随机变量及其分布考点总结
随机变量及其分布知识点整理 推荐
随机变量及其分布知识点整理以及高考训练一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+= 两点分布如果随机变量X 的分布列为 X1P 1-p p则称X 服从两点分布。
二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。
()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响. 四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ “相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生. n 次独立重复试验的公式:n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为()(1),0,1,2,...,.(1)k k n k k k n kn n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,X 01… k … nP00nn C p q111n n C p q -…k k n kn C p q - …n n n C p q此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率. 六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n2221122(())(())(())..n n DX x E X p x E X p x E X p X DX X =-+-+⋅⋅⋅+-则称为随机变量的方差并称为随机变量的标准差例题练习11年山东数学高考红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.12年山东数学高考先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.13年山东数学高考甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果互相独立.(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望.13年天津数学高考一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.13年北京数学高考下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
随机变量极其分布知识点
概率论与数理统计期末复习重要知识点一维:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<< (2)二项分布: 若一个随机变量X的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)0()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数:设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
随机变量及其分布总结
随机变量及其分布1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥. 当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()(P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.②独立重复试验的概率公式p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n k n n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.知识结构公式:()(),()0.()P AB P B A P A P A => 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X )i i X x p ==,则称表为随机变量的概率分布,简称的分布列.性质:①0,1,2,...;i p i n ≥= ②1 1.n i i p ==∑⑵两点分布则称X 服从两点分布,并称(1)p P X ==为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k k n k n P X k C p p -==-我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n 次;① 等概率性:在每次试验中事件发生的概率均相等.② 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,于是得到随机变量X其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是总体中的个体总数、N 中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值则称()1122i i n n E X x p x p x p x p =+++++为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.⑵离散型随机变量的方差则称21()(())n ii i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. ()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.。
概率与统计中的随机变量与分布类型总结
概率与统计中的随机变量与分布类型总结概率与统计是数学领域中非常重要的一个分支,它涉及到随机事件的发生概率和数据的分析与推断。
其中,随机变量与分布类型是概率与统计的核心概念之一。
本文将对概率与统计中的随机变量和常见的分布类型进行总结。
一、随机变量随机变量是概率论与统计学中的重要概念,表示随机试验结果的数值化表达。
随机变量可以是离散型也可以是连续型的。
1. 离散型随机变量离散型随机变量取有限个或可数个数值,其概率分布可以用概率质量函数(Probability Mass Function,简称PMF)表示。
