乳酸菌降胆固醇
乳酸菌胶囊的作用与功效
乳酸菌胶囊的作用与功效乳酸菌胶囊是一种常见的保健品,它含有益生菌或其发酵产物。
益生菌是一类有益于宿主健康的活菌,通过增加肠道有益菌数量,调节菌群平衡,提高肠道健康水平的作用。
乳酸菌胶囊具有多种作用和功效,下面将详细介绍。
1. 改善肠道菌群乳酸菌胶囊中的益生菌能够在人体的肠道内繁殖生长,并形成一层菌群。
这些益生菌具有对抗病原菌的能力,并可以与肠道内的有害细菌竞争营养物质,抑制其繁殖。
同时,益生菌还可以产生有益物质,例如乳酸和醋酸等,这些物质可以改善肠道环境,增加肠道内有益菌的数量,从而调节肠道菌群平衡。
2. 提高免疫力肠道是人体最大的免疫器官,肠道内约有70%的免疫细胞。
乳酸菌胶囊中的益生菌可以刺激肠道内的免疫细胞,增强肠道免疫系统的功能。
研究表明,乳酸菌胶囊可以增加肠道内IgA的水平,提高肠道黏膜的免疫能力。
3. 缓解便秘乳酸菌胶囊中的益生菌可以改善肠道蠕动,增加肠道的排便频率。
这些益生菌可以产生多种有益物质,例如酸和酶等,这些物质可以加速食物在肠道内的消化和吸收,减少粪便在肠道内的滞留时间,缓解便秘症状。
4. 预防腹泻乳酸菌胶囊中的益生菌可以产生抗菌物质,例如抗菌酶和抑菌肽等,这些物质可以抑制肠道内的有害细菌的繁殖,减少肠道感染的几率,预防腹泻的发生。
此外,益生菌还可以增加肠道内有益菌的数量,提高肠道的抵抗力,预防感染性腹泻。
5. 改善消化功能乳酸菌胶囊中的益生菌可以产生多种消化酶,例如蛋白酶和脂肪酶等,这些酶可以帮助人体分解和消化食物中的蛋白质、脂肪和碳水化合物。
益生菌还可以降低肠道内有害菌的数量,减少有害菌对营养物质的消费,提高肠道对食物的吸收利用率。
6. 降低胆固醇乳酸菌胶囊中的某些益生菌可以分解和吸收食物中的胆固醇,从而降低血液中的胆固醇水平。
此外,益生菌还可以降低肠道内有害菌的数量,减少有害菌对胆固醇的产生和吸收,进一步降低血液中的胆固醇水平。
7. 缓解过敏反应乳酸菌胶囊中的益生菌可以调节免疫系统的功能,减少过敏反应的发生。
乳酸菌素片的功效与作用
乳酸菌素片的功效与作用乳酸菌素片是一种含有乳酸菌素的保健食品,通常用于改善人体内菌群失衡的问题,促进消化、增强免疫系统功能等。
乳酸菌素片有很多功效和作用,下面将对其详细介绍。
乳酸菌素是一种可以促进菌群平衡的物质,它能够抑制有害菌的生长,增强益生菌对宿主的免疫功能。
乳酸菌素片中的乳酸菌素通过口服进入人体后,在胃酸和胃蛋白酶的作用下释放出来,然后进入肠道,发挥其作用。
乳酸菌素片的主要功效和作用如下:1. 调节肠道菌群:乳酸菌素能够促进肠道菌群平衡,抑制有害菌的生长,增强有益菌的数量,从而提高肠道健康水平。
肠道是人体最大的免疫系统器官,肠道菌群与免疫系统之间有着密切的联系,良好的肠道菌群平衡有助于提高免疫力,减少疾病的发生。
2. 促进消化吸收:乳酸菌素能够分解食物中的蛋白质、脂肪和碳水化合物,促进食物的消化吸收。
它能够分泌多种酶,帮助人体消化蛋白质、脂肪和碳水化合物,提高食物的利用率,减少消化不良和营养不良的发生。
3. 预防便秘和腹泻:乳酸菌素对于肠道蠕动和水分平衡有调节作用,可以有效预防便秘和腹泻。
它能够增加肠道内的水分,保持大便的湿润度,减少大便干燥,防止便秘的发生。
同时,乳酸菌素还能够抑制有害菌的增长,减少腹泻的发生。
4. 降低胆固醇和血压:乳酸菌素具有降低血液中胆固醇和血压的作用。
它能够降低胆固醇的合成,增加胆酸的排泄,从而降低血液中胆固醇的含量。
此外,乳酸菌素还能促进一些有益菌的生长,合成血管舒张剂,增加血管弹性,降低血压。
5. 抗肿瘤作用:乳酸菌素具有一定的抗肿瘤作用,可以通过增强免疫功能、抑制肿瘤细胞的生长和转移来达到其抗肿瘤作用。
乳酸菌素可以增加免疫细胞的数量和活性,增强免疫系统对于肿瘤细胞的杀伤作用,降低肿瘤的发生风险。
6. 缓解过敏症状:乳酸菌素具有调节免疫系统的功能,可以减少过敏反应的发生。
它能够调节免疫系统的平衡,减少过敏相关细胞的活性,降低过敏原对于免疫系统的刺激,从而减少过敏症状的发生。
自然发酵肉制品中乳酸菌的体外降胆固醇特性
自然发酵肉制品中乳酸菌的体外降胆固醇特性 李敏 齐鲁工业大学 得利斯集团有限公司试验所用材料与研究方法材料。
菌株:从自然发酵肉制品中分离筛选出13种菌株,分别编号为1、2、3、4、5、6、7、8、9、10、11、12、13。
所用试剂和药品:邻苯二甲醛、蔗糖脂肪酸酯、牛胆盐、胆固醇、MRS肉汤培养基、高胆固醇MRS液体培养基等。
方法。
初步筛选用于进一步研究的乳酸菌菌株。
把13种菌株分别取4%接种到高胆固醇MRS液体培养基中,于37℃厌氧情况下恒温培养24小时,之后进行离心,提取上清液,测定胆固醇含量,以未接种的为空白对照,计算胆固醇去除率,并筛选出胆固醇去除率高的菌株进行进一步研究。
乳酸菌降胆固醇特性研究菌体的同化吸收及共沉淀试验。
对6号和12号菌体分别按照以下步骤进行试验:首先,取4%的供试菌液接种到高胆固醇MRS液体培养基中,于37℃厌氧环境中培养24小时,培养结束后进行离心处理,取上清液;接着倒出剩余液体,加入缓冲液5ml,离心,取上清液作为菌体洗涤液;然后倒出剩余液体,加入缓冲液5ml,并在水浴环境中超声破碎菌体细胞,离心,再取上清液作为菌体破碎液。
最后,把未接种菌体的液体培养基为对照,分别测定三种上清液中胆固醇含量。
实验分析:通过测定结果可知,6号和12号菌体洗涤液中分别含有23.25%和30.20%的胆固醇,菌体破碎液中分别含有21.01%和18.23%的胆固醇。
根据分析得出菌体洗涤液中的胆固醇是由胆盐和胆固醇的共沉淀效应形成的,破碎液中的胆固醇来源于菌体吸收同化的胆固醇。
所以可以得知这两种菌体都是通过同化吸收与共沉淀作用降胆固醇的。
胆盐对菌体降胆固醇的作用。
把高胆固醇M R S液体培养基中胆盐的含量改为0.3g/100mL,其他的参数和操作保持不变,把两种菌体分别取4%接种到液体培养基中,进行37℃恒温厌氧培养24小时,进行离心,取上清液。
以未接种菌体液体培养基为对照,测量两种上清液中的胆固醇去除情况。
乳酸菌的作用与功效
乳酸菌的作用与功效乳酸菌是一类广泛存在于自然环境中的微生物,主要存在于发酵食品中,比如酸奶、酸菜、奶酪等。
乳酸菌被公认为一种益生菌,有着多种功能和作用。
这篇文章将详细介绍乳酸菌的作用与功效,希望能给读者带来一些启发和帮助。
一、乳酸菌的作用1.促进消化系统健康乳酸菌在肠道内可以产生乳酸和其他有益的代谢产物,维持肠道的酸碱平衡,并抑制有害菌的生长。
此外,乳酸菌还可以促进肠道蠕动,增加粪便水分,缓解便秘问题。
2.增强免疫系统乳酸菌可以增强人体的免疫系统,促进免疫球蛋白(IgA、IgM、IgG)的产生,提高抗体水平,增强干扰素和细胞毒素的活性,从而帮助身体更好地抵抗病菌和外来微生物的侵袭,减少感染的风险。
3.调节肠道菌群平衡肠道内有着大量的菌群,其中乳酸菌是其中重要的一类。
乳酸菌可以对抗有害菌的生长,增加肠道的酸度,从而维持肠道的健康和菌群平衡。
当肠道菌群失去平衡时,可能会导致很多问题,比如腹泻、便秘、炎症性肠病等,适量摄入乳酸菌可以帮助调节菌群平衡,缓解这些问题。
4.提高营养利用率乳酸菌可以分解食物中的复杂大分子,如蛋白质、脂肪、碳水化合物等,将其转化为更小的分子,使其更容易被消化吸收。
此外,乳酸菌还可以分泌一些消化酶,帮助人体吸收营养物质,增加营养利用率。
5.防治过敏反应乳酸菌可通过增强人体的免疫力和抑制过敏反应相关物质的产生,帮助预防和缓解过敏性疾病。
一些研究发现,乳酸菌可以减少过敏性鼻炎、过敏性皮炎等症状的发作,并通过改善肠道功能,减少食物过敏的发生。
二、乳酸菌的功效1.保护胃黏膜乳酸菌可以降低胃酸的酸度,并形成一层保护性的膜覆盖在胃黏膜上,减少对胃黏膜的刺激,帮助保护胃黏膜。
2.降低胆固醇一些乳酸菌可以通过代谢胆固醇,将其转化为胆酸和其他代谢产物,从而起到降低胆固醇的作用。
这对于预防心脑血管疾病有一定的好处。
3.抗肿瘤作用乳酸菌具有一定的抗肿瘤作用,可以提高机体的免疫力,抑制癌细胞的生长和扩散,从而降低癌症的发生和复发。
乳酸菌在生活中的应用与影响
乳酸菌在生活中的应用与影响1. 引言1.1 乳酸菌的定义乳酸菌是一类能在低氧环境中产生乳酸的革兰氏阳性细菌,通常被认为具有益生菌的功效。
这些细菌主要存在于自然界中,如土壤、水体、动植物体内等。
乳酸菌可以通过发酵作用将葡萄糖转化为乳酸,因此得名。
