:一次函数综合题4.如图,直线⊥x轴于点(1,0),直线⊥x轴于点(2,0),直线⊥x轴于点(3,0)…,直线⊥x轴于点(n,0).函数y=x的图象与直线,,,…,分别交于点,…,;函数y=2x的图象与直线,,,…,分别交于点,…,.如果△的面积为,四边形的面积为,四边形的面积为,…,四边形的面积为,那么=( )A.4025B.4023C. D.答案:C解题思路:∵函数y=x的图象与直线,,,…,分别交于点,∴∵函数y=2x的图象与直线,,,…,分别交于点∴,,…….当n=2013时,.试题难度:三颗星知识点:一次函数综合题5.如图,在平面直角坐标系中,直线经过原点O,且与x轴正半轴的夹角为30°.点M在x轴上,⊙M的半径为2,⊙M与直线相交于A,B两点.若△ABM为等腰直角三角形,则点M的坐标为( )A. B.C. D.答案:B解题思路:如图,当点M在原点右边时,过点M作MN⊥AB,垂足为N,则,∵△ABM为等腰直角三角形,∴AN=MN,∴,∵AM=2,∴,∴,∵直线与x轴正半轴的夹角为30°,∴,∴点M的坐标为,由对称性可知,点M′的坐标为.试题难度:三颗星知识点:一次函数之存在性6.已知在直角坐标系中有两条直线,直线所对应的函数解析式为y=x-2,如果将坐标纸折叠,使与重合,则点(-1,0)与点(0,-1)也重合,那么直线所对应的函数解析式为( )A.y=x-2B.y=x+2C.y=-x-2D.y=-x+2答案:B解题思路:∵折叠坐标纸可以使点(-1,0)与点(0,-1)重合,∴是沿直线y=x折叠的(也就是对称轴为直线y=x).∵y=x-2过点(0,-2),(2,0),折叠后的对应点为(-2,0),(0,2),即直线过两点(-2,0),(0,2).可以求得:y=x+2.试题难度:三颗星知识点:一次函数图象与几何变换7.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是( )A.3<b<6B.2<b<6C.3≦b≦6D.2<b<5答案:C解题思路:题干意思是指直线与小正方形有交点时,求b的取值范围.我们知道直线是由直线向上平移b个单位得到的,若直线与小正方形有交点,可知当直线经过A(1,1)时b的值最小,此时b=3;当直线经过C(2,2)时,b最大,此时b=6.∴能够使黑色区域变白的b的取值范围为3≦b≦6.试题难度:三颗星知识点:一次函数综合题8.已知矩形ABCD中,AB=9,AD=3,将此矩形置于平面直角坐标系中,使AB在x轴正半轴上,若经过点C的直线与x轴交于点E,则四边形AECD的面积为( )A.9B.18C.6D.21答案:B解题思路:在矩形ABCD中,要求四边形AECD的面积,只需求出△EBC的面积即可,即求BE的长.∵点C的纵坐标是3,代入直线解析式可得点C(10,3),∴OB=10,∵直线与x轴交于点E,∴点E(4,0),∴OE=4,BE=6,则△EBC的面积为9,∴四边形AECD的面积为18.试题难度:三颗星知识点:一次函数综合题9.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则满足条件的点C的个数为( )A.2B.3C.4D.5答案:B解题思路:由于点A,B是固定点,要使△ABC是等腰三角形,只需根据一线两圆,判断与直线的交点即可.①作线段AB的垂直平分线,交直线于点,则是以AB为底的等腰三角形;②以点A为圆心,AB长为半径作圆,交直线于两点,,则,分别是以为底的等腰三角形;③以点B为圆心,AB长为半径作圆,我们发现该圆与直线无交点,原因在于:过点B作直线的垂线BM,垂足为M,.试题难度:三颗星知识点:一次函数之存在性10.如图,在以点O为原点的平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且,反比例函数的图象经过点C,则所有可能的k值为( )A. B.C. D.答案:C解题思路:由题意得,A(2,0),B(0,1),.显然当点为线段AB的中点时,有,此时点的坐标为,.如图,以点O为圆心,的长为半径作圆,交直线AB于另一点,则点也符合条件.过点O作OE⊥AB于点E,过点作⊥x轴于点F,则,.在中,,,则;在中,,且,则,∴点,综上:,试题难度:三颗星知识点:一次函数综合题。
中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案
中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.将直线22y x =-向上平移3个单位长度 所得直线经过点()6,a - 则a 的值为( ) A .11- B .8- C .7 D .132.在平面直角坐标系中 已知()0,2A ()0,4B 若把直线2y x =-向上平移k 个单位长度后与线段AB 有交点 则k 的取值范围是( )A .46k ≤≤B .46k <≤C .35k ≤≤D .13k ≤≤3.将直线y =3x ﹣1向上平移2个单位长度 平移后的直线所对应的函数解析式为( ) A .y =3x +5 B .y =3x ﹣3 C .y =3x +1 D .y =3x +34.如图 直线13y x =-与双曲线(0,0)k y k x x =<<交于点A 将直线13y x =-向上平移2个单位长度后 与y 轴交于点C 与双曲线交于点B 若3OA BC = 则k 的值为( )A .274-B .7-C .658-D .2716- 5.在平面直角坐标系中 将函数21y x =-的图象向左平移1个单位长度 则平移后的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()0,1D .()0,1-6.在平面直角坐标系中 将函数1y x =-的图象向下平移4个单位 平移后的图象与函数2y x b =-+的图象的交点恰好在第四象限 则b 的最大整数值为( )A .8B .9C .10D .11 7.如图 直线122y x =-与x 轴交于点A 以OA 为斜边在x 轴上方作等腰直角三角形OAB 将直线沿x 轴向左平移 当点B 落在平移后的直线上时 则直线平移的距离是( )A .6B .5C .4D .38.在平面直角坐标系中 将直线1l :22y x =--平移后得到直线2l :24y x =-+ 则下列平移作法正确的是( )A .将1l 向左平移3个单位长度B .将1l 向右平移6个单位长度C .将1l 向上平移2个单位长度D .将1l 向上平移6个单位长度二 填空题9.如果将一次函数y x r =- 的图象沿y 轴向上平移1个单位 那么平移后所得图象的函数解析式为 .10.把函数21y x =+的图象沿y 轴向下平移5个单位后所得图象与y 轴的交点坐标是 . 11.一次函数21y x =+向下平移2个单位长度 得到新的一次函数表达式是 一次函数21y x =+经过平移过程 (填向上或向下平移几个单位长度)得到一个正比例函数. 12.在平面直角坐标系中 ABCO 的边OC 落在x 轴的正半轴上 且点()()5,0,8,4C B 直线21y x =+以每秒1个单位的速度向下平移 经过 秒 该直线平分ABCO 的面积.13.如图 点()2,2A 在双曲线(0)k y x x=>上 将直线OA 向上平移若干个单位长度交y 轴于点B 交双曲线于点C .若2BC = 则点C 的坐标是 .三解答题14.在平面直角坐标系xOy中已知点C(m+2 3m﹣1)直线l经过点A(2 2)B(1 3).(1)求直线l的解析式(2)若A B C三点共线求m的值(3)若将直线l先沿y轴向上平移2个单位再沿x轴向右平移3个单位后经过点C求点C 的坐标.15.如图将直线AO向上平移1个单位得到一个一次函数的图象1l.l的表达式(1)求直线1(2)求直线1l 与x 轴 y 轴的交点的坐标.16.已知正比例函数的图像如图所示.(1)求此正比例函数的解析式(2)若一次函数图像是由(1)中的正比例函数的图像平移得到的 且经过点()1,2 求此一次函数的解析式.17.已知直线12:l y kx +=经过点A 将直线1l 向右平移4个单位后 得到的直线2l 与y 轴相交于点B 且经过点()23C ,点P 为x 轴正半轴上的一个动点.(1)请求出直线1l 与2l 的函数表达式(2)当四边形ABCP 的周长最小时 求四边形ABCP 的面积(3)在直线l 2上是否存在一点Q 使得以A C P Q 为顶点的四边形是平行四边形?若存在 若不存在 请说明理由.18.如图 在平面直角坐标系中 直线1l :32y x m =+与直线2l 交于点()2,3A - 直线2l 与x 轴交于点()4,0C 与y 轴交于点B 将直线2l 向下平移5个单位长度得到直线3l 3l 与y 轴交于点D 与1l 交于点E 连接AD .(1)求直线2l 的解析式(2)求△ADE 的面积参考答案:1.A2.A3.C4.D5.C6.B7.A8.D9.1y x r =-+10.()0,4-11. 21y x =- 向下平移一个单位 12.713. 14.(1)直线l 的解析式为4y x =-+ (2)34m =(3)()4,515.(1)21y x =+(2)直线1l 与x 轴 y 轴的交点分别为1,02⎛⎫- ⎪⎝⎭ ()0,116.(1)正比例函数的解析式为:2y x =-(2)一次函数的解析式为:24y x =-+.17.(1)直线1l 函数表达式为122y x =-+ 2l 函数表达式为142y x =-+ (2)225(3)存在 Q 的坐标为(2),5-或((10,1)-或(6,1)18.(1)122y x =-+ (2)454。