例如,投掷一枚骰子得到的点数可以表示为一个离散型随机变量,其取值范围为1到6。
2. 连续型随机变量连续型随机变量可以取任意实数值,其概率分布可以用概率密度函数(Probability Density Function,简称PDF)表示。
例如,某汽车在一小时内的速度可以表示为一个连续型随机变量。
二、常见的分布类型随机变量的分布类型描述了各种随机变量的特征和分布规律。
在概率与统计中,存在许多常见的分布类型,包括以下几种。
1. 伯努利分布伯努利分布是一种最简单的离散型分布,它描述了只有两个可能结果的随机试验,如投硬币、掷骰子等。
伯努利分布的概率质量函数为: P(X=k) = p^k * (1-p)^(1-k)其中,p表示事件发生的概率,k为0或1。
2. 二项分布二项分布是一种离散型分布,描述了进行n次独立的伯努利试验中成功次数的概率。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n表示试验次数,k表示成功次数,p表示每次试验成功的概率,C(n,k)表示组合数。
3. 正态分布正态分布是一种连续型分布,也被称为高斯分布。
正态分布是自然界中许多现象的近似分布,具有重要的理论和实际应用。
正态分布的概率密度函数为:f(x) = (1/sqrt(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2))其中,μ表示均值,σ表示标准差。
随机变量及其分布知识点总结资料讲解.doc
圆梦教育中心 随机变量及其分布知识点整理一、离散型随机 量的分布列一 般 地 , 离 散 型 随 机 量 X 可 能 取 的x 1 , x 2 , , x i ,, x n , X 取 每 一 个 x i (i1,2, , n) 的 概 率P( Xx i ) p i , 称以下表格Xx 1 x 2 ⋯ x i ⋯ x n Pp 1p 2⋯p i⋯p n随机 量 X 的概率分布列, 称X 的分布列 .离散型随机 量的分布列具有下述两个性 :( 1) P i ≥ 0, i1,2, , n ( 2) p 1 p 2 p n 11.两点分布如果随机 量X 的分布列X1P 1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率 .2.超几何分布 一般地,在含有M 件次品的 N 件 品中,任取 n 件,其中恰有 X 件次品, 事件X k 生的概率 :P( X k ) C M k C N n k M , k 0,1,2,3,..., mC nN 随机 量 X 的概率分布列如下:X1 ⋯ mPC M 0 C N n 0MC M 1 C N n 1M⋯C M m C N n m MC N nC N nC N n其中 mmin M , n , 且nN , M N , n, M , N N * 。
注:超几何分布的模型是不放回抽 二、条件概率一般地, A,B 两个事件 , 且 P( A)0 ,称P(B | A)P( AB )在事件 A 生的条件下 , 事件 B 生的条件概率 .P( A)0≤ P(B | A) ≤ 1如果 B 和 C 互斥,那么 P[( B U C ) | A] P( B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB) P( A)P( B) ), 称事件 A 与事件B 相互独立。
即 A 、 B 相互独立P( AB) P( A) P(B)一般地,如果事件A ,A , ⋯,A n 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概率的 ,12即 P( A 1A 2... A n ) P( A 1 ) P( A 2 )...P( A n ) .注: (1) 互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响.四、 n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在 n 次独立重复试验中,记A i是“第i次试验的结果” ,显然, P( A1 A2A n ) P( A1 )P( A2 )P( A n )“相同条件下”等价于各次试验的结果不会受其他试验的影响注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.n次独立重复试验的公式:一般地,在 n次独立重复中,事件 A生的次数 X,在每次中事件 A生的概率 p,那么在 n次独立重复中,事件 A 恰好生 k次的概率P( X k ) C n k p k (1 p)n k C n k p k q n k , k 0,1,2,..., n.(其中 q 1 p) ,而称p为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为p,则P( X k ) C n k p k (1 p)n k, k 0,1,2, ,nX01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0此时称随机变量X 服从二项分布,记作X ~ B(n, p) ,并称p为成功概率.六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 E( X ) x1 p1 x2 p2x i p i x n p n为X 的数学期望或均值,简称为期望 . 它反映了离散型随机变量取值的平均水平 .1.若Y aX b ,其中a,b常数,则Y 也是变量Y ax1 b ax2 b ⋯ax i b ⋯ax n bP p1 p2⋯p ⋯pi n则 EY aE( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1 p 0 (1 p)p 3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 DX ( x1 E (X )) 2 p1 ( x2 E( X )) 2 p2 (x n E ( X 并称DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X ) p(1 p)2.若X ~ B(n, p),则D ( X )np(1 p)3.D ( aX b)a2 D ( X )即若 X 服从两点分布,则E( X )p。
(完整版)基础随机变量及其分布知识点