乳酸菌具有酸性环境下生长的特点,能够在酸性环境中生存并繁殖,这也是其在食品行业中的重要应用之一。
乳酸菌在自然界中的分布广泛,具有多样性和适应性强的特点。
乳酸菌既可以存在于泥土中,也可以寄生在动物的消化道内,还可以被用于制作食品、药品和化妆品等。
乳酸菌对人体健康有益,能够帮助调节肠道菌群、增强免疫力、促进食物消化吸收等功效。
在生活中,乳酸菌的应用越来越广泛,对人类的健康和环境保护产生了积极的影响。
1.2 乳酸菌在生活中的重要性除了对人体健康有益之外,乳酸菌在生活中还有广泛的应用。
它被广泛用于食品工业、保健品、化妆品等领域,为人们的生活带来了便利和健康。
乳酸菌的重要性不可忽视,其在各个方面的应用也在不断扩大和深化,为人们的生活带来了更多的好处。
2. 正文2.1 乳酸菌在食品工业中的应用1. 酸奶酸奶是乳酸菌最常见的食品应用之一。
乳酸菌能够发酵牛奶中的乳糖,产生乳酸和其他有益物质,使牛奶变成醇厚的酸奶。
酸奶不仅具有丰富的营养成分,还有益于肠道健康。
乳酸菌被广泛应用于酸奶的生产中。
2. 发酵食品除了酸奶,乳酸菌还被用于其他发酵食品的生产,如酸菜、酱油、泡菜等。
乳酸菌的发酵作用能够改善食品的口感、延长保存期限,并且有利于消化吸收。
3. 保质保鲜剂乳酸菌具有一定的抗菌作用,可以抑制有害菌的生长,延长食品的保质期。
在食品工业中,乳酸菌常被添加到肉类制品、面包、饼干等食品中,起到保鲜的作用。
4. 调味品乳酸菌还被用作调味品的添加剂,如酸奶酪、酸奶饮料等。
这些产品不仅口感好,而且还富含有益菌,对人体健康有益。
乳酸菌在食品工业中的应用非常广泛,不仅提高了食品的营养价值和口感,还对健康有益。
乳酸菌的作用
乳酸菌的作用
乳酸菌是一类生活在动物和人体内、乳制品、发酵食品及土壤等环境中的细菌,其又可以分为乳制品中的乳酸菌和肠道内的益生菌。
乳酸菌具有很高的健康功效,对人体有以下作用:
1. 保护胃肠道健康:乳酸菌能够抑制有害菌的生长,帮助维持胃肠道菌群的平衡。
它们可以竞争性地附着于胃肠黏膜上,形成屏障,阻止有害菌的侵害,从而减少胃肠道感染的风险。
2. 促进食物消化吸收:乳酸菌通过分解食物中的复杂碳水化合物、蛋白质和脂肪,产生有益的代谢产物,如有机酸、酶和维生素等,促进食物的消化和吸收,提高营养价值。
3. 改善免疫系统功能:乳酸菌能够刺激人体免疫系统的发挥,增强机体的抗病能力。
它们可以增加天然杀伤细胞、巨噬细胞和T细胞等免疫细胞的活性,提高免疫球蛋白的产生,从而
增强免疫反应。
4. 预防肠道感染和腹泻:乳酸菌通过排挤或抑制有害菌的生长,改善肠道环境,促进肠道蠕动,有效预防肠道感染和腹泻。
在腹泻患者中,乳酸菌的补充可以减轻腹泻的症状,缩短疾病的持续时间。
5. 减轻乳糖不耐症症状:乳酸菌能够产生乳酸酶,帮助人体分解乳糖,减轻乳糖不耐症患者的症状,提高对乳制品的耐受性。
6. 降低胆固醇水平:某些乳酸菌可以通过转化胆固醇为胆酸,
降低血液中的胆固醇浓度,减少动脉粥样硬化和心血管疾病的风险。
除了上述作用,乳酸菌还具有抗肿瘤、抗过敏、抗氧化、促进维生素合成等多种生物活性,对人体的健康保健具有广泛的应用前景。
因此,适度地摄入乳酸菌,如通过食物和保健品等途径,能够有效地提高人体免疫力,降低患病风险,维护身体的健康。
发酵食品对血脂和胆固醇的调节作用
发酵食品对血脂和胆固醇的调节作用发酵食品对血脂和胆固醇的调节作用胆固醇是一种人体必需的脂质,但其过高的摄入会导致血脂异常,增加心血管疾病的风险。
为了降低血脂和胆固醇水平,人们使用了各种方法,其中发酵食品被认为是一种有效的途径。
发酵食品可以通过其特殊的成分和微生物作用,调节血脂和胆固醇的代谢和平衡。
发酵食品是指通过微生物发酵而制成的食品,如酸奶、凝乳、豆腐、酱油等。
这些发酵食品在发酵过程中产生的有益细菌或酶可以促进人体内脂质的分解和转化,从而有助于降低血脂和胆固醇水平。
首先,发酵食品中含有丰富的乳酸菌和益生菌。
乳酸菌是一种益生菌,可以通过降低胆固醇酯合成的酶活性,减少胆固醇的合成。
此外,乳酸菌还能够通过与胆酸结合来降低胆固醇的吸收和转运。
酸奶、凝乳等发酵乳制品中常含有大量的乳酸菌,它们具有控制血脂和胆固醇的潜力。
其次,发酵食品中的酶可以降低血脂和胆固醇水平。
许多发酵食品中含有的酶可以帮助人体消化和吸收食物中的脂质。
例如,豆腐中的大豆凝集酶可以降低血清胆固醇水平,因为它可以促进胆固醇物质的外排和分解。
酱油中的酶能够分解油脂中的酯类,降低脂肪酸的合成和胆固醇的吸收。
此外,发酵食品中的一些活性成分也具有降低血脂和胆固醇的作用。
例如,红曲米中的红曲球菌能够产生一种名为红曲酶的酶,它可以降低胆固醇的合成速度和吸收率。
黑豆发酵产生的黄酸具有促进血清脂质代谢和降低血脂的作用。
这些活性成分通过影响血清胆固醇的合成、吸收和代谢过程,达到调节血脂和胆固醇的效果。
除了上述机制,发酵食品还可以通过其他途径对血脂和胆固醇产生影响。
例如,通过增加益生菌的数量和种类,改善肠道菌群的平衡,减少有害菌的增殖,提高营养物质的吸收效率,降低脂肪的合成与吸收速率。
此外,发酵食品中富含的植物纤维还能加速肠道蠕动,减缓脂质的吸收,降低胆固醇摄取。
总之,发酵食品通过其特殊的成分和微生物作用,对血脂和胆固醇产生调节作用。
乳酸菌、酶和其他活性成分可以影响胆固醇的合成、吸收和代谢过程,从而降低血脂和胆固醇水平。
乳酸菌的功能主治
乳酸菌的功能主治1. 促进消化•乳酸菌可以促进消化系统的健康。
•乳酸菌能够增加肠道内有益菌的数量,阻止有害菌的繁殖。
•乳酸菌可以帮助分解食物,并提高养分的吸收效率。
•乳酸菌能够减轻消化不良、腹泻和便秘等消化系统问题。
2. 增强免疫系统•乳酸菌可以增强人体的免疫能力。
•乳酸菌能够刺激机体产生免疫细胞,增加抗体的产生。
•乳酸菌可以减少炎症反应,提高身体对疾病的抵抗力。
•乳酸菌具有抗菌作用,可以阻止有害细菌的入侵。
3. 改善肠道功能•乳酸菌可以改善肠道功能,保持肠道的平衡状态。
•乳酸菌能够促进肠道蠕动,防止便秘和肠梗阻的发生。
•乳酸菌可以减少毒素的产生,保护肠道黏膜的健康。
•乳酸菌能够增加肠道内益生菌的数量,减少有害菌的生长。
4. 缓解过敏症状•乳酸菌可以调节免疫系统的平衡,减轻过敏反应。
•乳酸菌能够抑制过敏原对机体的反应,减少过敏症状的发生。
•乳酸菌可以降低过敏原的敏感性,提高机体对抗过敏的能力。
•乳酸菌具有抗炎作用,减少过敏引起的炎症反应。
5. 改善皮肤状况•乳酸菌可以改善皮肤的光滑度和弹性。
•乳酸菌能够调节皮脂分泌,减少痘痘和粉刺的发生。
•乳酸菌可以修复受损的皮肤组织,加速伤口愈合。
•乳酸菌具有抗氧化作用,减少皮肤老化的现象。
6. 降低胆固醇水平•乳酸菌可以降低血液中的胆固醇水平。
•乳酸菌能够通过降解胆固醇酯和促进胆固醇的排出来降低胆固醇的积累。
•乳酸菌可以减少低密度脂蛋白胆固醇的氧化,降低动脉粥样硬化的风险。
•乳酸菌对高血压和心脑血管疾病有一定的预防作用。
7. 改善口腔健康•乳酸菌可以抑制口腔中有害细菌的生长。
•乳酸菌能够降低口腔酸性,预防龋齿和牙周疾病的发生。
•乳酸菌可以增加唾液的分泌,保持口腔的湿润。
•乳酸菌对口腔异味有一定的调节作用,改善口气问题。
综上所述,乳酸菌具有促进消化、增强免疫系统、改善肠道功能、缓解过敏症状、改善皮肤状况、降低胆固醇水平和改善口腔健康的功能主治。
在日常生活中,我们可以通过摄入含有乳酸菌的食物或饮品来享受乳酸菌的益处,改善身体健康。
乳酸菌组成成分
乳酸菌组成成分乳酸菌是一种常见的益生菌,被广泛应用于食品工业和保健品领域。
它们以其独特的生理功能和营养价值而备受关注。
本文将从不同的角度介绍乳酸菌的组成成分,以便读者更好地了解乳酸菌的作用和应用。
一、乳酸菌的分类乳酸菌广泛存在于自然界中,主要分为乳杆菌、乳球菌、乳酸链球菌等几个属。
它们的共同特点是能够在无氧条件下将碳水化合物转化为乳酸,同时产生其他有益物质。
二、乳酸菌的生理功能乳酸菌具有多种生理功能,主要包括以下几个方面:1. 发酵作用:乳酸菌能够将碳水化合物进行发酵,产生乳酸和其他有机酸,从而降低食品的pH值,延长食品的保质期。
2. 抑制有害菌生长:乳酸菌能够产生有机酸、抗菌肽和抑菌物质,对抗有害菌的生长,维护肠道的微生态平衡。
3. 促进免疫功能:乳酸菌可以激活和增强免疫系统的功能,提高机体的抵抗力,减少感染和炎症的发生。
4. 降低胆固醇:乳酸菌能够分解和吸收胆固醇,降低血液中的胆固醇水平,预防心血管疾病的发生。