一次函数与几何图形综合题10及答案
一次函数与几何图形综合题10及答案1、1) AC的解析式为y=-x-2;2) 设BP与PQ的交点为R,由相似三角形可得BP/PQ=OB/OQ,即BP/PQ=1/2,故BP=2PQ。
证明如下:设BP=x,PQ=y,则由OC=OB可得AC=-x-2,又由直线AC和BP的垂线PQ相似可得y/x=(x+2)/(y+2),解得y=2x,代入AC 的解析式可得BP=2PQ,结论得证。
3) 正确结论为①(MQ+AC)/PM的值不变。
证明如下:由(2)可得BP=2PQ,又由相似三角形可得MQ/PM=OB/OQ,即MQ/PM=1/3,代入AC的解析式可得(MQ+AC)/PM=-2/3,为定值。
而(MQ-AC)/PM=(MQ+AC)/PM-2AC/PM=-2/3-2x/(x+2),不是定值。
故正确结论为①。
2、1) 直线L的解析式为y=-x+5;2) 由相似三角形可得MN/BN=AM/AB=4/(4+3),即MN=12/7;3) 猜想PB的长为定值,其值为2.证明如下:设点B在y轴上的坐标为h,则BP=h,由△OBF和△ABE相似可得BE=BF=h/2,EF=AB-BE=5-h/2,由相似三角形可得FP/EF=BP/BE=h/(5-h/2),所以FP=5h/(5-h/2),由于P在y轴上,故FP=2h,解得h=2,即PB=2,结论得证。
3、1) 直线l2的解析式为y=-x+1;2) 画图如下,由相似三角形可得BE/BC=AB/AC,即BE/(BE+CF)=(AB+BC+AC)/AC,代入AB=1,BC=3,AC=4可得BE/(BE+CF)=5/4,即BE=5CF/3,代入△BEC的勾股定理可得CF=3/2,BE=5/2,故BE+CF=8/2=4=EF,结论得证。
3) 正确结论为①OM为定值,其值为1/2.证明如下:设△ABC沿y轴向下平移的距离为h,则BP=CQ=h,由相似三角形可得OM/AB=OC/AC,即OM/1=(h+2)/(h+4),解得OM=(2h+4)/(h+4),为定值。
八年级数学下一次函数与几何综合问题(选做)专题练习含答案 精品
难点探究专题:一次函数与几何综合问题(选做)——代几结合明思路◆类型一一次函数与面积问题一、由一次函数图象求面积或由面积求一次函数表达式1.如图,已知直线y=x+3的图象与x,y轴交于A,B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为S△AOC∶S△BOC=2∶1的两部分.求直线l的表达式.二、一次函数上的动点与面积问题2.(郴州苏仙区期末)如图,已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OP A的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)★在直线l上有一点M,使OM+MA的和最小,求点M的坐标.3.如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l:y=x+b保持与四边形OABC的边交于点M,N(M在折线AOC上,N在折线ABC 上).设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为S1,S2的差(S≥0).(1)求∠OAB的大小;(2)当点M,N重合时,求l的表达式;(3)★当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由.◆类型二一次函数与几何图形的综合性问题4.已知一次函数y=3x-1的图象经过点A(a,b)和点B(a+1,b+k).(1)求k的值;(2)若A点在y轴上,求B点的坐标;(3)在(2)的条件下,说明在x轴上是否存在点P使得△BOP为等腰三角形.若存在,直接写出P点的坐标;若不存在,请说明理由.参考答案与解析1.解:由直线y =x +3可得A (-3,0),B (0,3),则S △AOB =92.∵直线l 把△ABO 的面积分为S △AOC ∶S △BOC =2∶1,∴S △AOC =23S △AOB =3.如图,过点C 作CF ⊥OA 于F ,CE ⊥OB 于E ,∴12AO ·CF =12×3×CF =3,∴CF =2.同理可得CE =1,∴C (-1,2).又∵直线l 经过原点,∴直线l 的表达式为y =-2x .2.解:(1)∵点P (x ,y )在直线x +y =8上,∴y =8-x .∵点A 的坐标为(6,0),∴S =12×6×(8-x )=24-3x (0<x <8).(2)当S =9时,即24-3x =9,x =5,∴点P 的坐标为(5,3).(3) 如图,过点O 作ON ⊥l 于点N ,并延长到点B ,使ON =BN .即点O 关于l 的对称点为点B ,连接BC ,∴OC =BC ,∠OCN =∠BCN .若直线l 与x 轴交于点C ,与y 轴交于点D ,则C (8,0),D (0,8),∴OD =OC =8,∴∠OCN =45°,BC =8,∴∠BCO =90°,∴B (8,8).连接AB 交直线l 于点M ,此时OM +MA 的和最小.设直线AB 的表达式为y =kx +b ,∵B (8,8),A (6,0),∴⎩⎪⎨⎪⎧8k +b =8,6k +b =0,解得⎩⎪⎨⎪⎧k =4,b =-24,故直线AB 的表达式为y =4x -24.联立⎩⎪⎨⎪⎧y =4x -24,y =8-x ,解得⎩⎪⎨⎪⎧x =6.4,y =1.6,∴点M 的坐标为(6.4,1.6).3.解:(1)过点B 过BE ⊥x 轴,垂足为E .则点E (4,0),∴BE =4.∵A (8,0),∴AE =4,∴△ABE 为等腰直角三角形,∴∠OAB =45°.(2)当点M ,N 重合时,应重合到点A (8,0)或点C (0,4).当重合到点A 时,把A (8,0)代入y =x +b 得b =-8,直线l 的表达式为y =x -8.当重合到点C 时,把C (0,4)代入y =x +b 得b =4,直线l 的表达式为y =x +4.(3)存在.∵四边形OABC 的面积为12×4×(4+8)=24,当S =0时,△AMN 的面积为四边形OABC 的面积的一半,即S 1=12.∵y =x +b ,b ≤0,∴M 点在x 轴上,∴M (-b ,0).过点N 作NH ⊥x 轴于点H .设N (x ,y ),∴MH =x +b ,NH =x +b ,∴MH =NH ,∴∠NMA =45°.由(1)知∠OAB =45°,∴NH =AH =MH ,设NH =a ,S 1=12×2a ×a =12,解得a =23,∴OH=8-23,∴点N 的坐标为(8-23,23),代入y =x +b 得b =43-8.4.解:(1)代入两点得⎩⎪⎨⎪⎧3a -1=b ,3(a +1)-1=b +k ,解得k =3. (2)∵A 点在y 轴上,∴A (0,-1),可得a =0,b =-1,∴B (1,2).(3)存在.点P 的坐标为(-5,0)或(2,0)或(2.5,0)或(5,0).。
一次函数与几何综合(习题及答案)