随机变量及其分布一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+=常见的两种分布: 1.两点分布如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为:(),0,1,2,3,...,k n k MN M n NC C P X k k m C--===则随机变量X 的概率分布列如下:{}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。
注:超几何分布的模型是不放回抽样二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。
()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2) 相互独立事件:指在不同试验下的两个事件互不影响.四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n次独立重复试验中,记iA 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅“相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率.六、离散随机变量的均值(数学期望) 一般地,随机变量X 的概率分布列为则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.1.若Y aX b =+,其中a ,b 为常数,则Y 也是变量则()EY aE X b =+,即()()E aX b aE X b +=+2.一般地,如果随机变量X 服从两点分布,那么()=10(1)E X p p p ⨯+⨯-=即若X 服从两点分布,则()E X p = 3.若~(,)X B n p ,则()E X np =七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 2221122(())(())(())..n n DX x E X p x E X p x E X p X X =-+-+⋅⋅⋅+-则称为随机变量的方差的标准差1.若X 服从两点分布,则()(1)D X p p =- 2.若~(,)X B n p ,则()(1)D X np p =- 3.2()()D aX b a D X +=八、正态分布1.正态分布一般记为N(μ,σ2).μ为正态分布的均值;σ是正态分布的标准差2.结合正态曲线,归纳其以下性质:(1)曲线在x轴的上方,与x轴不相交.(2)曲线关于直线x=μ对称.(3)当x=μ时,曲线位于最高点.(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数).并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.(5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”,总体分布越集中;3.3σ原则:对于正态总体),(2σμN 取值的概率:练习:1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。
高中数学知识点总结:随机变量及其分布
高中数学知识点总结:随机变量及其分布随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
高中数学必修知识点随机变量及其分布
高中数学必修知识点随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x nX 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
随机变量及其分布考点总结
第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1( =i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.1=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.k2.072 2.7063.841 5.024 6.635 7.879 10.828(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52随即均分给钱四家,A={家得到六章草花},B={家得到3草花},计算P(B|A),P(AB)3、从混有5假钞的20百元钞票中任取两,将其中1在验钞机上检验发现是假钞,求两都是假钞的概率。
随机变量及其分布知识点总结
随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。
在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。
本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。
一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。
随机变量的取值可以是离散的或连续的。
离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。
二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。
概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。
概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。
三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。
离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。
1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。
离散分布的概率质量函数通常用 $g_X(x)$ 表示。
例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。
连续分布的概率质量函数通常用 $f_X(x)$ 表示。
例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。