三、乳酸菌的组成成分乳酸菌的组成成分非常复杂,主要包括以下几个方面:1. 细胞壁:乳酸菌的细胞壁主要由多糖、蛋白质和脂质组成。
其中的多糖具有调节免疫功能、抗氧化和抗肿瘤作用;蛋白质可以促进肠道健康、改善肠道菌群结构;脂质则有助于维持细胞膜的完整性和稳定性。
2. 核酸:乳酸菌中含有丰富的核酸,包括RNA和DNA。
核酸可以促进肠道细胞的新陈代谢,增强肠道黏膜屏障的功能,防止有害物质对肠道的损伤。
3. 酶:乳酸菌中含有多种酶,如葡萄糖酸激酶、乳酸脱氢酶等。
这些酶能够促进食物的消化吸收,改善肠道功能,减少腹胀和消化不良的发生。
4. 生物活性物质:乳酸菌能够产生多种生物活性物质,如抗菌肽、维生素和酶。
这些物质具有抗菌、抗氧化、抗肿瘤等多种生理活性,对人体健康具有重要作用。
四、乳酸菌的应用领域乳酸菌由于其独特的功能和成分组成,被广泛应用于食品工业和保健品领域。
主要应用包括以下几个方面:1. 发酵乳制品:乳酸菌可以将牛奶等乳制品发酵成酸奶、乳酸饮料等,增加产品的口感和营养价值。
乳酸菌作用与功效
乳酸菌作用与功效乳酸菌是一类对人体有益的微生物,它可以生长在人体的肠道中,对维持肠道菌群平衡、增强免疫力、促进消化等方面具有重要的作用和功效。
乳酸菌的作用与功效主要包括以下方面:1. 维护肠道菌群平衡:肠道菌群是人体肠道中存在的大量微生物的总称,对人体健康有着重要的作用。
乳酸菌能够生长繁殖在肠道中,与其他益生菌共同维持肠道菌群的平衡。
它们通过抑制有害菌的生长,防止有害菌滋生,降低肠道感染的风险。
2. 刺激消化液分泌:乳酸菌可以促进消化液的分泌,增加胃液中消化酶的活性,有助于食物的消化和吸收。
它们能够分解食物中的大分子物质,如蛋白质、脂肪和碳水化合物,使其更容易被人体吸收利用。
3. 增强肠道蠕动:乳酸菌能够产生有益的有机酸和气体,在肠道内产生一定的温度和压力,促进肠道蠕动,防止便秘和肠道积气的发生。
肠道蠕动的增强有助于清除废物和毒素,保持肠道的通畅。
4. 提高免疫力:乳酸菌可以促进免疫系统的发育和功能的正常运转。
它们能够增加人体内免疫球蛋白的产生,提高抗体的水平,并增强巨噬细胞的活性,加强对病原微生物的识别和消灭能力。
乳酸菌还能够调节免疫系统的平衡,降低过敏反应和自身免疫性疾病的风险。
5. 降低胆固醇水平:乳酸菌具有降低血清胆固醇水平的作用。
它们能够产生多种物质,如乳酸和醋酸,可以降低血液中的胆固醇含量,减少胆固醇在动脉壁上的沉积,预防心血管疾病的发生。
6. 防止肠道炎症:肠道炎症是一种炎症性肠病,常见的症状包括腹泻、腹痛和消化不良。
乳酸菌通过增加益生菌的数量和促进肠道黏膜的修复,能够减轻肠道炎症的严重程度,缓解症状,改善肠道功能。
7. 改善皮肤健康:乳酸菌能够抑制皮肤上的有害菌的滋生和生长,减少皮肤问题的发生,如痤疮和湿疹。
乳酸菌还能够改善皮肤的水分含量,增加皮肤弹性和光泽,使皮肤更加健康和年轻。
综上所述,乳酸菌具有维护肠道菌群平衡、促进消化、增强免疫力、降低胆固醇、预防肠道炎症和改善皮肤健康等多项作用和功效。
乳酸菌特性及其功能与应用
乳酸菌特性及其功能与应用乳酸菌是一种常见的益生菌,它们存在于人体内和一些食物中。
乳酸菌具有许多特性和功能,对人体健康有着重要的作用。
下面将详细介绍乳酸菌的特性、功能以及其应用。
一、乳酸菌的特性乳酸菌是一类革兰氏阳性杆状或球状细菌,具有以下特性:1.产乳酸能力:乳酸菌能利用碳水化合物产生乳酸,使环境酸化,抑制其他有害微生物的生长。
2.抗菌活性:乳酸菌产生的乳酸能改变环境酸碱度,干扰有害菌的生长和生理活动,起到抗菌作用。
3.耐酸性:乳酸菌具有较强的耐酸能力,在胃酸的环境中存活。
4.耐盐性:乳酸菌对盐的耐受性较强,能在高盐环境中存活和生长。
5.形状多样:乳酸菌可以呈现棒状、球状、卵圆形等多种形态。
二、乳酸菌的功能乳酸菌具有许多功能,对人体健康有着重要的作用:1.促进营养物质的吸收:乳酸菌能分解食物中的复杂碳水化合物和蛋白质,促进人体对营养物质的吸收。
2.改善肠道功能:乳酸菌可帮助维护肠道微生态平衡,增强肠道蠕动,提高排便频率,预防便秘等消化问题。
3.抗菌作用:乳酸菌产生的乳酸能降低肠道pH值,抑制有害菌的生长,保护肠道免受病原菌感染。
4.提高免疫力:乳酸菌具有免疫调节作用,能激活免疫细胞,促进免疫球蛋白的产生,增强机体对疾病的抵抗力。
5.降低胆固醇:乳酸菌通过分解胆酸、减少胆固醇的合成等途径,有助于降低血液中的胆固醇水平。
6.维护泌尿道健康:乳酸菌能抑制致病菌在泌尿道的生长,预防尿路感染。
7.防治过敏反应:乳酸菌通过调节免疫系统功能,降低机体对抗原的敏感性,从而起到抗过敏的作用。
三、乳酸菌的应用由于乳酸菌的多种功能,它们在食品、医药、饲料等领域有着广泛的应用:1.食品工业:乳酸菌广泛应用于乳制品、酿造食品、面包等食品的发酵过程中,提高产品质量。
2.生物制药:乳酸菌可用于生产抗生素、酶、激素等药物原料,从而提高生物制药工艺的效率。
3.饲料工业:乳酸菌可添加在饲料中,改善动物肠道功能,提高养殖效益。
4.医药保健品:乳酸菌制品可用于保健食品、益生菌制剂等医药产品的生产,具有促进健康的作用。
乳酸菌在生活中的应用与影响
乳酸菌在生活中的应用与影响
乳酸菌是一类可以产生乳酸的细菌,广泛存在于自然界中的环境中。
乳酸菌在生活中
有着很多重要的应用和积极的影响。
乳酸菌在食品工业中发挥着重要作用。
乳酸菌可以制作发酵食品,如酸奶、乳酸饮料、奶酪等。
这些发酵食品不仅具有鲜美的口感,还富含有益健康的益生菌,有助于消化道的
健康。
乳酸菌还可以用于酿造葡萄酒、啤酒等酒类产品,提高产品的品质和口感。
乳酸菌还可以用于制药工业。
乳酸菌具有抗菌和抗病毒的作用,可以用于制作抗生素
和抗病毒药物。
乳酸菌还可以产生抗氧化物质和抗肿瘤物质,对于预防和治疗癌症具有一
定的作用。
乳酸菌还可以用于制作冻干粉剂、胶囊等制剂,方便携带和服用。
乳酸菌还可以用于环境保护。
乳酸菌可以降解有机物质,减少有机废物的排放和对环
境的污染。
乳酸菌还可以处理污水和废水,降低其对环境的影响。
乳酸菌还可以用于土壤
改良,提高土壤的肥力和植物的生长。
乳酸菌在人体内也有积极的影响。
乳酸菌可以促进肠道蠕动,促进食物的消化和排泄,预防便秘和痔疮的发生。
乳酸菌还可以调节肠道菌群的平衡,抑制有害菌的生长,增加有
益菌的数量,提高人体的免疫力。
乳酸菌还可以降低胆固醇和血压,预防心脑血管疾病的
发生。
乳酸菌还可以改善皮肤的状况,保持皮肤的湿润和弹性。
乳酸菌在生活中的应用非常广泛,不仅可以制作美味健康的食品,还可以制作药品和
保健品,对环境保护和人体健康都有积极的影响。
乳酸菌的研究和应用将进一步推动食品
工业、医药工业和环境保护的发展。
乳酸菌的作用及功能主治
乳酸菌的作用及功能主治1. 乳酸菌简介乳酸菌是一类广泛存在于自然界中的微生物,主要存在于乳制品、发酵食品和部分植物表面上。
它们是一类无色、无味的细菌,能够在低氧的环境下进行生存和繁殖。
乳酸菌通过产生乳酸来发酵食物,以此产生酸味并抑制有害细菌的生长。
2. 乳酸菌的作用乳酸菌在人体中发挥着重要的作用,主要包括以下几个方面:2.1 帮助消化吸收乳酸菌能够分解食物中难以消化的纤维素和蛋白质,促进食物的消化吸收。
乳酸菌还可以帮助产生某些维生素,比如维生素B和维生素K,这些维生素对于健康的维持非常重要。
2.2 提高肠道健康乳酸菌产生的乳酸能够降低肠道的pH值,创造一个不利于有害细菌生长的环境,从而保护肠道健康。
乳酸菌还能够增加肠道黏膜的厚度,增强肠道屏障功能,防止有害物质的侵入。
2.3 增强免疫力乳酸菌具有调节免疫系统的功能,它们能够增强人体的抵抗力,提高免疫细胞的活性。
乳酸菌还可以促进肠道内的免疫细胞的产生,增强肠道免疫功能。
2.4 减少肠道感染和腹泻乳酸菌具有抗菌作用,能够抑制一些致病菌的生长,减少肠道感染的风险。
研究还发现,乳酸菌可以改善腹泻症状,缩短腹泻的持续时间。
2.5 改善肠道菌群失衡肠道菌群失衡是一种常见的问题,会导致各种肠道疾病的发生。
乳酸菌可以帮助恢复肠道菌群的平衡,抑制有害菌的生长,增加有益菌的数量,从而改善肠道健康。
3. 乳酸菌的功能主治乳酸菌在实际应用中具有多种功能,并且被广泛用于医疗保健和食品行业。
以下是乳酸菌主要的功能主治:3.1 改善肠道功能乳酸菌可以帮助调节肠道菌群,改善肠道功能。
它们能够增加肠道有益菌的数量,抑制有害菌的生长,恢复肠道菌群的平衡。
因此,乳酸菌可以用于改善腹泻、便秘、肠胃不适等肠道功能问题。
3.2 增强免疫力乳酸菌具有调节免疫系统的功能,能够增强人体的抵抗力。