一次函数与几何综合(习题)1.如图,点B,C 分别在直线y=2x 和直线y=kx 上,A,D 是x轴上的两点.若四边形ABCD 是长方形,且AB:AD=1:2,则k 的值为.2.如图,一次函数y=-2x+4 的图象与坐标轴分别交于点A,B,把线段AB 绕着点A 沿逆时针方向旋转90°,点B 落在点B′ 处,则直线AB′的表达式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面内的点B′处.已知直线CB′的解析式为y =-3x +b ,则点B′的坐标为,直线CP 的表达式为.134.如图,点A 的坐标是( -,0),点B 的坐标是(6,0),点C在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D,过点A 作直线AE⊥BD,垂足为点E,交OC 于点F,则点C 的坐标为,直线AE 的表达式为.第4 题图第5 题图5.如图,一次函数的图象交x 轴于点B(-6,0),交正比例函数的图象于点A,且点A 的横坐标为-4,S△AOB =15,S△BOD=45,则一次函数的表达式为,正比例函数的表达式为.6.如图,在平面直角坐标系中,已知直线y =-3x + 3 与x 轴、y 4轴分别交于A,B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是.7.如图,在平面直角坐标系中,函数y=-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A(0,2)关于直线l 的对称点A′的坐标为(-2,0),请在图中分别标出B(-5,-3),C(-2,5)关于直线l 的对称点B′,C′的位置,并写出它们的坐标:B′,C′.归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l 的对称点P′的坐标为.运用与拓广:已知两点D(0,-3),E(1,-4),试在直线l 上确定一点Q,使点Q 到D,E 两点的距离之和最小,并求出点Q 的坐标.8.如图,在平面直角坐标系中,直线y =x - 4 与x 轴、y 轴分别交于点A,B,P 为y 轴上B 点下方的一点,且PB=m(m>0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt△APM.(1)用含m 的代数式表示点M 的坐标;(2)若直线MB 与x 轴交于点Q,求点Q 的坐标.5 5 【参考答案】➢ 巩固练习1. 252. y = 1 x + 423. (2, 4 - 2 ), y = -3 x +4 3 4. (3, 3 3 ), y =3 x + 13 5.y = x + 15 , y = - x 2 46. (0, 4 ),(0,-12)37. 实验与探究:(3,5),(-5,2) 归纳与发现:(-n ,-m )运用与拓广:点 Q 的坐标为(2,-2)8. (1)M (4+m ,-8-m )(2)Q (-4,0)3。
部编数学八年级下册专题38一次函数的应用之几何问题(解析版)含答案
专题38一次函数的应用之几何问题1.如图,在平面坐标系中,直线:l y kx b =+分别与x 轴,y 轴交于点3,02A æö-ç÷èø,点()0,3B .(1)求直线l 的解析式;(2)若点C 是y 轴上一点,且ABC V 的面积是154,求点C 的坐标;(3)在(2)的条件下,当点C 在y 轴负半轴时,在平面内是否存在点D ,使以A ,B ,C ,D 为顶点的四边形是平行四边形?若存在,直接写出点D 的坐标;若不存在,请说明理由.2.如图①,在矩形OACB 中,点A 、B 分别在x 轴、y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)请直接写出点C 的坐标;(2)如图②,点F 在BC 上,连接AF ,把ACF V 沿着AF 折叠,点C 刚好与线段AB 上一点C ¢重合,求线段CF 的长度;(3)如图③,点(,)P x y 为直线26y x =-在第一象限内的图象上的个动点,点D 在线段AC 上(不与点A 、C 重合),是否存在直角顶点为P 的等腰直角BDP △,若存在,请求出点P 的坐标:若不存在,请说明理由.Q BPD D 是等腰三角形,\ BP PD =,90BPD Ð=°,\EF BC ∥,\BEP Ð=90PFD Ð=°,\BPE DPF DPF PDF Ð+Ð=Ð+Ð,\BPE PDF Ð=Ð,\()BPE PDF AAS D D ≌,\6(26)122PF BE a a ==--=-,EP DF =,Q 1228EF EP PF a a =+=+-=,\4a =,\点(4,2)P ,点D 为(8,6)在端点上,点(4,2)P 不符合题意,舍去;②当点P 在BC 的上方时,如图④,过点P 作EF BC ∥,交y 轴于E ,交AC 的延长线于F ,同理可证BPE PDF D D ≌,\266212BE PF a a ==--=-,3.如图,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y =2x-6经过线段OA的中点D,与y轴交于点G,E是线段CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)写出点B的坐标是( , );(2)当43OABCBEGFS S=正方形四边形时,求点E的坐标;(3)在点E的整个运动过程中,①当四边形BEGF为菱形时,求点E的坐标;②若N为平面内一点,当以B,E,F,N为顶点的四边形为矩形时,m的值为 .(请直接写出答案)4.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M 在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.5.如图1,在平面直角坐标系中,直线AB 分别交x 轴、y 轴于A(a ,0)、B(0,b)两点,且a ,b 满足(a ﹣b )2+|a ﹣4t|=0,且t >0,t 是常数.直线BD 平分∠OBA ,交x 轴于D 点.(1)若AB 的中点为M ,连接OM 交BD 于N ,求证:ON =OD ;(2)如图2,过点A 作AE ⊥BD ,垂足为E ,猜想AE 与BD 间的数量关系,并证明你的猜想;(3)如图3,在x 轴上有一个动点P (在A 点的右侧),连接PB ,并作等腰Rt △BPF ,其中∠BPF =90°,连接FA 并延长交y 轴于G 点,当P 点在运动时,OG 的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【答案】(1)见解析;(2)BD =2AE ,证明见解析;(3)OG 的长不变,OG =4t【分析】(1)根据直线解析式求出点A 、B 的坐标,然后得出AOB D 是等腰直角三角形,再根据角平分线的定义求出22.5ABD Ð=°,根据等腰三角形三线合一的性质OM AB ^,然后根据直角三角形两锐角互余的性质与三角形的一个外角等于与它不相邻的两个内角的和求出67.5OND Ð=°,67.5ODB Ð=°,利用等角对等边得到ON OD =;(2)延长AE 交BO 于C ,得ABE CBE D @D ,得到2AC AE =,再证OAC OBD D @D 得到BD AE =,从而得到2BD AE =;()ABE CBE ASA \D @D ,AE CE \=,2AC AE \=,AE BD ^Q ,90OAC ADE \Ð+Ð=°,又90OBD BDO Ð+Ð=°,ADE BDO Ð=Ð(对顶角相等),OAC OBD \Ð=Ð,在OAC D 与OBD D 中,OAC OBD OA OB BOD AOCìÐ=Ðïïïï=íïïïÐ=Ðïî,()OAC OBD ASA \D @D ,BD AC \=,2BD AE \=;(3)OG 的长不变,且4OG t =.过F 作FH OP ^,垂足为H ,90FPH PFH \Ð+Ð=°,90BPF Ð=°Q ,90BPO FPH \Ð+Ð=°,FPH BPO \Ð=Ð,BPF D Q 是等腰直角三角形,BP FP \=,在OBP D 与HPF D 中,90FPH BPO BOP FHP BP FPìÐ=ÐïïïïÐ=Ð=°íïïï=ïî,()OBP HPF AAS \D @D ,FH OP \=,4PH OB t ==,=,Q,OA OB=+=+AH PH AP OB AP\=+=,AH OA OP OP\=,FH AH\Ð=Ð=°,45GAO FAH\D是等腰直角三角形,AOG\==.OG OA t4【点睛】本题综合考查了一次函数,全等三角形的判定与全等三角形的性质,以及等腰直角三角形的性质,角平分线的定义,等腰三角形三线合一的性质等等知识点,熟悉相关性质是解题的关键.6.如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.【点睛】本题主要考查一次函数的图象的平移和正方形的性质的综合,掌握待定系数法和求直线和坐标轴的交点坐标是解题的关键.7.已知,一次函数364y x =-+的图像与x 轴、y 轴分别交于点A 、点B ,与直线54y x = 相交于点C ,过点B 作x 轴的平行线l .点P 是直线l 上的一个动点.(1)求点A ,点B 的坐标.(2)若AOC BCP S S =△△,求点P 的坐标.(3)若点E 是直线54y x =上的一个动点,当△APE 是以AP 为直角边的等腰直角三角形时,求点E 的坐标.8.