离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。
期望的概率质量函数通常用$f_X(x)$ 表示。
《概率论与数理统计》第二章随机变量及其分布知识点
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。
随机变量及其分布知识点总结
圆梦教育中心 随机变量及其分布知识点整理一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+= 1.两点分布如果随机变量X 的分布列为 X1P 1-p p则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为:(),0,1,2,3,...,k n k M N MnNC C P X k k m C --=== 则随机变量X 的概率分布列如下: X1… mP00n M N MnNC C C -- 11n M N MnNC C C -- …m n m M N MnNC C C -- {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。
注:超几何分布的模型是不放回抽样 二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。
()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响. 四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ “相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生. n 次独立重复试验的公式:n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为()(1),0,1,2,...,.(1)k k n k k k n kn n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,X 01… k … nP00nn C p q111n n C p q -…k k n kn C p q - …n n n C p q此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率.六、离散随机变量的均值(数学期望) 一般地,随机变量X 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.1.若Y aX b =+,其中a ,b 为常数,则Y 也是变量 Y 1ax b + 2ax b + … i ax b + … n ax b +P p 1 p 2 … p i … p n则()EY aE X b =+,即()()E aX b aE X b +=+ 2.一般地,如果随机变量X 服从两点分布,那么()=10(1)E X p p p ⨯+⨯-=即若X 服从两点分布,则()E X p =3.若~(,)X B n p ,则()E X np =七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n221122(())(())((.n DX x E X p x E X p x E X DX X =-+-+⋅⋅⋅+-则称并称为随机变量的标准差1.若X 服从两点分布,则()(1)D X p p =- 2.若~(,)X B n p ,则()(1)D X np p =- 3.2()()D aX b a D X +=。
随机变量及其分布知识点整理.docx
一、离散型随机量的分布列一般地,离散型随机量X 可能取的x1 , x2 , , x i , , x n,X取每一个x i (i 1,2,, n) 的概率P( X x i ) p i,称以下表格X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n随机量X 的概率分布列,称X 的分布列 .离散型随机量的分布列具有下述两个性:( 1)P i≥0, i1,2, , n (2) p1p2p n11.两点分布如果随机量X 的分布列X01P1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率.2.超几何分布一般地,在含有 M件次品的 N件品中,任取 n 件,其中恰有X 件次品,事件X k 生的概率:P( X k)C M k C N n k M, k0,1,2,3,..., mC N n随机量 X 的概率分布列如下:X01⋯mC0C n 0C1C n 1C m C n mP M N M M N M⋯M N MC N n C N n C N n其中 m min M , n ,且n N, M N ,n,M , N N *。
注:超几何分布的模型是不放回抽二、条件概率一般地, A,B 两个事件 , 且P( A)P( AB)0 ,称 P( B | A)在事件 A 生的条件下 , 事件 B 生的条P( A)件概率 .0 ≤ P(B | A) ≤ 1如果 B 和 C互斥,那么P[( B U C ) | A] P(B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB)P( A) P(B) ), 称事件A 与事件B 相互独立。
即 A 、 B 相互独立 P( AB)P( A) P(B)一般地,如果事件 A ,A, ⋯,An 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概12率的 ,即 P( A 1A 2... A n ) P( A 1 )P( A 2 )...P( A n ) .注: (1) 互斥事件 :指同一次 中的两个事件不可能同 生;(2) 相互独立事件 :指在不同 下的两个事件互不影响. 四、 n 次独立重复一般地,在相同条件下,重复做的n 次 称 n 次独立重复 .在 n 次独立重复 中,A i 是“第 i 次 的 果” , 然, P( A 1 A 2A n ) P( A 1 ) P( A 2 ) P( A n )“相同条件下”等价于各次 的 果不会受其他 的影响注 : 独立重复 模型 足以下三方面特征第一:每次 是在同 条件下 行;第二:各次 中的事件是相互独立的;第三:每次 都只有两种 果,即事件要么 生,要么不 生.n 次独立重复 的公式:一般地,在 次独立重复 中, 事件生的次数X ,在每次 中事件 生的概率,那么在 次nAApn独立重复 中,事件恰好 生 k 次的概率AP( Xk) C n k p k (1 p)n kC n k p k q n k , k 0,1,2,..., n.