它们可以促进免疫细胞的活性,提高免疫系统的应对能力,从而降低感染的风险。
3.3 降低胆固醇乳酸菌中的一种特定菌株可以分解胆固醇,降低血液中的胆固醇水平。
乳酸菌饮品功效与作用
乳酸菌饮品功效与作用乳酸菌饮品是指含有大量乳酸菌的饮料,它具有众多的功效和作用。
乳酸菌是一类有益菌,可以在肠道内生存繁殖,对人体有很多益处。
下面将详细介绍乳酸菌饮品的功效与作用。
第一节:乳酸菌饮品的抑菌作用乳酸菌具有很强的抑菌作用,可以抑制一些有害菌的生长,维护肠道的菌群平衡。
肠道菌群平衡是维持身体健康的关键,一旦失衡,就会导致各种问题,如便秘、腹泻、肠胃不适等。
乳酸菌饮品可以通过抑制有害菌的生长,帮助恢复菌群平衡,保护肠道健康。
第二节:乳酸菌饮品的增强免疫力作用乳酸菌饮品含有丰富的益生元,可以增强身体的免疫力。
益生元是一类可以为有益菌提供营养的物质,能够促进有益菌的生长和繁殖。
有益菌在肠道内繁殖增多后,可以竞争有害菌的营养,抑制有害菌的生长,从而增强免疫力,降低感染的风险。
第三节:乳酸菌饮品的调节肠道功能作用乳酸菌饮品可以改善肠道功能,调节排便。
乳酸菌能够分解纤维素,促进肠道蠕动,增加排便次数,预防和改善便秘。
同时,乳酸菌还可以促进肠道的吸收功能,增加肠道对营养物质的吸收利用,改善营养不良的问题。
第四节:乳酸菌饮品的降血脂作用乳酸菌饮品还具有降血脂的作用。
乳酸菌可以通过降低肠道对脂肪的吸收,减少血液中的胆固醇含量,从而降低血脂水平。
此外,乳酸菌还可以分解脂肪,促进脂肪的代谢,减少脂肪的堆积,预防肥胖症和心血管疾病的发生。
第五节:乳酸菌饮品的改善消化功能作用乳酸菌饮品能够改善消化功能,缓解肠胃不适。
乳酸菌可以分解食物中的复杂蛋白质、碳水化合物等,转化为易于消化的物质,减轻胃肠的负担,缓解胃痛、腹胀等不适症状。
同时,乳酸菌还可以增加肠道的酸度,改善胃液的分泌,促进消化。
第六节:乳酸菌饮品的防治肠道疾病作用乳酸菌饮品能够预防和治疗一些肠道疾病。
乳酸菌可以生成一种叫做乳酸的物质,可以降低肠道的PH值,创造一个不利于有害菌生长的环境,从而预防肠道炎症和感染的发生。
此外,乳酸菌还可以增强肠道黏膜屏障的功能,保护肠道不受细菌和毒素的侵害,预防肠道疾病的发生。
乳酸菌发酵食品降低人体血清胆固醇含量分析
现代食品XIANDAISHIPIN/乳酸菌发酵食品降低人体血清胆固醇含量分析Lactic acid bacteria fermented foods to reduce human serum cholesterol content analysis◎汪文忠(浙江省食品工业协会,浙江杭州310004)Wang Wenzhong(Zhejiang food industry association,hangzhou 310004,China )摘要:有人对乳酸菌在食品基质中的降胆固醇作用做了研究,发现在既没有额外加入游离胆固醇也没有添加胆盐等物质的奶油中,大部分菌种也能达到40%以上的胆固醇吸收率。
因此,人们对于乳酸菌降低胆固醇的机理进行了广泛的研究。
关键词:乳酸菌;发酵食品;胆固醇含量;微生物降解;益生乳酸菌食品Abstract:Someone cholesterol-lowering effect of lactic acid bacteria in food matrix in the study,found that in no additional free cholesterol no add the bile salts and other substances in cream,most of the strains can reach more than 40%of the cholesterol absorption.As a result,people for extensively studied the mechanism of lactic acid bacteria to lower cholesterol.Key words:Lactic acid bacteria;Fermented foods;Cholesterol levels;Microbial degradation ;Live lactic acid bacteria in food中图分类号:TS26目前,在利用微生物降胆固醇领域科学工作者已做了很多有价值的研究,许多研究表明乳酸菌发酵的食品可以降低人体的血清胆固醇的含量。
乳酸菌有什么好处
乳酸菌有什么好处关于《乳酸菌有什么好处》,是我们特意为大家整理的,希望对大家有所帮助。
乳酸菌饮料是一种较为普遍的病菌群,关键是由于对牛乳开展发醇,是制作出酸奶的重要物质,它能够推动胃肠的身心健康,提高人体的免疫能力,针对降低肠胃的内毒素代谢是有非常大的协助。
乳酸菌饮料是能够减少胆固醇的,还能够保持胃肠的病菌物种均衡,针对我们胃肠是十分有益的一种东西,因此大伙儿应当要适度的食用酸牛奶。
1 推动肠道菌群优酪乳中的乳酸菌饮料能够运用造成柠檬酸、定殖在肠胃体细胞表层上的方法,抵御外地人的病塬菌、降低坏菌的存活,也降低坏菌造成的内毒素,让肠胃更健康。
2 提高免疫功能一些乳酸菌饮料可以意谓推动当然凶手体细胞特异性、组织细胞特异性、推动血细胞中IgA、IgM抗体转化成、推动体细胞介素(Cytokine)、人免疫球蛋白的代谢的转化成等,让专一性和非专一性的抵抗能力得到改进。
3 调节过敏性体质乳酸菌饮料能够意谓刺激性巨噬细胞的特异性,引起事后抵抗能力的改变与调整均衡,从而减少皮肤过敏的反映。
4 减少总胆固醇有参考文献观查到摄入发酵乳製品,可以减少总胆固醇的成分,但现阶段体制并未确立,现阶段推断有多种可能:如胆固醇与乳酸菌饮料的植物细胞紧密连接后被排出来身体之外、或被乳酸菌饮料消化吸收运用(称之为同化作用assimilation),使身体没法消化吸收;减少胆固醇的生成等理论。
5 降低癌症转化成的可能针对摄入乳酸菌饮料降低癌症转化成的可能性,现阶段有一些推断的体制,包括摄入乳酸菌饮料可能会降低人体肠道内有害物的消化吸收、降低致癌物质前轮驱动物质被有关水果酵素转换为致癌物质活性物质的工作能力、改变肠胃内的微生物菌种生态系统谢特异性、乳酸菌饮料将致癌物溶解或两者之间融合、使抗突然变化物质成分提升、改变肠胃内的有机化学特点等,都被视作有可能减少癌症转化成的可能体制。
6 提升短链脂肪酸的转化成短链脂肪酸能够做为身体的动能来源于,还可以影响肠胃细胞的分化与肠胃粘膜的生长发育,另外短链脂肪酸又能让肠胃内的好菌生长发育运用,产生让肠胃保持优良作用的好循环系统。
乳酸菌的作用与功效
乳酸菌的作用与功效乳酸菌是一种常见的益生菌,是一类能够产生乳酸的有益细菌。
乳酸菌不仅广泛存在于乳制品中,也可以在人体内生存繁殖。
乳酸菌被称为“肠道守护神”,具有多种作用与功效。
首先,乳酸菌具有调节肠道微生态的作用。
肠道内共有数百种细菌,乳酸菌可以抑制一些病原菌的生长,维持肠道内菌群的平衡,并促进有益菌的生长繁殖。
乳酸菌可以改善肠道环境,降低菌群失衡引起的腹泻、便秘等肠道问题。
其次,乳酸菌还具有增强免疫力的作用。
乳酸菌可以增强人体免疫系统的抵抗力,提高人体对疾病的抵抗能力。
乳酸菌通过调节免疫细胞的功能,增强免疫球蛋白的产生,提高人体的抗病能力。
此外,乳酸菌还可以改善消化系统功能。
乳酸菌可以提高消化酶的产生,并促进肠道蠕动,有效地帮助人体消化和吸收营养物质。
乳酸菌还可以增加有益物质产生,如维生素B族和维生素K等,进一步促进人体的新陈代谢。
此外,乳酸菌还有清除毒素、降低胆固醇、抗氧化等作用。
乳酸菌可以产生乳酸来降低肠道内的pH值,改善肠道环境,抑制一些有害菌的生长;乳酸菌还可以与一些胆酸结合并排出体外,降低胆固醇吸收,有助于预防心血管疾病;乳酸菌还可以产生多种抗氧化物质,延缓细胞老化,提高人体的抗氧化能力。
当然,乳酸菌也有一些注意事项。
首先,乳酸菌是活菌制剂,存活性较差,容易受到存储和加热等环境因素影响,因此应尽量选择新鲜的乳酸菌制品。
其次,部分人群如免疫力低下的患者、孕妇、婴幼儿等,应在医生指导下合理使用乳酸菌制品。
总之,乳酸菌具有调节肠道微生态、增强免疫力、改善消化系统功能、清除毒素、降低胆固醇和抗氧化等多种作用与功效。
适量摄入乳酸菌能够维持肠道健康,增强人体的免疫力,预防疾病的发生。
但在使用乳酸菌制品时,还应注意其存储和使用方式,避免细菌活性的丧失。
益生菌可以帮助降低胆固醇和血压吗?