如图,将一矩形纸片OABC 放在平面直角坐标系中,()0,0O ,()6,0A ,()0,3C .动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t (秒).(Ⅰ)OE =_____________,OF =_____________;(用含t 的代数式表示)(Ⅱ)当1t =时,将OEF V 沿EF 翻折,点O 恰好落在CB 边上的点D 处.①求点D 的坐标及直线DE 的解析式;②点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,S 为MBN △的面积,当点M 与点B 重合时,0S =.求S 与b 之间的函数关系式,并求出自变量b 的取值范围.∵OEF V 沿EF 翻折得到DEF V ,∴53FD OF ==.∴1410BM b=-+.9.已知,直线y=2x-2与x轴交于点A,与y轴交于点B.(1)如图①,点A的坐标为_______,点B的坐标为_______;(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.①求点C的坐标;②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;(3)若∠ABN=45º,求直线BN的解析式.令y=0,则2x-2=0,即x=1过点C 作CD⊥x 轴,垂足是D,∵∠BOA=∠ADC=90°,∠BAO=∠CAD,CA=AB,∴△BOA≌△CAD(AAS),∴CD=OB=2,AD=OA=1,∴C(2,2);②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.故答案是:m<0或m>2;(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.∵∠AOB=∠BAN=∠AHN=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,∴∠ABO=∠HAN,∵AB=AN,∴△ABO≌△NAH(AAS),∴AH=OB=2,NH=OA=1,∴N(3,-1),设直线BN的解析式为y=kx+b,则有:312k bb+=-ìí=-î,解得132kbì=ïíï=-î,∴直线BN的解析式为y=13x-2,当直线BN′⊥直线BN时,直线BN′也满足条件,直线BN′的解析式为:y3x2=--.∴满足条件的直线BN的解析式为y=13x-2或y=-3x-2.【点睛】本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动23秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE= ,OF= (用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=0.求S 与b之间的函数关系式,并求出自变量b的取值范围.11.如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.12.已知11y kx =+过点(2,-1),与x 轴交于点A,F 点为(1,2).(Ⅰ)求k 的值及A 点的坐标;(Ⅱ)将函数1y 的图象沿y 轴方向向上平移得到函数2y ,其图象与y 轴交于点Q,且OQ=QF,求平移后的函数2y 的解析式;(Ⅲ)若点A 关于2y 的对称点为K,请求出直线FK 与x 轴的交点坐标.13.在平面直角坐标系中,直线1l:142y x=-+分别与x轴、y轴交于点A、点B,且与直线2l:y x=于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且BODV的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图1,直线AB交x轴于点A(4 ,0),交y轴于点B(0 ,-4),(1)如图,若C的坐标为(-1, ,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH ,求证:∠OHP=45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -V V 的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)P (0 ,-1);(2)证明见解析;(3)不变;4.【分析】(1)利用坐标的特点,得出△OAP ≌△OB ,得出OP=OC=1,得出结论;(2)过O 分别做OM ⊥CB 于M 点,ON ⊥HA 于N 点,证出△COM ≌△PON ,得出OM=ON ,HO 平分∠CHA ,求得结论;(3)连接OD ,则OD ⊥AB ,证得△ODM ≌△ADN ,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=4.【详解】解:∵AH ⊥BC 于H ,∴∠OAP +∠OPA=∠BPH +∠OBC=90°,∴∠OAP=∠OBC在△OAP 和△OBC 中,90COB POA OA OB OAP OBC Ð=Ð=°ìï=íïÐ=Ðî∴△OAP ≌△OBC (ASA ),∴OP=OC=1,则点P (0 ,-1)(2)过点O 分别作OM ⊥CB 于M 点,ON ⊥HA 于N 点,15.如图,直线12y x b=-+与x轴,y轴分别交于点A,点B,与函数y=kx的图象交于点M(1,2).(1)直接写出k,b的值和不等式012x b kx£-+£的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=﹣12x+b和y=kx的图象于点C,点D.若2CD=OB,求点P的坐标.16.无刻度直尺作图:图1 图2(1)直接写出四边形ABCD的形状.(2)在图1中,先过E点画一条直线平分四边形ABCD的面积,再在AB上画点F,使得AF=AE.(3)在图2中,先在AD上画一点G,使得∠DCG=45°;连接AC,再在AC上画点H,使得GH=GA.【答案】(1)四边形ABCD是菱形,理由见解析(2)见解析(3)见解析【分析】(1)只需要证明AB=CD=AD=BC即可得到结论;(2)如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH并延长交AB于F,则直线EG,点F即为所求;(3)如图所示,取格点T,连接CT交AD于G,取格点M、N,连接MN交BC于P,连接GP交AC于H,则点G、H即为所求;(1)求直线AB 的解折式;(2)如图2,已知P 为直线l :152y x =-+上一点,且512ABI ABCO S S =四边形△,求点P 的坐标;(3)若点D 为第一象限内一动点,且45ODC Ð=°,求BD 的最小值.∴∠BDA =90°,∵BC ∥OA ,BC =2,OA =6,∴AD =6−2=4,在Rt △ABD 中,BD =(22213AB AD -=∴PQ=|yQ−yP|=31922m m -++∵xA−xB=6−2=4,∴S△ABP=12PQ•(xA−xB)=12×4×|4−S四边形ABCO=12×(2+6)×6=24,∵∠ODC=45°,∠MOD=90°,18.如图,直线y =x +9与直线y =-2x -3交于点C ,它们与y 轴分别交于A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)点F 在x 轴上,使10BFC S =△,求点F 的坐标;(3)点P 在x 轴上,使∠PBO +∠PAO =90°,直接写出点P 的坐标.。
新人教版八年级数学下册考点综合专题:一次函数与几何图形的综合问题