(其中 q1 p) ,而称 p 成功概率 .五、二 分布一般地,在 n 次独立重复 中,用X 表示事件 A 生的次数, 每次 中事件A 生的概率p ,P( Xk) C n k p k (1 p)n k , k 0,1,2, , nX1⋯ k ⋯nPC n 0 p 0q n C n 1 p 1q n 1 ⋯ C n k p k q n k ⋯C n n p n q 0此 称随机 量 X 服从二 分布, 作 X ~ B(n, p) ,并称 p 成功概率 .六、离散随机 量的均 (数学期望)一般地,随机 量 X 的概率分布列X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n则称 E( X ) x1 p1x2 p2x i p i x n p n为 X 的数学期望或均值,简称为期望. 它反映了离散型随机变量取值的平均水平. 1.若Y aX b ,其中a,b常数,则Y也是变量Y ax 1 b ax 2 b ⋯ ax i b ⋯ ax n bP p1p2⋯p⋯pni则EY aE ( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1p0 (1p)p即若 X 服从两点分布,则E( X )p3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n则称 DX(x1E( X )) 2 p1 (x2E( X ))2 p2( x n E( X )) 2 p n为随机变量 X的方差.并称 DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X )p(1p) 2.若X ~ B(n, p),则D ( X ) np(1p) 3.D (aX b)a2 D( X )。
(完整版)随机变量及其分布列概念公式总结
随机变量及其分布总结1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,,,… 表示.ξη2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为,则称表()i i P x p ξ==ξx 1x 2…x i …PP 1P 2…P i…为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:(1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1.5.求离散型随机变量的概率分布的步骤:ξ(1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(=x i )=p i ξ(36.两点分布列:ξ01P1p -p7超几何分布列:一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件{X=k }发生的概率为,其中(),0,1,2,,k n k M N MnNC C P X k k m C --=== ,且.称分布列min{,}m M n =,,,,n N M N n M N N *≤≤∈X 01…mP0n M N Mn NC C C -11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量X 服从超几何分布8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是,(k =0,1,2,…,n ,).kn k k n n q p C k P -==)(ξp q -=1于是得到随机变量ξ的概率分布如下:ξ01…k…nPnn qp C 00111-n n qp C …kn k k n qp C -…qp C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。
高中数学知识点总结:随机变量及其分布2页
高中数学知识点总结:随机变量及其分布2页1.随机变量随机变量是定义在样本空间上的函数,它的取值是随机的。
如果随机变量只取有限个或无限个可列值,称为离散随机变量。
3.离散概率分布离散随机变量的取值及其对应的概率称为离散概率分布。
4.期望离散随机变量X的期望是各个取值与其对应的概率乘积之和,用E(X)表示。
5.方差6.二项分布重复独立地进行n次相同的试验,每次试验只有成功和失败两种可能,成功概率为p,失败概率为1-p,记X为n次试验中成功的次数,则X服从二项分布,用B(n,p)表示。
7.泊松分布在一定时间或空间内,事件发生的次数服从泊松分布,如果事件在单位时间或单位空间内出现的概率是λ,则X在一个时间或空间区间内出现x次的概率为e^(-λ)λ^x/x!。
9.概率密度函数连续随机变量X的概率密度函数是一个非负可积函数f(x),满足积分从负无穷到正无穷等于1,即∫f(x) dx=1。
连续随机变量X的期望是∫xf(x) dx。
12.正态分布在许多自然界现象中,随机变量的分布往往服从正态分布,其概率密度函数为f(x)=1/(σ√(2π)) e^((-(x-μ)^2)/(2σ^2)),其中μ是期望,σ是标准差。
13.中心极限定理如果n个独立随机变量的和服从某个分布,当n趋于无穷大时,它们的和近似服从正态分布。
这就是中心极限定理。
14.卡方分布卡方分布是一种重要的概率分布,它是二项分布的极限情况。
在统计学中广泛应用,用于检验样本方差是否符合正态分布。
t分布是一种重要的概率分布,常用于小样本的统计推断,如t检验。
F分布是一种概率分布,广泛用于方差分析,也用于卡方检验、t检验等。
17.统计量统计量是由样本数据计算出来的统计量,是样本的函数,可以用于对总体进行推断,如均值、方差、相关系数等。
18.抽样分布抽样分布是一个统计量的分布,由样本数据计算得到,用于总体参数的估计和假设检验。
19.点估计点估计是使用样本数据得到总体参数的点估计值,如样本均值、样本标准差等。
概率与统计中的随机变量及其分布知识点总结
概率与统计中的随机变量及其分布知识点总结在概率与统计学中,随机变量是一种具有概率分布的变量,它可以用来描述不确定性的现象和事件。
随机变量的理论是概率论的核心内容之一,掌握随机变量及其分布知识点对于理解概率与统计学的基本原理及应用具有重要意义。