益生菌可以帮助降低胆固醇和血压吗?一、益生菌与胆固醇的关系益生菌是一类有益于人体健康的活菌,常见的有乳酸菌和双歧杆菌等。
研究表明,益生菌可以通过多种途径降低胆固醇水平,从而起到降低血脂的作用。
1. 益生菌调节肠道菌群肠道菌群是人体内最大的微生物群落,它对人体健康有着重要的影响。
益生菌可以增加有益菌数量,抑制有害菌的生长,从而优化肠道菌群结构。
已有研究发现,益生菌可通过调节肠道菌群,降低血液中的胆固醇含量。
2. 益生菌产生胆固醇酶益生菌具有一定的胆固醇酶活性,能够降解胆固醇并转化为其他化合物。
这些化合物不易被吸收,从而减少胆固醇的吸收量,降低血液中的胆固醇水平。
3. 益生菌影响胆汁酸合成益生菌还可以通过影响胆汁酸的合成来降低血液中的胆固醇含量。
胆汁酸是胆固醇的主要代谢产物,它在肠道中参与脂类吸收和转运。
益生菌可以调节胆汁酸合成酶的活性,降低胆汁酸的合成,进而减少胆固醇的产生。
二、益生菌与血压的关系除了降低胆固醇,益生菌还可以对血压产生积极的影响。
以下是益生菌与血压关系的几个方面:1. 益生菌改善血管功能动脉硬化是高血压的主要病理基础之一。
研究发现,益生菌可以改善内皮细胞功能,增强血管弹性,减少动脉硬化的发生和发展,从而降低血压。
2. 益生菌降低体内炎症反应慢性炎症状态与高血压密切相关。
益生菌通过调节免疫系统,降低体内炎症反应,减少血管壁的损伤,有助于维持正常的血压水平。
3. 益生菌调节血钠水平高盐饮食是导致高血压的一个重要因素。
益生菌可以调节肾脏对钠的吸收和排泄,减少体内钠的潴留,从而降低血压。
综上所述,益生菌对降低胆固醇和血压具有一定的积极作用。
然而,不同菌株和剂量的益生菌对胆固醇和血压的影响可能存在差异,具体效果还需进一步研究。
此外,益生菌并非单一的治疗手段,合理的饮食结构和健康的生活方式同样重要。
大家可以适当摄入富含益生菌的食品,如酸奶、发酵豆制品等,以改善胆固醇和血压水平,提升整体健康状况。
乳酸菌的十大功效
乳酸菌的⼗⼤功效俄罗斯著名健康专家安德列耶夫说:“⼀切疾病的主要原因和根源,就在于⼈的肌体在不同层次上滞积了各种垃圾。
⽽活性乳酸菌刚好可以做到清出体内垃圾,打扫肠道卫⽣。
”在⼈体内,每时每刻都不断有毒素的侵⼊、积累,⽽这些毒素⾸先汇聚的地点就是肠道,肠内毒素会引起便秘、腹泻、导致机体⽼化,并诱发其他疾病。
据专家证实⼈体的疾病90%是由肠道毒素引起的,肠道毒素是“万病之源”。
益⽣菌健康法从预防医学的⾓度出发,通过增加肠内益⽣菌的数量,清除肠道垃圾,洁净肠道,从⽽达到增进⼈体健康的⽬的。
活性乳酸菌活着到达肠道,可调节肠道菌群。
增加有益菌,减少有害菌。
改善便秘、治疗腹泻、增强免疫⼒、预防癌症,永葆肠内青春,是⼈体每⽇必不可少的健康元素。
乳酸菌是⼀种益⽣菌,经常被⽤于制造酸奶、乳酪、德国酸菜、啤酒、葡萄酒、泡菜、腌渍⾷品和其他发酵⾷品,能够将碳⽔化合物发酵成乳酸,因⽽得名。
乳酸菌⼀类菌的统称,其中包含了数百种菌,除极少数外,其中绝⼤部分都是⼈体内必不可少的且具有重要⽣理功能的菌群,⼴泛存在于⼈体的肠道中。
在⼈体肠道内栖息着数百种的细菌,其数量超过百万亿个。
其中对⼈体健康有益的叫益⽣菌,以乳酸菌、双歧杆菌等为代表,对⼈体健康有害的叫有害菌,以⼤肠杆菌、产⽓荚膜梭状芽胞杆菌等为代表。
益⽣菌是⼀个庞⼤的菌群,有害菌也是⼀个不⼩的菌群,当益⽣菌占优势时(占总数的80%以上),⼈体则保持健康状态,否则处于亚健康或⾮健康状态。
乳酸菌既然被⼴泛⽤于⼀些⾷品⼯业,那么它有什么主要的⽣理功能和保健功能呢?1.防治有些⼈种普遍患有的乳糖不耐症(喝鲜奶时出现的腹胀、腹泻等症状)。
乳酸菌可分解乳糖成为葡萄糖和半乳糖.进⽽进⼀步解为⼩分⼦化合物,有助于⼉童脑及神经系统的发育。
2.促进蛋⽩质、单糖及钙、镁等营养物质的吸收,产⽣维⽣素B族等⼤量有益物质。
乳酸菌的菌体蛋⽩可增加蛋⽩质含量,乳酸菌能将⾷物中的⼤分⼦蛋⽩质,部分降解为⼩分⼦肽和游离氨基酸.利于胃肠消化吸化。
乳酸菌 乳酸 关系
乳酸菌乳酸关系乳酸菌是一类广泛存在于自然界中的微生物,其与乳酸的关系密不可分。
乳酸是一种有机酸,具有酸味和酸性,是乳酸发酵过程中的主要产物。
乳酸菌通过发酵作用将糖类转化为乳酸,从而起到保鲜、酸化和增加风味的作用。
乳酸菌是一类革兰氏阳性菌,主要包括乳杆菌、乳酸杆菌、酪酸乳杆菌等,它们广泛存在于自然界中,常见于发酵食品、乳制品、肠道等环境中。
乳酸菌具有很强的耐酸性和耐胆盐性,能在酸性环境和胃肠道中存活繁殖,起到调节肠道菌群平衡的作用。
乳酸菌通过产酸作用,将糖类转化为乳酸。
在发酵过程中,乳酸菌会利用糖类作为能源,通过糖酵解途径将糖分解为乳酸。
乳酸的产生使发酵食品酸化,降低pH值,抑制有害菌的生长,延缓食品的腐败。
同时,乳酸的酸味也能增加食品的口感和风味。
乳酸菌还具有抗菌作用。
乳酸菌在肠道内生长繁殖时,会产生有益物质如乳酸、抗菌肽等,能抑制肠道中有害菌的生长,维护肠道微生态平衡。
乳酸菌还能产生酸性物质,使肠道内环境酸化,进一步抑制有害菌的生长。
此外,乳酸菌还能竞争营养物质和附着位点,阻碍有害菌的定植和生长。
乳酸菌还具有调节免疫功能的作用。
研究发现,乳酸菌能够调节机体的免疫系统,增强机体的抵抗力。
乳酸菌可以促进肠道黏膜屏障的修复,增强肠道黏膜的完整性,阻止有害物质的渗透。
同时,乳酸菌还能增强肠道上皮细胞的免疫功能,促进免疫球蛋白的产生,提高机体的免疫力。
乳酸菌还具有降低胆固醇和改善消化功能的作用。
乳酸菌能够分解脂肪和胆固醇,降低血液中的胆固醇水平,预防心血管疾病的发生。
此外,乳酸菌还能分解食物中的纤维素,促进食物的消化吸收,改善消化功能。
乳酸菌作为一种有益的微生物,被广泛应用于食品工业和医药领域。
乳酸菌发酵的食品如酸奶、酸菜、泡菜等,不仅具有美味可口的风味,还能提供丰富的乳酸菌和益生菌,有益于人体健康。
此外,乳酸菌还可用于制备益生菌制剂,用于调节肠道菌群平衡,维护肠道健康。
乳酸菌与乳酸之间存在着密切的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
APPLIED MICROBIAL AND CELL PHYSIOLOGYEffects of Lactobacillus plantarum MA2isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol dietYanping Wang &Nv Xu &Aodeng Xi &Zaheer Ahmed &Bin Zhang &Xiaojia BaiReceived:15March 2009/Revised:13April 2009/Accepted:15April 2009#Springer-Verlag 2009Abstract The objective of this study was to evaluate the effects of Lactobacillus plantarum MA2,an isolate from Chinese traditional Tibet kefir,on cholesterol-lowering and microflora of rat in vivo.Rats were fed on cholesterol-enriched experimental diet,supplemented with lyophilized L.plantarum MA2powder,with a dose of 1011cells/day per mice.The results showed that L.plantarum MA2feeding significantly lowered serum total cholesterol,low-density lipoprotein cholesterol,and triglycerides level,while there was no change in high-density lipoprotein cholesterol.In addition,liver total cholesterol and trigly-cerides was also decreased.However,fecal cholesterol and triglycerides was increased significantly (P <0.05)in comparison with the control.Also,L.plantarum MA2increased the population of lactic acid bacteria and bifidobacteria in the fecal,but it did not change the number of Escherichia coli as compared to control.Moreover,pH,moisture,and organic acids in the fecal were also measured.The present results indicate the probiotic potential of the L.plantarum MA2strain in hypocholesterolemic effect and also increasing the probiotic count in the intestine.Keywords Lactobacillus plantarum MA2.Kefir .Cholesterol-lowering effectIntroductionElevated serum cholesterol is generally a risky factor correlated with the development of coronary artery diseasesfor humans.However,the current drug therapy has the disadvantage owing to its cost and side effects,so there is an increasing interest in alternative therapies to lower cholesterol.Since Mann and Spoerry (1974)firstly ob-served a hypocholesterolemic effect of milk fermented by wild-type starters in Maasai tribesmen,the ingestion of probiotic lactic acid bacteria might be a more natural way to decrease serum cholesterol in humans (Bazzare et al.1983).There are evidences showing the effects of fermented dairy products by lactic acid bacteria on serum cholesterol levels in animal models (Rao et al.1981;Gilliland et al.1985;Nakajima et al.1992;Akalin et al.1997;Beena and Prasad 1997)and humans (Hepner et al.1979;Steinmetz et al.1994;Agerbaeck et al.1995;Richelsen et al.1996;Schaafsma et al.1998).Although contradictory results have been obtained,there is still reason to believe that probiotic lactic acid bacteria have hypocholesterolemic properties.The mechanisms of the hypocholesterolemic activity of lactic acid bacteria have been proposed to involve inhibition of exogenous cholesterol absorption from the small intestine by binding and incorporation of cholesterol with bacterial cells,assimilation of cholesterol,as well as suppressing bile acid resorption by deconjugation as a function of the bacterial bile salt hydrolase activity (Gilliland et al.1985;Danielson et al.1989;De Smet et al.1998).Kefir has been widely recommended in Soviet and European countries for consumption by healthy people in order to lower the risk of chronic diseases and has also been provided to some patients for the clinical treatment of a number of gastrointestinal and metabolic diseases,hyper-tension,and allergy (St-Onge et al.2002).Also,kefir culture was reported to possess the ability to assimilate cholesterol in milk (Vujicic et al.1992).Furthermore,Liu et al.(2006)proved the hypocholesterolemic effect of kefirAppl Microbiol BiotechnolDOI10.1007/s00253-009-2012-xY .Wang (*):N.Xu :A.Xi :Z.Ahmed :B.Zhang :X.Bai Key Laboratory of Food Nutrition and Safety,Ministry of Education,Tianjin University of Science &Technology,Tianjin 300457,Chinae-mail:ypwang40@milk in male hamsters fed with a cholesterol-enriched diet. However,St-Onge et al.(2002)obtained a contrary result and reported that kefir consumption did not result in lowering plasma lipid concentrations,even though kefir resulted in increasing fecal isobutyric,isovaleric,and propionic acids as well as the total amount of fecal short chain fatty acids.In our previous studies,we isolated a cholesterol-lowering bacteria MA2from Chinese traditional Tibet kefir grains,and it was identified as Lactobacillus plantarum based on the pattern of carbohydrate fermentation and16S ribosomal DNA(rDNA)sequencing results.The vitro experiment showed that the strain has an effective cholesterol-lowering activity.Also,the strain possesses a strong acid and bile salt tolerance(unpublished data)and could successfully pass through the artificial gastric and intestine juice.Based on the above,the present study was conducted to demonstrate the effect of L.plantarum MA2 on cholesterol-lowering and intestinal microflora in rats. Moreover pH,moisture,and organic acids in fecal was also investigated.Materials and methodsBacterial strains The strain of MA2was isolated from Chinese traditional Tibet kefir grains and showed good survival at low pH,tolerance to high bile concentration,and ability to reduce serum cholesterol in vitro in our previous studies.Strain MA2was identified as L.plantarum based on the pattern of carbohydrate fermentation and16S rDNA (GenBank accession no.FJ785723)and was deposited at China General Microbiological Culture Collection Center with accession number CGMCC3005.Preparation of lyophilized strain powder L.plantarum MA2was grown in MRS broth at37°C for18h.The cells were harvested by centrifugation at3,000×g for15min, washed twice with sterile distilled water,and resuspended in threefold volumes of freeze-drying protective solution (including10%skim milk,1.5%fucose,0.5%glycerol,2% sorbitol,1%malt dextrin,[wt/vol])to improve bacterial survival when