考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B 的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y=-2x+3与x轴相交于点A,与y轴相交于点B.【易错7】(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.3.如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),点P(x,y)是在第一象限内直线y=-x+10上的一个动点.(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.◆类型二一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.第4题图第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y 轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x -6上,∴2x -6=4,解得x =5.即OA ′=5,∴CC ′=AA ′=5-1=4.∴S ▱BCC ′B ′=CC ′·CA =4×4=16.即线段BC 扫过的面积为16.2.解:(1)令y =0,则-2x +3=0,解得x =32;令x =0,则y =3,∴点A 的坐标为⎝⎛⎭⎫32,0,点B 的坐标为(0,3).(2)由(1)得点A ⎝⎛⎭⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94. 3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x+10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝⎛⎭⎫152,52.4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
一次函数与几何图形综合题(含答案)
一次函数与几何图形综合专题讲座思想方法小结 : (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 :(1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b =0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0)当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系.①k 1≠k 2⇔y 1与y 2相交; ②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.例题精讲:1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB(1) 求AC(2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC于Q ,试探究BP 与PQ 的数量关系,并证明你的结论。
初二下学期压轴题练习- 一次函数与几何变换(含答案)
专题09一次函数与几何变换一.选择题1.(2021春•大同期末)对于一次函数y=﹣2x+4,下列结论正确的是()A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y22.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+3.(2020秋•天桥区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.24.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.(2020•碑林区校级模拟)若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1 6.(2019•嘉祥县三模)在平面直角坐标系中,将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,则下列平移作法正确的是()A.将y1向上平移2个单位长度B.将y1向上平移4个单位长度C.将y1向左平移3个单位长度D.将y2向右平移6个单位长度7.(2018春•雨花区校级月考)如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是()A.3<t<6B.4<t<7C.3<t<7D.<t<7二.填空题8.(2021春•安丘市期末)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA′交y轴于点C,则点C 的坐标为.9.(2021春•东台市月考)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为.10.(2021•广东模拟)如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x 轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为.11.(2020春•黄陂区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.12.(2018秋•福田区校级期中)如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为.13.(2017秋•碑林区校级期末)如图,一次函数y=,的图象向下平移2个单位后得直线l,直线l交x轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A、B重合),过点P分别作PE⊥x 轴点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为.14.(2018春•丰南区期末)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为.15.(2019春•西湖区校级期中)在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.16.(2019•天津二模)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.17.(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过秒该直线可将平行四边形OABC分成面积相等的两部分.三.解答题18.(2021春•古丈县期末)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移5个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.19.(2021春•武汉月考)已知,在平面直角坐标系中,函数y1=2|x﹣a|,(1)若该函数经过点A(1,0),求该函数的解析式,并在图1中画出函数图象;(2)在(1)的条件下,将函数y2=x向上平移m个单位后与函数y1的图象相交于点B和C点,若BC =,求m;(3)如图2,设直线y3=6n与直线y4=2n分别与函数y1=2|x﹣a|相交于点E、F和M、N,点P为直线y3=6n上一点,连接PM、PN并延长交直线y5=kn于点G、H,若2EF=3GH,求k.20.(2021春•河北区期末)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x 轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.21.(2019秋•罗湖区校级期末)如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交y轴于点B,且OA=OB.(1)试求直线l2的函数表达式;(2)若将直线l1沿着x轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD的面积.22.(2018秋•宿迁期末)如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.23.(2019•大渡口区模拟)如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y=x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.24.(2018春•沙坪坝区校级期末)如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.25.(2017春•武昌区期末)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.26.(2017春•安岳县期中)已知直线y=(m+1)x|m|﹣1+(2m﹣1),当x1>x2时,y1>y2,求该直线的解析式.并求该直线经过怎么的上下平移就能过点(2,5)?27.(2016春•大兴区期末)阅读材料:通过一次函数的学习,小明知道:当已知直线上两个点的坐标时,可以用待定系数法,求出这个一次函数的表达式.有这样一个问题:直线l1的表达式为y=﹣2x+4,若直线l2与直线l1关于y轴对称,求直线l2的表达式.