本文将对概率与统计中的随机变量及其分布进行知识点总结。
一、随机变量的概念与分类随机变量(Random Variable)是指对于随机试验结果的数值描述。
随机变量可以分为离散型随机变量和连续型随机变量两类。
1. 离散型随机变量离散型随机变量(Discrete Random Variable)的取值为有限个或可数个。
常见的离散型随机变量有伯努利随机变量、二项分布随机变量、泊松随机变量等。
2. 连续型随机变量连续型随机变量(Continuous Random Variable)的取值可以是任意的实数。
通常用于表示测量结果或特定区间内的变化。
常见的连续型随机变量有均匀分布随机变量、正态分布随机变量等。
二、随机变量的分布函数与概率函数随机变量的分布函数和概率函数是描述随机变量的重要工具。
1. 分布函数分布函数(Distribution Function)是随机变量取值小于或等于某个值的概率,通常记作F(x),其中x为随机变量的取值。
分布函数的性质包括:非递减性、右连续性、左极限性质。
2. 概率函数(密度函数)概率函数(Probability Density Function)用于描述连续型随机变量的概率分布情况,通常记作f(x),其中x为随机变量的取值。
概率函数的性质包括:非负性、归一性。
三、常见的随机变量及其分布在概率与统计学中,有一些常见的随机变量及其分布是被广泛应用的。
1. 伯努利随机变量伯努利随机变量(Bernoulli Random Variable)是最简单的离散型随机变量,它只有两个取值,通常用来描述成功或失败的情况。
2. 二项分布随机变量二项分布随机变量(Binomial Random Variable)描述了n个独立的伯努利试验中成功的次数,其中n为试验次数,p为单次成功的概率。
随机变量及其分布总结
随机变量及其分布总结一、随机变量随机变量(Random Variable)是概率论中的重要概念,它是表示一个随机实验的可能结果及这些结果发生的概率的指标,是随机现象中的重要解释指标。
随机变量由它的取值所确定,特点是:(1)它是一类不能确定的数,因此不能被直接测量,但是可以用概率来描述它;(2)它表示了实验结果的取值;(3)它可以表示有一定规律的实验结果,也可以表示没有规律的实验结果;(4)它用其取值及概率分布表示一个随机实验的结果,即实验结果的不确定性;(5)它可以用来描述随机实验中各可能结果对概率的影响,从而探究随机现象的规律性。
二、随机变量的分类根据随机变量的取值类型,随机变量可分为定型随机变量和随机变量。
(1)定型随机变量定型随机变量也称为离散型随机变量,它会取值完全可以确定的一组可数的取值。
其具体分类包括:(a)伽玛分布(Gamma Distribution):它是一种对数正态分布,可用来模拟某些自然现象,如系统失效时间的分布。
(b)指数分布(Exponential Distribution):这是一种特殊的定型随机变量,它可以用来模拟服从指数分布的概率分布函数或者指数函数,常用来描述生存分析中系统的衰减过程。
(c)伯努利分布(Bernoulli Distribution):这是一种概率分布,它是一种若干独立实验中,某个事件出现的概率。
(d)泊松分布(Poisson Distribution):它是描述某一时间段内发生的事件的概率分布,可用来模拟客流量等自然现象中的随机变量。
(2)随机变量随机变量又称为连续型随机变量,它的取值范围是无限的,其取值受随机实验影响,其取值不能确定,但可以描述它的概率分布。
具体分类包括:(a)正态分布(Normal Distribution):正态分布具有非常广泛的应用,它可用来描述许多现实世界中的现象,如智力、体重等。
(b)卡方分布(Chi-square Distribution):卡方分布是在实验设计中非常常见的概率分布,它包含了有关实验结果的统计量,如样本均值、样本方差等。
随机变量及其分布知识点总结
随机变量及其分布知识点总结随机变量是概率论中的基础概念之一,是描述随机事件的数学模型。
随机变量可以分为离散随机变量和连续随机变量,它们分别对应两种不同的概率分布函数。
随机变量及其分布是概率论和统计学中的重要概念,掌握它们的知识对理解概率和统计学的应用至关重要。
一、随机变量的定义在概率论中,将随机试验中的所有可能结果对应的实数量称为随机变量。
可以通过随机变量的取值和概率分布函数来描述随机试验的结果。
二、随机变量的分类1. 离散随机变量如果随机变量只能取离散的值,则称其为离散随机变量。
离散随机变量的概率分布函数(discrete probability function )可以用概率质量函数(probability mass function,PMF)表示。
离散随机变量的概率分布函数具有以下性质:1) P(X = x) ≥ 0,即每个值的概率非负。
2) ΣP(X = x) = 1,即所有可能取值的概率和为1。
3) PMF可以用折线图表示。
例如:伯努利试验中,试验的结果只有两种可能性,即成功和失败。
设X为成功的次数,则X是离散随机变量。
成功的概率为p,失败的概率为1-p。
则X的概率分布函数为:P(X = k) = p^k(1-p)^(1-k), k = 0,12. 连续随机变量如果随机变量可以取任意实数值,则称其为连续随机变量。
由于随机变量可以取无限多的值,因此相对于离散随机变量,它的概率分布函数有一些特殊的性质。
连续随机变量的概率密度函数(Probability Density Function,PDF)可以用函数表示。
由于随机变量连续,因此PDF不是一条折线,而是一条连续曲线。
连续随机变量的概率分布函数具有以下性质:1) P(X = x) = 0,即连续随机变量的每个单独取值的概率为0。
2) ∫f(x)dx = 1,即PDF下的所有面积和为13) 可以用PDF曲线下的面积计算概率。
例如:假设X表示一个信号在某个时间段内的功率,则X是一个连续随机变量。
随机变量及其分布知识点
随机变量及其分布知识点
随机变量是随机试验中的数值结果,通常用大写字母表示,例如X、Y等。
随机变量可以是离散的,也可以是连续的,具体取决于它可以取到的值。
离散随机变量只能取到一些特定的值,这些值之间有间隔。
例如,掷硬币时正面朝上的次数就是一个离散随机变量,它只能取到0或1两个值。
连续随机变量可以取到区间内的任何值。
例如,一个人的身高就是一个连续随机变量,它可以取到1.50米、1.55米、1.60米等任何一个值。
随机变量的分布是它可能取到每个值的概率分布情况。