frozen.Viable cell number of the lyophilized strain powder was2.0×1011cfu/g.Animal feeding and grouping Twenty rats(male Sprague–Dawley),CL grade(Clean animal)and4weeks of age, were obtained from the National Laboratory Animal Breeding and Research Center,Beijing,China.The rats were fed a commercial chow(Kangqiao Inc.,Beijing, China;which includes32%protein,5%fat,2%fiber,Ca 1.8%,P1.2%,and59%nitrogen-free extract)for1week. After this adaptation period,rats were divided into two groups of ten each:group A fed with high-cholesterol diet only and group B fed with high-cholesterol diet and lyophilized L.plantarum MA2powder(lyophilized powder was dissolved in physiological saline and administrated by gavage with a dose of1011cells/day per mice).A high-cholesterol diet includes1%cholesterol(Aoboxing Biotech Co.,Ltd.,Beijing,China),10%lard,5%sucrose,0.3% sodium cholate(Aoboxing Biotech Co.,Ltd.,Beijing, China),0.2%propylthiouracil(Aoboxing Biotech Co., Ltd.,Beijing,China),and78.5%chow.Rats were individ-ually housed in metal cages with controlled temperature (23±2°C)and humidity(55±5%)and in a cycle of12h of light and12h of dark.The animals were fed for5weeks, and during this period,blood was obtained at1-week interval for serum cholesterol and triglycerides analysis. Also,the fecals were collected at4-day interval for bacteria, pH,water content,and organic acid analysis.Simulta-neously,body weight and food intake were also recorded daily.After the feeding period,the rats were euthanized with ether and the viscera of the rats were collected for other tests.Assay for serum lipids Blood(1mL)was obtained from the retro-orbital sinus into a sterile tube at the end of every week following food deprivation for14h.Serum total cholesterol(TC),high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol(LDL-C), and triglycerides(TG)were measured enzymatically with a commercial kit(Biosino Biotech&Sci,Inc,Beijing, China).Assay for liver TC and TG After an animal had been killed, the viscera was opened and the liver was removed,rinsed with physiological saline solution,blotted dry with filter paper,and weighed.Liver cholesterol(TC)and triglyceride (TG)content was determined according to the method of Chiu et al.(2006).The same method was used for determination of fecal cholesterol and TG content.Assay for fecal microflora Fecal samples for microbial analyses were collected at an interval of4days in separate sterile tubes and analyzed within1h.Each sample was homogenized using sterile physiological saline diluents. Subsequent tenfold serial dilutions of each sample were plated in triplicate.EMB agar(CM105)was used for E. coli,whereas LBS agar(CM1504)was used for lactic acid bacteria and BSM agar(CM1508)for bifidobacteria.All enumeration media were obtained from Luqiao Tech,Inc, Beijing,China.Assay for fecal organic acid The concentration of organic acid was determined using gas chromatography,which was carried out on a GC-7890II(Tian Mei,Shanghai,China)Appl Microbiol Biotechnolequipped with a FID detector and GDX 401packed column.The following operating conditions were used:The carrier nitrogen gas flow was adjusted to 40mL/min,hydrogen gas to 40mL/min,and air to 400mL/min.The injector and detector temperatures were maintained at 240°C,and the column temperature was held at 200°C and the sample volume was1μL.Measurement of fecal pH and water content The moisture in fecal was determined as a difference between the wet mass and the dry mass of the samples after drying at 80°C (Tianyu Test Instrument,Co,Ltd.,Tianjin,China)until a constant weight was achieved.The pH of the samples was measured with a pH meter (Delta-320,Mettler Toledo,Switzerland).Statistical analysis Experimental data are presented as the mean and standard errors of the mean.Paired t tests were conducted using Microsoft Excel and SPSS 11.5(SPSS Inc.,Chicago,IL,USA).ResultsWeight and food intake All rats were generally healthy throughout the feeding trial period.Both groups of rats showed no significant differences (P >0.05)in body weight gain,food intake,and food efficiency.This indicates that the animals supplemented with L.plantarum MA2grew in similar patterns compared to the control (Table 1).Blood lipid analysis Changes of serum TC,TG,HDL-C,and LDL-C levels of group A and group B are depicted in Table 2.A gradient increase in TC and LDL-C in both groups was observed across the whole experiment time,and the TG level of both groups was significantly higher (P <0.05)at the end of fourth week as compared to the starting 3weeks and was kept stable in the fifth week.HDL-C,Table 1Body weight gain,total food intake,and food efficiency of rats fed on high-cholesterol dietGroup AGroup B Initial body weight (g)140.25(4.50)140.54(4.30)Final body weight (g)217.66(13.92)221.31(20.32)Body weight gain (g/40days)77.41(8.43)80.77(6.47)Food intake (g/40days)713.12(23.00)732.45(14.50)Food efficiency (%)10.86(0.50)11.03(0.45)Group A,high-cholesterol diet only;group B,high-cholesterol diet +Lactobacillus plantarum MA2;food efficiency (%)=(body weight gain/food intake)×100.Results are shown as means (standard deviations;n =10)T a b l e 2S e r u m T C ,H D L -C ,L D L -C ,a n d T G c o n t e n t s o f r a t s f e d o n h i g h -c h o l e s t e r o l d i e tG r o u p AG r o u p BT o t a l c h o l e s t e r o l (m g /d L )H D L c h o l e s t e r o l (m g /d L )L D L c h o l e s t e r o l (m g /d L )T G (m g /d L )T o t a l c h o l e s t e r o l (m g /d L )H D L c h o l e s t e r o l (m g /d L )L D L c h o l e s t e r o l (m g /d L )T G (m g /d L )W e e k 1184.66(19.45)43.74(7.88)120.55(11.52)48.76(5.69)175.62(14.23)45.37(5.72)113.19(14.38)50.13(9.84)W e e k 2264.51(16.29)60.4(15.34)177.79(15.05)41.13(8.56)239.48(19.98)*59.83(11.17)150.01(14.10)**67.06(10.97)**W e e k 3346.69(22.36)61.58(6.96)241.25(14.03)44.45(9.43)276.80(17.34)**58.89(7.74)178.88(10.47)**40.6(8.34)W e e k 4451.51(33.43)70.85(6.61)289.94(21.62)119.63(14.64)338.47(24.76)**60.85(7.34)*221.89(19.68)**99.08(11.98)*W e e k 5490.34(26.25)62.16(9.11)300.88(31.91)124.38(15.93)388.54(8.9)**58.27(4.28)240.56(14.45)**93.11(15.01)*G r o u p A ,h i g h -c h o l e s t e r o l d i e t o n l y ;g r o u p B ,h i g h -c h o l e s t e r o l d i e t +L a c t o b a c i l l u s p l a n t a r u m M A 2.R e s u l t s a r e s h o w n a s m e a n s (s t a n d a r d d e v i a t i o n s ;n =10)*P <0.05;**P <0.01Appl Microbiol Biotechnolhowever,did not show much difference in both group across the feeding trial period.Group B expressed significant lower total cholesterol levels compared with group A,with a reduction of9.46%at the end of week2, 20.16%at week3,25.03%at week4,and20.76%at week5, respectively.Also,the difference of LDL-C between the two groups was significant:group B had the biggest reduction rate of25.85%at the end of the third week,from 241.25to178.88mg/dL.In contrast,the levels of HDL-C in group B decreased slightly as compared to control,but the highest reduction rate of14.10%was in the fourth week.TG had not so much difference between the two groups during the earlier3weeks until the experiment reached up to the fourth week when the difference became greater,and finally the reduction rate reached25.14%at the end of the feeding period.Liver and fecal lipid analysis Table3shows variation in weight and lipid content of the liver and fecal.Liver weight showed a little change among the two groups.Group B had a great reduction in liver cholesterol and TG content as compared to group A.Also,the fecal weight and cholesterol level of the L.plantarum MA2-treated group increased significantly.Fecal TG of the L.plantarum MA2-treated group exhibit a higher level than that of the control group,but the difference was not significant(P<0.05). Microbial populations Figure1depicted the effect of L.plantarum MA2on fecal microflora of rats fed on a high-cholesterol diet.Total E.coli content did not show much change in both two groups and remained8–9cfu log10/g of fresh wet fecal samples across the whole experiment time.A significant increase in total lactic acid bacteria was observed in fecal samples of rats supplemented with L. plantarum MA2,averaged from9.34to11.53cfu log10/g of fresh wet fecal sample;however,the control group showed a consistent population of lactic acid bacteria during the whole feeding period.Also,bifidobacterial content of groupB showed a significant