下面是小明的解题思路,请补充完整.第一步:求出直线l1与x轴的交点A的坐标,与y轴的交点B的坐标;第二步:在平面直角坐标系中,作出直线l1;第三步:求点A关于y轴的对称点C的坐标;第四步:由点B,点C的坐标,利用待定系数法,即可求出直线l2的表达式.小明求出的直线l2的表达式是.请你参考小明的解题思路,继续解决下面的问题:(1)若直线l3与直线l1关于直线y=x对称,则直线l3的表达式是;(2)若点M(m,3)在直线l1上,将直线l1绕点M顺时针旋转90°.得到直线l4,求直线l4的表达式.28.(2016•河北模拟)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.29.(2015秋•栖霞区期末)课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)专题09一次函数与几何变换一.选择题1.(2021春•大同期末)对于一次函数y=﹣2x+4,下列结论正确的是()A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【思路引导】代入y=0求出与之对应的x值,即可得出A不正确;根据一次函数的系数结合一次函数的性质,即可得知B选项正确、D选项不正确,根据平移的规律求得平移后的解析式,即可判断C不正确,此题得解.【完整解答】解:A、令y=﹣2x+4中y=0,则x=2,∴一次函数的图象与x轴的交点坐标是(2,0),故本选项不符合题意;B、∵k=﹣2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,即函数的图象不经过第三象限,故本选项符合题意;C、根据平移的规律,函数的图象向上平移4个单位长度得到的函数解析式为y=﹣2x+4+4,即y=﹣2x+8,故本选项不符合题意;D、∵k=﹣2<0,∴一次函数中y随x的增大而减小,∴若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1>y2,故本选项不符合题意.故选:B.【考察注意点】本题考查了一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.2.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+【思路引导】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【完整解答】解:∵一次函数y=x+的图像与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,由旋转的性质可知∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.【考察注意点】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.3.(2020秋•天桥区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.2【思路引导】先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.【完整解答】解:如图1,连接BD并且两端延长,直线y=x﹣3中,令y=0,得x=3;令x=0,得y =﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.【考察注意点】本题考查了动点问题的函数图象,一次函数图象与几何变换,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.4.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2【思路引导】根据平移性质可由已知的解析式写出新的解析式.【完整解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.【考察注意点】此题主要考查了一次函数图象与几何变换,解题时注意:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y =kx±|b|.5.(2020•碑林区校级模拟)若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【思路引导】先求出一次函数y=kx+3与y轴交点关于直线x=1的对称点,得到b的值,再求出一次函数y=2x+b与y轴交点关于直线x=1的对称点,代入一次函数y=kx+3,求出k的值即可.【完整解答】解:∵一次函数y=kx+3与y轴交点为(0,3),∴点(0,3)关于直线x=1的对称点为(2,3),代入直线y=2x+b,可得4+b=3,解得b=﹣1,一次函数y=2x﹣1与y轴交点为(0,﹣1),(0,﹣1)关于直线x=1的对称点为(2,﹣1),代入直线y=kx+3,可得2k+3=﹣1,解得k=﹣2.故选:D.【考察注意点】本题考查的是一次函数图象与几何变换,待定系数法求函数解析式,先根据题意得出直线与坐标轴的交点是解决问题的关键.6.(2019•嘉祥县三模)在平面直角坐标系中,将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,则下列平移作法正确的是()A.将y1向上平移2个单位长度B.将y1向上平移4个单位长度C.将y1向左平移3个单位长度D.将y2向右平移6个单位长度【思路引导】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【完整解答】解:∵将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,∴2(x+a)﹣2=2x+4,解得:a=3,故将y1向左平移3个单位长度.故选:C.【考察注意点】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.7.(2018春•雨花区校级月考)如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是()A.3<t<6B.4<t<7C.3<t<7D.<t<7【思路引导】分别求出直线l经过点M、点N时的t值,即可得到t的取值范围.【完整解答】解:当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.故选:B.【考察注意点】本题考查了坐标平面内一次函数的图象与性质,关键是利用一次函数图象上点的坐标特征解答.二.填空题8.(2021春•安丘市期末)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA′交y轴于点C,则点C 的坐标为(0,﹣4).【思路引导】依据轴对称的性质可得OB'=OB=,A′B′=AB=1,OA′=OA=2,进而通过证得△A′OB′∽△COA′,求得OC=4,即可证得C的坐标为(0,﹣4).【完整解答】解:∵点A的坐标为(1,),∴AB=1,OB=,∴OA===2,∵将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',∴OB'=OB=,A′B′=AB=1,OA′=OA=2,∴A'(﹣,﹣1),∵过A'作A'C垂直于OA'交y轴于点C,∴∠A′OC+∠A′CO=90°,∵∠A′OB′+∠A′OC=90°,∴∠A′CO=∠A′OB′,∵∠A′B′O=∠OA′C=90°,∴△A′OB′∽△OCA′,∴=,即=,∴OC=4,∴C(0,﹣4),故答案是:(0,﹣4).【考察注意点】本题考查了轴对称的性质,正比例函数的性质,求得对称点的坐标是解题的关键.9.(2021春•东台市月考)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为8.【思路引导】通过图象中(4,0),(7,2),(8,2)可得直线运动到A,D,B三点时所移动距离,从而求出AB长度,再通过添加辅助线构造直角三角形求出平行四边形的高而求解.【完整解答】解:由图象可知,直线经过A时移动距离为4,经过D时移动距离为7,经过B时移动距离为8,∴AB=8﹣4=4.如图,当直线经过点D时,交AB于点E,作DF垂直于AB于点F,由图2可知DE=2,∵直线与AB夹角为45°,∴DF=EF=2,∴ABCD面积为AB•DF=4×2=8.故答案为:8.【考察注意点】本题考查一次函数图象与图形结合问题,解题关键是掌握k=﹣1时直线与x轴所夹锐角为45°.10.