对于离散随机变量,它的分布可以通过概率质量函数来描述;对于连续随机变量,它的分布可以通过概率密度函数来描述。
常见的离散分布有伯努利分布、二项分布、泊松分布等;常见的连续分布有均匀分布、正态分布、指数分布等。
在实际应用中,我们经常需要计算随机变量的期望、方差和协方差等统计量。
通过这些统计量,我们可以更全面地了解随机变量的性质,更准确地进行数据分析和模型建立。
总之,随机变量及其分布是概率论和数理统计中非常重要的知识点,对于理论研究和实际应用都有着重要的意义。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x xξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有%的把握认为喜爱打篮球与性别有关说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.下面的临界值表供参考:(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少2、把一副扑克52张随即均分给赵钱孙李四家,A={赵家得到六章草花},B={孙家得到3张草花},计算P(B|A),P(AB)3、从混有5张假钞的20张百元钞票中任取两张,将其中1张在验钞机上检验发现是假钞,求两张都是假钞的概率。
4、有外形相同的球分装在三个盒子,每个盒子10个,其中第一个盒子7球标有字母A ,3个球标有字母B ;第二个盒子中五个红球五个白球;第三个盒子八个红球,两个白球;在如下规则下:先在第一个盒子取一个球,若是A 球,则在第二个盒子取球;如果第一次取出的是B 球,则在第三个盒子中取球,如果第二次取出的球是红球,则称试验成功,求试验成功的概率。
5、在图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是________6、甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率 三、几种分布1. ⑴独立重复试验与二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0Λ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.2. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-==Λ.根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-==Λ),3,2,1(1Λ==-k p q k 于是得到随机变量ξ的概率分布列.ξ 1 2 3… k… Pqqpp q 2…p q 1k -…我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中Λ3,2,1.1=-=k p q3. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k C C C k)P(ξn ba kn bk a Λ=⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含k n k k n b a C -个结果,故n ,0,1,2,k ,)b a a (1)b a a (C b)(a b a C k)P(ηk n k k n nkn k k n Λ=+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 典型例题:1、某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率2、在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的。
假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的。
(1)求蜜蜂落入第二实验区的概率;(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率; (3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望EX 。
3、A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验。
每个试验组由4只小白鼠组成,其中两只服用A ,两只服用B ,然后观察疗效。
若在一个试验组中,服用A 有效的小白鼠只数比服用B 有效的多,就称该试验组为甲类组。
设每只小白鼠服用A 有效的概率为2/3,服用B 有效的概率为1/2. (1)求一个试验组为甲类组的概率。
(2)观察3个试验组,用ξ表示3个试验组中甲类组的个数,求ξ分布列4. 某射击运动员每次射击击中目标的概率为p (0<p<1)。
他有10发子弹,现对某一目标连续射击,每次打一发子弹,直到击中目标,或子弹打光为止。
求他射击次数的分布列。
5、、由180只集成电路组成的一批产品中,有8只是次品,现从中任抽4只,用ξ表示其中的次品数,试求:(1)抽取的4只中恰好有k 只次品的概率;(2)求ξ分布列.二、数学期望与方差.则称ΛΛ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为: (p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(Λ===k p x P k k ξ时,则称ΛΛ+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳....定性越高,波动越小........... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b aD D 2)()(=+=.(a 、b 均为常数)⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E . 典型例题:1、 如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为.(Ⅰ)求p ; (Ⅱ)求电流能在M 与N 之间通过的概率;(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望.2、一名小学教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花。