increase from the 24th day and finally contributed a higher count of9.78cfu log10as compared to the control group(8.84cfu log10). Content of fecal organic acids The content of organic acids in the fecals of rats is depicted in Table4.The concentration of acetic acid and propionic acid showed a gradient increase in group B,which averaged from5.53to 15.63mg/g and from2.80to12.15mg/g,respectively,but butyric acid did not show much change and was just from 0.55to0.75mg/g.In group A,only the content of acetic acid increased from8.70to12.85mg/g;however,propionic acid and butyric acid had not changed so much across the whole feeding period.The supplementation with L.planta-rum MA2in high-cholesterol diet caused an increase in the concentration of propionic acid as compared to the control, and the increase was significant(P<0.05).pH and moisture content of fecal The pH of fecal was not significantly different(P>0.05)between both groups (Fig.2).Fecal water content can be used as an index of fecal elimination.Both groups showed a significant decrease in fecal water content across the whole experimental span,Table3Liver and fecal lipid of rats fed on high-cholesterol dietGroup A Group BLiverLiver weight(g)7.26(0.08) 6.95(0.10) Liver cholesterol(mg/g)20.6(0.22)16.23(0.89)* Liver TG(mg/g)32.1(0.34)27.4(9.85)* FecalFecal weight(g/day) 4.07(0.02) 4.25(0.03)* Fecal cholesterol(mg/g)11.75(0.23)15.6(0.40)* Fecal TG(mg/g)8.54(0.03)10.45(0.3)Group A,high-cholesterol diet only;group B,high-cholesterol diet+ Lactobacillus plantarum MA2.Results are shown as means(standard deviations;n=10)*P<0.05Fig.1Population of Escherichia coli,lactic acid bacteria,and bifidobacteria from fecal of rats fed on high-cholesterol diet.Group A,high-cholesterol diet only(triangles);group B,high-cholesterol diet+Lactobacillus plantarum MA2(circles).a Count of Escherichia coli.b Count of lactic acid bacteria.c Count of bifidobacteria colony in fecal.Results are shown as means(n=10)Appl Microbiol Biotechnolranging from 75%to 50%in group A and 80%to 57%in group B,respectively,and L.plantarum MA2caused an increase in fecal water but was not significant,and the difference just ranged between 3%and 7%.DiscussionHigh concentrations of TC and LDL-C are highly associated with an increased risk of coronary heart disease.Reduction in TC and LDL-C in hypercholesterolemic men can reduce the incidence of cardiovascular disease (Probstfield and Rifkind 1991).Our results showed that supplementation of L.plantarum MA2to the high-cholesterol diets did not significantly affect the body weight,food intake,and feed efficiency of rats.The results obtained here correlated withthe findings of Bernardeau et al.(2002)and Liong and Shah (2006),who used Lactobacillus acidophilus and Lactobacil-lus casei ASCC 292,fructooligosaccharide,and maltodextrin (LFM)as supplementation to a high-cholesterol diet,respectively,and found a little change in body weight gain and food intake.The present study showed that L.plantarum MA2resulted in a reduction of serum TC,LDL-C,and TG levels of rats fed high-cholesterol diets.These findings were in agreement with previous reports (Danielson et al.1989;Gilliland et al.1985;Grunewald 1982;Harrison and Peat 1975;Usman 2000).In addition,the great reduction in liver cholesterol and TG content of the L.plantarum MA2-treated group proved that the cholesterol was reduced,not re-distributed between the blood and liver.However,some researchers (Grunewald and Mitchell 1983;Thompson et al.1982;St-Onge et al.2002)did not observe hypocholes-terolemic effect from lactic acid bacteria consumed by mice and humans.Akalin et al.(1997)and Taranto et al.(1998)suggested that these conflicting results may be due to the different properties of cultures used (e.g.,acid,bile tolerance,different mechanisms of lowering cholesterol in vitro).Other important factors included bacterial ingestion dosage,cholesterol content in diet,animal used,and length of the feeding period.HDL-C did not show much difference in the experiment.Similar results in rats and humans had been reported by Ibrahim et al.(2005),Fukushima and Nakano (1996),and St-Onge et al.(2002).However,Chiu et al.(2006)reported a reduction in HDL cholesterol in hamsters fed on high-cholesterol diets.Also,Keim et al.(1981)and Rossouw et al.(1981)got similar results in humans.Otherwise,in a study performed by Hashimoto et al.(1999),a diet containing L.casei TMC 0409was found to raise the concentration of HDL-C in the blood,and similar results were also shown in other findings (Akalin et al.1997;Danielson et al.1989;De Smet et al.1998).Table 4Concentration of organic acids of fecal from rats fed on high-cholesterol dietGroup A Group B Acetic acid (mg/g)Propionic acid (mg/g)Butyric acid (mg/g)Acetic acid (mg/g)Propionic acid (mg/g)Butyric acid (mg/g)Week18.70(0.26) 2.35(0.1))0.63(0.03) 5.53(0.06) 2.80(0.07)0.55(0.01)Week212.65(0.06) 4.70(0.07)0.65(0.01)10.65(0.09) 6.45(0.15)0.63(0.003)Week312.7(0.21) 3.50(0.04)0.75(0.02)11.40(0.10)7.53(0.15)**0.65(0.03)Week412.8(0.13) 3.65(0.05)0.80(0.01)13.08(0.08)8.55(0.04)**0.60(0.02)Week512.85(0.34)4.00(0.20)0.88(0.03)15.63(0.05)12.15(0.12)**0.75(0.01)Group A,high-cholesterol diet only;group B,high-cholesterol diet +Lactobacillus plantarum MA2.Results are shown as means (standard deviations;n =10)**P<0.01Fig.2pH and water content of fecal from rats fed on high-cholesterol diet,group A,high-cholesterol diet only (filled triangle );group B,high-cholesterol diet +Lactobacillus plantarum MA2(circles ).a pH value of fecal.b Water content in fecal.Results are shown as means (n =10)Appl Microbiol BiotechnolLactic acid bacteria may alter serum cholesterol by three proposed mechanisms:(a)directly binding,absorb-ing cholesterol into the cell and assimilation before cholesterol can be absorbed into the body(Gilliland et al.1985;Noh et al.1997);(b)deconjugating bile acids and produce free bile acids,which are more likely to be excreted from the body,and drain the cholesterol pool as more bile acids are synthesized(Corzo and Gilliland1999; Dietschy1966;Chikai et al.1987);and(c)inhibiting HMG-CoA reductase by some metabolites of lactic acid bacteria like propionic acid(Fukushima and Nakano 1996).In our experiment,more fecal cholesterol was detected in the L.plantarum MA2supplementation group, and this phenomenon was similar to the results of Mott et al.(1973)and Park et al.(2008).Based on our previous vitro studies,we presume that cholesterol was tightly bound,incorporated into the cell and excreted from feces, which resulted in an inhibition of cholesterol resorption in intestine(Gilliland et al.1985;Hosono and Tono-oka 1995).The exact vivo mechanism of reducing cholesterol for L.plantarum MA2should be studied further to verify this presumption.Many studies have shown that lactic acid bacteria inhibit the proliferation of pathogenic bacteria,improve intestinal probiotics,reduce the risk of diseases,and promote the health of the host(Fuller1989;Van Winsen et al.2002; Mikkelsen and Jensen1998).In our test,the number of fecal lactobacilli and Bifidobacterium increased in the L. plantarum MA2group compared with the control.This indicated that L.plantarum MA2could successfully tolerate gastric acid and bile salt and play biological effects. Moreover,Donnet-Hughes et al.(1999)suggested that survival in the feces following oral administration reflects large bowel colonization and proliferation.However,in both groups,fecal E.coli showed a constant level throughout the feeding period,and these results indicated that growth of E.coli was not inhibited by L.plantarum MA2in vivo.It must be noted that the concentration of fecal propionic acid in rats supplemented by L.plantarum MA2was significantly increased,almost three times higher than the control.An increase in propionic acid concentration may have altered the cholesterol synthesis pathways and leads the cholesterol concentration to decrease(Liong and Shah 2006).However,the acetate content was not changed too much in both groups.Acetate is a lipogenic substrate (Delzenne and Kok2001),so a decrease in the concentration of acetic acid may lead to a decreased lipogenesis(Liong and Shah2006).Also,the concentration of butyric acid showed no significant change,and it was contrary to the findings of Liong and Shah(2006),who reported that the supplemen-tation of LFM significantly decreased the concentration of butyric acid in rats fed with a cholesterol-rich diet.Our results showed that the L.plantarum MA2did not change fecal pH too much,and many reports indicate that a decreased intestinal pH can inhibit the binding of entero-pathogenic E.coli to intestinal cells(Bernet et al.1994; Swanson et al.2002).There was a higher fecal moisture in L.plantarum MA2group,but the difference was very small,just7%.However,Chiu et al.