(2021•广东模拟)如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x 轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为y=﹣2x+2.【思路引导】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【完整解答】解:设直线AB的解析式为y=kx+b(k≠0),∵点A(﹣1,0)点B(0,﹣2)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x﹣2,∵AB=AD,AO⊥BD,∴OD=OB,∴D(0,2),∴直线CD的函数解析式为:y=﹣2x+2,故答案为:y=﹣2x+2.【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.(2020春•黄陂区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是y=2x﹣1.【思路引导】直接根据“上加下减,左加右减”的原则进行解答即可.【完整解答】解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.(2018秋•福田区校级期中)如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为(2n﹣1,2n).【思路引导】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点B n的坐标.【完整解答】解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),依此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为:(2n﹣1,2n).【考察注意点】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了轴对称的性质.13.(2017秋•碑林区校级期末)如图,一次函数y=,的图象向下平移2个单位后得直线l,直线l交x轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A、B重合),过点P分别作PE⊥x轴点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为(﹣,).【思路引导】利用勾股定理和一次函数图象上点的坐标特征,列出二次函数关系式,结合二次函数最值的求法解答.【完整解答】解:由已知条件得到直线l解析式为:y=﹣2,即y=,设P(a,),所以EF2=a2+()2=a2+a+.当EF取最小值时,a=﹣=﹣,此时,=,即P(﹣,),故答案是:(﹣,).【考察注意点】考查了一次函数图象与几何变换,解题时,利用了二次函数最值的求法,熟记二次函数顶点坐标公式是解题的关键.14.(2018春•丰南区期末)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为y=x﹣.【思路引导】设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式,再根据平移规律即可得到直线l′的函数解析式.【完整解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线l为y=kx,则3=k,k=,∴直线l解析式为y=x,∴直线l向右平移3个单位长度后所得直线l′的函数解析式为y=(x﹣3),即y=x﹣,故答案为:y=x﹣.【考察注意点】此题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.15.(2019春•西湖区校级期中)在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过6秒该直线可将平行四边形OABC的面积平分.【思路引导】首先连接AC、BO,交于点D,当y=4x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=4x+1的直线解析式,从而可得直线y=4x+1要向下平移,进而可得答案.【完整解答】解:连接AC、BO,交于点D,当y=4x+1经过D点时,该直线可将▱OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=4x+1,∴k=4,∵过D(3,1),∴DE的解析式为y=4x﹣11,∴直线y=4x+1要向下平移12个单位,∴时间为6秒,故答案为:6【考察注意点】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.16.(2019•天津二模)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是y=3x﹣2.【思路引导】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【完整解答】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.【考察注意点】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.17.(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过6秒该直线可将平行四边形OABC分成面积相等的两部分.【思路引导】首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式,从而可得直线y=2x+1要向下平移6个单位,进而可得答案.【完整解答】解:连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=2x+1,∴k=2,∵过D(3,1),∴DE的解析式为y=2x﹣5,∴直线y=2x+1要向下平移6个单位,∴时间为6秒,故答案为:6.【考察注意点】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.三.解答题18.(2021春•古丈县期末)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移5个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.【思路引导】(1)利用待定系数法确定该一次函数的解析式;(2)根据平移规律“上加下减”写出平移后一次函数解析式,然后根据一次函数图象上点的坐标特征求直线与x轴的交点坐标.【完整解答】解:(1)∵一次函数y=kx+b的图象经过点(﹣2,0)和点(2,2),∴.解得k=,b=1.∴一次函数的解析式为:y=x+1;(2)∵一次函数y=x+1向下平移5个单位的解析式为y=x+1﹣5=x﹣4,即y=x﹣4.∴当y=0时,x=8,∴平移后的图象与x轴的交点坐标为(8,0).【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的性质是解答此题的关键.19.(2021春•武汉月考)已知,在平面直角坐标系中,函数y1=2|x﹣a|,(1)若该函数经过点A(1,0),求该函数的解析式,并在图1中画出函数图象;(2)在(1)的条件下,将函数y2=x向上平移m个单位后与函数y1的图象相交于点B和C点,若BC=,求m;(3)如图2,设直线y3=6n与直线y4=2n分别与函数y1=2|x﹣a|相交于点E、F和M、N,点P为直线y3=6n上一点,连接PM、PN并延长交直线y5=kn于点G、H,若2EF=3GH,求k.【思路引导】(1)把点A坐标代入函数,求出a,得到函数y1的解析式,画出图象;(2)设出函数y2的解析式,得到B、C的坐标,根据BC=列出方程,求m的值;(3)由三角形相似得出MN和GH的比例,求出k的值.【完整解答】解:(1)把点A(1,0)代入y1=2|x﹣a|,得:2|1﹣a|=0,解得:a=1,∴y1=2|x﹣1|,图象如右所示.(2)由题意得y2=x+m(m>0),x≤1时,y1=﹣2x+2,x>1时,y1=2x﹣2,由,解得:,∴B(,),由,解得:,∴C(m+2,2m+2),∵BC=,∴(m+2﹣)2+(2m+2﹣)2=128,解得:m1=5,m2=﹣7(舍),∴m=5.(3)∵直线y3=6n与直线y4=2n间的距离为4n,直线y4=2n与x轴间的距离为2n,∴EF=3MN,∵2EF=3GH,∴MN:GH=1:2,∴MN是△PGH的中位线,∴y3=6n与y4=2n间的距离和y3=6n与y5=kn间的距离相等,∴k=﹣2.