(2006)reported a20% variation in fecal water content between the L.acidophilus-treated group and control.Our results here indicated that L. plantarum MA2had laxative potential,but the effect is very minute and there is a need to combine it with prebiotics to facilitate fecal elimination.The results of this study indicate that L.plantarum MA2 is a potential probiotic to reduce serum cholesterol,low-density lipoprotein cholesterol,and triglyceride levels. Also,L.plantarum MA2can contribute to a healthier bowel microbial balance.Further studies will be required to determine the mechanism underlying the cholesterol-lowering effect in vivo.It will also be necessary to test more animals,using varying doses of bacteria over longer times,to assess the long-term cholesterol-lowering potential of L.plantarum MA2.Acknowledgment This work was supported by a grant from the Science and Technology Supporting Project of China National Eleventh Five-Year-Plan(No.2006BAD04A06).ReferencesAgerbaeck M,Gerdes LU,Richelsen B(1995)Hypocholesterolemic effect of a new fermented milk product in healthy middle-aged men.Eur J Clin Nutr49:346–352Akalin AS,Gonc S,Duzel S(1997)Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice.J Dairy Sci80:2721–2725Bazzare TL,Wu SM,Yuhas JA(1983)Total and HDL cholesterol concentrations following yogurt and calcium supplementation.Nutr Rep Int28:1225–1232Beena A,Prasad V(1997)Effect of yogurt and bifidus yogurt fortified with skim milk powder,condensed whey and lactose-hydrolyzed condensed whey on serum cholesterol and triacylgtycerol levels in rats.J Dairy Res64:453–457Bernardeau M,Vernoux JP,Gueguen M(2002)Safety and efficacy of probiotic lactobacilli in promoting growth in post-weaning Swiss mice.Int J Food Microbiol77:19–27Bernet MF,Brassart D,Neesar JR,Servin AL(1994)Lactobacillus acidophilus LA1binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.Gut35:483–489Chikai T,Nakao H,Uchida K(1987)Deconjugation of bile acids by human intestinal bacteria implanted in germ free rats.Lipids 22:669–671Chiu CH,Lu TY,Tseng YY,Pan TM(2006)The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high cholesterol diet.Appl Microbiol Biotechnol71:238–245Corzo G,Gilliland SE(1999)Bile salt hydrolase activity of three strains of Lactobacillus acidophilus.J Dairy Sci82:472–480Appl Microbiol BiotechnolDanielson AD,Peo ERJ,Shahani KM,Lewis AJ,Whalen PJ,Amer MA(1989)Anticholesterolemic property of Lactobacillus acid-ophilus yoghurt fed to mature boars.J Anim Sci67:966–974 Delzenne NM,Kok N(2001)Effects of fructans-type prebiotics on lipid metabolism.Am J Clin Nutr73:456–458De Smet I,De Boever P,Versteaete W(1998)Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity.Br J Nutr79:185–194Dietschy JM(1966)Recent developments in solute and water transport across the gallbladder epithelium.Gastroenterology 50:692–707Donnet-Hughes A,Rochat F,Serrant P,Aeschlimann JM,Schiffrin EJ (1999)Modulation of nonspecific mechanisms of defense by lactic acid bacteria:effective dose.J Dairy Sci82:863–869 Fukushima M,Nakano M(1996)Effects of mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on choles-terol metabolism in rats fed on a fat-and cholesterol-enriched diet.Br J Nutr76:857–867Fuller R(1989)Probiotics in man and animals.J Appl Bacteriol 66:365–378Gilliland SE,Nelson CR,Maxwell C(1985)Assimilation of cholesterol by Lactobacillus acidophilus.Appl Environ Microb 49:377–381Grunewald KK(1982)Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus.J Food Sci47:2078–2079 Grunewald KK,Mitchell K(1983)Serum cholesterol levels in mice fed fermented and unfermented acidophilus milk.J Food Prot 46:315–318Harrison VC,Peat G(1975)Serum cholesterol and bowel flora in the newborn.Am J Clin Nutr28:1351–1355Hashimoto H,Yamazaki K,He F,Kawase M,Hosoda M,Hosono A (1999)Hypocholesterolemic effects of Lactobacillus casei subsp.casei TMC0409strain observed in rats fed cholesterol contained diets.Anim Sci J72:90–97Hepner G,Fried R,Jeor S,Fusetti St L,Morin R(1979) Hypocholesterolemic effect of yogurt and milk.Am J Clin Nutr 32:19–24Hosono A,Tono-oka T(1995)Binding of cholesterol with lactic acid bacteria chwissenschaft50:556–560Ibrahim A,El-sayed EM,El-zeini HSA,HM SFA(2005)The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet.Int Dairy J15:37–44Keim NL,Marlett JA,Amundsopn CH(1981)The cholesterolemic effect of skim milk in young men consuming controlled diets.Nutr Res1:422–429Liong MT,Shah NP(2006)Effects of a Lactobacillus casei symbiotic on serum lipoprotein,intestinal microflora,and organic acids in rats.J Dairy Sci89:1390–1399Liu JR,Wang SY,Chen MJ,Chen HL,Yueh PY,Lin CW(2006) Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters.Br J Nutr95:939–946Mann GV,Spoerry A(1974)Studies of a surfactant and cholesteremia in the Maasai.Am J Clin Nutr27:464–469Mikkelsen LL,Jensen BB(1998)Performance and microbial activity in gastrointestinal tract of piglets fed fermented liquid feed at weaning.J Anim Feed Sci7:211–215Mott GE,Moore RW,Redmond HE,Reiser R(1973)Lowering of serum cholesterol by intestinal bacteria in cholesterol-fed piglets.Lipids8:428–431Nakajima H,Suzuki Y,Kaizu H,Hirota T(1992)Cholesterol-lowering activity of ropy fermented milk.J Food Sci57:1327–1329Noh DO,Kim SH,Gilliland SE(1997)Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121.J Dairy Sci80:3107–3113Park YH,Kim JG,Shin YW,Kim HS,Kim YJ,Chun T,Kim SH, Whang KY(2008)Effects of Lactobacillus acidophilus43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal excretion in hypercholesterolemia-induced pigs.Biosci Biotechnol Biochem 72(2):595–600Probstfield JL,Rifkind BM(1991)The lipid research clinics coronary primary prevention trial:Design,results,and implications.Eur J Clin Pharmacol40:S69–S75Rao DR,Chawan CB,Pulusani SR(1981)Influence of milk and thermophilus milk on plasma cholesterol and hepatic cholestero-genesis in rats.J Food Sci46:1339–1341Richelsen B,Kristensen K,Pedersen SB(1996)Long-term(6months) effect of a new fermented milk product on the level of plasma 1ipoproteins—a placebo-controlled and double blind study.Eur J Clin Nutr50:811–815Rossouw JE,Burger E,Van der Vyver P,Ferreira JJ(1981)The effect of skim milk,yogurt and full cream on human serum lipids.Am J Clin Nutr34:351–356Schaafsma G,Meuling WJA,van Dokkum W,Bouley C(1998) Effects of a milk product,fermented by Lactobacillus acid-ophilus and with fructo-oligosaccharides added,on blood lipids in male volunteers.Eur J Clin Nutr52:436–440Steinmetz KA,Childs MT,Stimson C,Kushi LH,McGovern PG, Potter JD,Yarnanaka WK(1994)Effect of consumption of whole milk and skim milk on blood lipid profiles in healthy men.Am J Clin Nutr59:612–618St-Onge MP,Farnworth ER,Savard T,Chabot D,Mafu A,Jones PJH (2002)Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyper-lipidemic men:a randomized controlled trial.BMC Complement Altern Med2:1–7Swanson KS,Grieshop CM,Flickinger EA,Bauer LL,Wolf BW, Chow JM,Garleb KA,Williams JA,Fahey GC(2002) Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations,total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs.J Nutr132:3721–3731Taranto MP,Medici M,Perdigon G,Ruiz Horgado AP,Valdez GF (1998)Evidence for hypocholesterolemic effect of Lactoba-cillus reuteri in hypercholesterolemic mice.J Dairy Sci 81:2336–2340Thompson LU,Jenkins DJA,Amer MA,Reichert R,Jenkins A, Kamulsky J(1982)Effect of fermented and unfermented milks on serum cholesterol.Am J Clin Nutr36:1106–1111Usman HA,Hosono A(2000)Effect of Administration of Lactoba-cillus gasseri on Serum Lipids and Fecal Steroids in Hypercho-lesterolemic Rats.J Dairy Sci83:1705–1711Van Winsen RL,Keuzenkamp D,Urlings BAP,Lipman LJA,Snijders JAM,Verheijden JHM,van Knapen F(2002)Effect of fermented feed on shedding of Enterobacteriaceae by fattening pigs.Vet Microbiol87:267–276Vujicic IF,Vulic M,Konyves T(1992)Assimilation of cholesterol in milk by kefir cultures.Biotechnol Lett14:847–850Appl Microbiol Biotechnol。