【考察注意点】本题考查了分段函数图象和函数图象变换,画图的关键顺序是“列表﹣描点﹣连线”,需要注意的是连线的时候要用平滑的曲线连接.20.(2021春•河北区期末)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x 轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.【思路引导】(1)根据题意求得正方形各顶点的坐标,然后根据待定系数法求得直线l的解析式,直线平移,斜率不变,设平移后的直线方程为y=x+b;把点B和D的坐标代入进行解答即可;(2)根据正方形是中心对称图形,当直线l经过对角线的交点时,恰好平分正方形ABCD的面积,求得交点坐标,代入y=x+b,根据待定系数法即可求得直线l此时的解析式,然后求得E、F的坐标,根据待定系数法求得直线BE的解析式,得到与y轴的交点Q的坐标,根据三角形面积公式即可求得.【完整解答】解:(1)∵长为3的正方形ABCD中,点A的坐标为(5,4),∴B(2,4),C(2,1),D(5,1),设直线l的解析式为y=kx,把C(2,1)代入得,1=2k,解得k=,∴直线l为y=,设平移后的直线方程为y=x+b,。
初二一次函数与几何题(附答案)
初二一次函数与几何题(附答案)1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?A B C O x y xyA B O6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
一次函数与几何图形综合题及答案
专题训练:一次函数与几何图形综合1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB(1) 求AC 的解析式;(2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。
(3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。
2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。
(1)当OA=OB 时,试确定直线L 的解析式;xyo BA CPQxyo BA CPQM第2题图①(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。
(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。
问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。
3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(3分)第2题图②第2题图③CB Al 2l 1xy(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二一次函数与几何题(附答案)
1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m
的值是多少?
2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在
x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?
A B C O x y x
y
A B O
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)
求k1,k2的值
如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标
9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),
(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;
(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式
11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式
12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.
求:(1)△COP 的面积
(2)求点A 的坐标及m 的值;
(3)若S BOP =S DOP ,求直线BD 的解析式
13、一次函数y=-3
3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC
(1)求△ABC 的面积和点C 的坐标;
(2)如果在第二象限内有一点P (a ,2
1),试用含a 的代数式表示四边形ABPO 的面积。
(3)在x 轴上是否存在点M ,使△MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。
14、已知正比例函数y=k 1x 和一次函数y=k 2x+b 的图像如图,它们的交点A (-3,4),且OB=5
3OA 。
(1)求正比例函数和一次函数的解析式;
(2)求△AOB 的面积和周长;
(3)在平面直角坐标系中是否存在点P ,使P 、O 、A 、B 成为直角梯形的四个顶点?若存在,请直接写出P 点的坐标;若不存在,请说明理由。
15、如图,已知一次函数y=x+2的图像与x 轴交于点A ,与y 轴交于点C ,
(1)求∠CAO 的度数;
(2)若将直线y=x+2沿x 轴向左平移两个单位,试求出平移后的直线的解析式;
(3)若正比例函数y=kx (k ≠0)的图像与y=x+2得图像交于点B ,且∠ABO=30°,求:AB 的长及点B 的坐标 。
答案
3、点到线的最短距离是点向该线做垂线因为直线与x夹角45度所以ABO为等腰直角三角形AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2
在B分别向xy做垂线垂线与轴交点就是B的坐标
由于做完还是等腰直角三角形所以议案用上面的共识可知B点坐标是(0.5,-0.5)
7、一次函数的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数的解析式为y=8x+4或y=(25/2)x-5
8、因为正比例函数和一次函数都经过(3,-6)
所以这点在两函数图像上
所以,当x=3 y=-6 分别代入得
k1= -2 k2=1
若一次函数图像与x轴交于点A 说明A的纵坐标为0
把y=0代入到y=x-9中得x=9
所以A(9,0)
例4、A的横坐标=-1/2,纵坐标=0
0=-k/2+b,k=2b
C点横坐标=4,纵坐标y=4k+b=9b
B点横坐标=0,纵坐标y=b
Sobcd=(\9b\+\b\)*4/2=10
10\b\=5
\b\=1/2
b=1/2,k=2b=1 y=x+1/2
b=-1/2,k=-1 y=-x-1/2
\b\表示b的绝对值
11、解:设这个一次函数解析式为y=kx+b
∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB
∴{-3k+b=4
{3k+b=0
∴{k=-2/3
{b=2
∴这个函数解析式为y=-2/3x+2
解2根据勾股定理求出OA=OB=5,
所以,分为两种情况:
当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,
当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,
12、做辅助线PF,垂直y轴于点F。
做辅助线PE垂直x轴于点E。
(1)求S三角形COP
解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
解:可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4,FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4,0),P点坐标为(2,3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即3BE = 2FD。
又因为:FD:DO = PF:OB 即FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6。